
Received: April 11, 2022. Revised: June 6, 2022. 425

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.38

MH-DLdroid: A Meta-Heuristic and Deep Learning-Based Hybrid Approach

for Android Malware Detection

Ravi Mohan Sharma1* Chaitanya P Agrawal1

1Department of Computer Science and Applications, Makhanlal Chaturvedi University,

Bhopal, M. P. 462001 India

* Corresponding author’s Email: vision20rm@gmail.com

Abstract: With the fast advancement of smartphone technology, the smartphone has emerged as the most prevailing

instrument for accessing the Internet and obtaining a wide range of services with a click. Increased use of smartphones

for online payments has attracted fraudsters, adding to an increase in malware outbreaks. Mobile application

vulnerabilities and malware are the origins of various types of fraud and numerous cyber-attacks. Large datasets are

frequently used for malware analysis; however, large datasets may contain many redundant, inappropriate, and noisy

features, resulting in misclassification and low detection rates. This paper presents a hybrid approach to Android

malware detection that reduces the dimensionality of datasets to reduce resource-intensive computation while

preserving critical information. We present a novel hybrid approach for detecting Android malware based on a meta-

heuristic (modified Intelligent Water Drop Algorithm (IWD)) and Deep Learning (DL) techniques. The studies show

that the proposed approach efficiently removes irrelevant attributes and attains significant detection performance with

an F1-Score of 93.7%, a precision of 95.35, an accuracy of 99.12%, and a recall rate of 96.68%.

Keywords: Deep learning, IWD, Android malware detection, Meta-heuristic methods.

1. Introduction

Smartphones are prevalent nowadays because of

their multifunctional capabilities. Smartphones are

pervasive in our daily lives, and they're used for

everything from online surfing to e-banking, e-

learning, purchasing, and social media applications.

Android has risen to popularity as a leading mobile

operating system in recent decades, with a 73 %

market share in June 2021 [1]. Depending on the

requirements and purpose, mobile applications can be

downloaded from various sources. Malware and

benign ware are the two types of Android apps.

Malware infects mobile devices and performs a

variety of fraudulent activities. In the previous decade,

malware has risen at an uncontrollable rate.

According to AV-Test, Trojans were responsible for

93.93 % of malware infections, and ransomware

came in second [2]. Malware detection has generally

depended on signature-based techniques; it derives

malware signatures from the source code of Apps.

Signature-based detection has several drawbacks,

including the inability to detect new malware and the

requirement for code to generate signatures. An

attacker can conceal the malicious payload as an

executable APK/JAR within APK resources. After

installing the app, this malware loads the

DexClassLoader API and executes the dynamic code.

Malware can trick a user into installing an embedded

APK by posing as a critical update. As a result,

malware detection based on behavior is becoming

more widespread. The proposed work is based on

behavior-based malware detection.

In behavior-based analysis, a large number of

attributes are retrieved from APK files. As a result, a

comprehensive dataset is created, which may contain

numerous duplicates and unusable and noisy features.

Analyzing large datasets requires a large amount of

memory, computational power, and time. So we need

an appropriate algorithm to select highly efficient

features from the dataset. The feature selection

Received: April 11, 2022. Revised: June 6, 2022. 426

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.38

strategy removes elements that are either irrelevant or

will have little or no impact on the result. Many

nature-inspired meta-heuristics algorithms, such as

the grey wolf optimizer (GWO), genetic

algorithm(GA), and bat algorithm, have

demonstrated their efficiency in feature selection in

various domains. And deep learning (DL) also

achieves the desired results by automatically

deducing the features and fine-tuning the optimal

features. This research implements a hybrid approach

that combines both techniques' best elements. The

main offerings of the planned work are as follows

• We offer a novel hybrid approach based on a

swarm-based Meta-heuristic algorithm and a

deep learning method for malware prediction.

• First, we modified the node selection mechanism

of the original IWD, as shown in section 3.1 in

step 2, by using the mutual information score

instead of the probability function.

• The adapted version of IWD analyzed malware's

behavior pattern and minimized the search space.

And deep neural network (DNN) is utilized for

subset evaluation using higher-level features

extraction.

• We examine the outcomes and compare them to

previous work to validate the proposed approach.

To evaluate the suggested technique, we

employed the widely used datasets DREBIN,

MALGENONE, and MSGHIC.

The rest of the paper is deliberate as follows:

section 2 is dedicated to previous work, section 3

explains the proposed MH-DLdroid, section 4

defines the working process of the proposed hybrid

model, and section 5 discusses the datasets and their

pre-processing steps and experimental environment,

section 6 establishes the performance assessment

metrics, section 7 displays the experimental results,

section 8. provide the comparison with the existing

methods, and section 9 delivers a summary of

proposed work with future direction.

2. Related work

This section analyzes the previous functions of

malware detection along with their limitations.

In the paper, H. Gao et al. [3] presented a 'GDroid'

approach for malware detection based on graph

convolutional network (GCN) with a 97 percent

accuracy. However, its presentation degrades as the

number of real-world samples increases. In another

paper, R. Feng et al. [4] introduced the 'MobiTive'

approach based on GRU/LSTM and Bidirectional

(GRU/LSTM) and achieved an accuracy of 96.75%.

