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Abstract: Corona virus disease 2019 (COVID-19) 's global pandemic has caused the world to face a health crisis. 

Automated detection of COVID-19 infection from computed tomography (CT-scan) images has improved healthcare 

for treating COVID-19. However, segmentation of infected areas on CT-scan images of the lungs faces several 

challenges: detailed infection characteristics and low contrast differences between CT scans of infected lungs. It has a 

low data scale with a doctor's statement because it is still a new case, with a lot of data with pseudo labels, while 

pseudo labels have a low confidence level and a high error rate. Therefore, using the data of 1600 pseudo label images 

and 50 doctor label images, we apply pseudo supervision as the core idea, mutual training between two different 

models with a dynamic loss function called dynamic mutual training (DMT). DMT will do multi-training on pseudo 

labels with doctor's labels to be trusted in area segmentation. The results obtained are the most superior value of 

91.32% with a loss value of 0.19 dice score 0.23, IOU 0.781, precision 0.843, sensitivity 0.753, and specificity 0.845. 

We also compare our method with other segmentation methods such as UNET, which is highly preferred in terms of 

medical images, and mask RCNN, which shows the best method in terms of segmentation. This comparison indicates 

that DMT provides the best experimental incentive with a dice score value of 2-30%, superior to cases segmentation 

areas affected by COVID-19 on CT scans of the lungs. 
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1. Introduction 

Image segmentation is an essential process in 

computer vision. It involves separating visual input 

into segments to simplify image analysis. A segment 

represents an object or part of an object and 

comprises a collection of pixels, or "superpixels." 

Image segmentation sorts pixels into more significant 

components, eliminating the need to consider 

individual pixels as observation units. It is the process 

of grouping something larger into smaller parts based 

on specific characteristics. The image segmentation 

process separates the object (foreground) from the 

background. In general, the output of image 

segmentation is a binary image where the desired 

object (foreground) is white (1), while the 

background to be removed is black (0). In the case of 

COVID-19 segmentation in recent studies [1, 2], 

typical signs of infection can be observed from CT 

slices, for example, ground-glass opacity (GGO) in 

the early stages and pulmonary consolidation in the 

late stages. Qualitative evaluation of infection and 

longitudinal changes in CT slices can provide 

essential benefits and information in the fight against 

COVID-19. However, manually depicting lung 

infections is tedious and time-consuming [3]. In 

addition, the explanation of infection by the 

radiologist is a highly subjective task, often 

influenced by individual bias and clinical experience 

[4]. 

From the above problems, we propose a 

segmentation of the COVID-19 system based on CT-
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scan lung images using the CNN method, called 

DMT. This system analyzes the location and the 

region of the COVID-19 virus spread in the lungs 

using CT-scan images by segmentation. We are 

automatically using machine learning (CNN). In this 

experiment, we used the DMT method as a basic 

model for segmenting the lungs in areas affected by 

COVID-19. The main contributions of our work are: 

- We carried out various data augmentation 

methods to improve the consistency of the 

results, such as random scale, random horizontal 

flip, and random cropping. 

- In the segmentation process, we use the CNN 

architecture widely used in the medical image 

segmentation process. This architecture is similar 

to the U-net architecture.  

- The training was carried out using the semi-

supervised DMT method, which managed to 

outperform the segmentation results because it 

took into account small labeled data. 

- For the evaluation matrix using IOU, Dice, 

Precision, sensitivity, and precision which are 

proven to be able to display good evaluations in 

segmentation cases 

As we know that a COVID-19 pandemic is an 

event of the spread of the coronavirus disease which 

has spread very quickly in almost all countries in the 

world. This disease is caused by a severe acute 

respiratory syndrome that can be transmitted, namely 

coronavirus 2 (SARS-CoV2). As of December 10, 

2021, more than 268 million cases have been reported 

from 219 countries worldwide, resulting in more than 

5.28 million deaths and over 231 million recoveries 

[5]. With this large amount of data, the world health 

organization (WHO) urges all countries and 

communities to immediately carry out more effective 

prevention and treatment by conducting more tests, 

especially on suspected patients [6]. 

All efforts and resources have been made to fight 

this pandemic, one of which is developing a 

diagnosis. RT-PCR has been developed for COVID-

19 screening as the standard method for testing 

obtained specimens. RT-PCR has proven to be 

superior and widely used for COVID-19 sampling 

than other methods such as nasopharyngeal swabs, 

oropharyngeal swabs, bronchoalveolar lavage, or 

tracheal aspiration. RT-PCR can detect viral RNA 

and some new findings. RT-PCR can detect viral 

RNA and some new findings. However, RT-PCR 

testing has a low sensitivity, almost 71 percent, thus 

requiring repeated testing for a proper diagnosis [7]. 

Computed tomography (CT) imaging is essential in 

detecting lung infections associated with COVID-19. 

