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Abstract: The appropriate position and sizing of soft open points (SOPs) for reducing the detrimental impact of 

electric vehicle (EV) load penetration and renewable energy (RE) variation on active distribution networks (ADNs) 

are provided in this study. Soft open points (SOPs) have been used to create a multi-objective framework that 

considers loss minimization and voltage profile enhancement. The non-linear multi-variable complicated SOP 

allocation problem is solved for the first time using a modern meta-heuristic Aquila optimizer (AO). The modified 

IEEE 33-bus benchmark and IEEE 69-bus ADNs are used in the simulations. Before SOPs, the average real power 

loss in IEEE 33-bus AND was 370.329 kW, but after SOPs, it was reduced to 259.356 kW (i.e., 29.96 percent 

reduction). Similarly, effective SOPs integration in the IEEE 69-bus resulted in a loss reduction of 81.07 percent. 

AO's computational efficiency is also compared to that of multiobjective particle swarm optimization (MOPSO), 

particle swarm optimization (PSO), and cuckoo search algorithm (CSA). The AO has produced better results in 

terms of lower losses, improved voltage profile despite variations in EV load penetration, and RE and load volatility 

in ADNs, according to the results. 

Keywords: Active distribution networks, Aquila optimizer, Electric vehicles, Loss reduction, Renewable energy, 

Soft open points, Voltage profile improvement. 

 

 

1. Introduction 

The present electric distribution systems (EDSs) 

are experiencing high penetration levels of 

renewable energy (RE)-based distributed generation 

(DG) around the world. Despite their environmental 

benefits, their intermittency nature has opened up 

various operational and control issues. In the 

literature, integration of energy storage systems 

(ESSs) and optimal network reconfiguration (ONR) 

are some of the best solutions suggested for 

overcoming these issues. However, equipping 

remote control switches (RCSs) in each branch/tie-

lines for achieving ONR is a typical and non-

economic option. In this scenario, soft open points 

(SOPs) become popular, which are basically power 

electronics-based devices that are integrated into 

EDSs to control active and reactive power flows, 

regulate voltage, and improve performance under 

normal operating conditions. Due to their quick 

response, they are also employed for isolating faulty 

sections and thereby achieving service restoration 

and optimal reconfiguration.  

In [1], optimal integration of multiple SOPs 

along with optimal network reconfiguration (ONR) 

is solved for loss minimization, load balancing 

under different loading conditions, and distributed 

generation (DGs) penetration. In [2], ant colony 

optimization (ACO) and the taxi-cab algorithm 

(TCA) are employed for NR and SOPs allocation, 

respectively. The objective function is formulated 

for loss minimization, load balancing, and DG 

penetration maximization under variable DG 

penetration. In [3], the annual cost of losses is 
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minimized by optimizing the integration of SOPs 

using a mixed-integer second-order cone model 

(MISOCM). Multi-objective particle swarm 

optimization (MOPSO) and TCA are used in [4] to 

solve optimal network reconfiguration problems as 

well as optimal SOP allocation by aiming for loss 

reduction, load balancing, and voltage profile 

improvement while taking into account different DG 

penetration levels. In [5], the impact of unbalanced 

conditions due to asymmetric DG integration is 

neutralized by solving optimal SOP allocation 

towards minimizing losses and voltage and current 

unbalances using semidefinite programming (SDP). 

In [6], a hybrid approach using ACO and TCA is 

employed for optimal reconfiguration and SOP 

allocation by aiming for maximum DG penetration. 

MISOCM is used in [7] to solve optimal sizing of 

distributed energy storage systems (DESSs) in 

active distribution networks (ADNs) by taking into 

account optimal controls of SOPs-based 

reconfiguration, tap-changer, and time-of-use (TOU) 

demand response. The goal of [8] is to optimize 

performance by utilizing reactive power support of 

optimal SOP controls and direct load control (DLC) 

of thermostatically controlled air-conditioning loads. 

In [9], SOCP-based column-and-constraint 

generation (C&CG) algorithm is developed for 

improving EDS performance with optimal SOP 

controls under photovoltaic (PV) system uncertainty. 