M. Cai et al. [5] proposed a function-call graph-based

system (E-FCGs) for learning behavior level features

representing app runtime behaviors. They

investigated the proposed method's performance

using LR, DT, SVM, KNN, RF, MLP, and CNN

classifiers. The proposed method achieves

satisfactory performance but suffers from low

dimension datasets. S. K. Sasidharan et al. [6]

presented a ‘ProDroid’ approach for malware

detection based on suspicious API classes; this

method achieved an accuracy of 94.5 %. This method

suffers from a high false alarm rate. In another study,

S. Millar et al. [7] presented a multi-view deep

learning approach for malware detection with no

specialist malware domain insight to select or rank

input features. Its reported F1 measure is 99.63. This

method suffer from high computational costs in a

high-dimensional dataset because there is no

mechanism to select optimal features. In another

study, T. Lu et al. [8] presented a hybrid DL model

based on DBN, GRU, and BPN networks. The stated

accuracy of this work is 96.82%. This method suffers

from a high computational cost. J. Feng et al. [12]

proposed a two-layer malware prediction method.

The first layer is a fully connected neural network

(FCNN) that applies permission, intent, and

component attributes. The second layer is a CNN

with an autoencoder to detect malware. N. Zhang et

al. [9] proposed TC-Droid, a text classification-based

malware detection method that feeds the text

sequence of Apps to CNN to explore important

information. The model reports an accuracy of 96.6

percent, a precision of 94.6 percent, and F1- score of

96.6 percent, and a recall of 98.4 percent. The main

disadvantage of this approach is that it is time-

consuming. Arvind Mahindru et al. [10]

demonstrated an ML-based approach called

'FSDroid,' built by combining the LSSVM with RBF

by employing ten feature selection techniques; and

achieved 99% accuracy. The main limitation of this

approach is it uses several statistical methods for

feature selection. In another paper, T. Kim et al. [11]

proposed a multimode neural network (MNN)

method for analyzing the VirusShare and Malgenome

datasets and reported 98% accuracy. Y. Yang et al.

[12] developed the 'DGCNDroid' method, which

generates a function call graph that is fed into the

deep graph convolutional network. This method's

reported detection accuracy is 98.2 percent. This

method has poor performance in handling reflection

or dynamic payloads. Xi Xiao et al. [13] trained two

LSTM network models using the system call

sequence as input. It trained one LSTM with malware

and the other with benign apps and obtained two

similarity scores to identify apps, with a 96.6 percent

Received: April 11, 2022. Revised: June 6, 2022. 427

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.38

accuracy. This model suffers from a high false alarm

rate. In another paper, Y. Hei et al.[14] presented

'HAWK,' a malware detection method based on a

heterogeneous information network (HIN). The

reported accuracy and F1-score for this model are

96.95 % and 96.89 %, respectively, and the detection

time is 3.5ms. This model suffers from a high false

alarm rate. F. Ou et al. [15] presented an 'S3Feature'

approach for malware detection that is based on three

types of sensitive graphs (a)sensitive function call

graph (SFCG), (b)sensitive subgraphs (SSGs), and

(c)sensitive neighbor subgraphs) (NSGs). This

model's reported F1-score is 97.71 percent F1-score.

The primary disadvantage of this model is that it is

ineffective on dynamic payloads. Wenhui Zhang et

al.[16] demonstrated a method that combines the

XML file's visual features with the DEX file's data

section and extracts the images fed to the temporal

convolution network (TCN). This model's reported

accuracy is 95.44 percent, its recall rate is 95.45

percent, its F1-Score is 95.44 percent, and its

precision is 95.45 percent. This model is significantly

less sensitive to the dynamic payload. Tatiana

Frenklach et al. [17] presented a static malware

detection method based on an app similarity graph

(ASG). In balanced settings, they reported an

accuracy of 97.5 percent and an AUC score of 98.7

percent. The drawback of this technique is that it

necessitates a large amount of storage to store the

entire set of apps. Long Nguyen Vu et al. [18] formed

the 'AdMat,' which generates an adjacency matrix for

each application, and these matrices serve as "input

images" to the CNN model. The reported accuracy of

this model is 98.26 percent, and the F1-score,

precision, and recall rate are all 97 percent. This

model has a high computation burden and is not

resistant to dynamic payloads. P. Xu et al. [19]

presented the 'Falcon' architecture, representing

network packets as 2D images and fed into a

bidirectional LSTM to investigate distinctive

attributes. This method has a stated accuracy of 97.16

percent. However, it has a high computational cost

because the images demand a lot of calculation. In

another paper, M. R. Norouzian et al. [20] presented

a 'Hybroid' framework that exhibited 97.0 percent

accuracy by using program code structures as static

behavioral features and network traffic as dynamic

behavioral data. This approach has a dynamic

payload problem because it uses a computer code

structure. A. Mahindru et al. [21] developed a

'SemiDroid' that used unsupervised machine learning

techniques and used authorization and API requests

as features vectors to obtain a detection rate of 98.8%.

R. Surendran et al. [22] propose a hybrid approach

for malware detection based on tree augmented naive

bayes (TAN) that retains conditional dependencies

between static and dynamic features while achieving

97 percent accuracy. X. Jiang et al. [23] proposed the

'FDP' approach based on fine-grained dangerous

permission. They tested 1700 benign and 1600

malicious apps and discovered that FDP has a TP rate

of 94.5 percent. This method generates a high number

of false alarms. In another study, H. Bai et al. [24]

resented a 'FAMD' framework in which they

extracted permissions and Dalvik opcode sequences

using symmetrical uncertainty to differentiate

malware and benign ware using CatBoost classifiers

and achieved 97.40 percent accuracy. R. Taheri et al.