It is practical and has been widely used to assess and 

evaluate disease evolution, patchy ground-glass 

opacity (GGO) with consolidation frequently found 

on CT images. As a sign of lung infection. Thus, 

quantitative assessment of these lung lesions can aid 

in the diagnosis. [8]. 

Artificial intelligence (AI) methods have 

significantly progressed in the last decade. The 

abundance of data has achieved high accuracy in 

many tasks, including machine vision and medical 

diagnosis. In the case of COVID-19, convolutional 

deep neural networks (CNN), a type of AI method 

developed to solve vision problems, may play an 

essential role in disease diagnosis using CT scans. By 

localizing and categorizing infections, misdiagnosis 

can be reduced and can assist clinicians in 

quantifying lesions and disease stages [9]. 

2. Related method 

Recently, a deep learning system has been 

proposed to detect COVID-19 infected patients using 

radiological imaging [3, 4]. The popular semi-

supervised learning method is described and 

practiced by many researchers. For example, Deng-

Ping Fan et al. [10] used a method to reduce labeled 

data, namely a semi-supervised framework using the 

INF-Net architecture. This study obtained a dice 

value of 0.682, a sensitivity of 0.692, a specificity of 

0.943, and an MAE of 0.082. These results are quite 

effective and can be developed further.  

Due to the lack of datasets, Issam Laradji et al. 

[11] used three different data sets to categorize the 

monitored consistency by calculating the loss 

consistency. This study used an ImageNet 

architecture normalized in the preprocessing section 

with an IOU evaluation matrix, dice coefficient (F1 

score), positive predictive value (PPV), sensitivity, 

and specificity yielded values of 0.58, 0.41, 0.46, 

0.80, 0.82, respectively. The research has shown 

promising results, but there is no evaluation from 

doctors or experts. Therefore, the accuracy of the 

segmentation results cannot be trusted. 

Tanvir Mahmud et al. [12], used three different 

data sets in the segmentation, namely two COVID-19 

data and one city view drone data, using a joint 

optimization scheme in the preprocessing process, 

and the CovSegNet architecture with multi-encoder 

resulting in an IOU value of 64.6, dice 59.5, 

sensitivity 76.4, and specificity 87.7. The work in this 

research is still too complicated because 3D images 

are converted into 2D images. Still, overall it has 

produced good results, but it may be developed in a 

simplified way. 

Naveen Paluru et al. [13] used three different data 

sets to amplify the segmentation annotation results.  
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Figure. 1 System diagram 

 
Table 1. Size of the dataset 

Dataset 

Type Total Size 

CT-Scan 

1600 336 x 493 332 x 486 231 x 384 

1600 336 x 492 333 x 488 231 x 383 

1600 334 x 491 235 x 320 ………. 

Mask 

1600 235 x 320 281 x 395 267 x 385 

1600 237 x 319 275 x 383 235 x 320 

1600 194 x 279 248 x 360 ………. 

Edge 

1600 235 x 320 281 x 395 252 x 374 

1600 237 x 319 275 x 383 235 x 320 

1600 194 x 279 248 x 360 ………… 

 

They used the normalization of lung extraction 

segmentation abnormalities in the preprocessing 

section and introduced a new CNN architecture 

called Anam-Net (light-based anamorphic depth 

embedding). The result had an accuracy score of 

0.990, a dice score of 0.972, a sensitivity of 0.959, 

and a sensitivity of 0.997.  

Yifan Jiang et al. [14] proposed cGAN-based 

COVID-19 CT as an image synthesis method that can 

produce realistic CT images covering the two main 

types of infection; opacity ground-glass and 

consolidation. The proposed method takes the 

semantics segmentation map of the appropriate 

pulmonary CT images, and The cGAN structure 

studies the characteristics and information of the CT 

image. This study used 829 lung CT slices in the 

preprocessing process using various augmentation 

methods: random resizing and cropping, random 

rotation, Gaussian noise, and elastic. 

Yu-Huan Wu et al. [15] built a large-scale 

COVID-19 classification and segmentation (COVID-

CS) data set and also developed a joint classification 

and segmentation system (JCS) for COVID-19 

diagnostics. In our system, the classification model 

has identified whether the patient is a positive suspect 

for COVID-19 or not, accompanied by a convincing 

visual explanation. This study yielded a sensitivity of 

95.0% and a specificity of 93.0% in our COVID-CS 

dataset classification assay. 

3. Method 

In this section, we discuss the methods used in 

the experiment. The segmentation process requires 

several stages image input, preprocessing, 

segmentation and evaluation. We present these stages 

in the form of a system diagram shown in Fig. 1. 

Fig. 1 shows four main stages in the research, starting 

from data input, preprocessing, training, testing, and 

evaluation.  

