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Abstract: With the fast advancement of smartphone technology, the smartphone has emerged as the most prevailing 

instrument for accessing the Internet and obtaining a wide range of services with a click. Increased use of smartphones 

for online payments has attracted fraudsters, adding to an increase in malware outbreaks. Mobile application 

vulnerabilities and malware are the origins of various types of fraud and numerous cyber-attacks. Large datasets are 

frequently used for malware analysis; however, large datasets may contain many redundant, inappropriate, and noisy 

features, resulting in misclassification and low detection rates. This paper presents a hybrid approach to Android 

malware detection that reduces the dimensionality of datasets to reduce resource-intensive computation while 

preserving critical information. We present a novel hybrid approach for detecting Android malware based on a meta-

heuristic (modified Intelligent Water Drop Algorithm (IWD)) and Deep Learning (DL) techniques. The studies show 

that the proposed approach efficiently removes irrelevant attributes and attains significant detection performance with 

an F1-Score of 93.7%, a precision of 95.35, an accuracy of 99.12%, and a recall rate of 96.68%.  

Keywords: Deep learning, IWD, Android malware detection, Meta-heuristic methods. 

 

 

1. Introduction 

Smartphones are prevalent nowadays because of 

their multifunctional capabilities. Smartphones are 

pervasive in our daily lives, and they're used for 

everything from online surfing to e-banking, e-

learning, purchasing, and social media applications. 

Android has risen to popularity as a leading mobile 

operating system in recent decades, with a 73 %  

market share in June 2021 [1]. Depending on the 

requirements and purpose, mobile applications can be 

downloaded from various sources. Malware and 

benign ware are the two types of Android apps. 

Malware infects mobile devices and performs a 

variety of fraudulent activities. In the previous decade, 

malware has risen at an uncontrollable rate. 

According to AV-Test, Trojans were responsible for 

93.93 % of malware infections, and ransomware 

came in second [2]. Malware detection has generally 

depended on signature-based techniques; it derives 

malware signatures from the source code of Apps. 

Signature-based detection has several drawbacks, 

including the inability to detect new malware and the 

requirement for code to generate signatures. An 

attacker can conceal the malicious payload as an 

executable APK/JAR within APK resources. After 

installing the app, this malware loads the 

DexClassLoader API and executes the dynamic code. 

Malware can trick a user into installing an embedded 

APK by posing as a critical update. As a result, 

malware detection based on behavior is becoming 

more widespread. The proposed work is based on 

behavior-based malware detection.  

In behavior-based analysis, a large number of 

attributes are retrieved from APK files. As a result, a 

comprehensive dataset is created, which may contain 

numerous duplicates and unusable and noisy features. 

Analyzing large datasets requires a large amount of 

memory, computational power, and time. So we need 

an appropriate algorithm to select highly efficient 

features from the dataset. The feature selection 
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strategy removes elements that are either irrelevant or 

will have little or no impact on the result. Many 

nature-inspired meta-heuristics algorithms, such as 

the grey wolf optimizer (GWO), genetic 

algorithm(GA), and bat algorithm, have 

demonstrated their efficiency in feature selection in 

various domains. And deep learning (DL) also 

achieves the desired results by automatically 

deducing the features and fine-tuning the optimal 

features. This research implements a hybrid approach 

that combines both techniques' best elements. The 

main offerings of the planned work are as follows 

 

• We offer a novel hybrid approach based on a 

swarm-based Meta-heuristic algorithm and a 

deep learning method for malware prediction.  

• First, we modified the node selection mechanism 

of the original IWD, as shown in section 3.1  in 

step 2, by using the mutual information score 

instead of the probability function.  

• The adapted version of IWD analyzed malware's 

behavior pattern and minimized the search space. 

And deep neural network (DNN) is utilized for 

subset evaluation using higher-level features 

extraction.   

• We examine the outcomes and compare them to 

previous work to validate the proposed approach. 

To evaluate the suggested technique, we 

employed the widely used datasets DREBIN, 

MALGENONE, and MSGHIC.  