[25] presented a Hamming distance-based approach

for detecting app similarities. The results show that

the proposed algorithms have more than 90%

accuracy. In some cases (for example, when

considering API features), accuracy exceeds 99

percent. Y. Ding et al. [26] presented a CNN-based

bytecode image-based malware detection method.

Because CNN learns the pattern from the bytecode

image, this model avoids selecting optimal attributes

from the dataset. By considering apps bytecode, this

model suffers from a dynamic payload problem. A.

Arora et al. [27] developed the 'PermPair' approach,

which identifies the pair of dangerous permissions

that are collectively responsible for malware threats.

The detection accuracy of the proposed system was

95.44 percent. H Zhu et al. [28] proposed a

SEDMDroid framework based on MLP and SVM

classifiers, with PCA for feature selection. The

permission-sensitive API-based SEDMDroid

achieves an accuracy of 89.07 percent. It achieved an

accuracy of 94.92 percent by using sensitive data

flow information as the attributes. The high false

alarm rate is a major disadvantage of this model.

We proposed a model that will reduce the feature

space by intelligently selecting significant features

using IWD and DNN-based models to overcome the

problem of false alarms and classification time. The

proposed study focuses solely on malware behavior

patterns that will help in avoiding dynamic payload

issues.

3. Proposed MH-DLdroid approach

This section is parted into two sections, the first

section defines the feature selection process using

modified IWD, and the second section describes the

applied deep learning technique.

3.1 The modified IWD

In 2009, Shah-Hosseini and Hamed were the first

to propose the IWD [29]. This algorithm simulates

the behavior of water droplets to follow the most

Received: April 11, 2022. Revised: June 6, 2022. 428

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.38

efficient routes from source to destination and bypass

the environmental constraints to create a shorter path.

It uses artificially generated intelligent water droplets

(IWD) and ambient parameters to choose the best

route. The problem is signified by a graph G (N, E),

where N indicates the graph's nodes and E denotes

the graph's edges. Each water drop gradually travels

between the nodes until it reaches its complete

solution. An iteration is completed when all IWDs

have achieved the final destination, and all

subsequent iterations are finished at the maximum

value of iteration (IM).

Step 1. Initialization of static and dynamic parameters

The static parameters were unaffected during the

whole process. The artificially created IWD is

denoted by ND, which is distributed over the graph

G(N, E), and also it represents the total number of

attributes in the dataset or total node in the graph. The

velocity of IWDs is updated using three variables Va,

Vb, and Vc; the soil values of the local path are

updated using three variables Sa, Sb, and Sc. The IM

represents the total number of iterations taken from

the user and Is denotes the initial soil value of the

local pathway. The dynamic parameters are

initialized at the beginning of the process and updated.

The list of nodes visited by each water drop is initially

blank and updated if a particular IWD visits the node.

The initial velocity of IWD is denoted by, and initial

soil is laden on a drop denoted by Sl set to zero. The

values of static and dynamic parameters are shown in

Table 1.

Step 2. Modified node selection process

The proposed amendment is implemented in this

phase of the original IWD algorithm, and all other

steps remain the same. The mutual information score

is used in place of the probability function to select

the next node in the graph. It computes the mutual

information value for each independent variable

concerning the dependent variable and picks the ones

with the most significant information gain. So it can

be a better option to choose the next node in IWD if

a water drop D is currently in node i and intends to

move j where a node represents a feature. Then

mutual information score is calculated using Eq. (1).

Pm = ∑ ∑ Pxy y (X,Y)x log
P

xy(X, Y)

P
x(X)Py(Y)

 (1)

The Pm represents the mutual information score of

variable X in concern to variable Y, the (Pxy(X, Y))

represents the joint probability distribution, (Px(X))

and (Py(Y)) indicates the marginal probability

distribution. This function provides the node mutual

information, a positive float value between 0 and 1.

Step 3. Update velocity and soil values

Eq. (2) is used to update the velocity (IV(t+1). Eq.

(3) denotes the soil value in the local path. Where ρ
r

is a constant its range is between 0 and 1. Eqs. (4),

(5), and (6) are used to update soil values.

Where (HD (i, j)) represents the heuristic

desirability degree and Eq. (6) represents the time

function that is defined as the time required for water

drop k to travel from i to j at the time (t+1).

 IV(t+1)
 =IV(t) +

va

vb+vc*S(i,j)
 (2)

S(i,j)=(1-ρ
ir

)*(S(i,j))-ρ
r
∆S(i,j) (3)

 Is=Is+∆s (4)

∆S(i,j)=
Sa

Sb+Sc*time(i,j: IV (t+1))
 (5)

𝑡ime (i,j: IV

(t+1))=
HD(i,j)

IV

(t+1)
 (6)

Step 4. Reinforcement and termination process

The iteration best solution IIB is calculated using

Eq. (7). Where Ip denotes all solutions of an iteration,

and q(x) defines the fitness function used to evaluate

the quality of the solution. The soil of all edges in IIBis

calculated using Eq.(8).

