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Abstract: Diabetic Retinopathy (DR) is a common complication of Diabetes Mellitus (DM) that produces retinal 

abnormalities and can lead to blindness if not diagnosed and treated on time. To address this concern, an adaptive 

Convolutional Neural Network (CNN) model with Gradient Boosting (GB) called ResNetGB has been used from the 

literature where a Principal Component Analysis (PCA) based Fully Connected (FC) layer is used to capture the 

discriminative characteristics from the Retinal Fundus (RF) samples. It is essential to extract more effective features 

to categorize the DR grades. Hence, in this article, the Multi-Scale Attention (MSA) strategy is incorporated into the 

ResNetGB model for effective DR grade classification. First, the encoder network is used to embed the RF image in 

a high-level interpretational space in which the mixture of mid and high-level characteristics is considered to 

enhance the representation. Then, a Multi-Scale Feature Pyramid (MSFP) is added to define the retinal pattern in 

various localities and the MSA strategy is applied to the high-level interpretation. Moreover, the entire MSA-

ResNetGB framework is trained by the cross-entropy loss to categorize the patients with respective DR grades. 

Finally, the experimental analysis exhibit that the MSA-ResNetGB model achieves the 94.40% and 94.17% accuracy 

on two benchmark datasets: Kaggle-APTOS and IDRiD, respectively compared to the cutting-edge models. 

Keywords: Diabetic retinopathy, CNN, Gradient boosting, Multi-scale feature pyramid, Attention strategy. 

 

 

1. Introduction 

Diabetes Mellitus is one of the most prevalent 

causes of DR, which produces vision impairment. It 

involves varying degrees of severity and is treated 

when identified ahead of time [1]. DR affects the 

retina, which is in charge of turning light into an 

electronic signal that can be processed to produce an 

image. A network of blood vessels surrounds the 

retina, supplying it with oxygen and nutrients. 

Diabetes damages blood vessels, resulting in a 

shortage of blood supply to the retina. This 

deteriorates the health of the retina and, as a result, 

affects visual acuity. The most severe kind of DR is 

Non-proliferative retinopathy. DM does not 

influence vision at this level, although it does alter 

blood vessels. The arteries can expand moderately 

(microaneurysms – MAs, exudates - EXs, or retinal 

hemorrhages - HEs) [2]. 

In the final phase, DR progresses to proliferative 

retinopathy, which causes greater damage to the 

retina than non-proliferative retinopathy. When the 

majority of the retina is deprived of sufficient blood 

flow, it raises the possibility of visual impairment 

and poses a danger of vision loss. Manual detection 

of DR by ophthalmologists or skilled graders is 

costly. Diagnosis of a huge proportion of diabetic 

patients for probable DR incidence places a 

significant strain on ophthalmologists or evaluators, 

reducing their reliability and avoiding DR diagnoses. 

The screening is highly subjective, with various 

graders emerging with many interpretations [3]. 

To tackle this concern, modified and pre-learned 

CNN structures are used for the DR classification 

[4]. The most advanced pre-learned CNN structures, 

such as VGG and Residual Network (ResNet) [5] 

and Dual Path Network (DPN) [6] are often learned 

on ImageNet [7] and convert the low-level 
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characteristics to high-level characteristics. As DR 

grading is dependent on the existence of lesions in 

RF images such as MAs, EXs, and HMs, Saeed et al. 

