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Abstract: The present paper represents an improved Multiverse Optimizer Algorithm (MVO) modified with Parallel 

Mirror based global learning opposition method to solve Unit Commitment problem in a Microgrid network including 

wind and solar sources. Unit Commitment (UC) is one of mathematical optimization problems that deal with the 

schedule of a given combination of generating units to achieve a minimum-cost production plan usually to satisfy the 

load demand. The mean objective of Unit Commitment problem is to achieve the optimal generation planning of the 

committed units while the overall generation cost is reduced, when subject to varying constraints at each time period. 

Hence, each (substantial) variation in the demand side must be matched by a corresponding amount of generation 

output. In fact, the minimum power generation scheduling is very difficult as UC problem encompasses a mix of 

variables as time varying unit constraints. The found results as the generation cost in the case without renewable 

sources (563977.0172$) show that the proposed method is capable to provide very competitive results and 

outperforms recent algorithms available in the literature which is above this result. The comparison shows clearly the 

effectiveness of the used technique. 
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1. Introduction 

Power system utilities often encounter daily load 

patterns which present a significant variation 

between peak and off-peak hours corresponding to 

daily demand variation. The unit commitment 

problem is an important secure and economic option 

for system operator to meet the system energy 

demand at minimum fuel cost when subject to 

energy generation mix [1]. 

Generally, the problem facing the system 

operator is to determine which units should be on 

and the ones that should be off with their associated 

period. Several operating strategies or planning 

schedules are used to meet the demand changing 

through the time horizon. For this raison, it is 

necessary to use an optimum operating planning 

based on economic criteria to face this problem. The 

unit commitment (UC) problem deals with the 

on/off decisions and output power levels of 

generating units in a power system to achieve an 

appropriate scheduling of generation power output 

through the time horizon with the main objective of 

minimizing the total operating cost, while the 

economic dispatch issue (ED) aims to find the 

optimal operating point of the committed units. Thus, 

the (UC) problem is to decide which units will be 

online during the next period. Mathematically, the 

UC problem is expressed as a large scale, non-linear, 

mixed integer optimization problem [2].  

In other words, unit commitment (UC) includes 

the computation of levels of generation relating to 

generating units and their commitment for a certain 

interval of time in the objective of minimizing the 

total generation cost [3]. 

Renewable sources are increasingly integrated in 
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recent distributed generation systems regarding to 

their environmental as well as economic benefits, 

particularly in small size power systems or 

microgrid. Recent methods have been already used 

in the literature to deal with optimal generation 

planning. 

In fact, several meta-heuristic techniques such as 

single or hybrid methods are used to deal with the 

unit commitment problem such as priority list (PL) 

[4], which is simple and fast but with not sufficient 

solution, dynamic programming (DP) [5] which is 

flexible but take more execution time, improved 

particle swarm method (IPSO) [6], more faster than 

the previous methods. A modified binary artificial 

bee colony (MBABC) [7], charged search system 

(CSS), (PSO) and ant colony search algorithm 

(ACS) artificial bee colony and cuckoo search 

algorithm (ABC-CSA) [8, 9] where CSS would not 

been affected by initial parameter setting as ant 

colony search, stochastic monte carlo optimization 

algorithm (SMCA) [10], intensify harris hawks 

optimizer (IHHO) [11], moth flame optimizer-based 

method (MFA) [12], particle swarm optimization 

(PSO) [13], parallel-series hybrid method (PSH) 

[14], ant colony optimization (ACO) [15, 16], binary 

moth-flame optimizer (BMFO) [17], hybrid PSO-

GWO [18] and others  that showed supported results 

in term of execution time and cost saving comparing 

with old methods that present a main drawback 

when subject to high dimensional power systems. 