 
The rest of the paper is deliberate as follows: 

section 2 is dedicated to previous work, section 3 

explains the proposed MH-DLdroid, section 4 

defines the working process of the proposed hybrid 

model, and section 5 discusses the datasets and their 

pre-processing steps and experimental environment, 

section 6 establishes the performance assessment 

metrics, section 7 displays the experimental results, 

section 8. provide the comparison with the existing 

methods, and section 9 delivers a summary of 

proposed work with future direction. 

2. Related work  

This section analyzes the previous functions of 

malware detection along with their limitations. 

In the paper, H. Gao et al. [3] presented a 'GDroid' 

approach for malware detection based on graph 

convolutional network (GCN) with a 97 percent 

accuracy. However, its presentation degrades as the 

number of real-world samples increases. In another 

paper, R. Feng et al. [4] introduced the 'MobiTive' 

approach based on  GRU/LSTM and Bidirectional 

(GRU/LSTM) and achieved an accuracy of 96.75%. 

M. Cai et al. [5] proposed a function-call graph-based 

system (E-FCGs) for learning behavior level features 

representing app runtime behaviors. They 

investigated the proposed method's performance 

using LR, DT, SVM, KNN, RF, MLP, and CNN 

classifiers. The proposed method achieves 

satisfactory performance but suffers from low 

dimension datasets. S. K. Sasidharan et al. [6] 

presented a ‘ProDroid’ approach for malware 

detection based on suspicious API classes; this 

method achieved an accuracy of 94.5 %. This method 

suffers from a high false alarm rate. In another study, 

S. Millar et al. [7] presented a multi-view deep 

learning approach for malware detection with no 

specialist malware domain insight to select or rank 

input features. Its reported F1 measure is 99.63. This 

method suffer from high computational costs in a 

high-dimensional dataset because there is no 

mechanism to select optimal features.  In another 

study, T. Lu et al. [8] presented a hybrid DL model 

based on DBN, GRU, and BPN networks. The stated 

accuracy of this work is 96.82%. This method suffers 

from a high computational cost. J. Feng et al. [12] 

proposed a two-layer malware prediction method. 

The first layer is a fully connected neural network 

(FCNN) that applies permission, intent, and 

component attributes. The second layer is a CNN 

with an autoencoder to detect malware. N. Zhang et 

al. [9] proposed TC-Droid, a text classification-based 

malware detection method that feeds the text 

sequence of Apps to CNN to explore important 

information. The model reports an accuracy of 96.6 

percent, a precision of 94.6 percent, and F1- score of 

96.6 percent, and a recall of 98.4 percent. The main 

disadvantage of this approach is that it is time-

consuming. Arvind Mahindru et al. [10] 

demonstrated an ML-based approach called 

'FSDroid,' built by combining the LSSVM with RBF 

by employing ten feature selection techniques; and 

achieved 99% accuracy. The main limitation of this 

approach is it uses several statistical methods for 

feature selection. In another paper, T. Kim et al.  [11] 

proposed a multimode neural network (MNN) 

method for analyzing the VirusShare and Malgenome 

datasets and reported 98% accuracy. Y. Yang et al. 

[12] developed the 'DGCNDroid' method, which 

generates a function call graph that is fed into the 

deep graph convolutional network. This method's 

reported detection accuracy is 98.2 percent. This 

method has poor performance in handling reflection 

or dynamic payloads. Xi Xiao et al. [13] trained two 

LSTM network models using the system call 

sequence as input. It trained one LSTM with malware 

and the other with benign apps and obtained two 

similarity scores to identify apps, with a 96.6 percent 
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accuracy. This model suffers from a high false alarm 

rate. In another paper, Y. Hei et al.[14] presented 

'HAWK,' a malware detection method based on a 

heterogeneous information network (HIN). The 

reported accuracy and F1-score for this model are 

96.95 % and 96.89 %, respectively, and the detection 

time is 3.5ms. This model suffers from a high false 

alarm rate. F. Ou et al. [15] presented an 'S3Feature' 

approach for malware detection that is based on three 

types of sensitive graphs (a)sensitive function call 

graph (SFCG), (b)sensitive subgraphs (SSGs), and 

(c)sensitive neighbor subgraphs) (NSGs). This 

model's reported F1-score is 97.71 percent F1-score. 

