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Abstract: Global Positioning System (GPS) signal outage and noise in the sensor reading impact the accuracy of 

vehicle position. Thus, noise covariance must be regularly adjusted. A priori knowledge about noise statistics in vehicle 

positioning applications is difficult to obtain. This study proposes the adaptive Kalman filter (KF) and the fuzzy 

intersection method for free GPS localization. The KF’s parameters were adapted using the fuzzy intersection method 

and fuzzy model. First, a dataset based on map information was developed to capture road coordinates and predict 

noise covariance. Second, fuzzy intersection method obtained a good initial state vector. Third, a fuzzy clustering 

algorithm based on a weighted fuzzy expected value was used to conclude the problem space into the cluster prototypes. 

Fourth, the fuzzy parameter model was learned from the clustering algorithm in the previous step without expert 

systems. This study used two road network configurations characterized as single and multiple road entry points. The 

position accuracy was estimated using the root mean square error. In the first network, the proposed method achieved 

1 m accuracy compared to 4, 7, and 9 m accuracies in other related papers, while in the second network; it achieved 2 

m accuracy compared to 5, 7, and 10 m accuracies in other related works. 

Keywords: Kalman filter, Free GPS localization, Fuzzy logic, V2I communication, Intersection method. 

 

 

1. Introduction 

Kalman filter (KF) is a real-time estimator for 

dynamic state-space problems. It is designed to solve 

linear systems. The noise followed a Gaussian 

distribution. KF does not keep a large amount of 

historical data for future prediction. Therefore, it is 

known as a parametric algorithm. The problem space 

can be adapted by variance analysis [1, 2]. 

The results of KF may be divergent or stable in 

nonlinear systems and non-Gaussian and Gaussian 

distributions with inaccurate noise covariance. It is 

difficult to have a priori knowledge about noise 

covariance. Different variants of the standard KF 

have been proposed to solve nonlinear problems, 

such as extended Kalman filter (EKF) and unscented 

Kalman filter (UKF). They also require priori 

knowledge of variance statistics to avoid divergence 

or stability [3]. 

Various adaptive filter methods, such as the 

Bayesian, maximum likelihood, correlation, and 

covariance matching methods, are believed to 

prevent divergent results. They adapt noise 

covariance matrices in the state to make them static. 

Covariance matching methods are common adaptive 

filter methods. They search for the matching degree 

between the theoretical variance analysis and the 

current variance analysis. There are two common 

assumed methods: the degree of mismatching (DOM) 

and degree of divergence metrics (DOD). The DOM 

searches for the inconsistency between the theoretical 

variance and the actual variance in measurements. 

The DOD estimates the scalar value that describes the 

traces between the theoretical and actual covariance 
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values [4, 5]. The methods are easily implemented. 

Their accuracy depends on the window updating size, 

as well as the degree of measurement accuracy. 

With its variations in vehicle positioning 

applications, KF is used extensively in different 

navigation systems such as the global positioning 

system (GPS) and the inertial navigation system 

(INS) to improve estimated position accuracy 

purposes. The GPS is basedon satellites positioning 

system that provides an absolute position that is 

accurate for a long period, although the GPS’s 

accuracy is reduced owing to the GPS outage signals, 

non-line-of-sight multipath effect, a smaller number 

of visible satellites, and signal propagation delay. The 

INS is a set of customized sensor nodes that detect 

velocity and angular rates in three dimensions, such 

as accelerometers and gyroscopes. The INS provides 

a relative position with high accuracy for a short 

period. Its accuracy is impaired by malfunction, 

systematic errors, and random errors. These errors 

accumulate over time. Different INS and GPS 

integration modes are assumed. They estimate INS 

errors using a filtering algorithm. They do not 

provide enough solutions owing to previous 

drawbacks [6, 7, 8]. The free GPS cooperative 

localization has recently emerged as an alternative 

solution. This enables another source of measurement 

that can be used to increase the measurement 

accuracy. It depends on the vehicle-to-infrastructure 

(V2I) communications. A large number of roadside 

units (RSUs) are configured on one or two roadsides. 

RSUs exchange the packets with the nearby vehicles. 

Vehicles use V2I to improve the GPS/INS 

positions or to estimate initial positions. KF, with its 

variations, is used to enhance the initial positions. 

The accuracy of KF is reduced owing to the lack of 

priori knowledge of how to adapt noise covariance. 

In our previous study [9], EKF was used to improve 

the initial vehicle positions estimated by the V2I 

communication and intersection method. Vehicles 

received beacon messages from at least two RSUs. 

The intersection points were estimated to be equal 

initial state vector. The intersection method was less 

effective in the case of increasing measurement errors. 

Furthermore, the accuracy of EKF was related to 

adapting noise covariance in the process and 

measurement instead of using them constantly to 

express more uncertainty. 

This study adapts the noise covariance and 

handles the nonlinearity using the fuzzy logic theory 

[10, 11]. Additionally, fuzzy triangle numbers 

express the uncertainty around a vehicle position, and 

therefore, they handle the uncertainty in distance 

measurements. This study can be summarized as 

follows: 

1. The use of digitized map information allows us 

to determine road coordinates, predict noise in 

the vehicle position, and map the vehicle 

position to road coordinates. 

2. The fuzzy intersection method handles the 

uncertainty around the vehicle position and 

distance measurements. 

3. The V2I communication is used to initialize the 

position vector. 