These intelligent techniques attract more attention 

for researchers because of their ability to find a 

global optimal solution and can solve a variety of 

difficult nonlinear constraints problems. This paper 

proposes a new intelligent optimization technique 

called multiverse optimization MVO technique that 

has exhibited high efficiency across engineering and 

industry fields [19, 20] modified with new based 

learning opposition algorithm named parallel mirror 

technique PMT through application on a microgrid 

power system involving wind and solar power 

sources. Whereas the integration of these renewable 

sources is achieved by the insertion of a specified 

quantity of RES over the time horizon, in order to 

facilitate the computation. The MVO algorithm is an 

artificial intelligent optimization algorithm aims to 

mimic the creation of the universe from the first big-

bang explosion that generating the universe and its 

different strange holes. 

The rest of the paper is organized as follows; 

following the introduction, the unit commitment 

problem formulation is given in section two, then in 

section three a detail of the used algorithm is 

presented. Next, section four deals with the 

application case study and discussion of the found 

results and at last a conclusion is given in section 

five. 

2. Unit commitment problem formulation 

The first objective function of the unit 

commitment problem is the minimization of the 

total generating cost including the associated start-

up and shut-down costs of the committed generator 

units and is expressedby: [21, 22]. 

 

𝐹(𝑈𝑖
𝑡 , 𝑃𝑖

𝑡) = ∑ ∑ (𝐶𝑖𝑃𝑖
𝑡 + 𝑆𝑖

𝑡(1 − 𝑈𝑖
𝑡−1))𝑈𝑖

𝑡𝑁𝑔
𝑖=1

𝑇
𝑖=1    (1) 

 

Where 𝐶𝑖(𝑃𝑖
𝑡) represents the fuel cost of ith unit 

that supplies 𝑃𝑖
𝑡  powerat time t, this cost is 

formulated using: 

 

𝐶𝑖(𝑃𝑖
𝑡) = ∑ 𝑎𝑖(𝑃𝑖

𝑡)
2𝑁𝑔

𝑖=1 + 𝑏𝑖𝑃𝑖
𝑡 + 𝑐𝑖 ($)          (2) 

 

The shut-down cost is usually ignored and 

assumed to be zero. 

2.1 Power balance constraints 

{
∑ 𝑃𝑖

𝑡𝑈𝑖
𝑡 = 𝑃𝑑

𝑡 + 𝑅𝑡
𝑁𝑔
𝑖=1

𝑃𝑑
𝑡 = 𝑃𝐷𝑡

𝑡 − 𝑃𝑙𝑜𝑠𝑠
𝑡 − 𝑃𝑤

𝑡 − 𝑃𝑠
𝑡
                         (3) 

 

The unit commitment schedule is evaluated 

every hour only for the remaining (Ng-2) units to 

supply the new net demand Pd over time t. 

2.2 Inequality constraints 

Represent the outut power limits of generators 

unit, if an ith unit is commited, its generated output 

power must be bounded by the minimum and 

maximum limits, expressed by: 

1-Generators limits: 

 

𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖
𝑡 ≤ 𝑃𝑖,𝑚𝑎𝑥                                       (4) 

 

2-Minimum generators on/off time constraints: 

which given by: 

 

(𝑈𝑖
𝑡−1 −𝑈𝑖

𝑡)(𝑡𝑖,(𝑡−1)
𝑜𝑛 −𝑀𝑈𝑖

𝑡) ≥ 0                  (5) 

 

(𝑈𝑖
𝑡 −𝑈𝑖

𝑡−1) (𝑡𝑖,(𝑡−1)
𝑜𝑓𝑓

−𝑀𝐷𝑖
𝑡) ≥ 0                 (6) 

 

where 𝑡𝑖,(𝑡−1)
𝑜𝑛 and 𝑡𝑖,(𝑡−1)

𝑜𝑓𝑓
are start-up and shut-

downtimes of  ith  unit during the time (t-1) [23]. 
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3-Start up/down time dependent constraints 

given by: 

 

𝑆𝑖
𝑡 = {

𝐻𝑆𝐶𝑖,   𝑖𝑓 𝑇𝐷𝑖 ≤ 𝑇𝑖,𝑡
𝑜𝑓𝑓

≤ 𝑇𝐷𝑖 + 𝑇𝑖,𝑐𝑜𝑙𝑑

𝐶𝑆𝐶𝑖,   𝑖𝑓              𝑇𝑖,𝑡
𝑜𝑓𝑓

> 𝑇𝐷𝑖 + 𝑇𝑖,𝑐𝑜𝑙𝑑
    (7) 