[8] developed a 2-phase transfer learning employing 

a pre-learned CNN structure such as VGG19, 

ResNet152 and DPN107. The approach 

encompasses a RF scan as input, analyzes it using 

the modified framework, and then classifies it as 

healthy or DR. The CNN structure trains the 

domain-specific structure of low and high-level 

characteristics. First, the foremost layer of the pre-

trained CNN structure called ResNetGB is 

reinitialized by the Regions-of-Interest (ROI) of 

tumors retrieved from the labeled RF samples. For 

lesion ROI extraction, E-optha is considered since it 

involves pixel-level tumor labeling. Then, the 

structure is optimized, wherein the low-level units 

train the neighborhood patterns of the tumor and 

healthy areas. Because the FC units convert high-

level characteristics, these are substituted by the 

novel FC unit depending on the PCA and apply it in 

an unsupervised scheme to capture discriminative 

characteristics from the RF samples. Also, the GB-

based classifier unit is added to estimate the DR 

scores of RF scans. Although it extracts high-level 

features to identify and classify the retina lesions 

into DR classes, highly effective features are 

essential to categorize the DR severity stage. The 

following are the proposed work's significant 

contributions: 

1. The ResNetGB with MSA approach is 

presented to increase the accuracy of DR 

grade categorization. To begin, the encoder 

network is utilized to place the RF image in 

a high-level interpretational space, with a 

blend of mid and high-level data added to 

reinforce the interpretation. The MSFP is 

also built to specify the RF pattern in 

various locations. 

2. The MSA strategy is employed in the high-

level interpretation to improve the 

discriminative power of the feature 

interpretation. 

3. Using the cross-entropy loss, the MSA-

ResNetGB model is trained to detect DR 

patients based on their DR grades. As a 

result, distinguishing between normal and 

DR patients is simplified. 

4. The proposed MSA-ResNetGB model is 

tested on two public benchmark datasets: 

Kaggle-APTOS 2019 dataset and Indian 

Diabetic Retinopathy Image Dataset 

(IDRiD). 

5. The MSA-ResNetGB model is validated 

using four performance metrics: Accuracy, 

Precision, Recall, and F1-Score. 

The rest of this paper is prepared as follows: The 

recent work linked with the DR detection and 

classification model is discussed in Section 2. 

Section 3 explains the ResNetGB-MSA model, 

while Section 4 demonstrates its efficacy. Section 

5summarizes this paper and suggests its possible 

improvement. 

2. Related work 

A novel modified Xception-based feature 

mining and Multi-Layer Perceptron (PLP) 

classification model [9] have been developed to 

categorize DR criticality and diagnose them 

efficiently. An ensemble model [10] has been 

designed, which combines CNN and classical hand-

crafted features into a single structure to classify RF 

images. A framework [11] was developed by 

considering a 3-channel RF image as input and 

resulting in the criticality of DR. Also, transfer 

learning was applied to the pre-trained 

MobileNetV2 and a weighted loss function was 

utilized. 

A new Cross-disease Attention Network 

(CANet) [12] was designed to jointly grade DR and 

diabetic macular edema by finding the internal 

correlation among the diseases with only image-

level supervision. A modified EfficientNet structure 

[13] was suggested to classify the early and 

advanced grades of the DR disease.  

An improved cross-entropy loss function and 

three hybrid CNN models [14] have been developed 

to classify DR. A new CNN structure [15] was 

introduced to capture characteristics from RF scans. 

A new technique [16] was presented for DR 

prognosis depending on the gray-level pixels and 

fine details from the RF scans by the decision tree-

based ensemble training. A composite Deep Neural 

Network (DNN) structure [17] was integrated with a 

gated-attention strategy for automated prognosis of 

DR. Deep transfer learning [18] was investigated 

based on the AlexNet, GoogleNet, InceptionV4, 

Inception ResNetV2 and ResNext50 to 

automatically diagnose DR. 

CNN-based computer-aided diagnosis system 

[19] was developed to categorize RF images into 

different grades of DR. Two deep learning-based 

models [20] were developed: a CNN512 was 

utilized to categorize the RF image into different 

grades of DR, as well as, an adopted YOLOv3 was 

utilized to identify and localize the DR lesions. 
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A multi-task deep learning system [21] was 

developed using a modified Squeeze Excitation 

densely connected DNN and Xecption network as a 

multitasking scheme. Also, the MLP was used as a 

classification to categorize the DR grades. A new 

deep learning hybrid model [22] was developed, in 

which transfer learning was applied on pre-trained 

Inception-resNetV2 and a custom module of CNN 

layers was added on top of Inception-resNetV2 to 

recognize DR disorders. 