3.1 Input 

The input data uses training data with two 

different data types: CT-Scan images of COVID-19 

patients and images of COVID-19 segmentation 

results. 

3.2 Pre-processing 

The preprocessing stage has two stages, namely 

resizing and regulation consistency. Each 

preprocessing stage is described below: 

 

Resize. The datasets collected previously have 

various sizes that are very diverse. For this reason,  it 

is necessary to change the data size. One way to 

equalize the input image size is to resize it. Resize is 

done with a size of 235 x 320 pixels taken from the 

largest size in the dataset. Resizing is done to 

facilitate the next learning process. The size 

variations in our data are shown in Table 1. 

Table 1 shows data size variations in training data 

types with pseudo labels with 1600 data on each CT-

Scan, mask, and edge image. The data varies from the 

largest size of 336 x 486 pixels to the smallest of 231 

x 383 pixels (with blue bold font). Based on these 

data, it was found that each type of image has the 

largest size, which is 235x320 pixels. On that basis, 

we resize to 235x320 pixels so that the data have the 

same size. 

 

Consistency regulation. Common methods or 

techniques used for semi-supervised and self-

supervised learning. Consistency regulation plays a 

similar role to data augmentation or data 

augmentation methods. 

Like research done, Hendryckction et al. [16], 

recently conducted an experiment showing that  
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Figure. 2 Comparison of how data augmentation methods 

work in general and explicit consistency regulation 

methods 

 

regularization naturally carries resistance at test time 

to corrupted data. This experiment studied the 

relevance of consistency regulation for training time 

resistance to noisy labels. Erick Engleson et al. [17] 

used two valuable observations on the consistency of 

networks trained with cross-standard entropy loss in 

noisy data sets. The networks trained on noisy data 

had lower consistency values, and the consistency 

was reduced more significantly around noise-labeled 

training data points than correctly labeled ones. This 

technique produces different levels and types of noise 

and achieves sophisticated results. Han Zhang [18] 

used the generative adversarial networks (GAN) 

method. GAN is a regularization technique to 

stabilize training. The experiment proposed a simple 

and effective training stabilizer based on the idea of 

consistency regularization—a popular technique in 

semi-supervised learning literature. Specifically, this 

study augmented the data that bypassed the GAN 

discriminator. Then, the data penalized the sensitivity 

of the discriminator to this augmentation. Then, a 

series of experiments demonstrated that consistency 

regularization works effectively with spectral 

normalization and various GAN architectures, loss 

functions, and optimizer settings. Our method 

achieves the best FID score for unconditional image 

creation compared to other regularization methods. 

Consistency regularization is done to get consistent 

prediction results when the data is disturbed by data 

augmentation. In this experiment, we employ a 

regular explicit consistency regulation method on 

data augmentation using random augmentation where 

random scaling, random truncation, and random 

reversal are shown in Fig. 2.  

It can be observed that both methods have the 

same principle and similar results. In general, data 

augmentation methods are more straightforward than 

consistency regulation. 

3.3 Training 

At the training stage, we used the DMT deep 

learning method. In this DMT method, there is 

dynamic loss to calculate the loss value, Initialization 

of disagreement to determine the value of 

disagreement between models, and pseudo label 

noise to filter data with excess noise. The following 

is an explanation of each method used: 

 

DMT. This architecture uses a new perspective, 

reciprocal training between two models with a 

dynamically re-weighted loss function. By measuring 

the disagreement between models determined by 

comparing the predictions of two different models 

(model A and model B) to derive the value of losses 

in training dynamically. A greater disagreement 

indicates error probability and corresponds to a lower 

loss value. 

We apply the architecture created by Zhengyang 

Feng et al. [19], which proved to be able to counteract 

pseudo surveillance noise with a re-weighted loss 

function based on the model disagreement and 

produce an IOU value of 7.85 ± 0.29. Applying the 

DMT method to the Covid-19 CT-scan dataset and 

modifying it is expected to provide better values. 

In this architecture, the focus is on semi-

supervised learning to reduce labeled data. Semi-

supervised learning only labels a small part of the 

data set and exploits the remaining part as unlabeled 

(pseudo) data. To learn pseudo labels, apply 

"bootstrapping" (pull yourself by bootstrapping 

yourself), i.e., using self-monitoring (pseudo). The 

disadvantages of pseudo labels are as follows: 

- First, true pseudo labels with low confidence are 

often ignored. To achieve a low error rate for 

monitoring pseudo labels, most of the true 

pseudo labels with low confidence must be 

discarded. 

- Second, high confidence errors do exist. A new 

view of the inner conflict model emerged to 

overcome this limitation. In particular, there is 

only one model to overcome the error regardless 

of which pseudo label selection metric is used. 