4. A fuzzy clustering algorithm based on a 

weighted fuzzy expected value (WFEV) 

divides a road map into multiple clusters or 

regions. The cluster prototypes are used to 

conclude the problem space and then used as 

the initial noise covariance in the process and 

measurement. 

5. A fuzzy model is built using cluster prototypes 

without needing expert systems. Sometimes, 

they are unavailable. The number of fuzzy 

rules equals the number of clusters, and there is 

a direct relationship between several input 

variables and clusters. Furthermore, the fuzzy 

model is used to update the noise in the 

measurements. 

The experimental results show that the proposed 

method against other related research papers [9, 25, 

26]. In complex road network configurations, the 

proposed method gives a positional accuracy of about 

2 m compared to 5, 7, and 10 m provided in other 

studies. In a simple road network configuration, the 

proposed method gives a positional accuracy of about 

1 m compared to 4, 7, and 9 m provided in other 

studies. 

The rest of this paper is structured as follows: 

Section 2 explains the standard KF algorithm. 

Section 3 explains the related. Section 4 explains that 

the proposed adaptive KF method via a free GPS 

localization and fuzzy intersection method. Section 5 

provides the experimental results. Section 6 provides 

a discussion and analysis of the experimental results. 

Section 7 outlines the proposed algorithm and 

explains the directions for future work. 

2. Standard Kalman filter 

Standard KF is designed for linear systems. The 

following equation can be used to describe a linear 

system [12, 13]: 

 

𝑥𝑘+1,𝑘 = 𝐴𝑋𝑘,𝑘 + 𝐵𝑈𝑘 + 𝑤𝑘             (1) 

 

where xk+1,k is a posterior state at time k + 1, Xk,k 

is a priori state at time k, and Uk is a control variable 

such as velocity and acceleration. A and B are the 

transition matrices. Wk  is a process white noise 
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covariance matrix with variance Q and zero mean. It 

is made up of prediction and correction steps. In the 

prediction step, the predicted error covariance matrix 

𝑝𝑘+1,𝑘  is calculated as follows: 

 

𝑝𝑘+1,𝑘 = 𝐴𝑝𝑘,𝑘𝐴𝑇 +  𝑄𝑘                  (2) 

 

Where Q is a noise covariance matrix in the 

process. The innovation 𝜈𝑘+1,𝑘  is defined as the 

difference between the actual measurement 𝑧𝑘+1 and 

its predicted state vector 𝑥𝑘+1,𝑘.  It represents the 

errors in the prediction step [14]: 

 

𝜈𝑘+1,𝑘 = 𝑧𝑘+1 − 𝐻𝑥𝑘+1,𝑘                  (3) 

 

Where H is a transition matrix. The correct 

measurement updates the predicted posterior state 

based weighted difference between an actual 

measurement 𝑍𝑘+1  and a predicted state 𝑥𝑘+1,𝑘  as 

follows: 

 

𝑥𝑘+1,𝑘+1 = 𝑥𝑘+1,𝑘 + 𝐾(𝑍𝑘+1 − 𝐻𝑥𝑘+1,𝑘)    (4) 

 

Where 𝑥𝑘+1,𝑘+1
^  is a posterior state at time k + 1. The 

Kalman gain (K) is a weight factor representing the 

minimal square errors between the predicted state and 

the noise covariance in the measurements R: 

 

𝐾 = 𝑃𝑘+1,𝑘 𝐻
𝑇(𝐻𝑃𝑘+1,𝑘  𝐻

𝑇 + 𝑅)
−1

        (5) 

 

The residual is defined as the difference between 

the actual measurement 𝑍𝑘+1 and the posteriori state 

𝑥𝑘+1,𝑘+1 [14]. This represents the errors in the 

correction step: 

 

𝜉𝑘+1,𝑘+1 = 𝑧𝑘+1 − 𝐻𝑥𝑘+1,𝑘+1              (6) 

 

The predicted error covariance matrix 𝑃𝑘+1,𝑘+1  

is updated to posteriori predicted error covariance 

𝑃𝑘+1,𝑘+1 as follows: 

𝑃𝑘+1,𝑘+1 = (𝐼 − 𝐾. 𝐻)𝑃𝑘+1,𝑘              (7) 

3. Related studies 

This section discusses related research papers. 

The studies are split into two categories. The first 

category is adaptive noise covariance in KF 

algorithms [15-23, 27]. The studies belonging to the 
first category worked on the integration mode of the 

GPS and INS. The second category is cooperative 

localization methods [24-26]. They are based on V2V 

or V2I communication. They reduced the noise in the 

measurement. 

The authors in [15, 16] proposed an adaptive KF 

based on covariance matching methods. The 

Mamdani model was used to estimate a scalar value 

that equaled the noise covariance updating rate. This 

model uses the single-input, single-output system. 

The input variable was a DOM or DOD, while the 

output variable was a noise covariance variable. The 

parameters of membership functions were 

determined by an expert system. The model’ results 

might lead to bounded. The expert systems were not 

available at all times.  

In [17], the authors proposed adaptive neuro-

fuzzy extended Kalman filtering for robot 

localization. The authors used a DOM method and 

the delta of DOM, to measure the inconsistent degree 

and the changing rate in DOM, respectively. The 

steepest gradient descent algorithm was used to 

determine the parameters of ANFIS. The complexity 

degree of ANFIS was attributed to its structure, i.e., 

five layers. Its accuracy was more related to tuning 

parameters and the gradient method. This caused 

slow running of the learning algorithm. This is not 

agreed upon in safety applications.  