 IIB=argmax∀xp∈Ip q(x)
 (7)

S(i,j)=(1+ρ
i
)*S(i,j)-ρ

i
*SIB

k * (
1

q(I
IB

)
) (8)

 IGB= {IGB

IIB

 if q (IGB)≥q(IIB)

otherwise
 (9)

Where ∀ (i, j) ∈IIB and ρ
i
 represents a small

constant, The (SIB
k) denotes the kth iteration's soil

value in iteration best path. The global best solution

IGBis calculated as follows. Where Eq. (9) is used to

substitute the IGB with IIB or preserve the same value,

Table 1. Static and Dynamic parameters of modified

IWD.

Static

Parameter

Values Dynamic

Parameters

Values

ND

Va, Vb,&Vc

Sa,Sb,& Sc.

ρ
r ,

, ρ
i

IM

IS

(215 or 357)

1, 0 .01 , 1

1, 0.01 , 1

0.9, 0.9, 0.01

20

100

NV list of

visited

node

IV

IS

initially

empty

{}

4

0

Received: April 11, 2022. Revised: June 6, 2022. 429

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.38

Start

IWDs< Total IWDs

Select Next Node Using Mutual

Information

No

Yes

Define problem as a Graph(N,E)

Static Parameter Initialization

Dynamic Parameter Initialization

Spread IWDs over the Graph

Update local soil and velocity

All IWD Completed

Next IWD

Keep Iteration Best

Update Global soil

Termination Condition

No

Yes

Training 70% Testing 30 %

Optimal dataset

H
id

d
en

L
ay

ers

O
u
tp

u
t

L
ay

er

M
alw

are

B
en

ig
n

W
are

In
p

u
t

L
ay

er

No

M
o

d
ified

IW
D

Text

Figure. 1 The flow chart of the proposed MH-DLdroid

the solution construction and reinforcement steps are

iterated until the termination state is reached. If the

value of IC (Iteration count) becomes equal to or

greater than (Iteration max) IM, the iteration is

stopped.

3.2 Deep neural networks

Deep learning is a subfield of artificial

intelligence and machine learning technology that

mimic specific human brain functions to make good

decisions to intimidate humans and their actions. It's

a critical data science component that streamlines

predictive modeling and statistics based on data-

driven approaches. The proposed DNN is developed

in Python and compiled with Keras, a scientific

computing platform. The suggested hybrid model is

illustrated in Fig. 1, which utilized the modified IWD

algorithm for feature selection and the Deep neural

network (DNN) for subset evaluation. The various

components of suggested DNN models are described

below.

• Keras: Keras is a powerful open-source neural

network toolkit developed in Python for building

deep learning models. It's based on well-known

deep learning frameworks like TensorFlow and

Theano. Keras is a TensorFlow user interface that

includes dropout, batch normalization, pooling

layers, objectives, activation functions, and

optimizers.

• ReLU: ReLU stands for "Reduced Rectified

Linear Activation Function," a rectified network

with hidden layers that use the rectifier function.

It is a piecewise linear function; if the input X is

positive, the ReLU produces X; otherwise, the

output is 0.

• Sigmoid: The sigmoid function is also

recognized as a squashing function (0, 1) since it

compresses the entire number line into a small

range, such as 0 and 1. The sigmoid function

distinguishes between malware and benign ware

in our model.

• ADAM: The ADAM optimizer employs the

adam algorithm, which uses the stochastic

gradient descent method to carry out the

optimization process. We have used the ADAM

default parameters, such as alpha (α) 0.001, beta

(β1) 0.9, and beta (β2) 0. 999, and epsilon(ε) 10e8.

• Binary cross-entropy (BCE): The binary cross-

entropy, also known as log loss, it provide the

assessment of the success of a classification

model whose output is between 0 and 1. The BCE

increases as the anticipated likelihood differ from

the actual label.

Table 2. DNN Parameters and Neuron Layer Architecture

 DNN Parameters DREBIN

Parameters Values L# Shape P#

Batch Size 20 1 None, 40 2120

Epoch 30 2 None, 12 492

Optimizer ADAM 3 None, 8 104

Error BCE 4 None, 1 9

Activation 1 ReLu Total-Parameters =2725

Activation 2 Sigmoid

MALGENOME MSGHIC

 L # Shape P# L# Shape P#

1 None, 62 4526 1 None, 62 13206

2 None, 26 1638 2 None, 30 1890

3 None, 4 108 3 None, 14 434

4 None, 1 5 4 None, 4 60

 5 None, 1 5

Total-Parameter = 6,277 Total-parameters =15595

Received: April 11, 2022. Revised: June 6, 2022. 430

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.38

• The number of neurons: A neuron is a machine

that makes decisions or categorizes something

based on specified criteria. The neuron performs

some calculations and sends output through a

synapse to neurons deep in the neural net. Each

synapse has a weighting that influences the

relative relevance of the last neuron in the overall

neural network. The neuron's activation function

receives a weighted total of these signals, and the

result is passed to the network's next layer. The

neuron layer architecture and DNN parameters

are shown in Table 2.