The probability of different models confidently 

making the same error is lower. Most false labels 

will have less impact on learning. Fig. 3 is a chart 

to measure disagreement between models 

between different models. 
The input is a dataset image with two labeling 

methods, namely doctor label and pseudo label, 

then different Initialization is carried out and 

processed in two models. The two models train 

data with different labels. One model provides 

pseudo-supervision for the other (pre-pseudo 

label) so that the pre-pseudo label can be more 

trusted in training. Noise-loss power (dynamic 

loss) was introduced at the semi-supervised  
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Figure. 3 Overview of training framework 

 

 
Figure. 4 Illustration of disagreement between models  

 

 
Algorithm 1: DMT process code in segmentation 

 

Input: The data set is labeled pseudo (Su) and labeled 

doctor sub (So) 

Output: The last best model (F) 

If: Starting from giving different pre-workout weights, 

then: 

Initialization Model A ( 𝐹𝐴
0 ) and Model B ( 𝐹𝐵

0 ) with 

different pre-train weights 

▪ Train 𝐹𝐴
0 on St 

▪ Train 𝐹𝐵
0 on St 

Else: 

Initialization 𝐹𝐴
0 and 𝐹𝐵

0 with the same pre-train weight 

SA.SB = Maximized Sampling Difference (St) 

▪ Train 𝐹𝐴
0 pada SA 

▪ Train 𝐹𝐵
0 pada SB 

α = {20%, 40%, 60%, 80%, 100%} 

Foreach iteration i {1, 2, 3, 4, 5} do 

▪ Predict and store the top i pixel of each class in Su 

with 𝐹𝐴
𝑖−1 → pseudo labeled set Sp 

▪ Perfect 𝐹𝐴
𝑖 from 𝐹𝐴

𝑖−1  on the latest St and Sp with 

dynamic loss 

▪ Predict and store the top i pixel of each class in Su 

with 𝐹𝐵
𝑖−1→ pseudo labeled set Sp 

▪ Perfect 𝐹𝐴
𝑖 from 𝐹𝐴

𝑖−1  on the latest St and Sp with 

dynamic loss 

F = The best (𝐹𝐴
5, 𝐹𝐵

5) 

 
 

 
Figure. 5 Network architecture 

 

training stage, utilizing an inter-difference model 

based on the predictions and beliefs of the two 

models. Furthermore, implementing DMT will 

gradually exploit pseudo data for better 

performance. Note that other disagreement-

based semi-supervised learning methods use 

different models and learn by maximizing their 

agreement on quasi-data [20, 21]. In contrast, see 

disagreement [22] as a principle, i.e., the inter-

disagreement model provides learning 

possibilities (Fig. 4). 
Yellow and gray squares represent positive 

samples and negative samples. The result values of 

model A and model B have inter-model 

disagreements that allow for an increase in 

performance to the ground truth. Below is the 

algorithm 1 used: 

The architecture used in each model (model A and 

model B) uses the same architecture and is shown in 

Fig. 5. 

The architecture used in this experiment is similar 

to U-Net. This architecture is designed and widely 

applied for medical image segmentation, with 

maximum results compared to other architectures. As 

shown in Fig. 5, firstly, there is a contraction path 

(left side of the architecture) where the image is 

sampled downwards, and there is an expansive path 

(right side of the architecture) where the image is 

sampled upwards. They have a skip connection 

between these contraction and expansion pathways 

(grey arrow). Two 3x3 convolutions brought the 
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Figure. 6 The sampling difference is maximized. The 

complete set is shuffled at random initially, and subsets A 

and B are drawn the same size but with the least 

overlapping samples 

 

number of feature channels to 64, followed by max-

pooling kernel size 2 and step two responsible for 

down-sampling. The same approach of doubling the 

number of feature channels each time until the 

sampling finally starts. In the expansive path, up-

sample the image using Conv2D Transpose. 

Connections are passed and combined along the 

channel dimensions when up-sampling the image, 

two 3x3 convolutions, with a feature count of 512 and 

then up-sampling. Unlike contraction paths, half the 

number of feature channels here each time the image 

is up-sampled. In the last layer, use one Conv. 

additional 1x1 to convert the number of channels into 

the number of classes owned. 

Using two different models with different 

initialization weights, namely training on two 

different labeled subsets. After making various 

comparisons, the comparison of the set with the best 

results is 1:20 (for model A) and 1:8 (for model B). 1 

is the value for the doctor label with 50 images and 

1000/400 pseudo label images. 
 