In [10], a discrete-continuous hyper-spherical search 

algorithm (DC-HSS) is proposed for solving 

simultaneous allocation of SOPs and DGs along 

with optimal NR by focusing on the minimization of 

distribution SOP losses at different loading 

conditions. In the presence of uncertainty in network 

net-loading due to DG power and electric vehicle 

(EV) charging, the optimal controls of SOPs are 

proposed for regulating the voltage profile and 

network congestion in ADNs [11]. In [12], a two-

stage robust optimization (RO) via SOCP-based 

C&CG algorithm is utilized for controlling the SOPs 

optimally under P and PQ control modes with 

respect to uncertainty in PV and wind turbine (WT) 

systems. In [13], building thermal storage (BTS) is 

suggested for increasing the penetration of 

renewable energy systems (RESs) using optimal 

controls of SOPs by a hybrid stochastic/RO 

approach. In [14], SOPs-based ONR is proposed for 

handling DGs' uncertainty and thus to maximize the 

hosting capacity (HC) of practical EDS using a 

modified version of the MOPSO. In [15], PSO is 

used to control multiple SOPs optimally, so optimal 

allocation of DGs and ONR is achieved for loss 

minimization. In [16], simultaneous ONR and SOPs 

allocation is proposed for enhancing DG penetration 

and voltage stability indices and also loss 

minimization under different load growth scenarios 

using the Archimedes optimization algorithm 

(AOA). In [17], the CPLEX optimizer in general 

algebraic modelling system (GAMS) software is 

used for conservation voltage reduction (CVR) for 

peak load reduction and, consequently, energy loss 

reduction by extracting optimal volt/VAr controls 

using SOPs in ADNs. In [18], genetic algorithm 

(GA) is proposed for effective control of active and 

reactive power flows and thus to optimize 

performance in RES integrated with SOPs. 

In view of the aforementioned research, it is 

clear that SOPs are basically used to regulate the 

power flows in the ADNs integrated with RE and/or 

ESSs. However, the literature works on optimal 

allocation of SOPs is not much focused on their 

effectiveness considering emerging EV load and 

their negative impact on ADNs’ performance. Also, 

the coordinative operation between SOPs and WTs 

for regulating voltage profile of the ADNs is not 

emphasized. Thus, our main research is to control 

SOPs and WTs optimally for maximizing ADNs 

performance under variable RE, EVs and network 

loads. In addition, meta-heuristic algorithms are 

highly adapted in electrical engineering optimization 

problems. According to no-free-launch (NFL) 

theorem [19], there is no such single algorithm 

which can solve all kinds of optimization problems. 

Thus, researchers are inspired to introduce various 

new optimization algorithms and/or improvements 

in the existing algorithms. In recent times, darts 

game optimizer (DGO) [20], three influential 

members based optimizer (TIMBO) [21], random 

selected leader based optimizer (RSLBO) [22], 

football game based optimization (FGBO) [23], 

puzzle optimization algorithm (POA) [24], ring toss 

game-based optimization (RTGBO) [25] are some 

of such meta-heuristic algorithms. In this aspect, we 

have introduced a simple and efficient Aquila 

optimizer (AO) [26], inspired by foraging behaviour 

and unique hunting skills of Aquila’ bird, for 

solving the proposed multi-objective function and 

compared its effectiveness with other algorithms. 

The following are the key contributions of this paper. 

• Optimal location and sizing of SOPs are 

proposed for mitigating the negative impact of 

EV load penetration on EDNs. 

• A multi-objective framework considering loss 

minimization and voltage profile improvement 

has been developed using SOPs. 

• For the first time, a recent meta-heuristic AO is 

proposed to solve the non-linear multi-variable 

complex SOP allocation problem. 
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• Simulations are performed on the modified 

IEEE 33-bus benchmark [27] and for different 

scenarios. 

The rest of the paper is organised as follows: 

Section 2 models SOPs and EV load penetration. 

Also, modelling of RE variation and network load 

variability are covered. A multi-objective 

optimization with real power losses and voltage 

deviation index is described in Section 3. The 

concept of AO and its mathematical modelling are 

given in Section 4. Section 5 presents simulation 

findings for various EV load penetration situations 

using a modified IEEE 33-bus benchmark test 

system and IEEE 69-bus ADN. Section 6 

summarised the article's major contributions and 

research findings. 

2. Modelling of SOPs and EV load 

In this section, the mathematical modelling of 

SOPs and EV load penetration, hourly variation in 

RE and network load profile are explained.  

2.1 Power injection modelling of SOPs 

In this work, SOPs are considered as VSCs with 

back-to-back connections that are preferably 

integrated at normally-open points in EDSs. 

Considering bus-i and bus-j as open-points on 

feeders 1 and 2, respectively, single SOP connection 

is shown in Fig. 1.  