4. Working process of proposed MH-

DLdroid

In the first stage, the optimal features are selected

using a modified IWD algorithm. The modified IWD

examines behavior patterns of android apps and

determines the best subset N from the entire dataset

M. A fully connected undirected graph G (N, E)

defines the optimization problem, where N denotes

nodes and E denotes edges. The selection of next

node is guided by the mutual information score in the

undirected graph. The soil on the edge indicates the

obstacles in the local path. Each water drop is

distributed randomly over the graph and acts as a

searching agent. The result acquired from iteration

best solution IIB is used to decide the global best

solution IGB. The optimal route is the one with the

fewest obstacles. All nodes in the intended optimal

path represent the optimal feature subset. The main

steps of hybrid mode MH-DLdroid are shown in

Algorithm 1.

5. Datasets, pre-processing, and

experimental environment

In the proposed work, three Android datasets

have been taken to do the investigation. The first

dataset is a DREBIN-215, which contains 9476

benign and 5560 malware samples from the DREBIN

project, mainly consisting of a total of 215 features of

API calls, permissions, intents, command signatures,

etc. [30]. The MALGENOME is a second dataset that

contains 3799 app samples from the Genome project,

including 2539 benign-ware samples and 1260

malware. It includes 215 features of API calls,

permissions, and intents [31]. The third dataset is

MSGHIC, which contains 3090 benign and 3090

malware samples and 357 attributes of API calls,

Algorithm 1. The main setps of MH-DLdroid

1. Input: Feature set of (DREBIN and

MALGENOME and MSGHIC Dataset)

2. Output: Optimal feature of all the Three dataset

3. Express problem as a graph G(N,E)

4. Initialization of Static parameters

5. While (IC < IM) , do

6. Dynamic parameters initialization

7. Generate and spread artificial IWDs randomly

over the graph G(N,E).

8. Update the list of the visited node 𝑁𝑙
𝑉

9. while (I < IWD) && (solution not complete),

do

10. for k = 1 to IWD do

11. if drop k is in node I

12. And intended for node j then calculate feature

importance for j if it is not present in 𝑁𝑙
𝑉

13 Use mutual information score from sklearn to

calculate rank of next node

14. Use pmi to move water drop from i to node j .

15. Variable Update velocity IV of the drop k,

Soil within the drop k ∆𝑠(𝑖, 𝑗) , Soil within

the edge Slv(i,j)

16 End for

17. End while

18. Select the best iteration (IIB)

19. update soil value in local edges Slv(i,j) included

in the

(IIB) 20. update the (𝐼𝐺𝐵) (global best solution)

21. if (quality of (𝐼𝐺𝐵) < (quality of IIB)

22. 𝐼𝐺𝐵 = IIB (Swap the values)

23 End while

24 return (𝐼𝐺𝐵 final solution)

 25 Remove unwanted features from the datasets

26 Split dataset as training and testing set

27 Apply Sequential DNN

28 Get final outcome

permissions, intents, and command signatures [32].

Duplicate occurrences are deleted from the dataset

during the pre-processing of the dataset. The entry

with a NaN value is also removed from the dataset.

6. Performance assessment metrics

The confusion matrix represents classification

results; it provides insight into classifier performance

and reveals which classes are correctly identified and

Received: April 11, 2022. Revised: June 6, 2022. 431

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.38

Figure. 2 Training accuracy

Figure. 3 Testing accuracy

Figure. 4 Training precision

Figure. 5 Testing precision

Figure. 6 Training recall

Figure. 7 Testing recall

Table 3. Performance assessment metrics

Assessment Metrics Formulas

Accuracy(և) և=(γ+σ) (μ+ρ+γ+σ)⁄

Recall (δ) δ=γ (γ+ρ)⁄

Precision (ʎ) ʎ=γ (γ+μ)⁄

F1-Score (τ) τ=2(ʎ*δ) (ʎ+δ)⁄

which are not. Table 3 displays the performance

evaluation metrics.

• True positive (γ): A true positive is an occurrence

in malware samples that was successfully

predicted.

• False positive (μ): A test result indicates that a

mobile device has malware while it does not

contain malware.

• True negative (σ): A true negative accurately

predicts benign-ware in samples.

• False negative (ρ): A test result that indicates that

the mobile does not contain malware while the

mobile does indeed contain malware.

7. Results and discussions

This section demonstrates the performance of the

MH-DLdroid. The modified IWD provides more

exploration and exploitation to prevent local optima

in search space. As a result, the final feature subsets

chosen have high discriminative power. In order to

accurately identify the effectiveness of the proposed

method, five evaluation parameters are evaluated.