The dynamic loss. We use the dynamic loss, where 

the quantified inter-model disagreement is the 

dynamic loss weight. Dynamic weight loss 𝜔𝑢 is 

defined as: 

 

𝜔𝑢 =  {

𝑝𝐵
𝛾1

 ,                            𝑦𝐴 = 𝑦𝐵

𝑝𝐵
𝛾2

 , 𝑦𝐴 ≠ 𝑦𝐵, 𝑐𝐴 ≥ 𝑐𝐵

0,              𝑦𝐴 ≠ 𝑦𝐵, 𝑐𝐴 < 𝑐𝐵

           (1) 

 

The dynamic loss on pseudo label samples 𝐿𝑢 is then 

defined as: 

 

𝐿𝑢 =
1

𝑁
∑ 𝜔𝑢𝐶𝐸

 

𝑢,   𝑦𝐴 𝜖𝑈

(𝑦𝐴, 𝐹𝐵 (𝑢)),       (2) 

 

Where CE (·) is the cross-entropy loss, intuitively, 

pseudo-labeled data exist in three different cases in 

training. The three cases are described below: 

1. Agreement. FB agrees with the pseudo label. 

2. Negative disagreement. FB disagrees with the 

pseudo label, but the confidence in FB's decision 

is lower than the pseudo labels. 

3. Positive disagreement. FB disagrees with the 

pseudo label and has higher confidence. Note that 

training uses the labeled subset along with the 

pseudo labeled data. The loss for data labeled LX 

remains unchanged i.e., the typical cross-entropy 

loss. Below is the formula for the loss of entropy 

LX: 

 

𝐿𝑥 =
1

𝑁
∑ 𝐶𝐸

 

𝑢,   𝑔𝑡 𝜖𝑥

(𝑔𝑡, 𝐹𝐵 (𝑥)),         (3) 

 

Where x and gt denote image and ground truth pairs. 

The combined loss L is defined as:  

 
ℒ =  ℒ𝑥 +  ℒ𝑢                          (4) 

 
With regard to semantic segmentation, 𝜔𝑢

𝐻𝑥𝑊 is a 

pixel-wise map (H for height and W for width), the 

re-weighting strategy remains the same and applies to 

each pixel 

This experiment uses the loss function pixel-wise 

cross-entropy loss, where this loss can examine each 

pixel individually and compare the predicted pixel 

vector with the target pixel vector. After the data is 

trained using the DMT method, the training model is 

then tested on the validation data and the loss results. 

 

Initialization diss-agreement. The main problem in 

exploiting the disagreement between the models is 

how to initiate the different model initialization. For 

tasks that require a pre-training load to function 

correctly, e.g., semantic segmentation. Different pre-

training weights are hard to get, and extra time is 

needed. It is, therefore, necessary for new pre-

training to be compared with existing assignments. 

Fig. 6 shows the illustration of a diss-agreement. 

 

Pseudo-label noise. This function is already included 

in the DMT package, where the way it works is 

illustrated in Fig. 7. 

The illustrative example above is implemented in 

model A. Because it may have a large pseudo label 

noise, the pseudo labeling is carried out by training 

on model A. Model A will produce three cases, 

namely prediction 1, prediction 2 and prediction 3. 

There are three possible cases in joint training and 

three appropriate loss weighting strategies based on 

the disagreement between the two models. The three 

possible cases will be compared with the  
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Figure. 7 Pseudo label noise diagram 

 

label/ground truth results. The results will be three 

possible decisions: agree, negative disagree, and 

positive disagree. Agree and negative disagree 

decisions will be considered for training on model B, 

and positive disagree decisions will be ignored. 

3.4 Testing 

We tested the system using testing data on the 

dataset in the testing phase. We report the 

performance of the testing-set mean intersection 

over-union (mean IOU) test in the segmentation task, 

with the test data not using data already used in the 

training process 

3.5 Evaluation 

At the evaluation stage of the results, we present 

a Matrix Evaluation with various methods. The 

methods used are The Dice Similarity Coefficient 

(DSC), IOU, precision, sensitivity, and specification. 

The details of each method are described below: 

 

The dice similarity coefficient (DSC). DSC 

calculates the area of overlap between two input and 

output images divided by the total number of pixels 

in both images. Covid-19 infection, cross-entropy 

loss evaluates the class predictions for each pixel 

vector one by one and then averages it for all pixels. 

This can be a problem if your various classes have an 

unbalanced representation in the image, as the most 

common classes can dominate training. Milletari et al. 

[23] have proven effective in equaling this problem 

by implicitly establishing a balance between 

foreground and background classes. So, for the same 

scenario used in 1 and 2, the following calculations 

will be performed: 

 

ℒ𝐷𝑖𝑐𝑒 = 1 −
2 ∑ 𝑝𝑖𝑔𝑖

𝑁
𝑖

∑ 𝑝𝑖
2𝑁

𝑖 + ∑ 𝑔𝑖
2𝑁

𝑖

=
∑ (𝑝𝑖 −  𝑔𝑖)2𝑁

𝑖

∑ 𝑝𝑖
2𝑁

𝑖 + ∑ 𝑔1
2𝑁

𝑖

 

 (5) 

L of the dice, that is, the weighting of each class is 

based on the reciprocal of the volume. The formula is 

shown in Eq. (6). Therefore, the L NR-dice is strong 

against noisy labels and foreground imbalance 

simultaneously. A more straightforward equation 

formula is as follows: 

 

𝐷𝑆𝐶 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                     (6) 

 

There are four conditions when the segmented image 

is compared with ground truth, namely: 

- True positive (TP) is the number of pixels with a 

value of 1 in the image that corresponds to a 

dataset of 1. 