The converter associated to one feeder is 

converted AC/DC and then transmitted via DC link, 

and then injected into the other feeder via DC/AC 

converter. The active power transfer in DC link is 

the power injection at both the VSCs. For lossless 

operation,  

 

𝑃𝑉𝑆𝐶,𝑖 = −𝑃𝑉𝑆𝐶,𝑗                       (1) 

 

The following are the associated constraints 

considered for SOPs: 

 

√𝑃𝑉𝑆𝐶,𝑖
2 + 𝑄𝑉𝑆𝐶,𝑖

2 ≤ 𝑆𝑉𝑆𝐶,𝑖                 (2) 

 

√𝑃𝑉𝑆𝐶,𝑗
2 + 𝑄𝑉𝑆𝐶,𝑗

2 ≤ 𝑆𝑉𝑆𝐶,𝑗                 (3) 

 

𝑉𝑚𝑖𝑛 ≤ |𝑉𝑉𝑆𝐶,𝑖| ≤ 𝑉𝑚𝑎𝑥                  (4) 

 

𝑉𝑚𝑖𝑛 ≤ |𝑉𝑉𝑆𝐶,𝑗| ≤ 𝑉𝑚𝑎𝑥                  (5) 

 

where 𝑃𝑉𝑆𝐶,𝑖  and 𝑃𝑉𝑆𝐶,𝑗  are the active power 

injections of both VSCs, respectively; 𝑄𝑉𝑆𝐶,𝑖  and 
 

 
Figure. 1 B2B VSC topology for SOPs in EDN 

 

𝑄𝑉𝑆𝐶,𝑗  are the reactive power injections of both 

VSCs, respectively; 𝑆𝑉𝑆𝐶,𝑖  and 𝑆𝑉𝑆𝐶,𝑗  are the MVA 

rating of both VSCs, respectively; |𝑉𝑉𝑆𝐶,𝑖|  and 

|𝑉𝑉𝑆𝐶,𝑗|  are the AC voltage magnitudes of both 

converters, respectively; 𝑉𝑚𝑖𝑛  and 𝑉𝑚𝑎𝑥  are the 

minimum and maximum voltage magnitude limits, 

respectively.  

2.2 Hourly EV load penetration 

The EV load penetration is expressed in terms of 

percentage to the base load, as expressed by, 

 

𝑃𝑒𝑣,𝑖(ℎ) = 𝜌𝑒𝑣(ℎ) × 𝑃𝑑,𝑖(0) × (
|𝑉𝑖|

|𝑉𝑟|
)

𝛼𝑒𝑣

       (6) 

 

𝑄𝑒𝑣,𝑖(ℎ) = 𝑃𝑒𝑣,𝑖(ℎ) × 𝑡𝑎𝑛(∅𝑒𝑣) × (
|𝑉𝑖|

|𝑉𝑟|
)

𝛽𝑒𝑣

   (7) 

 

where 𝑃𝑒𝑣,𝑖(ℎ)  and  𝑄𝑒𝑣,𝑖(ℎ)  are the hourly real and 

reactive penetration levels of EV load, respectively;  

𝜌𝑒𝑣(ℎ)  is the EV load penetration level, 𝑃𝑑,𝑖(0)  and 

𝑄𝑑,𝑖(0) are the initial real and reactive powers loads 

of bus-i, respectively; 𝛼𝑒𝑣  and 𝛽𝑒𝑣  are the power 

exponential coefficients as per voltage dependent 

load modelling [28], ∅𝑒𝑣  is the operating power 

factor of EV charging converter, |𝑉𝑖| and |𝑉𝑟| are the 

voltage magnitude of bus-i and reference bus, 

respectively. 

2.3 Hourly variability in PV and WT generation 

The variability in solar PV system and WT 

generation is expressed in terms of percentage to 

their maximum installed capacity, as given by, 

 

𝑃𝑝𝑣,𝑖(ℎ) = 𝜌𝑝𝑣(ℎ) × 𝑃𝑃𝑉,𝑖(𝑐)               (8) 

 

𝑃𝑤𝑡,𝑖(ℎ) = 𝜌𝑤𝑡(ℎ) × 𝑃𝑊𝑇,𝑖(𝑐)              (9) 

 

𝑄𝑤𝑡,𝑖(ℎ) = 𝑃𝑤𝑡,𝑖(ℎ) × 𝑡𝑎𝑛(∅𝑤𝑡(ℎ))        (10) 

 

where 𝑃𝑝𝑣,𝑖(ℎ) and 𝑃𝑤𝑡,𝑖(ℎ) are the hourly real power 

generations by PV and WT systems, respectively; 

𝑃𝑃𝑉,𝑖(𝑐) and 𝑃𝑊𝑇,𝑖(𝑐) are the installed capacity of PV 

and WT systems, respectively; 𝜌𝑝𝑣(ℎ) and 𝜌𝑤𝑡(ℎ) are 

the variability factors of PV and WT generations, 

respectively; 𝑄𝑤𝑡,𝑖(ℎ)  is the hourly reactive power 
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generation by WT systems, ∅𝑤𝑡  is the operating 

power factor angle of the WT system during hour-h. 