A new early blind recognition technique [23] 

was designed using the color information obtained 

from RF images based on the ensemble learning 

scheme such as Extra tree model. Different deep 

learning-based classifiers [24] have been analyzed 

such as VGG16, ResNet50, InceptionV3 and 

DenseNet121 to partition the retina areas and 

categorize DR severity grades. The MSA Network 

(MSA-Net) [25] based on the encoder and decoder 

structure was designed for DR categorization. A 

Graph Neural Network (GNN) model [26] was 

designed to categorize DR severity. 

2.1 Problem definition 

From the above-studied related works, the issues 

in classifying the DR severity grades are: 

• The number of training and testing images 

was limited, which impacts the accuracy of 

classifying the DR grades. 

• Also, the accuracy was degraded because of 

imbalanced classes in the RF image 

databases. 

• The imbalanced classes affect the 

significance of the feature maps during 

training and classification. 

• Some CNN structures trained by only 

image-level supervision, which makes the 

model very difficult to recognize the exact 

abnormal signs like soft EXs, hard EXs, 

MAs and HEs. 

• The classification efficiency mainly relies 

on the RF image resolution and the optimal 

hyperparameters of CNN structures such as 

learning rate, number of epochs, number of 

layers and batch size. 

• Though high-level features were extracted, 

additional features are essential to enhance 

the accuracy of classifying the different DR 

grades. 

2.2 Research contribution 

This research focuses on enhancing the accuracy 

of classifying the different grades of DR severity.  
 

Table 1. List of notations 

Notations Description 

𝐺 Encoder structure 

𝜃1 Encoding variable 

𝐼 Retinal fundus image 

𝐹𝑒𝑐 Interpretation tensor 

𝒜 Attention tensor 

𝕂𝑝𝑤 Point-wise convolution kernel 

ℎ Height of the feature map 

𝑤 Width of the feature map 

𝑐 Number of channels 

𝜎 Sigmoid activation 

⨀ Point-wise multiplication 

𝐹 Absolute feature interpretation vector 

𝜃2 Learning variables for the multi-scale and 

attention units 

ℒ(𝜃, 𝜑) Loss factor 

 

To achieve this task, a MSA-based ResNetGB 

model is proposed. First, the RF image database is 

obtained and fed to the encoder network to create 

the interpretation tensor. Then, the MSFP is applied 

to represent high-level features at various scales. 

Also, an attention strategy is performed to get the 

attention maps and multiply them with the high-

level feature map representations to obtain the final 

feature interpretation. Further, the global 

interpretation is created and classified into various 

classes of DR grades. 

3. Materials and methods 

In this research work, the ResNetGB model [8] 

is used as a baseline model under different system 

settings. This section explains the MSA-ResNetGB 

model for DR severity categorization briefly. Table 

1 presents the notations used in this study. 

Pseudo code for the proposed MSA-ResNetGB 

model: 

Input: ROI lesions from the E-Optha dataset 

and RF images 𝐼1, … , 𝐼𝑛  (from Kaggle-APTOS and 

IDRiD) 

Output: DR grade classification (0-No DR, 1-

Mild DR, 2-Moderate DR, 3-Severe DR and 4-

Proliferative DR) 

Step 1: Collect the annotated RF images and 

split the images into training and test set. 

Step 2: In the training set, embed the collected 

images into the high-level representational space 

using the ResNetGB encoder; generate the 

interpretation tensor 𝐹𝑒𝑐 as: 

 

𝐹𝑒𝑐 = 𝐺(𝜃1; 𝐼)                        (1) 
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Step 3: Add the attention strategy to the multi-

scale feature interpretation; 

Step 4: Improve the discriminative ability of 

high-level feature interpretation; Use the point-wise 

convolution among the pyramid representations. 