The primary disadvantage of this model is that it is 

ineffective on dynamic payloads. Wenhui Zhang et 

al.[16] demonstrated a method that combines the 

XML file's visual features with the DEX file's data 

section and extracts the images fed to the temporal 

convolution network (TCN). This model's reported 

accuracy is 95.44 percent, its recall rate is 95.45 

percent, its F1-Score is 95.44 percent, and its 

precision is 95.45 percent. This model is significantly 

less sensitive to the dynamic payload. Tatiana 

Frenklach et al. [17] presented a static malware 

detection method based on an app similarity graph 

(ASG). In balanced settings, they reported an 

accuracy of 97.5 percent and an AUC score of 98.7 

percent. The drawback of this technique is that it 

necessitates a large amount of storage to store the 

entire set of apps. Long Nguyen Vu et al. [18] formed 

the 'AdMat,' which generates an adjacency matrix for 

each application, and these matrices serve as "input 

images" to the CNN model. The reported accuracy of 

this model is 98.26 percent, and the F1-score, 

precision, and recall rate are all 97 percent. This 

model has a high computation burden and is not 

resistant to dynamic payloads. P. Xu et al. [19] 

presented the 'Falcon' architecture, representing 

network packets as 2D images and fed into a 

bidirectional LSTM to investigate distinctive 

attributes. This method has a stated accuracy of 97.16 

percent. However, it has a high computational cost 

because the images demand a lot of calculation. In 

another paper, M. R. Norouzian et al. [20] presented 

a 'Hybroid' framework that exhibited 97.0 percent 

accuracy by using program code structures as static 

behavioral features and network traffic as dynamic 

behavioral data. This approach has a dynamic 

payload problem because it uses a computer code 

structure. A. Mahindru et al. [21] developed a 

'SemiDroid' that used unsupervised machine learning 

techniques and used authorization and API requests 

as features vectors to obtain a detection rate of 98.8%. 

R. Surendran et al. [22] propose a hybrid approach 

for malware detection based on tree augmented naive 

bayes (TAN) that retains conditional dependencies 

between static and dynamic features while achieving 

97 percent accuracy. X. Jiang et al. [23] proposed the 

'FDP' approach based on fine-grained dangerous 

permission. They tested 1700 benign and 1600 

malicious apps and discovered that FDP has a TP rate 

of 94.5 percent. This method generates a high number 

of false alarms. In another study, H. Bai et al. [24] 

resented a 'FAMD' framework in which they 

extracted permissions and Dalvik opcode sequences 

using symmetrical uncertainty to differentiate 

malware and benign ware using CatBoost classifiers 

and achieved 97.40 percent accuracy. R. Taheri et al. 

[25] presented a Hamming distance-based approach 

for detecting app similarities. The results show that 

the proposed algorithms have more than 90% 

accuracy. In some cases (for example, when 

considering API features ), accuracy exceeds 99 

percent. Y. Ding et al. [26] presented a CNN-based 

bytecode image-based malware detection method. 

Because CNN learns the pattern from the bytecode 

image, this model avoids selecting optimal attributes 

from the dataset. By considering apps bytecode, this 

model suffers from a dynamic payload problem. A. 

Arora et al. [27] developed the 'PermPair' approach, 

which identifies the pair of dangerous permissions 

that are collectively responsible for malware threats. 

The detection accuracy of the proposed system was 

95.44 percent. H Zhu et al. [28] proposed a 

SEDMDroid framework based on MLP and SVM 

classifiers, with PCA for feature selection. The 

permission-sensitive API-based SEDMDroid 

achieves an accuracy of 89.07 percent. It achieved an 

accuracy of 94.92 percent by using sensitive data 

flow information as the attributes. The high false 

alarm rate is a major disadvantage of this model. 

We proposed a model that will reduce the feature 

space by intelligently selecting significant features 

using IWD and DNN-based models to overcome the 

problem of false alarms and classification time. The 

proposed study focuses solely on malware behavior 

patterns that will help in avoiding dynamic payload 

issues. 