2.4 Hourly variability in net loading profile 

Finally, by considering EV load penetration, PV 

and WT generations, the hourly net loading profile 

of the AND is modelled as, the variability in solar 

PV system and WT generation is expressed in terms 

of percentage to their maximum installed capacity, 

as given by,  

 

𝑃𝑑,𝑖(ℎ) = 𝛾𝑙(ℎ)𝑃𝑑,𝑖(0) + 𝑃𝑒𝑣,𝑖(ℎ) − 𝑃𝑝𝑣,𝑖(ℎ) 

−𝑃𝑤𝑡,𝑖(ℎ) (11) 

 

𝑄𝑑,𝑖(ℎ) = 𝛾𝑙(ℎ)𝑄𝑑,𝑖(0) + 𝑄𝑒𝑣,𝑖(ℎ) − 𝑄𝑤𝑡,𝑖(ℎ)     (12) 

 

where 𝑃𝑑,𝑖(0)  and 𝑄𝑑,𝑖(0)  are the initial real and 

reactive powers loads of bus-i, respectively; 𝑃𝑑,𝑖(ℎ) 

and 𝑄𝑑,𝑖(ℎ) are the net real and reactive power loads 

including EV load, PV and WT generations at bus-i, 

respectively; 𝛾𝑙(ℎ)  is the scaling factor to define 

hourly variation in network load profile.  

3. Problem formulation 

Minimization of distribution losses and voltage 

profile improvement are considered to formulate 

multi-objective function, as defined, by, 

 

𝑂𝐹 = 𝑚𝑖𝑛{𝑃𝑙𝑜𝑠𝑠 + 𝑉𝐷𝐼}              (13) 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐼𝑘
2𝑟𝑘

𝑛𝑏𝑟
𝑘=1                    (14) 

 

𝑉𝐷𝐼 =
1

𝑛𝑏𝑢𝑠
∑ |1 − |𝑉𝑖||𝑛𝑏𝑢𝑠

𝑖=1             (15) 

 

where 𝑃𝑙𝑜𝑠𝑠 is the total real distribution losses, 𝑉𝐷𝐼 

is the voltage deviation index, 𝑛𝑏𝑟 and 𝑛𝑏𝑢𝑠 are the 

number of branches and buses in the network, 

respectively; 𝐼𝑘  and 𝑟𝑘  are the current flow and 

resistance of branch-k, respectively. 

In addition to the constraints given in Eqs. (2) to 

(5), the following are the other major operational 

and planning constraints associated to the proposed 

multi-objective function: 

 

𝑉𝑚𝑖𝑛 ≤ |𝑉𝑖| ≤ 𝑉𝑚𝑎𝑥, 𝑖∀𝑛𝑏𝑢𝑠           (16) 

 

𝐼𝑘 ≤ 𝐼𝑘
𝑚𝑎𝑥, 𝑘∀𝑛𝑏𝑟                   (17) 

 

0.3 ≤ ∅𝑤𝑡 ≤ 1.0, 𝑖∀𝑛𝑤𝑡                (18) 

 

where ∅𝑤𝑡  is operating power factor angle of the 

WTs to extract reactive power support as per the 

network operational requirements, 𝑛𝑤𝑡  is the 

number of WTs in the network.   

4. Aquila optimizer 

In 2021, Aquila optimizer (AO) is introduced as 

a new nature-inspired meta-heuristic optimization 

algorithm. The behaviour of the Aquila, which is 

one of the most prevalent birds of prey in the 

Northern Hemisphere and belongs to the 

Accipitridae family, was the inspiration for AO. Its 

computational efficiency over various algorithms is 

well described and proved as superior [26]. This 

section delves into the mathematical modelling of 

Aquila's bird hunting skills. 

In similar to all population algorithms, AO 

begins with the random generation of population for 

candidate solution (𝑋) using their lower and upper 

bounds as given by, 

 

𝑋𝑖𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑 × (𝑢𝑗 − 𝑙𝑗)            (19) 

 

where 𝑖 = 1: 𝑛𝑝 and 𝑗 = 1: 𝑑𝑠;  𝑛𝑝 and 𝑑𝑠 are denote 

the total population/ candidate solutions and number 

of dimensions, respectively; 𝑢𝑗 and 𝑙𝑗  
are the upper 

and lower bounds of jth candidate, respectively; 

𝑟𝑎𝑛𝑑 is a random number. 

The best candidate solution for this initial 

random population will be evaluated in the initial 

phase and carried forward to the iterative phase to 

determine the global best candidate solution. 