 

4-Ramp rate constraint: for ith unit during the 

timet and any increase or decrease in itsoutput 

power should not exceed the ramp rate bound,this 

given by: 

 

{
𝑃𝑖
𝑡 − 𝑃𝑖

𝑡−1 ≤ 𝑅𝑈𝑖
𝑃𝑖
𝑡−1 − 𝑃𝑖

𝑡 ≤ 𝑅𝐷𝑖
                                      (8) 

 

5-Minimum up and down time: if a unit (i) is 

turned off, it shouldremain offline for a specific 

period of time before it can be turned on again. 

Similarly, if a unit (i) is turned on, it remains online 

for a specific period of time before it can be turned 

off again , this status is given by: 

 

𝐷𝑖
𝑡 = {

1,     𝑖𝑓  𝑇𝑖,𝑡
𝑜𝑛 < 𝑀𝑈𝑖

0,     𝑖𝑓  𝑇𝑖,𝑡
𝑜𝑓𝑓

< 𝑀𝐷𝑖
  ,   ∀ 𝑖, 𝑡                    (9) 

 

In this study, in order to calculate the cost of 

solar and wind, we used levelized cost of electricity 

(LCOE). The global average specifiedcost of solar 

energy is 0.09 $ per KWh and that of wind is 0.06 

$ per KWh [43].   

With the insertion of RES the objective function 

given by Eq. (1) which represent the total operating 

cost given above, is enhanced to become: 

 

𝐹(𝑈𝑖
𝑡 , 𝑃𝑖

𝑡) = ∑ ∑ (𝐶𝑖𝑃𝑖
𝑡 + 𝑆𝑖

𝑡(1 −
𝑁𝑔
𝑖=1

𝑇
𝑖=1

     𝑈𝑖
𝑡−1))𝑈𝑖

𝑡 + 90 × ∑ 𝑃𝑠
𝑡 + 60 × ∑ 𝑃𝑤 

𝑡𝑇
𝑡=1

𝑇
𝑡=1   (10) 

 

Where; the numbers 90 and 60 represent the 

contribution amounts of wind and solar power 

sources in the mix of energy supply. 

3. Proposed algorithm 

3.1 MVO algorithm 

The multiverse optimizer algorithm is an 

algorithm inspired by nature first found by Seyed-

Ali Mirjalili [24], it is based on three notions of 

black hole, white hole and worm hole given in Fig. 1. 

The white hole supposed to represent the 

original part of the universe as the first explosion 

which causes the birth of the universe, then the 

black hole attracting everything due to its enormous  

Figure. 1 The three concepts of MVO algorithm 

 

force of gravity, therefore behaves completely 

unlike the first, the worm hole connects different 

parts of the universe together and acts like a time - 

space travel tunnel, where objects can easily travel 

between all sides of a universe. Each universe has an 

inflation rate, that causes its expansion through the 

space, and hence the inflation speed of a universe is 

very important to create the other universes, 

physical laws lead to a stable situation. These 

concepts are mathematically modeled to asses both 

exploitation and exploration, respectively [25]. Each 

solution is analogous to a universe and each variable 

of the solution is an object in this universe. 

Moreover we assign to each solution an inflation 

rate that corresponds to its fitness. 

Rules of MVO algorithm: 

The probability of having a white hole increases 

with the inflation rate. 

The probability of having a black hole decreases 

when the inflation rate increases. 

The universe that has increased inflation rate 

tends to send more objects through white holes. 

The universe that has a lower inflation rate tends 

to receive more objects through black holes. 