3. Proposed MH-DLdroid approach  

This section is parted into two sections, the first 

section defines the feature selection process using 

modified IWD, and the second section describes the 

applied deep learning technique.  

3.1 The modified IWD 

In 2009, Shah-Hosseini and Hamed were the first 

to propose the IWD [29]. This algorithm simulates 

the behavior of water droplets to follow the most 
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efficient routes from source to destination and bypass 

the environmental constraints to create a shorter path. 

It uses artificially generated intelligent water droplets 

(IWD) and ambient parameters to choose the best 

route. The problem is signified by a graph G (N, E), 

where N indicates the graph's nodes and E denotes 

the graph's edges. Each water drop gradually travels 

between the nodes until it reaches its complete 

solution. An iteration is completed when all IWDs 

have achieved the final destination, and all 

subsequent iterations are finished at the maximum 

value of iteration (IM).  

Step 1. Initialization of static and dynamic parameters  

The static parameters were unaffected during the 

whole process. The artificially created IWD is 

denoted by  ND, which is distributed over the graph 

G(N, E), and also it represents the total number of 

attributes in the dataset or total node in the graph. The 

velocity of IWDs is updated using three variables Va, 

Vb,  and Vc; the soil values of the local path are 

updated using three variables Sa, Sb, and Sc. The IM 

represents the total number of iterations taken from 

the user and Is denotes the initial soil value of the 

local pathway. The dynamic parameters are 

initialized at the beginning of the process and updated. 

The list of nodes visited by each water drop is initially 

blank and updated if a particular IWD visits the node. 

The initial velocity of IWD is denoted by, and initial 

soil is laden on a drop denoted by Sl set to zero. The 

values of static and dynamic parameters are shown in 

Table 1.  

Step 2. Modified node selection process 

The proposed amendment is implemented in this 

phase of the original IWD algorithm, and all other 

steps remain the same. The mutual information score 

is used in place of the probability function to select 

the next node in the graph. It computes the mutual 

information value for each independent variable 

concerning the dependent variable and picks the ones 

with the most significant information gain. So it can 

be a better option to choose the next node in IWD if 

a water drop D is currently in node i and intends to 

move j where a node represents a feature. Then 

mutual information score is calculated using Eq. (1). 

 

Pm  = ∑ ∑ Pxy   y (X,Y)x log
P

xy(X, Y)

P
x(X)Py(Y)

            (1) 

 

The Pm represents the mutual information score of 

variable X in concern to variable Y, the (Pxy(X, Y) ) 

represents the joint probability distribution, (Px(X) ) 

and ( Py(Y) ) indicates the marginal probability 

distribution. This function provides the node mutual 

information, a positive float value between 0 and 1.  

Step 3. Update velocity and soil values  

Eq. (2) is used to update the velocity (IV(t+1). Eq. 

(3) denotes the soil value in the local path. Where ρ
r
 

is a constant its range is between 0 and 1. Eqs. (4), 

(5), and (6) are used to update soil values.  

Where (HD (i, j)) represents the heuristic 

desirability degree and Eq. (6) represents the time 

function that is defined as the time required for water 

drop k to travel from i to j at the time (t+1). 

 

   IV(t+1)
     =IV(t)  +

va

vb+vc*S(i,j)
              (2) 

 

S(i,j)=(1-ρ
ir

)*(S(i,j))-ρ
r
∆S(i,j)           (3) 

 

        Is=Is+∆s                           (4) 

 

∆S(i,j)=
Sa

Sb+Sc*time(i,j: IV (t+1))
             (5) 

 

𝑡ime (i,j: IV  
 

(t+1))= 
HD(i,j)

IV  
 

(t+1)
              (6) 

 

Step 4. Reinforcement and termination process  

The iteration best solution IIB is calculated using 

Eq. (7). Where Ip denotes all solutions of an iteration, 

and q(x) defines the fitness function used to evaluate 

the quality of the solution. The soil of all edges in IIBis 

calculated using Eq.(8). 