In [18], the authors proposed a dual-optimized 

adaptive Kalman filtering (DO-AKF) algorithm 

based on the backpropagation (BP) neural network 

and variance compensation principle. The BP neural 

network was built based on the compensation error. 

A principle signifying errors between the measured 

and the best-predicted vector. The input layers consist 

of three variables: innovation, residual, and Kalman 

gain. The output layer was noise. After training the 

BP neural network, the compensation error was used 

to update the posterior state vector, as shown in Eq. 

(4). It did not account for the measurement 

uncertainty. Accuracy is related to the predefined BP 

neural network parameters. 

In [19], the authors used the Mahalanobis 

distance and BP neural network to increase the 

accuracy of the INS/GPS final position. The 

Mahalanobis distance was estimated between INS 

and GPS measurements. Newton’s method was used 

to minimize the errors in distance measurement. This 

was used to initialize the noise covariance in the KF 

algorithm. BP neural network was trained to adapt 

noise covariance in GPS and INS measurements in 

case of a GPS outage signal. The position accuracy 

was related to the precise degree of GPS/INS 

measurements and with the tuning parameters of the 

BP neural network. 

In [20], the authors proposed an adaptive EKF 

based on fuzzy innovation covariance for improving 

the INS position. One EKF algorithm was used to 

estimate INS noise in case of the lack of GPS 

measurements. The authors used two Mamdani 
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models to adapt the noise covariance. The input 

variables of the first model were position dilution of 

precision and the number of apparent satellites. The 

output variable was the position error. The second 

model used the innovation and output of the first 

model as input variables. The output variable was the 

noise covariance. In an urban environment, the non-

line-of-sight, a smaller number of visible satellites 

(i.e., less than four satellites), and GPS outage signal 

have reduced the accuracy of GPS measurement. 

In [21], the authors used a fuzzy neural network 

to train the input variables (i.e., GPS, INS, and 

odometer) and output variable (i.e., velocity 

correction) to enhance INS measurement. The 

training process was applied in case of the availability 

of GPS data. Therefore, measurement accuracy was 

reduced in urban environments and with a smaller 

number of visible satellites. In [22], the authors 

proposed a mixed prediction approach to enhance the 

INS’s vehicle position. It consisted of a radial basis 

function neural network, time series analysis, and 

UKF algorithms. The predicted errors depended on 

the radial basis neural network and time series in line-

of-sight conditions. The output of this prediction was 

used to adjust the noise covariance in UKF in GPS to 

block the signal. The experimental results showed 

that using a mixed prediction approach rather than 

using each prediction alone achieved high accuracy. 

It took more computation time and longer training 

time to adapt the parameters.  

In [23], the author used Sage–Husa adaptive 

method to adapt noise covariance in the process and 

measurements. Sage–Husa adaptive method updated 

the noise covariance based on previous innovation 

data and constant parameters to prevent the 

divergence and guarantee positive definite noise 

covariance matrices. A singular matrix problem 

could be generated in the case of bound 

measurements. 

In [24], the authors proposed GPS-free 

localization using a directional antenna. There were 

two RSUs installed on one roadside. Each RSU had a 

directional antenna with a fixed direction. The 

vehicle estimated the angle of arrival upon receiving 

the beacon messages. There were no intersection 

lines on the road. The final vehicle position was 

determined using the straight-line equation. The 

position accuracy depends on the strength degree of 

the received signals and the multipath effect.  

In [25], the authors used GPSs/INSs to obtain the 

initial positions. The EKF was then used to improve 

the vehicle position. In the EKF algorithm, the 

nonlinear distance function, i.e., nearby vehicles, and 

the kinematic mathematical model were linearized to 

solve nonlinear problems and correct the INS 

measurement using V2V communication. The noise 

covariance matrix in the process and measurement 

was constant. The position errors might accumulate 

over time. The results showed divergence because of 

increasing uncertainty in measurement. As the 

number of neighbouring vehicles moving in the same 

direction increased, the position accuracy improved. 

This is difficult owing to lane-change scenarios and 

urban environments. 

In [26], a cooperative vehicle localization 

improvement using the distance information 

(COVALID) algorithm was proposed. This algorithm 

is an improved version of the VANET location 

improve (VLOCI) algorithm. The weighted centroid 

method was used to estimate the initial coordinates; 

the unknown vehicle position determined a scale 

factor for each neighbour based on the measured 

distance. The distances measured by the GPS/INS 

systems differed, and this was specified. The rules for 

similar triangles were applied to find neighbours that 

relax on a straight line or have a linear link with the 

unknown vehicle. The final position determined by 

the GPS was updated by the difference in distance 

between the INS and the GPS. The COVALID 

algorithm reduced GPS position error by 63%; this is 

still not a good enough solution, especially on 

highways. The similarity metric is also influenced by 

the multipath effect in the distance estimation 

between neighbouring vehicles. They give constant 

weight to each neighbour based on different distance 

ranges. Constant weights do not express neighbours 

well. Therefore, there may be a chance to find 

vehicles outside the network boundaries.  

In [27], the authors used standalone GPS/INS to 

trace the autonomous vehicle. This vehicle was 

equipped with two GPS receivers and an INS (i.e., an 

attempt to get more measurements). The authors used 

an agglomerative clustering algorithm and then the 

singular value decomposition method to adapt the 

noise covariance matrix in the process and 

measurement. The multipath effect, GPS signal 

outage, and random noise in measurement decreased 

the precision of the vehicle position. The GPS and 

INS errors accumulate over time. 