Objects from all universes can face random 

movement to create the best universe through 

wormhole universes 

All these rules are showed in Fig. 2, different 

movements of objects between higher and lower 

inflation rate universes lead to improve the average  

 

 
Figure. 2 Basic principal of MVO algorithm [24] 

Exploration Exploitation 
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rate of inflation for the global universe over the 

iterations. At each moment, the universes are stored 

according to their inflation rates and one from them 

is selected as a white hole using the roulette wheel 

basic: [24] 

The MVO algorithm is based on the set of 

following factors and rules:  

1-number of runs, 2-number of universes as the 

candidate solutions, 3-roulette wheel principle, and 

4-sorting mechanism. 

 

𝑈 =

[
 
 
 
𝑥1
1𝑥1

2………𝑥1
𝑑

𝑥2
1𝑥2

2………𝑥2
𝑑

……………………
𝑥𝑛
1𝑥𝑛

2………𝑥𝑛
𝑑 ]
 
 
 

                               (11) 

 

Where (d) represents the number of state 

variables and, (n) denotes the total number of 

solution candidates. 

 

𝑥𝑖
𝑗
= {

𝑥𝑖
𝑗
   𝑟1 < 𝑁𝐼(𝑈𝑖)

𝑥𝑘
𝑗
𝑟1 < 𝑁𝐼(𝑈𝑖)

                                (12) 

 

Where xij represents the ith variable of the ith 

universe. Ui is the ith universe, NI (Ui), is the 

normalized inflation rate of the ith, universe, r1 is a 

random number in the range [0, 1], and xkj, 

represents the jth variable of kth universe chosen by 

using the roulette wheel principle.  

Updating the universe positions and giving the 

possibility of improving the inflation rate through 

the movement of worm holes. These particular 

worm hole tunnels are still established between the 

real universe and the best universe found so far and 

this can be described as:  

 

𝑥𝑖
𝑗
=

{
  
 

  
 𝑋𝑗 + 𝑋𝑇𝐷𝑅 × (

(𝑢𝑏𝑗 − 𝑙𝑏𝑗) × 𝑟4 + 𝑙𝑏𝑗
, 𝑟3 < 0.5  𝑟2 < 𝑊𝐸𝑃

)

𝑋𝑗 − 𝑋𝑇𝐷𝑅 × (
(𝑢𝑏𝑗 − 𝑙𝑏𝑗) × 𝑟4 + 𝑙𝑏𝑗
, 𝑟3 ≥ 0.5  𝑟2 < 𝑊𝐸𝑃

)

𝑥𝑖 ,                                               𝑟2 ≥ 𝑊𝐸𝑃

 (13) 

 

where, Xj represents jth variable of the fittest 

universe created until now, Lbj, Ubj indicate the 

lower/upper bounds of jth variable of the ith universe 

and r1,…,r4 are random numbers in [0, 1]. The 

wormhole existence probability (WEP) and the ratio 

of distance traveled as chief coefficients defined as 

follows: 

 

𝑊𝐸𝑃 = 𝑀𝑖𝑛 + 𝑡 × ((𝑀𝑎𝑥 −𝑀𝑖𝑛) 𝑡𝑀𝑎𝑥⁄ )     (14) 

 

 
Figure. 3 Parallel mirror technique [44] 

 

𝑇𝐷𝑅 = 1 − (𝑙
1
𝑃⁄ 𝐿

1
𝑃⁄⁄ )                               (15) 

 

Where: t denotes the actual run, tMax is the 

maximum number of iterations, min denotes the 

minimum, max is the maximum, (l) indicates the 

current iteration, (L) is the maximum iterations 

number, (p) is the exploitation accuracy over 

iterations.  

3.2 Parallel mirror technique 

Parallel mirror technique is as a new opposition 

based learning method for improving the 

performance of existing met heuristics [43]. In PMT 

mechanism a candidate solution is positioned 

between two parallel mirrors as mentioned in Fig. 3. 

After the generation of the first images each image 

produces constantly another image into the opposite 

mirror by previous image, which lead to an infinite 

number of similar images in the virtual space. These 

images become new candidate solutions. The PMT 

permits the distribution of candidates through the 

searching space; this raises the probability of 

reaching the global optimum solution and avoiding 

local minima stagnation. In contrast to general 

opposition based learning techniques, the PMT uses 

more likelihood to explore enough in different 

opposite directions and generate more candidate 

solutions. 