 

  IIB=argmax∀xp∈Ip  q(x)
                    (7) 

 

S(i,j)=(1+ρ
i
)*S(i,j)-ρ

i
*SIB

k * (
1

q(I
IB

)
)           (8) 

 

    IGB= {IGB

IIB

      if q (IGB)≥q(IIB)   

otherwise
                 (9) 

 

Where ∀  (i, j) ∈IIB and ρ
i
 represents a small 

constant, The (SIB
k ) denotes the kth iteration's soil 

value in iteration best path. The global best solution 

IGBis calculated as follows. Where Eq. (9) is used to 

substitute the IGB with IIB or preserve the same value,  

 
Table 1. Static and Dynamic parameters of modified 

IWD. 

Static 

Parameter 

Values  Dynamic 

Parameters 

Values  

ND  

Va, Vb,&Vc 

Sa,Sb,& Sc. 

ρ
r , 

, ρ
i
  

IM  

IS 

(215 or 357) 

1, 0 .01 , 1 

1, 0.01 , 1 

0.9, 0.9, 0.01 

20 

100 

NV list of 

visited  

node  

IV 

IS 

initially 

empty 

{}  

4 

0 
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Figure. 1 The flow chart of the proposed MH-DLdroid 

 

 

the solution construction and reinforcement steps are 

iterated until the termination state is reached. If the 

value of IC (Iteration count) becomes equal to or 

greater than (Iteration max) IM, the iteration is 

stopped. 

3.2 Deep neural networks  

Deep learning is a subfield of artificial 

intelligence and machine learning technology that 

mimic specific human brain functions to make good 

decisions to intimidate humans and their actions. It's 

a critical data science component that streamlines 

predictive modeling and statistics based on data-

driven approaches. The proposed DNN is developed 

in Python and compiled with Keras, a scientific 

computing platform. The suggested hybrid model is 

illustrated in Fig. 1, which utilized the modified IWD 

algorithm for feature selection and the Deep neural 

network (DNN) for subset evaluation. The various 

components of suggested DNN models are described 

below. 

 

• Keras: Keras is a powerful open-source neural 

network toolkit developed in Python for building 

deep learning models. It's based on well-known 

deep learning frameworks like TensorFlow and 

Theano. Keras is a TensorFlow user interface that 

includes dropout, batch normalization, pooling 

layers, objectives, activation functions, and 

optimizers.  

• ReLU:  ReLU stands for "Reduced Rectified 

Linear Activation Function," a rectified network 

with hidden layers that use the rectifier function. 

It is a piecewise linear function; if the input X is 

positive, the ReLU produces X; otherwise, the 

output is 0. 

• Sigmoid: The sigmoid function is also 

recognized as a squashing function (0, 1) since it 

compresses the entire number line into a small 

range, such as 0 and 1. The sigmoid function 

distinguishes between malware and benign ware 

in our model. 

• ADAM: The ADAM optimizer employs the 

adam algorithm, which uses the stochastic 

gradient descent method to carry out the 

optimization process. We have used the ADAM 

default parameters, such as alpha (α) 0.001, beta 

(β1) 0.9, and beta (β2) 0. 999, and epsilon(ε) 10e8. 

• Binary cross-entropy (BCE): The binary cross-

entropy, also known as log loss, it provide the 

assessment of the success of a classification 

model whose output is between 0 and 1. The BCE 

increases as the anticipated likelihood differ from 

the actual label. 

 

 
Table 2. DNN Parameters and Neuron Layer Architecture 

            DNN Parameters   DREBIN  

Parameters Values L#        Shape P# 

Batch Size 20 1 None, 40 2120       

Epoch 30 2 None, 12 492        

Optimizer ADAM 3 None, 8 104       

Error BCE 4 None, 1 9        

Activation 1 ReLu Total-Parameters =2725                            

Activation 2 Sigmoid  

MALGENOME MSGHIC 

 L # Shape  P# L# Shape P# 

1 None, 62 4526     1 None, 62 13206      

2 None, 26 1638       2 None, 30 1890 

3 None, 4 108       3 None, 14 434       

4 None, 1 5      4 None, 4 60         

   5 None, 1 5         

Total-Parameter = 6,277 Total-parameters =15595 
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• The number of neurons: A neuron is a machine 

that makes decisions or categorizes something 

based on specified criteria. The neuron performs 

some calculations and sends output through a 

synapse to neurons deep in the neural net. Each 

synapse has a weighting that influences the 

relative relevance of the last neuron in the overall 

neural network. The neuron's activation function 

receives a weighted total of these signals, and the 

result is passed to the network's next layer. The 

neuron layer architecture and DNN parameters 

are shown in Table 2. 