4. Adaptive Kalman filter and fuzzy 

intersection method 

The adaptive KF and fuzzy intersection method 

are discussed in detail. It is based on V2I 

communication. The RSUs are installed on two 

roadsides, and they perform the following tasks: 

1. Each RSU has global information about the 

road map coordinates in its ROI. 
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2. RSUs are responsible for dividing the network 

into N clusters or regions. Each cluster is 

characterized by cluster identifier, prototype, 

and cluster variance. 

3. Each RSU sends periodic beacon messages 

with its coordinates and additional information 

in point 2. 

Each vehicle receives the beacon messages. It 

calculates the distance to each RSU at the time of 

arrival. Each vehicle registers the information in the 

topology table, i.e., cluster identifier, cluster 

prototypes, cluster variances, and RSU position. This 

information will be further used to initialize the noise 

covariance in the process and measurement. Each 

vehicle searches for which the cluster has a 

membership by finding the minimum distance 

between itself and each cluster prototype. 

There are four steps in the adaptive KF process. 

The first step extracts road data to map vehicle 

coordinates to road coordinates. The second step uses 

the fuzzy intersection method to get a good initial 

state vector. The third step uses a fuzzy clustering 

algorithm to divide the road data into different 

regions or clusters. The last step uses the Mamdani 

model to update noise covariance in the measurement. 

4.1 First step: map information 

This step defines more information about the road 

coordinates. The benefit of this step is mapping the 

vehicle position to road coordinates to get more 

precise vehicle locations. Recently, Google Maps and 

Open Street Map have been extensively used to 

extract the road coordinates. This is known as global 

information, which can be programmed into RSUs. 

The random dataset is drawn according to the road 

coordinates, and it consists of x–y road coordinates. 

 

𝑥𝑖 = 𝑟𝑎𝑛𝑑. 𝑋𝑐𝑜𝑜𝑟𝑑   𝑖 = 1 … 𝑛                 (8) 

 

𝑦𝑖 = 𝑟𝑎𝑛𝑑. 𝑌𝑐𝑜𝑜𝑟𝑑   𝑖 = 1 … 𝑛                 (9) 

 

𝑋𝑐𝑜𝑜𝑟𝑑 , 𝑌𝑐𝑜𝑜𝑟𝑑  are the road coordinates. n denotes 

number of nodes. 

4.2 Second step: fuzzy intersection method 

The standard intersection formula [28] depends 

on the precise degree of distance measurement and 

suitable radical line (i.e., R12), as shown in Fig. 1 [9]. 

There is a direct relationship between them. The 

fuzzy intersection method is the fuzzification of the 

standard intersection formula [28]. The fuzzy triangle 

numbers and fuzzy singleton functions are  
 

 
Figure. 1 Intersection point 

 

used to indicate the uncertainty in the distance and 

circle center’s coordinates, respectively. This step is 

used to draw a dataset by each RSU and then by each 

vehicle. The linguistic terms “about x” and “about y” 

represent the fuzzy coordinates of the intersection 

point Xp respectively, as shown in Fig. 2. The mf(x) 

and mf(y) are membership values for x and y 

coordinates. 𝑥𝐿 , 𝑥𝑚, 𝑥𝑈 , 𝑦𝐿 , 𝑦𝑚, 𝑦𝑈  are the lower, 

middle, and upper parameters of two fuzzy triangle 

numbers [10, 11]. These parameters are determined 

by the following equation: 

 

𝑋𝐿 =  𝑋𝑚 − 𝛼𝑥 . 𝑋𝑚 =  𝑋𝑚. (1 − 𝛼𝑥)        (10) 

 

𝑌𝐿 =  𝑌𝑚 − 𝛼𝑦. 𝑌𝑚 =  𝑌𝑚. (1 − 𝛼𝑦)         (11) 

 

𝑋𝑈 =  𝑋𝑚 + 𝛼𝑥 . 𝑋𝑚 =  𝑋𝑚. (1 + 𝛼𝑥)        (12) 

 

𝑌𝑈 =  𝑌𝑚 + 𝛼𝑦. 𝑌𝑚 = 𝑌𝑚. (1 + 𝛼𝑦)         (13) 

 

𝑋𝑚 =  𝑋𝑝, 𝑌𝑚 =  𝑌𝑝                     (14) 

 

where 𝛼𝑥 , 𝛼𝑦 equal the value between 0 and 1∈ [0, 1]. 

The middle parameters are equal to the actual point 

coordinate. Fuzzy singleton functions are used to 

represent two fixed RSU coordinates. All 

membership values for all parameters (i.e., lower, 

upper, and middle) equal 1. The distance between the 

RSUs and each point is calculated using the vertex 

distance method as shown in the following equations: 

 

𝑑𝑖𝑗
𝑥 = 

√
1

3
[(𝑥𝑙

𝑗
− 𝑅𝑋𝐿𝑖)2 + (𝑥𝑢

𝑗
− 𝑅𝑋𝑢𝑖)2 + (𝑥𝑚

𝑗
− 𝑅𝑋𝑚𝑖)2]  

(15) 

 

𝑑𝑖𝑗
𝑦

=

√
1

3
[(𝑦𝑙

𝑗
− 𝑅𝑌𝐿𝑖)2 + (𝑦𝑢

𝑗
− 𝑅𝑌𝑢𝑖)2 + (𝑦𝑚

𝑗
− 𝑅𝑌𝑚𝑖)2]  

  i=1, 2,  j=1…n                                                  (16) 
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(a) 

 

 
(b) 

Figure. 2 Triangle fuzzy number :(a) “about x” and (b) 

“about y” 

 

where 𝑑𝑖𝑗
𝑥  and 𝑑𝑖𝑗

𝑦
 are the square root of the center of 

the area in the x–y dimensions. 