The parallel mirrors basic is given in Fig. 3 that 

shows the candidate solution bounded by two 

mirrors (M1, M2) and the distance c from each 

mirror to the candidate solution equals (d1, d2).  

Primarily, the first image c1 is produced by 

mirror M1 from the initial value c, at the same time 

another image c2 is produced from the initial value c 

by M2 (c1, c2) and in turn will produce more new 

images in the virtual space. 

Therefore, each image among the new produced 

images in opposite mirrors c12 and c21, respectively. 

Then each value of these created images (c12, c21) 

will generate an account less number of images into 

these two mirrors. 

The c value is bounded with upper and lower 

limits in the search space. 

The location of the mirrors M1 and M2 are 

defined using the following expressions: 
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Figure. 4 Pseudo code for PMT [45] 

 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑀1) = 𝑐 − 𝑑1;  𝑑1 > 0                       (16) 

 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑀2) = 𝑐 − 𝑑2;  𝑑2 > 0                        (17) 

 

Assuming the current candidate value as c0, then 

the next produced image c1, c2 …ci, is given by: 

 

𝑐𝑖 = 𝑐𝑖−1 ∓ 2(𝑖 × 𝑑1 + (𝑖 − 1)𝑑2)                     (18) 

 

Two stopping criteria are used in PMT to limit 

the number of images generation ; the maximum 

number of images (MI) and the maximum number 

of failure images (MF).  

The MI is the maximum number of images that 

can be produced for each candidate and the MF is 

the maximum number of failure images (i.e., failed 

to reach a better solution).The procedure of applying 

PMT is shown as pseudo-code in Fig. 4. 

3.3 PMT-MVO 

As many other meta-heuristic algorithms, MVO 

suffers from a low convergence rate and local 

minima stagnation. Hence, engaging the PMT to 

improve MVO algorithm should give a chance for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 5 PMT-MVO pseudo-cod 

 

the MVO to overcome some of its weaknesses. The 

modified PMT-MVO algorithm pseudo-code is 

shown in Fig. 5. 

4. Results and discussion 

The present study was performed on a practical 

microgrid system by solving the problem of unit 

commitment with and without renewable energy 

sources (RES).  

In this section, simulations were performed 

using MATLAB version 2017a software; two case 

studies are investigated in this paper: 

4.1 Case study 1 

Without renewable energy sources: 

In this case the UC problem was solved for 10 

thermal generating units without any renewable 

energy source. The generating system data is taken  

 

[1].  Initialize random universes (U)   

[2].  Set MI the maximum number of generated images 

[3].  Set MF the maximum number of failed images 

[4].  Initialize WER, TDR 

[5].  Set initial Best universe inflation rate Sbest=f(U) 

[6].  Set initial Best universe Ubest=U0 

[7].  SU=sorted universes 

[8].  NI=Normalize the inflation rate (fitness) of 

universes 

[9].  while the end criterion is not satisfied 

[10]. Update WEP and TDR 

[11]. for each universe indexed by i 

[12]. if f(Ui) < 𝑓(Sbest)then 

[13]. Sbest = f(Ui) 

[14]. Ubest = Ui 

[15]. end if  

[16]. Black hole index=i; 

[17]. Apply PMT steps as in fig. 2. 

[18]. Update Ubest 

[19]. end for 

[20]. for  each object indexed by j 

[21]. 𝑟1 = 𝑟𝑎𝑛𝑑𝑜𝑚([0, 1]); 

[22]. Update universes using equation (2) 

[23]. 𝑟2 = 𝑟𝑎𝑛𝑑𝑜𝑚([0, 1]) 

[24]. if r2< Wormhole existence probability  

[25]. 𝑟3 = 𝑟𝑎𝑛𝑑𝑜𝑚([0, 1]); 

[26]. 𝑟4 = 𝑟𝑎𝑛𝑑𝑜𝑚([0, 1]); 

[27]. Update universes using equation (3) 