 

4. Working process of proposed MH-

DLdroid  

In the first stage, the optimal features are selected 

using a modified IWD algorithm. The modified IWD 

examines behavior patterns of android apps and 

determines the best subset N from the entire dataset 

M. A fully connected undirected graph G (N, E) 

defines the optimization problem, where N denotes 

nodes and E denotes edges. The selection of next 

node is guided by the mutual information score in the 

undirected graph. The soil on the edge indicates the 

obstacles in the local path. Each water drop is 

distributed randomly over the graph and acts as a 

searching agent. The result acquired from iteration 

best solution IIB is used to decide the global best 

solution IGB. The optimal route is the one with the 

fewest obstacles. All nodes in the intended optimal 

path represent the optimal feature subset. The main 

steps of hybrid mode MH-DLdroid are shown in 

Algorithm 1.  

5. Datasets, pre-processing, and 

experimental environment  

In the proposed work, three Android datasets 

have been taken to do the investigation. The first 

dataset is a DREBIN-215, which contains 9476 

benign and 5560 malware samples from the DREBIN 

project, mainly consisting of a total of 215 features of 

API calls, permissions, intents, command signatures, 

etc. [30]. The MALGENOME is a second dataset that 

contains 3799 app samples from the Genome project, 

including 2539 benign-ware samples and 1260 

malware. It includes 215 features of API calls, 

permissions, and intents [31]. The third dataset is 

MSGHIC, which contains 3090 benign and 3090 

malware samples and 357 attributes of API calls, 

 

 

Algorithm 1. The main setps of MH-DLdroid 

1. Input:  Feature set of (DREBIN and 

MALGENOME  and MSGHIC Dataset ) 

2. Output: Optimal feature of all the Three dataset   

3. Express  problem as a graph G(N,E) 

4. Initialization of  Static parameters   

5. While (IC < IM) , do 

6. Dynamic parameters initialization 

7. Generate and spread artificial IWDs randomly 

over the graph G(N,E). 

8. Update the list of the visited node  𝑁𝑙
𝑉     

9.  while (I < IWD ) && ( solution not complete),  

do 

10.    for  k = 1 to IWD do 

11. if drop k is in node I  

12. And  intended for node j   then calculate feature 

importance for  j if it is  not  present in   𝑁𝑙
𝑉     

13 Use mutual information score from sklearn to 

calculate rank of next node  

14. Use pmi  to move water drop from i to node j . 

15.  Variable Update  velocity IV   of the drop k, 

Soil within the drop k  ∆𝑠(𝑖, 𝑗)    , Soil within 

the edge Slv(i,j)     

16  End for 

17.   End while 

18. Select the  best  iteration (IIB)   

19. update soil value in local edges Slv(i,j)   included 

in the  

(IIB) 20. update the (𝐼𝐺𝐵) ( global best solution ) 

21. if (quality of (𝐼𝐺𝐵) <  (quality of IIB) 

22.  𝐼𝐺𝐵   = IIB    ( Swap the values ) 

23 End while 

24 return (𝐼𝐺𝐵   final solution ) 

 25 Remove unwanted features from the datasets  

26 Split dataset as  training and testing set 

27 Apply Sequential DNN  

28 Get final outcome 

 

 

permissions, intents, and command signatures [32]. 

Duplicate occurrences are deleted from the dataset 

during the pre-processing of the dataset. The entry 

with a NaN value is also removed from the dataset.  