Aquila seeks the best hunting area in the first 

iteration phase after recognizing the prey by 

maintaining a high soar with vertical stoop. This is 

known as expanded exploration and its 

mathematical expression is given by,  

 

𝑋1(𝑘 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑘) × (1 −
𝑘

𝑘𝑚𝑎𝑥
) 

+[𝑋𝑚(𝑘) − 𝑋𝑏𝑒𝑠𝑡(𝑘) × 𝑟𝑎𝑛𝑑] (20) 

 

where 𝑋𝑏𝑒𝑠𝑡(𝑘) is the best candidate solution 

evaluated in initial phase, 𝑋1(𝑘 + 1)
 
is the updated 

solution in first iteration, 𝑘 and 𝑘𝑚𝑎𝑥 
are the present 

and maximum number of iterations, respectively; 

(1 − 𝑘 𝑘𝑚𝑎𝑥⁄ ) is used to control the expanded 

exploration, 𝑟𝑎𝑛𝑑  is a random number between 0 

and 1, 𝑋𝑚(𝑘)
 
is the mean value of all locations of 

Aquila’s movements at iteration k, and is given by, 

 

𝑋𝑚(𝑘) =  
1

𝑛𝑝
∑ 𝑋𝑖(𝑘)𝑛

𝑖=1 ; 𝑖 = 1: 𝑑𝑠        (21) 

 

Aquila attempts to reduce its search area in a 

circle above the pray in the next step of the hunting 
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process, and prepares to assault the pray. In AO, this 

phase is known as narrowed exploration, and its 

mathematical equivalent is proposed by levy flight 

distribution function, as follows: 

 

𝑋2(𝑘 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑘) × 𝐿𝑒𝑣𝑦(𝑑𝑠) 

+𝑋𝑅(𝑘) + (𝑦 − 𝑥)    (22) 

 

𝐿𝑒𝑣𝑦(𝑑𝑠) =  𝑠 ×
𝑢×𝜎

|𝑣|
1
𝛽

                (23) 

 

𝜎 =
Γ(1+𝛽) ×sin(

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×2

(
𝛽−1

2
)
                  (24) 

 

where 𝑋2(𝑘 + 1) is the updated solution of the next 

iteration 𝑘 which is generated by narrowed 

exploration, 𝑋𝑅(𝑘) is the random solution taken in 

iteration 𝑘 , 𝐿𝑒𝑣𝑦(𝑑𝑠) is the levy flight distribution 

function, 𝑢  and 𝑣 are random numbers between 1 

and 0; 𝑠 and 𝛽 are the fixed constants equal to 0.01 

and 1.5, respectively; 𝑥  and 𝑦
 
are used to model 

spiral shape movements by Aquila and given by, 

 

𝑦 = (𝑎 + 𝑏 × 𝑐) × cos (−𝑑 × 𝑐 +
3𝜋

2
)      (25) 

 

𝑥 = (𝑎 + 𝑏 × 𝑐) × sin (−𝑑 × 𝑐 +
3𝜋

2
)      (26) 

 

where 𝑎 takes a value between 1 and 20 for fixed the 

number of cycles, 𝑏is a small fixed value to 0.00565, 

𝑐  is a integer numbers from 1 to 𝑑𝑠 , 𝑑  is a small 

value fixed to 0.005.  

The third phase of AO is called expanded 

exploitation in which Aquila drops vertically with a 

preparatory attack to detect the prey reaction once 

the target region has been correctly specified and the 

Aquila is ready to land and fight. At this point, 

Aquila uses the target's chosen location to come 

near to the prey and attack, a technique known as 

low flight with slow descending attack and is given 

by, 

 

𝑋3(𝑘 + 1) = [𝑋𝑏𝑒𝑠𝑡(𝑘) − 𝑋𝑚(𝑘)] × 𝛼 − 𝑟𝑎𝑛𝑑 

+[(𝑢𝑏 − 𝑙𝑏) × 𝑟𝑎𝑛𝑑 + 𝑙𝑏] × 𝛿 (27) 

 

where 𝑋3(𝑘 + 1) is the solution of the next iteration 

of 𝑘 , which is generated by the low flight with 

descent attack, 𝑋𝑏𝑒𝑠𝑡(𝑘)
 
is the approximate location 

of the prey until kth iteration, 𝑟𝑎𝑛𝑑  is a number 

between 0 and 1, 𝛼  and 𝛿  are exploitation 

adjustment parameters and fixed to a small value 0.1.  