Table 4 displays the training and testing results

for the last five epochs derived from the proposed

method. The results obtained from the model are

shown based on training and testing. The test result

represents the trained model identifying independent

data not used for training purposes. The training

outcome in each performance matrix represents the

use of the same data for both training and testing. The

suggested model has attained the highest accuracy of

99.12 in malware detection on the MALGENOME

dataset and the highest accuracy of 99.8 during

training. Fig. 2 and 3. show the obtained accuracy

from subset evaluation. It is clear from the obtained

85

90

95

100

1 5 9 13 17 21 25 29

A
cc

u
ra

cy

epoch

DREBIN
MALGENOME
MSGHIC

85

90

95

100

1 5 9 13 17 21 25 29

A
cc

u
ra

cy

epoch

DREBIN

MALGENOME

MSGHIC

80

85

90

95

100

1 5 9 13 17 21 25 29

P
re

ci
si

o
n

epoch

DREBIN
MALGENOME
MSGHIC

80

85

90

95

100

1 5 9 13 17 21 25 29

P
re

ci
si

o
n

epoch

DREBIN
MALGENOME
MSGHIC

80

85

90

95

100

1 5 9 13 17 21 25 29

R
ec

al
l

epoch

DREBIN
MALGENOME
MSGHIC 85

90

95

100

1 5 9 13 17 21 25 29

R
ec

al
l

epoch

DREBIN
MALGENOME
MSGHIC

Received: April 11, 2022. Revised: June 6, 2022. 432

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.38

Table 4. The training and testing performance of the last five epochs of DNN

Data

set

Epoch

Training Performance Testing /Detection Performance

BCE և 𝛕 ʎ 𝜹 BCE և% 𝛕 ʎ 𝜹

D
R

E
B

IN

 E-26 0.0407 98.62 96.4

3

97.43 96.04 0.167 96.64 92.8 94.78 92.22

 E-27 0. 0373 98.82 97.2

7

98.20 96.8 0.1742 96.68 93.05 93.86 93.45

 E-28 0.0366 98.86 97.2

8

98.36 96.75 0. 1653 96.71 93.0 95.35 91.96

 E-29 0.0369 98.85 96.8

8

97.8 96.4 0.1768 96.49 92.98 94.47 92.78

 E-30 0.0353 98.86 97.6

4

98.63 97.2 0.177 96.45 92.57 93.65 92.96

M
A

L
G

E
N

O

M
E

 E-26 0.0225 99.84 97.1

2

97.2 97.07 0.0542 98.5 92.85 92.9 93.44

 E-27 0.0202 99.84 98.6

6

98.61 98.79 0.0539 98.62 93.1 93.31 93.44

 E-28 0.0185 99.78 99.7

5

99.78 99.78 0.0501 99 93.47 94.02 93.44

 E-29 0.0173 99.89 98.7

4

98.79 98.75 0.0519 99.12 93.61 94.27 93.44

E- 30 0.017 99.84 96.5 96.67 96.53 0.051 98.12 92.42 92.13 93.44

M
S

G
H

IC

 E-26 0. 0325 98.68 98.6

0

99.21 98.35 0.4508 93.76 93.39 91.51 96.68

 E-27 0. 0261 99.07 98.9

6

99.54 98.62 0.3719 94.22 93.69 94.18 94.24

 E-28 0. 0307 98.98 98.5

5

99.09 98.25 0.4284 94.07 93.39 92.55 95.58

 E-29 0. 0286 99.04 98.9

1

99.4 98.69 0.3757 93.84 93.28 94.93 92.87

 E-30 0. 0194 99.44 99.3

7

99.95 98.95 0.3886 94.3 93.70 94.95 93.63

Figure. 8 Training F1- score

Figure. 9 Testing F1-score

Figure. 10 Training BEC

Figure. 1 Testing BEC

results that the subset evaluation of the

MALGENOME dataset has achieved the highest

precision of 95.35% in malware detection. And

99.78 % precision has been achieved during model

training. Fig. 4 and 5. show the precision of training

and testing of the model. During malware detection,

the model achieved a 96.68 % recall rate on the

MSGHIC dataset. And recall rate of 99.78 % has

been gained on the MALGENOME dataset during

model training. Fig. 6 and 7. show the recall trends of

the MH-DLdroid model. The F1-score represents the

harmonic mean of precision and recall [33]. The

proposed method yielded the highest F1 score of

93.70 percent during malware detection. And the

highest F1 score of 99.7 percent was obtained while

training the model on the MALGENOME dataset.

Fig. 8 and 9. Depict the F1-Score of the optimal

subset evaluation, where the x-axis represents the

epoch number, and the y-axis represents the obtained

value of F1-scores. Fig. 10 and 11. Illustrate the

obtained binary cross-entropy, where the x-axis

denotes the epoch, and the y-axis represents the BCE.

The model has performed admirably in error rate, the

error decreasing as the epoch progresses.

80

85

90

95

100

1 5 9 13 17 21 25 29

F
1

-S
co

re

epoch

DREBIN
MALGENOME
MSGHIC

86

88

90

92

94

96

98

1 5 9 13 17 21 25 29

F
1

-S
co

re

epoch

DREBIN
MALGENOME
MSGHIC

0

0.5

1

1.5

1 5 9 13 17 21 25 29

B
C

E

epoch

DREBIN
MALGENOME
MSGHIC

0

0.5

1

1.5

1 5 9 13 17 21 25 29

B
C

E

epoch

DREBIN
MALGENOME
MSGHIC

Received: April 11, 2022. Revised: June 6, 2022. 433

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.38

Table 5. The Comparision of MH-DLdroid with some

existing approaches.

Reference և 𝛕 ʎ 𝜹 BCE

Proposed 99.12 93.7 95.35 96.68 0.047

Gdroid [3] 98.99 98.9 98.6 98.3 ----

MobiTive [4] 96.75 - 96.78 96.72 ----

FSDroid [10] 99 96 98 - ----

MNN [11] 98 99 98 99 ----

8. The comparison with existing methods

The comparison of the performance of the

anticipated approach with some existing methods is

given in Table 5. The accuracy of the proposed

method is higher than that of other similar methods,

but its F1 score, precision, and recall are lower than

others. The findings also demonstrate that combining

deep learning with meta-heuristic techniques

increases performance. Since meta-heuristic

algorithms aim to achieve intelligently optimal

results by continuously learning from their prior

experience, they do not re-evaluate paths that have

already been traversed. In real-world problems, the

search space is often unknown and complex, and

contains a large number of local optima. The

stochastic nature of meta-heuristics offers immense

possibilities to effectively avoid local optima,

comprehensively search the entire search space, and

obtain optimal solutions.