Step 5: Generate the attention tensor 𝒜 as: 

 

𝒜ℎ×𝑤×64 = (𝐹𝑎𝑙𝑙
ℎ×𝑤×4𝑐 ∗ 𝕂𝑝𝑤)              (2) 

 

Step 6: Obtain the global interpretation by the 

GMP and create the final feature interpretation 

vector 𝐹 as: 

 

𝐹1×1024 =
𝐺𝑀𝑃(𝜎(𝐹ℎ×𝑤×𝑐⨀𝒜ℎ×𝑤×1))

𝐺𝑀𝑃(𝒜ℎ×𝑤×1)
           (3) 

 

Step 7: Map the feature vectors using the PCA 

layer to the required outcomes;  

 

Step 8: Train the classification layer using GB 

classifier and calculate the loss factor ℒ (𝜃, 𝜑) and 

adjust the training variables. 

Step 9: Classify the test images based on DR 

severity grades using the trained MSA-ResNetGB 

model. 

3.1 ResNetGB as encoder 

The initial unit of the model is the encoder 

module. As shown in Fig. 1, the ResNetGB structure 

is utilized as the encoder in this model to insert the 

RF images in the high-level interpretational space. 

The model efficiency is enhanced with the help of 

the number of units in the deep learner. On the other 

hand, there is a challenge in this network called 

vanishing gradients. So, this challenge is resolved 

by the short links in the ResNetGB model, i.e. direct 

paths among the outcome of all layers including the 

input of the nearby unit. The ResNetGB trains the 

residuals. 

As the ResNetGB is comparatively simple to 

adopt, the efficiency is improved by incorporating 

additional units. The initial unit is 7 ∗ 7 

convolutional layer followed by the four different 

units which contain 3, 8, 12 and 3 residual blocks, 

correspondingly. The last unit comprises a mean 

pooling layer. It is observed that the ResNetGB 

architecture is utilized without an FC layer, i.e. PCA 

layer as the encoder of the MSA model. 

The encoder structure 𝐺  having an encoder 

variable 𝜃1 in this ResNetGB-MSA model considers 

the RF scan 𝐼  and creates the interpretation tensor 
(𝐹𝑒𝑐) given in Eq. (1). 

3.2 Multi-scale feature extraction and 

interpretation 

The characteristics are obtained from the series 

of residual blocks in the encoder module. Such 

obtained characteristics near the input scans include 

greater resolution and so contain more data 

regarding the neighborhood characteristics when the 

characteristics near the final unit have multiple 

semantic data. Then, multi-level features such as 

mid and high-level characteristics are concatenated 

to use both types of data in the consecutive phases. 

As such characteristics contain varying spatial 

resolutions, a scaling method is applied to generate 

them all of the same size. Next, a set of various 

features is passed through an atrous convolution to 

retrieve features with varied scales. Convolutional 

filters with varying view dimensions are used in the 

atrous convolution. The network can encode more 

 

 

 
Figure. 1 Multi-scale attention-based mechanism for diabetic retinopathy grade categorization 
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local details by using a limited view for feature 

extraction. But, more global details are considered 

for a larger image context. The resulting multi-scale 

feature interpretation encapsulates the input scan in 

a small subspace, allowing it to train DR symptoms 

of varying sizes, localization and severity. 

3.3 MSA strategy 

Based on the DR criticality grade, the pattern of 

the retina is altered. The alteration can induce 

specific impairment to the RF. To detect such 

impairments, the high-level feature interpretation is 

considered which differentiates various classes. 