𝑅𝑋𝐿𝑖, 𝑅𝑋𝑢𝑖, 𝑅𝑋𝑚𝑖, 𝑅𝑌𝐿𝑖, 𝑅𝑌𝑢𝑖, 𝑅𝑌𝑚𝑖  are the lower, 

upper, and middle parameters of fuzzy singleton 

functions for two RSU dimensions. The final distance 

r𝑖𝑗 equals the sum of the 𝑑𝑖𝑗
𝑥  and 𝑑𝑖𝑗

𝑦
 as follows: 

 

𝑟𝑖𝑗 = 𝑑𝑖𝑗
𝑥  +  𝑑𝑖𝑗 

𝑦
                       (17) 

 

In the standard intersection method, the lamba 𝜆𝑖 

and epsilon 𝜖𝑖  represent the change in the x-

coordinate and y-coordinate, respectively. The lamba 

𝜆𝑖equals the cosine rule to express horizontal changes 

between the intersection point and the RSU. The 

epsilon 𝜖𝑖 equals the changing y in vertical space to 

express the remainder of the estimated distance 

between the intersection point and the RSU. 

Therefore, fuzzy triangle numbers can express the 

uncertainty in the x and y coordinates. In the standard 

intersection formula, they are estimated using the 

following equations: 

 

𝜆𝑖 =
𝑟𝑖1

2 −𝑟𝑖2
2 +𝑅12

2

2𝑅12
2                         (18) 

 

𝜖𝑖 = √|
𝑟𝑖1

2

𝑅12
2 − 𝜆𝑖

2|                      (19) 

The three parameters (i.e., lower, middle, and 

upper) of each fuzzy triangle number for 𝜆𝑖  and 𝜖𝑖 

are determined using the following equations: 

 

𝜆𝐿 =  𝜆𝑖 − 𝛼𝜆𝜆𝑖 =  𝜆𝑖(1 − 𝛼𝜆)            (20) 

 

𝜆𝑈 =  𝜆𝑖 + 𝛼𝜆 𝜆𝑖 =  𝜆𝑖(1 + 𝛼𝜆)           (21) 

 

𝜆𝑚 =  𝜆𝑖                            (22) 

 

𝜖𝐿 =  𝜖𝑖 − 𝛼𝜖𝜖𝑖 =  𝜖𝑖(1 − 𝛼𝜖)            (23) 

 

𝜖𝑈 =  𝜖𝑖 + 𝛼𝜖  𝜖𝑖 =  𝜖𝑖(1 + 𝛼𝜖)           (24) 

 

𝜖𝑚 =  𝜖𝑖                            (25) 

 

where 𝛼𝜖 =  𝛼𝜆. We substitute𝜆𝐿, 𝜆𝑈, 𝜆𝑚 , 𝜖𝐿 , 𝜖𝑈, 𝜖𝑚 

in the following equations to get three intersection 

points (𝑥𝑙 , 𝑥𝑚, 𝑥𝑢), (𝑦𝑙 , 𝑦𝑚, 𝑦𝑢). 
 

𝑥𝑝𝑗 = 𝑥𝑅1 + 𝜆𝑖𝑥𝑑 ∓ 𝜖𝑖𝑦𝑑                 (26) 

 

𝑦𝑝𝑗 = 𝑦𝑅1 + 𝜆𝑖𝑦𝑑 ± 𝜖𝑖𝑥𝑑                 (27) 

 

The center of area method is calculated to get the 

crisp intersection point (j) as follows: 

 

𝑥𝑗 =
𝑥𝑙+𝑥𝑚+𝑥𝑢

3
                         (28) 

 

𝑦𝑗 =
𝑦𝑙+𝑦𝑚+𝑦𝑢

3
                         (29) 

 

The final point position is (𝑥𝑗, 𝑦𝑗). 

4.3 Third step: fuzzy clustering with expected 

value 

The fuzzy clustering algorithm based on WFEV 

is an expansion of the FCM algorithm [29, 30]. It 

minimizes the objective function as follows: 

 

𝑜𝑏𝑗 =      ∑ ∑ 𝑢𝑖𝑗
𝑚 ∥ 𝑥𝑗 − 𝑐𝑖 ∥2  +𝑛

𝑗=1
𝑐
𝑖=1

              ∑ 𝜎𝑖
𝑐
𝑖=1 ∑ (𝑢𝑖𝑗

𝑚. 𝑙𝑜𝑔 𝑢𝑖𝑗
𝑚 − 𝑢𝑖𝑗

𝑚) 𝑛
𝑗=1             (30) 

 

where 𝜎𝑖  is a variance of a cluster i. 𝑢𝑖𝑗
𝑚  is a 

membership function for point j in the cluster (i), and 

𝑐𝑖 is a cluster center or prototypes. It is a Gaussian 

fuzzy membership value. The point near a cluster 

center is given more weight by the Gaussian 

membership function than is the farther point. 

Therefore, the noisy points have a low membership 

value and has little influence on cluster centers. Each 

data point has D dimensions as follows: 
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1. The x–y coordinates are drawn randomly based 

on the road coordinates in the first step. 