Similarly, deep learning incrementally extracts

high-level features from data to find the best possible

solution [34]. Therefore, in this hybrid approach, the

meta-heuristic optimization reduces the learning time

and complexity by selecting the appropriate features.

Deep neural networks are capable of performing

many complex processes at once. Their ability to

learn from errors allows them to check the

correctness of their predictions and make the

necessary corrections. Therefore the resulting hybrid

model gives better results; it reduces the size of the

search space by more than 60%.

9. Conclusion and future work

In this work, the modified meta-heuristic

technique (IWD) is used to intelligently select the

prime features with high discriminative power from

the dataset, which reduces the size of all datasets by

more than 60%. The stochastic nature of meta-

heuristics enables them to avoid local optima

stagnation and search the entire search space, making

them more effective for feature optimization. And

deep neural networks (DNN) detect hidden patterns

by using abstraction and non-linear transformations

of raw input data from unlabeled optimal sets. A

thorough examination of the proposed MH-DLdroid

model yields significant detection results with a

99.12 % accuracy. And 93.7% of F1-score, a

precision of 95.35 %, and a recall rate of 96.68%.

This method achieves a very low false alarm rate of

0.88 and a very low BCE of 0.050. This technique is

immune to dynamic payload issues because it only

looks at app behavior patterns. In future work, we

will investigate other behavior patterns like API call

patterns and another metaheuristic approach to

improve other parameters such as precision, recall,

and F1-score in malware detection.

Conflicts of interest

“The authors declare no conflict of interest.”

Author contributions

Conceptualization R. M. Sharma and Chaitanya P

Agrawal; Methodology R. M. Sharma and Chaitanya

P Agrawal; writing—original draft preparation,

resources data curation, R. M. Sharma and Chaitanya

P Agrawal; review and editing R. M. Sharma and

Chaitanya P Agrawal; All authors have read and

agreed to the published version of the manuscript.

References

[1] “Mobile OS market share 2021 | Statista”,

https://www.statista.com/statistics/272698/.

[2] “Malware Statistics & Trends Report | AV-

TEST”, https://www.av-test.org/en/statistics

/malware/.

[3] H. Gao, S. Cheng, and W. Zhang, “GDroid:

Android malware detection and classification

with graph convolutional network”, Computers

& Security, Vol. 106, pp. 1-14, 2021.

[4] R. Feng, S. Chen, X. Xie, G. Meng, and S. Lin,

Y. Liu, “A performance-sensitive malware

detection system using deep learning on mobile

devices”, IEEE Transactions on Information

Forensics and Security, Vol. 16, pp. 1563-1578,

2020.

[5] M. Cai, Y. Jiang, C. Gao, H. Li, and W. Yuan,

“Learning features from enhanced function call

graphs for Android malware detection”,

Neurocomputing, Vol. 423, pp. 301–307, Jan.

2021.

[6] S. K. Sasidharan, and C. Thomas, “ProDroid—

An Android malware detection framework

based on profile hidden Markov model”,

Pervasive and Mobile Computing, Vol. 72, pp.

1-16, 2021.

[7] S. Millar, N. McLaughlin, J. M. D. Rincon, and

P. Miller, “Multi-view deep learning for zero-

Received: April 11, 2022. Revised: June 6, 2022. 434

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.38

day Android malware detection”, Journal of

Information Security and Application, Vol. 58,

pp. 1-14, 2021.

[8] T. Lu, Y. Du, L. Ouyang, Q. Chen, and X. Wan,

“Android malware detection based on a hybrid

deep learning model”, Security and

Communication Networks, Vol. 2020, pp. 1-11,

2020.

[9] N. Zhang, Y. Tan, C. Yang, and Y. ZhangLi,

“Deep learning feature exploration for android

malware detection”, Applied Soft Computing,

Vol. 102, pp.1-7, 2021.

[10] A. Mahindru and A. L. Sangal, “FSDroid:-A

feature selection technique to detect malware

from Android using Machine Learning

Techniques”, Multimedia Tools and

Applications, Vol. 80, No. 9, pp. 13271-13323,

2021.

[11] T. Kim, B. Kang, M. Rho, S. Seze, and E. Im,

“A multimodal deep learning method for

android malware detection using various

features”, IEEE Transactions on Information

Forensics and Security, Vol. 14, No. 3, pp. 773-

788, 2019.

[12] Y. Yang, X. Du, Z. Yang, X. Liu, and Yang, et

al., “Android malware detection based on

structural features of the function call graph”,

Electronics, Vol. 10, No. 2, pp. 1-17, 2021.

[13] X. Xiao, S. Zhang, F. Mercaldo, G.Hu, and A. K.

Sangaiah, “Android malware detection based on

system call sequences and LSTM”, Multimedia

Tools and Applications, Vol. 78 No. 4, pp. 3979-

3999, 2019.