[28]. end if 

[29]. end for  

[30]. end while 

Input: the population  𝑋 = {𝑋1, 𝑋2. . 𝑋𝑛} 

Output: 𝑋𝐵𝑒𝑠𝑡and the updated population 𝑋′ =

{𝑋1
′ , 𝑋2

′ . . 𝑋𝑛
′ } 

[1]. begin 

[2]. Set MI the maximum number of created images 

[3]. Set MF the maximum failure images 

[4].   Set initial 𝑆𝑏𝑒𝑠𝑡 = 𝑓(𝑋) 

[5].   Set initial 𝑋𝑏𝑒𝑠𝑡 = 0 

[6].   Set initial mirror 𝑑1 = 𝑟𝑎𝑛𝑑𝑜𝑚() 

[7].   Set initial mirror 𝑑2 = 𝑟𝑎𝑛𝑑𝑜𝑚() 

[8]. for i=0; 𝑖 < 𝑀𝐼; 

[9]. 𝑋𝑖 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑚𝑎𝑔𝑒(𝑋) 

[10]. if 𝑓(𝑋𝑖) < 𝑓(𝑋𝑏𝑒𝑠𝑡)𝑡ℎ𝑒𝑛 

[11]. 𝑆𝑏𝑒𝑠𝑡 = 𝑓(𝑋𝑖) 

[12]. 𝑋𝑏𝑒𝑠𝑡 = 𝑋𝑖 

[13]. Else 

[14]. 𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝑑1 = 𝑟𝑎𝑛𝑑𝑜𝑚() 

[15]. 𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝑑2 = 𝑟𝑎𝑛𝑑𝑜𝑚() 

[16]. 𝑀𝐹 =  𝑀𝐹 − 1 

[17]. end If  

[18]. iF MF==0 

[19].      Break //Stop the loop 

[20]. EndIF 

[21].    end for 

[22]. Return the best population, X and the best result 

(Xbest) 

[23]. end 
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Table 1. UC schedule and generator output obtained for 10 generating units 

Hour Load 
Scheduled power output at each hour (MW) 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

1 700 455 245 0 0 0 0 0 0 0 0 

2 750 455 295 0 0 0 0 0 0 0 0 

3 850 455 370 0 0 25 0 0 0 0 0 

4 950 455 455 0 0 39.9 0 0 0 0 0 

5 1000 455 390 0 130 25 0 0 0 0 0 

6 1100 455 360.0 129.9 129.9 25 0 0 0 0 0 

7 1150 455 410.0 129.9 129.9 25.0 0 0 0 0 0 

8 1200 455 454.9 129.9 129.9 30.0 0 0 0 0 0 

9 1300 455 455 130 130 85 20 25 0 0 0 

10 1400 455 455 130 130 162 32.9 25 10 0 0 

11 1450 455 455 130 130 162 73.0 25 10 10 0 

12 1500 455 454.9 130 130 162 79.9 25 42.9 10 10 

13 1400 455 455 130 130 162 32.9 25 10 0 0 

14 1300 455 455 130 130 85 20 25 0 0 0 

15 1200 455 454.9 129.9 129.9 30.0 0 0 0 0 0 

16 1050 455 310 130 130 25 0 0 0 0 0 

17 1000 455 260 130 130 25 0 0 0 0 0 

18 1100 455 360.0 129.9 129.9 25 0 0 0 0 0 

19 1200 455 454.9 129.9 129.9 30.0 0 0 0 0 0 

20 1400 455 455 130 130 162 32.9 25 10 0 0 

21 1300 455 455 130 130 85 20 25 0 0 0 

22 1100 455 455 0 0 144.9 20.0 25 0 0 0 

23 900 455 420 0 0 25.0 0 0 0 0 0 

24 800 455 345 0 0 0 0 0 0 0 0 

start-up cost : 4070$ Total Operating Cost :  563977.0172$ 

 

from ref [38]. The PMT-MVO algorithm was run 

for 500 iterations with a population size of 40. The 

generation hourly outputs as well as the total fuel 

cost are given in Table 1. Table 2 shows a 

comparison of total fuel cost through 24-hours 

period obtained by comparing PMT-MVO with the 

available methods in literature. As seen from these 

results, the total cost found by using Hybrid (PSO-

GWO) in 18 was 56,5210 $, and the one found by 

using binary moth-flame optimizer (BMFO) in 17 

was 564,809.9875 $ which mean the found total cost 

found by the used method that is 563977.0172 $ is 

better compared with them. 