Narrowed exploitation is the fourth phase of AO, 

and it is used to mimic the stochastic movement of 

Aquila’s when it is close to and attacking the prey 

on land. It is also the last stage of Aquilas to seize 

the pray, and it is given by, 

 

𝑋4(𝑘 + 1) = 𝑄𝑓 × 𝑋𝑏𝑒𝑠𝑡(𝑘) − [𝑒 × 𝑋(𝑘) × 𝑟𝑎𝑛𝑑] 

−𝑓 × 𝐿𝑒𝑣𝑦(𝑑𝑠) + 𝑟𝑎𝑛𝑑 + 𝑒 (28) 

 

𝑄𝑓 = 𝑘
2×𝑟𝑎𝑛𝑑−1

(1−𝑘𝑚𝑎𝑥)2                       (29) 

 

𝑒 = 2 × 𝑟𝑎𝑛𝑑 − 1, 𝑓 = 2 × (1 −
𝑘

𝑘𝑚𝑎𝑥
)   (30) 

 

where 𝑄𝑓 is a quality function used to balance the 

search strategies, 𝑒 denotes various motions of the 

AO used to track the prey during the elope, and 𝑓  
presents decreasing values from 2 to 0, which 

denote the flight slope of the AO used to follow the 

prey during the elope from the first location 

𝑋1(𝑘 + 1)
 
to the last location 𝑋4(𝑘 + 1)

 
in iteration 

𝑘. 

In comprehension, AO employs the well-known 

four primary hunting strategies of Aquila, each of 

which has numerous significant differences, as well 

as the Aquila's ability to intelligently and quickly 

switch between hunting methods depending on the 

situation. Aquila is one of the most smart and skilled 

hunters, probably second only to humans. 

5. Simulation results 

Simulations are performed on modified IEEE 

33-bus ADN considering different EV load 

penetration at different timings. The test system has 

33 buses interconnected with 32 branches and 3 tie-

lines. It has 4 DGs of 200 kW at buses 18, 22, 25 

and 33. Also, reactive power compensation devices 

of 400 kVAr and 600 kVAr are integrated at buses 

18 and 33, respectively. The peak load is 3715 kW 

and 2300 kVAr, respectively. The details bus data, 

branch data and schematic diagram are given in [20]. 

In this work, the DGs at bus-18 and 22 are 

considered as solar photovoltaic (PV) sources, and 

the DGs at 25 and 33 are considered as wind turbine 

(WT) sources with variable power factor control 

between 0.3 and 1. Thus, the required reactive 

power compensation is aimed to extract from WTs 

itself by neglecting CBs at buses 18 and 33. Under 

these modifications, identification of best locations 

for SOPs connection and optimal control of WTs’ 

power factors are treated as search space while 

solving the proposed multi-objective function. The 

hourly load profile, generations of PV and WTs are 

determined based on data in [29].  
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Table 1. Forecasted values of network load and EV load 

profiles, PV and WT generations (%) 

Hr 𝜌𝑒𝑣(ℎ) 𝜌𝑤𝑡(ℎ) 𝜌𝑝𝑣(ℎ) 𝜌𝑙(ℎ) 

1 0.719 0.815 0 0.783 

2 0.674 0.88 0 0.738 

3 0.624 0.886 0 0.723 

4 0.588 0.88 0 0.708 

5 0.582 0.881 0 0.699 

6 0.588 0.881 0 0.678 

7 0.6 0.953 0 0.663 

8 0.633 0.987 0.008 0.708 

9 0.644 0.985 0.050 0.801 

10 0.73 0.962 0.125 0.801 

11 0.793 1 0.418 0.843 

12 0.844 0.979 0.511 0.873 

13 0.875 0.945 0.516 0.889 

14 0.868 0.776 0.475 0.916 

15 0.851 0.673 0.418 0.889 

16 0.875 0.591 0.254 0.889 

17 0.951 0.487 0.050 0.879 

18 1 0.466 0 0.843 

19 0.981 0.373 0 0.864 

20 0.948 0.339 0 0.976 

21 0.9 0.339 0 1 

22 0.875 0.372 0 0.976 

23 0.801 0.393 0 0.964 

24 0.722 0.339 0 0.889 

 

The simulations are performed for each hour 

considering respective variability in EV load 

penetration, network load variability, and PV and 

WT generations as given in Table 1. For instant, at 

hour-13, the EV load penetration is around 87.5% to 

the network base load of 3715 kW (𝜌𝑒𝑣(13) = 0.875), 

WT generation is 94.5% of 200 kW capacity 

(𝜌𝑤𝑡(13)= 0.945), PV generation is 51.6% of 200 

kW capacity ( 𝜌𝑝𝑣(13) =0.516) and variation in 

network load is 88.9% of 3715 kW (𝜌𝑝𝑣(13)=0.889), 

respectively.  