[14] Y. Hei, R. Yang, H. Peng, L. Wan, X. Xu, J. Liu,

H. Liu, J. Xu, and L. Sun, “Hawk: Rapid android

malware detection through heterogeneous graph

attention networks”, IEEE Transactions on

Neural Networks and Learning Systems, Vol.

2021, pp. 1-15, 2021.

[15] F. Ou, and J. Xu, “S3Feature: A static sensitive

subgraph-based feature for android malware

detection”, Computers & Security, Vol. 112, p.

102513, 2022.

[16] W. Zhang, N. Luktarhan, C. Ding, and B. Lu,

“Android malware detection using tcn with

bytecode image”, Symmetry, Vol. 13, No. 7, p.

1107, 2021.

[17] T. Frenklach, D. Cohen, A. Shabtai, and R. Puzis,

“Android malware detection via an app

similarity graph”, Computers & Security, Vol.

109, p. 102386, 2021.

[18] L. N. Vu and S. Jung, “AdMat: A CNN-on-

Matrix Approach to Android Malware Detection

and Classification”, IEEE Access, Vol. 9, pp.

39680–39694, 2021.

[19] P. Xu, C. Eckert, and A. Zarras, “Falcon:

malware detection and categorization with

network traffic images”, In: Proc. of

International Conf. on Artificial Neural

Networks, Bratislava, Slovaki, pp. 117–128,

2021.

[20] M. R. Norouzian, P. Xu, C, Eckert, and A. Zarras,

“Hybroid: Toward Android Malware Detection

and Categorization with Program Code and

Network Traffic”, In: Proc. of International

Conf. on Information Security, pp. 259–278,

2021.

[21] A. Mahindru and A. L. Sangal, “SemiDroid: a

behavioral malware detector based on

unsupervised machine learning techniques using

feature selection approaches”, International

Journal of Machine Learning and Cybernetics,

Vol. 12, No. 5,pp. 1369-1411, 2021.

[22] R. Surendran, T. Thomas, and S. Emmanuel, “A

TAN based hybrid model for android malware

detection”, Journal of Information Security and

Applications, Vol. 54, p. 102483, 2020.

[23] X. Jiang, B. Mao, J. Guan, and X Huang,

“Android malware detection using fine-grained

features”, Scientific Programming, Vol. 2020,

No. 5190138, pp. 1-13, 2020.

[24] H. Bai, N, Xie, X. Di, and Q. Ye, “Famd: A fast

multifeature android malware detection

framework, design, and implementation”, IEEE

Access, Vol. 8, pp. 194729-194740, 2020.

[25] R. Taheri, M. Ghahramani, R. Javidan, M.

Shojafar, Z. Pooranian, and M. Contic,

“Similarity-based Android malware detection

using Hamming distance of static binary

features”, Future Generation Computer Systems,

Vol. 105, pp. 230-247, 2020.

[26] Y. Ding, X. Zhang, J. Hu, and W. Xu, “Android

malware detection method based on bytecode

image”, Journal of Ambient Intelligence and

Humanized Computing, Vol. 2020, pp. 1-10,

2020.

[27] A. Arora, S. K. Peddoju, and M. Conti,

“Permpair: Android malware detection using

permission pairs”, IEEE Transactions on

Information Forensics and Security, Vol. 15, pp.

1968–1982, 2020.

[28] H. Zhu, Y. Li, R. Li, J. Li, Z. You, and H. Song,

“SEDMDroid: An Enhanced Stacking Ensemble

Framework for Android Malware Detection”,

IEEE Transactions on Network Science and

Engineering, Vol. 8, No. 2, pp. 984–994, 2021.

[29] H. S. Hosseini, “The intelligent water drops

algorithm: a nature-inspired swarm-based

optimization algorithm”, International Journal

Received: April 11, 2022. Revised: June 6, 2022. 435

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.38

of Bio-inspired Computation, Vol. 1, Nos. 1-2,

pp. 71–79, 2009.

[30] DREBIN-dataset https://figshare.com/articles

/dataset/Android_malware_dataset_for_machin

e_learning_2/

[31] MALGENOME-Dataset

https://figshare.com/articles/dataset/Android_m

alware_dataset_for_machine_learning_1/58545

90/

[32] MSGHIC-dataset

https://github.com/MSGHIC/Deep_learning

_for_android_malware_detection/blob/mast

er/
[33] V. Kumar “Evaluation of computationally

intelligent techniques for breast cancer

diagnosis”, Neural Computing and Applications,

Vol. 33, No. 8, pp. 3195-3208, 2021.

[34] X. Pei, L. Yu, and S. Tian, “AMalNet: A deep

learning framework based on graph

convolutional networks for malware detection”,

Computers & Security, Vol. 93, p. 101792, 2020.

https://figshare.com/articles%20/dataset/Android_malware_dataset_for_machine_learning_2/
https://figshare.com/articles%20/dataset/Android_malware_dataset_for_machine_learning_2/
https://figshare.com/articles%20/dataset/Android_malware_dataset_for_machine_learning_2/
https://github.com/MSGHIC/Deep_learning_for_android_malware_detection/blob/master
https://github.com/MSGHIC/Deep_learning_for_android_malware_detection/blob/master
https://github.com/MSGHIC/Deep_learning_for_android_malware_detection/blob/master