2. The 𝑥~– 𝑦~coordinates are estimated using the 

fuzzy intersection point. 

3. 𝑁𝑥 = |𝑥 − 𝑥~| , 𝑁𝑦 = |𝑦 − 𝑦~|  are the 

absolute difference value or error between the 

actual point and estimated coordinates. 

4. The root mean square error (RMSE) is a square 

root of the sum 𝑁𝑥 and 𝑁𝑦. 

 

𝑅𝑀𝑆𝐸 = √𝑁𝑥
2 + 𝑁𝑦

2                    (31) 

 

These dimensions represent the actual 

coordinates and the uncertainty around the data 

points. The following steps are the procedures for a 

fuzzy clustering algorithm with a WFEV and a 

modified merging algorithm. 

First step: Get the cluster centers and variances after 

running the K mean cluster algorithm on the dataset. 

Second step: The “eliminating” function removes the 

cluster with fewer cluster members or no cluster 

member. 

Third step: The weighted fuzzy variance (𝑊𝐹𝑉𝑖 ) and 

fuzzy weight ( 𝐹𝑊𝑖𝑗
𝑡 ) are calculated from the 

following equations, respectively: 

 

𝑊𝐹𝐸𝑉𝑖 = 𝐶𝑖
𝑡+1 = ∑ 𝐹𝑊𝑖𝑗

𝑡𝑀
𝑗=1 𝑥𝑗           (32) 

 

𝑊𝐹𝑉𝑖 = (𝜎𝑖
2)𝑡+1 = ∑ 𝐹𝑊𝑖𝑗

𝑡𝑀
𝑗=1 (𝑥𝑗 − 𝐶𝑖

𝑡)2    (33) 

 

𝐹𝑊𝑖𝑗
𝑡 = 𝑢𝑖𝑗

𝑡 =
𝑒𝑥𝑝[− 

(𝑥𝑗−𝐶𝑖
𝑡)2

2𝜎𝑖
2 ]

∑ 𝑒𝑥𝑝[− 
(𝑥𝑗−𝐶𝑖

𝑡)2

2𝜎𝑖
2 ]𝑀

𝑗=1

               (34) 

 

where M is the number of points in a cluster 𝐶𝑖
𝑡, 𝑥𝑗 is 

a data point, and 𝜎𝑖
2 is a variance for cluster (i). 

Fourth step: each data point is allocated to the closest 

cluster center based on the shortest Euclidean 

distance. 

Fifth step: The crisp variances are estimated in-state 

weight fuzzy variance (WFV) after little rounds to 

reach convergence quickly. 

Sixth step: Test convergence test is done. If it is 

achieved, go to step 7; otherwise, go to step 3. 

Seventh step: The merging algorithm 

7-1:    generate the squared similarity matrix S. 

7-2:    for each row, we get max (S). 

7-2-1         If max S (.) >= Threshold 

7-2-1- 1             merges two clusters. 

A similarity measure is calculated between each 

pair of cluster centers. It is based on two parameters: 

cluster centers and variance [31]. Therefore, the 

optimal number of clusters can be gained. The 

distance is not a good reference to fuse clusters 

because the clusters may be disconnected, but these 

clusters are overlapped. 

4.4 Fourth step: adaptive Kalman filter based on 

the Mamdani fuzzy model 

Each vehicle performed this step after receiving 

the beacon messages from the RSUs. The Mamdani 

model [10, 11] is built from the clustering algorithm 

output without the need for expert systems. The 

Mamdani output is biased for the specified fuzzy 

membership function parameters. The parameter 

identification may not express the real problem. 

Furthermore, sometimes experts are not available. 

The Mamdani model uses a multi-input, single-

output system. The input variables are estimated as 

𝑥~– 𝑦~using the fuzzy intersection method and noise 

in two coordinates 𝑁𝑥 , 𝑁𝑦. The output variable is the 

root mean square error (RMSE). The following steps 

explain the construction of the fuzzy model: 

Fuzzification: is done using a fuzzy clustering 

algorithm based on the WFEVs. The Gaussian 

membership function represents the linguistic terms 

for the input and output variables. Examples of the 

output membership functions result from clustering 

algorithms, as shown in Fig. 3. 

Rule Base: consists of a set of “if–then” rules. The 

number of rules equals the number of clusters, as 

shown in Table 1. 

Defuzzification: is done at the center of the area to 

get a crisp output. 

The purpose of this step updates the noise 

covariance in R. The following example explains the 

procedures of adaptive KF based on the Mamdani 

model. The priori state vector is equal to the vehicle 

coordinates after applying the fuzzy intersection 

method in the prediction step: 

 

𝑋𝑘,𝑘 = [
𝑥𝑗

𝑦𝑗
]                           (35) 

 

the posterior state based on the priori state becomes 

 
Table 1. Rule base 

𝑅1 If 𝐸𝑠𝑡𝑥is 𝐴1and 𝐸𝑠𝑡𝑦is 𝐵1 and 

𝑁𝑥 is 𝐶1 and 𝑁𝑦 is 𝐷1 

Then RMSE is 

𝑅𝐸𝑆1 

𝑅2 If 𝐸𝑠𝑡𝑥is 𝐴2 and 𝐸𝑠𝑡𝑦is 𝐵2  

and 𝑁𝑥 is 𝐶2  and 𝑁𝑦 is 𝐷2 

Then RMSE is 

𝑅𝐸𝑆2 

𝑅3 If 𝐸𝑠𝑡𝑥is 𝐴3 and 𝐸𝑠𝑡𝑦is 𝐵3  

and 𝑁𝑥 is 𝐶3  and 𝑁𝑦 is 𝐷3 

Then RMSE is 

𝑅𝐸𝑆3 

𝑅4 If 𝐸𝑠𝑡𝑥is 𝐴4 and 𝐸𝑠𝑡𝑦is 𝐵4 and 

𝑁𝑥 is 𝐶4 and 𝑁𝑦 is 𝐷4 

Then RMSE is 

𝑅𝐸𝑆4 
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𝑥𝑘+1,𝑘 = [
1 0
0 1

] [
𝑥𝑗

𝑦𝑗
]                      (36) 