- True negative (TN) is the number of pixels with 

a value of 0 in the image that corresponds to the 

dataset with a value of 0. 

- False negative (FN) is the number of pixels with 

a value of 0 in the image that corresponds to a 

dataset of 1. 

- False positive (FP) is the number of pixels with a 

value of 1 in the image corresponding to a dataset 

with a value of 0. 

Comparison of definitions of TP, TN, FP, and FN 

based on the presence or absence of areas detected by 

COVID-19 

The dice function is specially designed for 

segmentation tasks, dealing with imbalances between 

foreground and background pixels and noisy labels 

simultaneously. Experimental results [19] with CT 

images of 558 COVID-19 patients demonstrated the 

effectiveness of the dice function. The dice 

coefficient is very similar to IOU. They are positively 

correlated, meaning that if one says model A is better 

than model B at segmenting images, the other will say 

the same. Like IOU, they range from 0 to 1, with 1 

indicating the most significant similarity between 

prediction and truth. 

 

Intersection over union (IOU). A method to 

measure the percent overlap between ground truth 

and prediction output. The IOU metric works 

similarly to the DSC, which is often used as a loss 

function during training in segmentation cases. The 

IOU metric measures the difference in the number of 

pixels between the ground truth and the prediction 

and then is divided by the total number of pixels 

present in both. 

 

𝐼𝑜𝑈 =
𝑇𝑎𝑟𝑔𝑒𝑡 ∩   𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑎𝑟𝑔𝑒𝑡 ∪   𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
                        (7) 

 

The intersection (A∩B) is obtained from the pixels in 

the prediction results and ground truth, while the 
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union (AUB) only consists of all pixels in the 

prediction or target mask. IOU calculates the overlap 

between the predicted segmentation and the 

underlying truth divided by the combined area 

between the predicted and the underlying truth. This 

metric ranges from 0–1 (0–100%), with 0 indicating 

no overlap and 1 indicating perfectly overlapping 

segmentation. 

 

Precision. It is used to display positive detection 

results against ground truth. Of all the predicted 

objects in a particular drawing, how many of those 

objects have a matching basic truth annotation. The 

formula for finding the precision value is: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                          (8) 

 

It is also used to calculate the ratio of the correct 

positive predictions compared to the overall positive 

predictive results. In the research conducted, the 

precision value is accumulated in the form of a 

percent with a range of 1-100%. For example, a 

precision value of 80% means that eight out of every 

ten labels detect the number of correct pixels (a value 

of 1 in the image corresponding to the data set 1). The 

remaining 20% means that two out of every ten labels 

detect the number of incorrect pixels (a value of 0 in 

the image according to the data select 0). 

 

Sensitivity. It is used to describe the completeness of 

positive predictions concerning the ground truth. A 

number shows how many people are correct (true 

positives) compared to people detected correctly by 

the diagnostic tool (true positives + false negatives). 

The fewer false negatives, the higher the sensitivity. 

The formula for finding the sensitivity value is: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑓𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                      (9) 

 

It is used to calculate the ratio of true positive 

predictions compared to the overall true positive data. 

In the research conducted, the precision value is 

accumulated in the form of percent with a 1-100% 

range. For example, the sensitivity value is 70%, 

meaning that seven out of every ten labels detect the 

correct number of pixels (a value of 1 in the image 

corresponding to data set 1). The remaining 20% 

means that three out of every ten labels detect a true 

false number of pixels (the value 0 in the image 

corresponds to the data select 1). 

 

Specificity. A number shows how well the system is 

in assessing whether it fits, calculated by the number 

of correct and correct detected (true negatives) 

divided by all that we predicted correctly (true 

negatives + false positives). The fewer false positives, 

the higher the specificity. The formula for finding the 

specificity value is: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                      (10) 

 

Specificity is used to calculate the correctness of 

negative predictions compared to negative data. In 

the research conducted, the precision value is 

accumulated in the form of percent with a 1-100% 

range. For example, a specificity value of 60% means 

that an average of six out of every ten labels detects 

the correct number of pixels (a value of 0 in the image 

corresponding to a data set of 0). The remaining 40% 

means that four out of every ten labels detect the 

wrong number of pixels (a value of 1 in the image 

corresponds to a select 0 data).  

4. Experiment 

Below we first describe the details behind the 

various COVID-19 CT lung datasets used in our 

experiments. Then we present the experimental setup 

and the basic approach we applied. Finally, we show 

the main experimental results and the evaluation 

metrics used in the experiment. 