6. Performance assessment metrics 

The confusion matrix represents classification 

results; it provides insight into classifier performance 

and reveals which classes are correctly identified and  
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Figure. 2 Training accuracy 

 

 
Figure. 3 Testing accuracy 

 

 
Figure. 4 Training precision 

 

 
Figure. 5 Testing precision 

 

 
Figure. 6 Training recall 

 
Figure. 7 Testing recall 

 
Table 3. Performance assessment metrics 

Assessment Metrics            Formulas 

Accuracy(և)  և=(γ+σ) (μ+ρ+γ+σ)⁄  

Recall (δ)  δ=γ (γ+ρ)⁄  

Precision (ʎ)  ʎ=γ (γ+μ)⁄  

F1-Score (τ) τ=2(ʎ*δ) (ʎ+δ)⁄  

 

which are not. Table 3 displays the performance 

evaluation metrics.  

• True positive (γ): A true positive is an occurrence 

in malware samples that was successfully 

predicted.  

• False positive (μ): A test result indicates that a 

mobile device has malware while it does not 

contain malware. 

• True negative (σ): A true negative accurately 

predicts benign-ware in samples.  

• False negative (ρ): A test result that indicates that 

the mobile does not contain malware while the 

mobile does indeed contain malware. 

7. Results and discussions  

This section demonstrates the performance of  the 

MH-DLdroid. The modified IWD provides more 

exploration and exploitation to prevent local optima 

in search space. As a result, the final feature subsets 

chosen have high discriminative power. In order to 

accurately identify the effectiveness of the proposed 

method, five evaluation parameters are evaluated.  

Table 4 displays the training and testing results 

for the last five epochs derived from the proposed 

method. The results obtained from the model are 

shown based on training and testing. The test result 

represents the trained model identifying independent 

data not used for training purposes. The training 

outcome in each performance matrix represents the 

use of the same data for both training and testing. The 

suggested model has attained the highest accuracy of 

99.12 in malware detection on the MALGENOME 

dataset and the highest accuracy of 99.8 during 

training. Fig. 2 and 3. show the obtained accuracy 

from subset evaluation. It is clear from the obtained 
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Table 4. The training and testing performance of the last five epochs of DNN 

Data 

set 

Epoch

# 

Training Performance  Testing /Detection Performance  

BCE և 𝛕 ʎ 𝜹 BCE և% 𝛕 ʎ 𝜹 

D
R

E
B

IN
 

 E-26 0.0407 98.62 96.4

3 

97.43 96.04 0.167 96.64 92.8 94.78 92.22 

 E-27 0. 0373 98.82 97.2

7 

98.20 96.8 0.1742  96.68 93.05 93.86 93.45 

 E-28 0.0366 98.86 97.2

8 

98.36 96.75 0. 1653  96.71 93.0 95.35 91.96 

 E-29 0.0369 98.85 96.8

8 

97.8 96.4 0.1768  96.49 92.98  94.47 92.78 

 E-30 0.0353 98.86 97.6

4 

98.63 97.2 0.177  96.45  92.57  93.65 92.96 

M
A

L
G

E
N

O

M
E

 

 E-26 0.0225 99.84 97.1

2 

97.2 97.07 0.0542 98.5 92.85 92.9 93.44 

 E-27 0.0202 99.84 98.6

6 

98.61 98.79 0.0539 98.62 93.1 93.31 93.44 

 E-28 0.0185 99.78 99.7

5 

99.78 99.78 0.0501 99 93.47 94.02 93.44 

 E-29 0.0173 99.89 98.7

4 

98.79 98.75 0.0519 99.12 93.61 94.27 93.44 

E- 30 0.017 99.84 96.5 96.67 96.53 0.051 98.12 92.42 92.13 93.44 

M
S

G
H

IC
 

 E-26 0. 0325 98.68 98.6

0 

99.21 98.35 0.4508  93.76 93.39 91.51 96.68 

 E-27 0. 0261 99.07 98.9

6 

99.54 98.62 0.3719  94.22 93.69  94.18 94.24 

 E-28 0. 0307 98.98 98.5

5 

99.09 98.25 0.4284  94.07 93.39  92.55 95.58 

 E-29 0. 0286 99.04 98.9

1 

99.4 98.69 0.3757  93.84 93.28  94.93 92.87 

 E-30 0. 0194 99.44 99.3

7 

99.95 98.95 0.3886  94.3 93.70  94.95 93.63 

 