However, its efficiency is not satisfactory because of 

the lack of diabetic patterns. Therefore, the attention 

strategy is added to the multi-scale feature 

interpretation to improve the discriminative ability 

of high-level feature interpretation. The main goal of 

this attention strategy is to learn where to search for 

visual loss and adjust the feature space. Particularly, 

the attention strategy in this MSA-ResNetGB 

structure focuses on the abnormal regions in the RF 

images while ignoring the healthy areas.  

In this MSA-ResNetGB model, the attention 

strategy is a sequence of convolution units used for 

the multi-scale feature interpretation. Initially, the 

point-wise convolution is used among the pyramid 

representations to generate a small interpretation as 

given in Eq. (2). In Eq. (2), 𝒜 indicates the attention 

tensor, 𝐹  is the interpretation tensor created using 

the multi-scale unit, 𝕂𝑝𝑤  is the point-wise 

convolution kernel, ℎ, 𝑤 are the height and width of 

the feature maps and 𝑐 is the number of channels. 

Subsequently, the created small interpretation is 

applied to the sequence of convolution to produce 

the attention map 𝒜 ℎ×𝑤×1 which is multiplied by the 

high-level interpretation 𝐹ℎ×𝑤×𝑐  to limit the 

interpretation. To normalize the outcome range from 

0 to 1, sigmoid activation (𝜎) is used. Moreover, the 

global interpretation is retrieved by the Global Mean 

Pooling (GMP) of the final interpretation, which is 

normalized by the GMP data of 𝒜  ℎ×𝑤×1. So, the 

created absolute feature interpretation vector 𝐹  as 

given in Eq. (3).  

In Eq. (3), ⨀ defines point-wise multiplication. 

Significantly, the learning variables for the multi-

scale and attention units are defined as 𝜃2. The MSA 

strategy enhances the training and helps to increase 

the precision of RF image classification depending 

on DR criticality grade because it uses the outcomes 

of the preceding units with different significance. It 

differentiates this presented framework from the 

ResNetGB or other CNN structures that do not 

examine discrepancy. 

3.4 Decoder and classification units 

The decoder module has the FC layers called 

PCA layers to map the feature vectors to the 

required outcomes. The FC units of the pre-learned 

structure are trained from the ImageNet database to 

convert the global high-level characteristics, which 

are not appropriate to the usual and tumor 

characteristics in the RF scans. Also, the FC units 

include a massive amount of trainable variables. To 

solve this problem, all FC units are discarded from 

the modified structure and included the PCA unit 

has 153 neurons to minimize the training difficulty. 

Such 153 neurons are chosen by the greedy method 

depending on ROIs and the modified ResNet model. 

Thus, the PCA unit retrieved the characteristics 

associated with the common and tumor patterns in 

the RF scans. Those obtained characteristics are then 

classified by the categorization unit that applies the 

GB classifier to predict whether the given RF scans 

belong to healthy people or the DR patients with 

their severity grades. 

The key intention of these units is to categorize 

the RF images into healthy and DR with severity 

grades. So, the loss factor (ℒ(𝜃, 𝜑)) is represented 

as the categorization error for the MSA-ResNetGB 

structure with encoder and attention variables 

(𝜃 = 𝜃1 + 𝜃2) along with the categorization branch 

variable 𝜑. The cross-entropy error is implemented 

in both the estimated and the actual labels. 

Moreover, the non-learnable weight is added in 

(ℒ(𝜃, 𝜑))  to reduce the significance of all class 

errors on the absolute error rates. The error aims to 

limit the impact of imbalanced scans during the 

learning phase.  

Because the vital goal of automated DR 

identification is to support the ophthalmologist and 

decrease the screening complexity, this framework 

is developed to assist the physician in detecting DR. 