4.1 Covid-19 segmentation dataset 

The data used in this experiment is secondary 

data. Secondary data is taken from an open-source 

website [23] that provides COVID-19 CT-scan 

images and the results of COVID-19 CT-scan image 

segmentation results. CT-scan data of the lungs were 

obtained from various patients affected by the 

COVID-19 virus. The CT-scan of the lungs for 

COVID-19 was in .jpg and .png formats. The details 

of the data obtained are described in Table 2. 

There are two types of datasets from the datasets 

obtained, namely training datasets and testing 

datasets. The training dataset has two types of label 

data: doctor labeling, in which doctors label using 

specific tools, and pseudo labeling, namely using a 

labeled data model to predict labels for unlabeled data 

[24] and using tools [25]. Each data has a total of 50 

images and 1600 images for each type of CT-scan 

image (Covid-19 CT scan image), mask 

(segmentation result from COVID-19 CT scan), and 

edge (segmentation result in the form of edge 

detection). 

Total CT-scan data of the lungs for COVID-19 

are 1700 images containing patient data CT-scan of 
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Table 2. Dataset details 

Dataset 

Type 
Information 

Number 

of 

datasets 

Format 

Trainin

g Data 

Doctor- 

labeling 

CT- Scan 50 .JPG 

Mask 50 .PNG 

Edge 50 .PNG 

Pseudo-

labeling 

CT- Scan 1600 .JPG 

Mask 1600 .PNG 

Edge 1600 .PNG 

Testing 

Data 

CT- Scan 50 .JPG 

Mask 50 .PNG 

Total 

Data 

CT- Scan 1700 .JPG 

Mask 1700 .PNG 

Edge 1650 .PNG 

 

 

Figure. 9 Results of training and validation loss 

 
Table 3. Details of adding a dataset 

Dataset 

Type 
Information 

Number of 

datasets 
Format 

Testing 

Data 

Ct- scan 350 .JPG 

Mask 350 .PNG 

 
Table 4. Results % IOU 

Method 1/10 1/32 Oracle 

DMT 

67.37 (-5.13) 46.66 (25.84) 72.50 

1/5 1/15 
71.11 

71.4 (-0.29) 53.79 (17.32) 

1/12 1/26 
74.75 

72.70 (-2.05) 83.04(-11.71) 

1/8 1/20 
86.16 

84.80 (-3.36) 73.80 (-14.36) 

 

the lungs for COVID-19, 1700 images with CT-

masks and labels, and 1650 images with edge 

detection results for CT-scan half COVID-19 lungs. 

Due to the lack of data for testing, data collection was 

carried out on other open sources [26]. The results 

were obtained as shown in Table 3. 

There are two types of data for testing data, 

namely CT-scan and mask, each of which amounts to 

350 images in .JPG and .PNG formats. Then the total 

data that has been obtained is tested. 

 

Table 5. Experiments using several augmentation 

methods at the consistency regulation stage 

Method 1/8 1/20 Oracle Augmentation 

DMT 
84.80 

(-3.36) 

73.80 

(-4.36) 
86.16 - 

DMT 86.87 85.42 87.31 Random Scale 

DMT 80.01 85.21 88.90 
Random 

Horizontal Flip 

DMT 82.34 84.78 89.89 Random Crop 

DMT 90.12 88.56 91.32 
Random 

Augmentation 

4.2 Segmentation result 

Before discussing the result segmentation section, 

we first show the training process results on our 

system. The training results are illustrated in a graph 

that is shown in Fig. 9. 

Based on the graph, it can be analyzed that the 

loss value gets good results because the graph 

gradually decreases towards 0. The loss validation 

graph follows the training loss, which means the 

system is very good at computing (the orange line 

indicates training loss and the blue dot indicates loss 

validation). The larger the epoch, the smaller the loss 

value (the better), and the best loss value of 0.19 

using 100 epochs. 

After getting the best computational value, 

testing and comparisons are carried out on various 

labeled datasets at different data ratios [19]. Then the 

segmentation results are obtained from various 

scenarios and get the best value. The segmentation 

results are displayed using the IOU percentages 

shown in Table 4. 

Based on the data above, we tested with various 

data ratios. We use four data ratio scenarios, namely 

1/10, 1/5, 1/12, and 1/8 for the ratio in model A and 

the data ratio is 1/32, 1/15, 1/26, and 1/20 for the ratio 

in model B. The results show that the best 

comparisons are made on the 1/8 model A and 1/20 

model B data sets (in the table with blue bold font). 

The value of the model ratio means 50 data is 

equivalent to a scale of 1, 1 for doctor labels and 8/20 

for pseudo labels with the percentage of oracle values 

(level of disagreement) reaching 86.16%. 