 

the predicted error covariance matrix becomes 

 

𝑝𝑘+1,𝑘 = [
1 0
0 1

] [
𝑐𝑖1 0
0 𝑐𝑖2

] [
1 0
0 1

] + [
𝑐𝑖5 0
0 𝑐𝑖6

] (37) 

 

where 𝑐𝑖1, 𝑐𝑖2 are the first two dimensions of cluster 

center (i), which has the minimum distance to the 

vehicle (j). 𝑐𝑖5, 𝑐𝑖6 are the fifth and sixth dimensions 

of cluster center (i), respectively. The noise 

covariance in measurements (R) equals the third and 

fourth dimensions of a cluster (i). Kalman gain (g) is 

estimated using Eq. (4). The posterior state at time k 

+ 1 is then employed: 

 

𝑋𝑘+1,k+1 = [
𝑥𝑗

𝑦𝑗
] + [

𝑔11 𝑔12

𝑔21 𝑔221] ([
𝑋𝑖𝑛𝑠

𝑌𝑖𝑛𝑠
] − [

1 0
0 1

] [
𝑥𝑗

𝑦𝑗
])  

(38) 

 

the Mamdani fuzzy model is used to update the noise 

covariance matrix in measurement R to further 

reduce the position errors. The following values 

consist of the input vector: 

 

𝑅 = ℱℳ  [𝑥𝑗 𝑦𝑗 𝑅𝑒𝑠11  𝑅𝑒𝑠21]           (39) 

 

where ℱℳ  is a fuzzy model and 𝑅𝑒𝑠  is estimated 

residual vector using Eq. (6). 𝑧𝑘+1  is an INS 

measurement. Update measurement steps are 

repeated with the output of the fuzzy model (R) to 

update the posteriori state at time k + 1. 

5. Simulation scenario 

The purpose of this section is to study the effect 

of KF-adapted parameters in the proposed method on 

vehicle position accuracy and compares to our 

previous work [9]. At the same time, studying the 

integration between KF and fuzzy logic effect in 

adapting noise covariance matrixes instead of using 

them constant. Additionally, proposed method also 

compares to other related research papers [25, 26] to 

test the efficiency in handling nonlinear problems on 

position accuracy. In [9], the authors used classical 

formula of the intersection method to provide a good 

initial state vector. EKF linearize the distance 

function and reduce noise in measurement. In the 

case of a failed RSU, the virtual RSU was estimated 

on the basis of mobility measurement to continue 

estimate vehicle position. In [25], the authors used the 

GPS/INS integration mode to get the position vector. 

EKF was used to linearize the distance function 

between nearby vehicles and reduce noise in 

measurement. Furthermore, EKF also linearize the 

INS’s mathematical equations, i.e., the kinematic 

model. The reliance on V2V communication 

overcomes the limitations of GPS/INS in urban 

environments. In [26], the authors used a weighted 

centroid method to improve the initial position state 

vector. Nearby vehicles exchange the GPS/INS 

measurements. Weight factors were used to represent 

the uncertainty in distance measurement. The rules 

for similar triangles were used to search for a 

neighbour, which has a linear relation with the target 

vehicle and less noise in measurements. EKF 

minimizes the distance function.  

In [25, 26] cooperative localization methods used 

constant values in the noise covariance matrix except 

proposed method. We assume GPS position errors 

from 0.5 to 3m in [25, 26]. The performance of the 

previous methods is evaluated by applying them to 

two different scenarios. The first scenario was a one-

way road in Enlargen where vehicles entered from 

one entry point. The second scenario was more 

complex and concerned different roads in KarradaIn. 

Vehicles entered from different entry points with 

different directions and opposite road coordinates. 

Each road consisted of a single lane in a single 

direction. The RMSE measures the difference 

between a real position and an estimated position, as 

in Eq. (29). 

The simulation scenarios are performed using 

network simulator OMNET++ [32], and fuzzy logic 

is implemented using MATLAB. The VEINS 

framework is a specialized framework used for 

interpreting XML files that represent road traffic 

networks [33]. These road traffic networks are 

generated using a SUMO framework [34], which is a 

bi-directional coupled program to a network 

simulator.  

Road coordinates can be extracted from SUMO. 