By modifying the loads at each bus as per these 

variations, Newton Raphson (NR) load flow [30] is 

performed for each hour. The network performance 

without SOPs is given in Table 2. At this stage, the 

WTs power factor is not controlled optimally and it 

is fixed to cos ∅𝑤𝑡=1, thus, reactive power support 

from WTs is zero. As a result, the net effective real 

and reactive powers loading on the network are 

become as 5573.37 kW and 2943.47 kVAr, 

respectively. Correspondingly, the incurred losses 

are 406.479 kW and 268.993 kVAr, respectively. 

Also, the minimum voltage magnitude is observed 

as 0.8762 p.u. at bus-18. On the other hand, the 

average voltage deviation is noted as 0.0734 p.u. A 

similar conclusion can be drawn for each hour the 

same Table 2. 

 
Figure. 2 Comparison of Ploss before and after SOPs 

 

 
Figure. 3 Comparison of AVD before and after SOPs 

 

By using the proposed AO, the optimal location 

and sizes of SOP connection in the network is 

determined towards multi-objective function defined 

in Eq. (13). The best open-points on the network for 

SOPs integration are bus-12 and 22, respectively. 

Since, the net effective loading is changing in each 

hour, the MVA rating of SOPs are determined for 

each hour, as given in Table 3. From all the hours, 

the minimum and maximum ratings of VSC at bus-

12 are 0.825 and 1.356 MVA, and at bus-22, they 

are 0.83 MVA and 1.372 MVA, respectively. 

Now, by having optimized SOPs and WTs’ 

power factor controls, the improved performance of 

the network is also given in Table 2, for each hour. 

In comparison, the real and reactive power losses 

are decreased, voltage profile is increased 

significantly. For instant, at hour 13, the incurred 

losses now are 279.695 kW and 215.557 kVAr, 

respectively. Also, the minimum voltage magnitude 

is observed as 0.9099 p.u. at bus-32. On the other 

hand, the average voltage deviation is noted as 

0.0511p.u. A similar conclusion can be drawn for 

each hour the same Table 2.  

A comparative understanding of the optimal 

SOPs and WTs’ power factor controls in the 

network are given in Fig. 2 and Fig. 3, for real 

power losses and AVD, respectively. From these, it 

can be said that the proposed AO approach for 
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Table 2. Hourly network performance without and with SOPs and WT power factor controls 

Hr 
Pd  

(kW) 

Qd  

(kVAr) 

Without SOPs and WTs pf control With SOPs and WTs pf control 

Ploss  

(kW) 

Qloss  

(kVAr) 

Vmin(18) 

 (p.u) 
VDI 

Ploss  

(kW) 

Qloss  

(kVAr) 

Vmin(32) 