4.2 Case study 2 

Micro grid with renewable DG sources. 

This work is held on an islanded microgrid using 

wind farms and photovoltaic (PV) system an 

available RES for the minimization of the total fuel 

and emission costs, increase the efficiency and 

maintain an uninterrupted power supply.  

UC problem for case 1 gives a startup cost of 

4070 $ and operating cost of 563977.01 $. The 

operating cost achieved with PMT-MVO is 

considerably reduced as compared to that obtained 

by available algorithms. In this case study the UC 

problem was solved for 10 thermal generating units 

in presence of solar and wind renewable energy 

sources. The generating system data is adopted from 

[36].  

The solar plant of 40 MW for which data is 

taken form [41] and 30MW wind farm as in [41] are 

considered. The PMT-MVO algorithm was run for 

500 iterations with a population size of 40.  

The thermal generator hourly output along with 

fuel cost is depicted in Table 3. 

From, Table 3 of UC problem for case II, we can 

observe an increase in generators start-up cost. The 

renewable energy sources reduce the dependency on 

thermal generators and share the overall load 

demand to be supplied by others available sources. 

This can significantly reduce the emission level of 

thermal generators as an environmental benefit. 

The operating cost of thermal generator reduces by 

1.84 % (from 563977.01 $ to 553591.22 $) with 

inclusion of renewable energy sources. This 

reduction can further increase by increasing 

penetration level of renewable sources. The global  
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Table 2. Comparison with other algorithms in literature 

Method Cost ($) 

LSGA [26] 
609,023.6

9 

IBPSO [27] 599,782 

PSO [29] 581,450 

MPSO [30] 574,905 

HPSO [31] 574,153 

LCA–PSO [32] 570,006 

TSGA [32] 568,315 

PSO-SQP [34] 568,032 

BCGA [25] 567,367 

SM [35] 566,686 

LR [35] 566,107 

GA [35] 565,866 

GA [36] 565,852 

ESA  [37] 565,828 

LR [36] 565,825 

DP  [36] 565,825 

IDP [38] 
565,823.2

3 

LRPSO [38] 565,275.2 

NPSO [39] 
565,213.0

0 

Hybrid PSO–GWO [18] 
565,210.2

564 

BMFO [17] 
564,809.9

8 

PMT_MVO [proposed] 
563,977.0

172 

 

 
Figure. 4 Load demand, generating power with and without solar and wind 

 

discounted average cost of wind and solar energy 

has also been calculated and given in Table 3. 

Regarding to the found results with and without 

renewable power integration, we conclude an 

enhancement in the total generation cost by using 

PMT-MVO technique. Fig. 4 shows load demand as 

well as generating power production without wind 

and solar (curve in colour red) and with wind and 

solar (curve in golden colour), where it is evident  
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Table 3. UC schedule and generator output obtained for 10 generating units with solar and wind sources 

Hour Load 
PV 

(MW) 

Wind 

(MW) 

Optimized Power output at each hour (MW) 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