The simulation parameters are summarized in Table 

2. The IEEE 802.11p supports communication in 

vehicular networks. The lognormal shadowing model 

used is the propagation model. The path exponent 

equals 1.5. The noise follows a Gaussian distribution 

with zero mean and variance σ. A new vehicle is 

added every 1 s. The mobility model is the Krauss 

model, which is one of the car-following models. It 

describes the manner of the back vehicle based on the 

manner of the front vehicle. The simulation time 

equals 100 s in the proposed GPS-free localization, 

and in the fuzzy intersection method, the size of the 

drawn randomly dataset equals 900 points in two 

scenarios. A mean of the results was obtained at the 

end of each experiment. Each scenario ran five times, 

and the mean was again taken. 
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(a)                                                                                                  (b) 

  
(c)                                                                                                  (d) 

 
(e) 

Figure. 3 Gaussian membership functions: (a) estimated x dimension, (b) estimated y dimension, (c) noise in x, (d) noise 

in y, and (e) root mean square errors 

 

Table 2. Simulation parameters 
Parameters Values 

IEEE standard  802.11p standard  

Number of vehicles  1 vehicle/s  

Propagation model  Lognormal shadowing  

Mobility model  Krauss  

Pause time  1 s  

Acceleration  2.6 m/s2  

 

5.1 Scenario 1 

In Enlargen city, the RSUs are located at each 

roadside. They were placed at (600, 10) and (400, 

800) in [25,26], respectively. They were also placed 

at (0, 1500) and (12, 1500) in [9] and in the proposed 

cooperative localization, respectively. Fig 4 shows 

the RMSE values for distance errors ranging from 0.5 

to 3 m. The RMSE of the proposed cooperative 

localization is lower than those of the localization 

algorithms in [9, 25, 26]. The reasons return to use 

fuzzy logic and adapting the noise covariance 

according to the mapping to road coordinates return. 

The RMSE in [9] is lower than that in research papers 

[25, 26]. This results to the method for choosing the 

initial state vector and the limitation of using 

GPS/INS in an urban environment. 
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5.2 Scenario 2 

In KarradaIn city, the RSUs are located at (700, 

3000) and (1000, 3000) in the proposed localization 

as in our previous work [9]. Fig 5 shows the RMSE 

for several different distance errors ranging from 1.5 

to 3 m in eight clusters. The proposed method 

achieves an RMSE value lower than those of other 

localization algorithms [9, 25, 26]. This reflects the 

power of the proposed method to adapt noise 

covariance based on on-road data. In [9, 25, 26], the 

accuracy results of the EKF algorithm explain the 

need to adapt noise covariance instead of using them 

constantly. Fig 6 shows the RMSE for the proposed 

algorithm with high distance errors from 10 to 30 m 

and the same number of clusters. The increased errors 

do not affect the RMSE more because the adaptive 

noise covariance is performed from numerical data 

and according to road coordinates. 

Furthermore, the fuzzy intersection method’s 

power handles uncertainty in distance measurements, 

and it gives a chance to increase road width. 

Therefore, well initial intersection points. 

 

 
Figure. 4 Scenario 1: RMSE at different distance errors 

and 8 clusters 

 

 
Figure. 5 Scenario 2: RMSE at different distance errors  

in eight clusters 

Fig 7 shows the RMSE for the proposed 

algorithm at different distance errors and different 

cluster numbers. The nature of the drawn dataset 

needs more clusters to become more separated; hence, 

increasing the number of clusters positively impacts 

RMSE. 

6. Discussion 

The KF, with its variations, requires adapting its 

parameters online. It is challenging without a priori 

knowledge of statistical data analysis in advance. The 

nonlinear nature of localization algorithms and 

uncertainty in measurements add difficulty to the 

degree of obtaining a more precise vehicle position.  

In the proposed localization method, map 

information is used to map the vehicle position to 

road coordinates and predict noise in the estimated 

position for each region. The nonlinear nature of 

localization and adapting noise covariance is handled 

by the fuzzy logic theory. 

The fuzzy intersection method is proposed to deal 

with the uncertainty in distance measurements. The 

Gaussian membership function gives lower weight to 

noise data, and therefore, they become less affected 

by position accuracy. In [9], the noise in the 

 

 
Figure. 6 Scenario 2: RMSE at different distance errors in 

eight clusters 

 

 
Figure. 7 Scenario 2: RMSE at different distance errors in 

different clusters 
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process and measurement is made by finding the 

variance as constant values along the simulation 

running. The initial state vector is obtained from the 

standard formula of the intersection method. EKF 

handles the uncertainty in measurements. EKF is still 

sensitive to well initial state vector and adapts to 

noise covariance in measurement. In [25], the authors 

used data fusion from GPS and INS to get the initial 

position vector. It is further improved by V2V 

communication to reduce the uncertainty in 

measurement. EKF was used to linearize the distance 

function and kinematic model. The position accuracy 

is more related with the GPS/INS limitations. In [26], 

the weighted centroid method is not a good method 

to get the initial parameter of EKF. The use of similar 

triangle rules for finding neighbours with linear 

relation is not suitable for adapting noise in the 

process and measurement. 

7. Conclusion and future works 

An adaptive KF for free GPS localization and 

fuzzy intersection method were introduced in this 

paper. The proposed method consists of four steps: 

the first step maps vehicles to road coordinates and 

predicts noise. The second step uses the fuzzy 

intersection method to get a good position vector and 

overcomes the errors in distances. The third step used 

fuzzy clustering based on WFEVs and a modified 

merging algorithm to establish the parameters of the 

Mamdani model in the last step. The Mamdani model 

is used to find the scalar value of u. In Enlargen city, 

the performance is approached 1 m approximately 

and above little 2 m in KarradaIn city. This is the best 

accuracy due to the increased errors in the distance 

and among the related research papers. 

Other parameters, such as angle, will be studied 

in the future to improve position accuracy. A hybrid 

commutation pattern is used to reduce the cost of 

deploying RSU on the road. Another variance 

statistical analysis method is used to adapt the noise 

covariance. 
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