After getting the best comparison of the data 

without regulatory consistency, an experiment was 

carried out with the addition of preprocessing, 

namely regulatory consistency, to test whether the 

data could increase the IOU value. Regulatory 

consistency was carried out using several data 

augmentation methods shown in Table 5. 

Several augmentation methods used in the test are 

random scale, random horizontal flip, random crop, 
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Table 6. Comparison of Segmentation Results with other Methods 

CT Image Ground Truth DMT Mask R-CNN U-NET 

     

     

     

and random augmentation. Each augmentation 

method has a good impact on the segmentation results 

because it can test their consistency. Based on testing 

the best results when using random augmentation (in 

the table marked in blue bold font), the data will be 

more diverse and produce the best value compared to 

other augmentation methods, achieving 91.32% 

results. 

We used the 1600 pseudo label images and 50 

doctor label images, the pseudo-supervised DMT 

method we proposed as the core idea managed to get 

the best value. Using the principle of distrust between 

two different models by calculating the dynamic loss 

function. DMT will do multi-training on pseudo 

labels with doctor's labels so that they can be trusted 

in segmented areas. This study emphasizes the use of 

pseudo labels as much as possible to help research 

because of the lack of labeled data obtained. We get 

good results by adding preprocessing and data 

augmentation methods and using multiple data ratios. 

4.3 Comparison 

Furthermore, the segmentation results using the 

DMT method and regulatory consistency are 

compared with other recent segmentation methods to 

prove that DMT has the best segmentation results. In 

this research, we use two comparison methods, 

namely Marsk RCNN and UNET. Mask RCNN is 

very popular when it comes to object detection and 

segmentation, as it has a conceptually simple, flexible, 

and generic framework for object instance 

segmentation. This approach efficiently detects 

objects in the image while generating a high-quality 

segmentation mask for each instance. The R-CNN 

mask is also easy to generalize to other tasks [27]. 

Furthermore, UNET is also popularly used in medical 

image segmentation. The U-Net architecture is 

symmetrical and consists of two main parts: paths 

contract (encoder) and expansive path (decoder). The 

first section extracts the features associated with the 

categories that pixels belong to. The second section 

uses convolution sequences and high-resolution 

sequences. The first part attributes generate a mask 

containing local information and categorization as 

output [28]. The two newest methods that proved 

reliable in performing our segmentation task were 

compared with our DMT model. The results of the 

comparison between DMT, R-CNN, and UNET are 

shown in Table 6. 

Table 6 shows the visualization of the CT covid 

image, ground truth, the segmentation results from 

the comparison method used, namely the RCNN and 

UNET masks, as well as the segmentation results 

from the method used, namely DMT. It can be seen  
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Table 7. The results of the evaluation matrix with several other segmentation methods. 

Method Param. Dice IOU Prec. Sen. Spec. 

DMT (our) 12.18 M 0.723 0.781 0.843 0.753 0.845 

Mask R-CNN 7.85 M 0.441 0.431 0.329 0.421 0.278 

U-Net 9.65 M 0.708 0.719 0.678 0.836 0.665 

 

that mask RCNN had poor results in segmenting 

COVID-19 in this experiment, followed by UNET. 

DMT outperforms other methods of segmenting 

COVID-19 by displaying visuals that resemble 

ground truth. We also present quantitative data to 

obtain details of the comparison values obtained in 

the tests [10]. Table 7 shows the value of the 

evaluation matrix. 

Table 7 shows the results of our matrix evaluation 

using dice, IOU, precision, sensitivity, and 

Specificity calculations performed on the DMT, 

mask R-CNN, and UNET segmentation methods. 

mask R-CNN produces a dice value of 0.441, and U-

Net produces a dice value of 0.723. By having 12.18 

million parameters, DMT gets the best results and 

outperforms each evaluation matrix (in the table 

marked in blue bold font) with a dice value of 0.732, 

IOU 0.781, precision 0.843, sensitivity 0.735, and 

specificity 0.845 when compared to other 

segmentation methods. 

5. Conclusion 

This experiment focuses on countering pseudo 

surveillance label noise with a re-weighted loss 

function based on model disagreement. Our research 

contributes to trying out a new model for developing 

CNN architecture that considers physician 

intervention in validating the results. DMT will 

conduct multi-training on pseudo labels with doctor's 

labels to be trusted in area segmentation. Furthermore, 

we have adapted DMT to an iterative framework for 

better performance in image semantic segmentation. 

With the lack of labeled data, DMT is very effective, 

which is not considered in other segmentation 

methods such as mask RCNN and UNET. DMT is 

flexible and easy to implement. This experiment 

demonstrated the effectiveness of the proposed DMT. 

The system settings used, such as the addition of the 

consistency setting method, had a tremendous impact 

on the final result of 91.32%, which shows the latest 

segmentation results. 
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