1 700 0 1.7 455 243.3 0 0 0 0 0 0 0 0 

2 750 0 8.5 455 286.5 0 0 0 0 0 0 0 0 

3 850 0 9.27 455 360.73 0 0 25 0 0 0 0 0 

4 950 0 16.66 455 453.34 0 0 25 0 0 0 0 0 

5 1000 0 7.22 455 382.78 130 0 25 0 0 0 0 0 

6 1100 0.03 4.91 455 355.06 130 130 25 0 0 0 0 0 

7 1150 6.27 14.66 455 389.07 130 130 25 0 0 0 0 0 

8 1200 16.18 25.56 455 418.26 130 130 25 0 0 0 0 0 

9 1300 24.05 20.58 455 455 130 130 65.37 20 0 0 0 0 

10 1400 39.37 17.85 455 455 130 130 127.78 20 25 0 0 0 

11 1450 7.41 12.8 455 455 130 130 162 52.79 25 10 10 0 

12 1500 3.65 18.65 455 455 130 130 162 80 25 20.7 10 10 

13 1400 31.94 14.35 455 455 130 130 138.71 20 25 0 0 0 

14 1300 26.81 10.35 455 455 130 130 72.84 20 0 0 0 0 

15 1200 10.08 8.26 455 441.66 130 130 25 0 0 0 0 0 

16 1050 5.3 13.71 455 290.99 130 130 25 0 0 0 0 0 

17 1000 9.57 3.44 455 246.99 130 130 25 0 0 0 0 0 

18 1100 2.31 1.87 455 355.82 130 130 25 0 0 0 0 0 

19 1200 0 0.75 455 455 130 130 29.25 0 0 0 0 0 

20 1400 0 0.17 455 455 130 130 162 32.83 25 10 0 0 

21 1300 0 0.15 455 455 130 130 84.85 20 25 0 0 0 

22 1100 0 0.31 455 455 0 0 144.69 20 25 0 0 0 

23 900 0 1.07 455 418.93 0 0 25 0 0 0 0 0 

24 800 0 0.58 455 344.42 0 0 0 0 0 0 0 0 

Cost of Wind 

power ( $) 
12802.20 

Thermal generating  

startup cost ($) 
5340 

Overall Cost of 

Microgrid (thermal 

+renewable energy) 

($) 

582860.726$ 
Cost of Solar 

power  ( $) 
16467.30 

Total generating cost of 

thermal generators ($) 
553,591.2262 

 

that the insertion of these sources enhance more the 

total generation and associated economic saving. 

5. Conclusion 

The UC and ED problems are chosen to decide 

when and which generator unit among the existing 

generation mix commit to be online and decommit 

to be offline. For the first problem the economic 

dispatch problem the paper proposes a new 

multiverse optimizer algorithm for in order to 

supply economic power to customers. The MVO 

algorithms modified with parallel mirror based 

opposition learning technique as a second solution 

for solving the problem of unit commitment (UC). 

The proposed technique is tested on a microgrid 

network with and without renewable energy 

resources. This study showed that, the integration of 

renewable energy resources impacts the startup and 

fuel cost of generators unit for UC problem. The 

results obtained by applying this strategy are finally 

compared with other algorithms found in the 

literature and depict the superiority of the proposed 

modified MVO in solving UC problem either in 

small micro power grid as well as in large scale 

power grid. 

Nomenclatures 

i Generator unit index,  1,...i N  

t Time period index,   1,....t T
 

Ng Total number of generator units. 

T Total number of hours. 
F Total generation cost over the time horizon  

t

iC Generation cost of ith unit($). 
t

iU Status of ith unitat time t [0,1]. 

,

t

SU iU Status  of startup decision variable ith unit 

at time t  

,

t

SD iU Status  of shutdown decision variable of ith 

unitat time t 

iCSC Cold startup cost of ith unit ($) 
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iHSC Hot Startup Cost of ith unit($) 

min max,i iP P Minimum and maximum real power 

of ith unit(MW) 

, ,i i ia b c Coefficients of generating cost of 

generators. 
t

iP Real power output of unit i at time t (MW) 

t

dP Load demand at time t (MW) 

tR Spinning reserve at time t (MW) 
t

iSD Shut-down cost of ith unitat time t ($) 
t

iS Start-up cost of ith unitat time t ($) 

iMD Minimum time down of unit i (h) 

iMU Maximum up time of unit i (h) 
cold

iT Cold start time of ith unit (h) 
ON

iT Period during which unit i should kept “on”  
OFF

iT Period during which ith unit should kept 

“off”  

iUR Ramp-up rate limit of ith unit 

iRD Ramp-down rate limit of ith unit 

t

wP Wind power generation at time t (MW) 

t

sP Solar power output at time t (MW) 
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