 (p.u) 
VDI 

1 4928.95 2431.06 301.989 200.856 0.8897 0.0635 210.097 163.385 0.9236 0.0444 

2 4588.94 2252.81 257.761 171.459 0.8978 0.0587 178.441 139.016 0.9302 0.0409 

3 4367.67 2154.27 232.717 154.823 0.9029 0.0557 160.644 125.230 0.9339 0.0389 

4 4196.87 2074.40 214.135 142.474 0.9068 0.0535 147.610 115.111 0.9367 0.0373 

5 4143.46 2044.01 208.093 138.455 0.9081 0.0527 143.413 111.862 0.9377 0.0367 

6 4085.02 1994.52 200.490 133.385 0.9098 0.0517 138.329 107.931 0.9390 0.0360 

7 4039.65 1967.28 194.987 129.745 0.9107 0.0510 133.879 104.629 0.9404 0.0355 

8 4297.71 2124.11 224.350 149.274 0.9043 0.0548 153.742 120.073 0.9359 0.0380 

9 4663.10 2387.46 273.661 182.014 0.8948 0.0605 187.016 145.690 0.9283 0.0420 

10 4922.92 2494.60 304.429 202.220 0.8898 0.0637 209.246 162.620 0.9238 0.0444 

11 5152.12 2695.37 340.597 225.539 0.8859 0.0672 233.272 180.250 0.9184 0.0467 

12 5401.18 2852.19 379.325 251.005 0.8804 0.0709 260.306 200.716 0.9133 0.0493 

13 5573.37 2943.47 406.479 268.993 0.8762 0.0734 279.695 215.557 0.9099 0.0511 

14 5734.84 3009.52 433.579 287.067 0.8724 0.0757 301.245 231.865 0.9057 0.0530 

15 5643.06 2907.65 414.693 274.634 0.8752 0.0740 290.420 223.492 0.9073 0.0520 

16 5819.77 2943.47 440.120 291.930 0.8701 0.0763 310.022 239.057 0.9044 0.0537 

17 6153.81 3032.20 491.241 326.471 0.8611 0.0807 348.679 269.539 0.8991 0.0571 

18 6208.36 3006.05 494.878 328.985 0.8602 0.0810 352.691 272.848 0.8990 0.0574 

19 6261.58 3036.59 506.618 336.820 0.8589 0.0819 362.352 280.036 0.8969 0.0581 

20 6583.58 3307.30 582.418 387.442 0.8487 0.0879 413.708 319.526 0.8888 0.0622 

21 6516.11 3298.41 573.418 381.511 0.8499 0.0873 406.624 314.020 0.8895 0.0617 

22 6332.18 3190.55 535.959 356.554 0.8549 0.0844 380.068 293.612 0.8934 0.0596 

23 6037.73 3044.62 483.298 321.524 0.8622 0.0801 342.538 264.664 0.8989 0.0566 

24 5522.93 2725.90 392.652 261.147 0.8762 0.0721 280.506 216.643 0.9086 0.0511 

 
Table 3. Hourly optimized SOPs ratings at buses 12 and 

22 with WT power factor controls 

Hr 
SOP12 

(MVA) 

SOP22 

(MVA) 
Hr 

SOP12 

(MVA) 

SOP22 

(MVA) 

1 1.009 1.017 13 1.166 1.178 

2 0.938 0.945 14 1.197 1.210 

3 0.893 0.900 15 1.172 1.184 

4 0.859 0.865 16 1.202 1.215 

5 0.847 0.853 17 1.261 1.275 

6 0.834 0.840 18 1.267 1.281 

7 0.825 0.830 19 1.278 1.293 

8 0.880 0.887 20 1.356 1.372 

9 0.963 0.971 21 1.344 1.360 

10 1.015 1.024 22 1.304 1.319 

11 1.075 1.085 23 1.243 1.256 

12 1.130 1.141 24 1.130 1.141 

 

SOPs integration has improved the network 

performance irrespective of EVs penetration levels 

and RE and load variations.  

The computational efficiency of AO is compared 

with MOPSO [4], in which network load profile and 

DGs power variation are only considered while 

solving SOPs allocation problem in IEEE 69-bus 

test system. In addition to AO, the problem is solved 

with PSO [31], cuckoo search algorithm (CSA) [32], 

differential squirrel search algorithm (DSSA) [33]. 

The comparative results are given in Table 4.  

From the results, it is observed that the optimal 

SOPs at bus-2 and bus-61 are resulted for 81.07% 

loss reduction in comparison to base case. Though 

AO outperforms MOPSO, PSO, and CSA, DSSA is 

also a competitive algorithm in terms of global 

optima. However, based on the NFL [19], it is  

 
Table 4. Comparison of AO performance with MOPSO [4], PSO [31], CSA [32] and DSSA [33] 

Algorithm  bus-i bus-j 
Pinj_i 

(MW) 

Qinj_i 

(MVAr) 

Sinj_i 

(MVA) 

Pinj_j 

(MW) 

Qinj_j 

(MVAr) 

Sinj_j  

(MVA) 

Ploss  

(kW) 

Loss  

Reduction 

Base  - - - - - - - - 225 - 

MOPSO 50 59 - - 5.00 - - 5.00 60.00 73.33 % 

PSO 59 47 2.61 0.87 2.75 -2.61 0.36 2.63 63.39 71.83 % 

CSA 62 48 2.14 0.50 2.20 -2.14 2.57 3.34 57.16 74.60 % 

DSSA 61 2 1.37 0.71 1.55 -1.37 2.48 2.84 42.60 81.06 % 

AO 61 2 1.38 0.71 1.55 -1.38 2.48 2.84 42.59 81.07 % 
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necessary to compare the computational efficiency 

of the AO to that of other recent algorithms. This 

has been considered as a future extension and scope 

of this work. 

6. Conclusion 

Integration of renewable energy (RE) sources 

and adoption of electric vehicles (EVs) has become 

a popular strategy for combating global warming 

and ensuring a sustainable energy supply. Their 

intermittency and stochastic nature, on the other 

hand, posed a number of issues in electrical 

distribution networks (EDNs). The influence of 

variability in active distribution networks (ADNs) 

due to photovoltaic (PV), wind turbine (WT), and 

electric vehicle (EV) load on network loads is 

mitigated in this paper using an Aquila optimizer 

(AO) based optimal allocation of soft open points 

(SOPs). IEEE 33-bus and 69-bus ADNs are used in 

the simulations. When the findings of AO are 

compared to those of other heuristic approaches, it is 

clear that the proposed approach for adjusting real-

time toward flexible and optimum functioning in 

ADNs with evolving trends is superior, supporting 

the proposed approach.  
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