 
Figure. 8 Training F1- score 

 

 
Figure. 9 Testing F1-score 

 

 
Figure. 10 Training BEC 

 
Figure. 1 Testing BEC 

 

results that the subset evaluation of the 

MALGENOME dataset has achieved the highest 

precision of 95.35% in malware detection. And 

99.78 % precision has been achieved during model 

training. Fig. 4 and 5. show the precision of training 

and testing of the model. During malware detection, 

the model achieved a 96.68 % recall rate on the 

MSGHIC dataset. And recall rate of 99.78 % has 

been gained on the MALGENOME dataset during 

model training. Fig. 6 and 7. show the recall trends of 

the MH-DLdroid model. The F1-score represents the 

harmonic mean of precision and recall [33]. The 

proposed method yielded the highest F1 score of 

93.70 percent during malware detection. And the 

highest F1 score of 99.7 percent was obtained while 

training the model on the MALGENOME dataset.  

Fig. 8 and 9. Depict the F1-Score of the optimal 

subset evaluation, where the x-axis represents the 

epoch number, and the y-axis represents the obtained 

value of F1-scores. Fig. 10 and 11. Illustrate the 

obtained binary cross-entropy, where the x-axis 

denotes the epoch, and the y-axis represents the BCE. 

The model has performed admirably in error rate, the 

error decreasing as the epoch progresses. 
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Table 5. The Comparision of  MH-DLdroid  with some 

existing approaches. 

Reference  և 𝛕 ʎ 𝜹 BCE  

Proposed  99.12 93.7 95.35 96.68   0.047 

Gdroid [3] 98.99 98.9 98.6 98.3 ---- 

MobiTive [4] 96.75 - 96.78 96.72 ---- 

FSDroid [10] 99 96 98 - ---- 

MNN [11] 98 99 98 99 ---- 

8. The comparison with existing methods  

The comparison of the performance of the 

anticipated approach with some existing methods is 

given in Table 5. The accuracy of the proposed 

method is higher than that of other similar methods, 

but its F1 score, precision, and recall are lower than 

others. The findings also demonstrate that combining 

deep learning with meta-heuristic techniques 

increases performance. Since meta-heuristic 

algorithms aim to achieve intelligently optimal 

results by continuously learning from their prior 

experience, they do not re-evaluate paths that have 

already been traversed. In real-world problems, the 

search space is often unknown and complex, and 

contains a large number of local optima. The 

stochastic nature of meta-heuristics offers immense 

possibilities to effectively avoid local optima, 

comprehensively search the entire search space, and 

obtain optimal solutions. 

Similarly, deep learning incrementally extracts 

high-level features from data to find the best possible 

solution [34]. Therefore, in this hybrid approach, the 

meta-heuristic optimization reduces the learning time 

and complexity by selecting the appropriate features. 

Deep neural networks are capable of performing 

many complex processes at once. Their ability to 

learn from errors allows them to check the 

correctness of their predictions and make the 

necessary corrections. Therefore the resulting hybrid 

model gives better results; it reduces the size of the 

search space by more than 60%.  

9. Conclusion and future work  

In this work, the modified meta-heuristic 

technique (IWD) is used to intelligently select the 

prime features with high discriminative power from 

the dataset, which reduces the size of all datasets by 

more than 60%. The stochastic nature of meta-

heuristics enables them to avoid local optima 

stagnation and search the entire search space, making 

them more effective for feature optimization. And 

deep neural networks (DNN) detect hidden patterns 

by using abstraction and non-linear transformations 

of raw input data from unlabeled optimal sets. A 

thorough examination of the proposed MH-DLdroid 

model yields significant detection results with a 

99.12 % accuracy. And 93.7% of F1-score, a 

precision of 95.35 %, and a recall rate of 96.68%. 

This method achieves a very low false alarm rate of 

0.88 and a very low BCE of 0.050. This technique is 

immune to dynamic payload issues because it only 

looks at app behavior patterns. In future work, we 

will investigate other behavior patterns like API call 

patterns and another metaheuristic approach to 

improve other parameters such as precision, recall, 

and F1-score in malware detection.  
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