Also, labeling the normal and abnormal without 

accurate DR grades is much simpler than proper 

grading for the physicians. So, this weak labeling is 

handled conveniently. The secondary process is 

learned with variables (ℒ(𝜃, 𝜑))  by the cross-

entropy error factor. As well, the image 

augmentation schemes including resizing and 

flipping are involved in the training phase to prevent 

overfitting. For this reason, the ROIs around the 

lesions with various dimensions (16×16, 32×32 and 

64×64) are initially extracted, which comprise 

various context data. After that, those are resized to 

the equal dimension and all ROIs are rotated in 

multiple directions [40°, 120°, 180°, 275°] as well as 

flipped horizontally. 
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4. Experimental analysis 

The MSA-ResNetGB model is evaluated using 

four distinct measures, including Accuracy, 

Precision, Recall, and F1-Score, on two different 

benchmark datasets, Kaggle-APTOS and IDRiD. 

The system is learned for 120 epochs employing 

adam optimization with a batch of 3 and a training 

rate of 10−4. 

4.1 Dataset description 

Two benchmark datasets Kaggle-APTOS and 

IDRiD were used in this experimental analysis 

section to evaluate the proposed model. This 

subsection further describes the dataset in detail, 

including the number of collected samples, 

annotated samples, DR grades and ground truths. 

The sample RF images from both datasets are shown. 

4.1.1. APTOS 2019 blindness detection dataset: 

The RF images from the Asia Pacific Tele-

Ophthalmology Society (APTOS) 2019 Blindness 

Detection dataset were used in this study [27]. This 

Kaggle image collection comprises 3662 samples 

obtained from a diverse range of rural Indian people. 

Aravind Eye Hospital in India collected and 

organized the data. However, a panel of medical 

experts analyzed and classified the collected 

samples using the International Clinical Diabetic 

Retinopathy Disease Severity Scale (ICDRSS).  The 

Kaggle-APTOS dataset samples are classified into 

five groups on the scale of 0-4, No DR, Mild DR, 

Moderate DR, Severe DR, and Proliferative DR. 

The first classification comprises healthy RF 

samples that do not have DR. Each of the 

subsequent classifications contains more defective 

retinas than the previous class. The last 

classification, proliferative DR, includes samples 

with vitreous or pre-retinal HEs. Fig. 2 shows the 

RF samples from each class in Kaggle-APTOS. 

4.1.2. Indian diabetic retinopathy image dataset 

(IDRiD): 

IDRiD sub-challenge 2 from the IEEE ISBI -

2018 has been employed in this study [28]. It has 

516 images with a range of clinical states of DR and 

DME, including 413 and 103 training and test 

images, respectively under Disease grading. IDRiD 

is the first dataset to represent an Indian population. 

Fig. 3 shows the RF samples from each class in the 

IDRiD dataset. Each sample in the IDRiD collection 

is annotated with Diabetic Retinopathy and Diabetic 

Macular Edema severity grades at a pixel level. 

Based on the severity scale, the DR grade is labeled  
 

Class 0 Class 1 Class 2 Class 3 Class 4 

Figure. 2 APTOS 2019 blindness detection dataset 

samples from each class (0-4) 

 

Class 0 Class 1 Class 2 Class 3 Class 4 

Figure. 3 Indian diabetic retinopathy image dataset 

(IDRiD) samples from each class (0-4) 

 

into five classes on the scale of 0 – 4, categories 

similar to the Kaggle-APTOS dataset. 

4.2 Performance metrics 

The performance of the MSA-ResNetGB model 

is examined with the cutting-edge models using the 

following measures: Accuracy in Eq. (4), Precision 

in Eq. (5), Recall in Eq. (6) and F1-Score in Eq. (7). 

The following are the mathematical formulae 

utilized to compute the metrics: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃+ 𝑇𝑁 + 𝐹𝑃+ 𝐹𝑁)
             (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                    (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                       (6) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (7) 

 

Whereas True Positive (TP) is the accurate 

categorization of the number of samples as positive, 

True Negative (TN) is the correct classification of 

the number of samples as negative. Further, False 

Positive (FP) denotes the ratio of negative class 

samples categorized as a positive class, while False 

Negative (FN) denotes the ratio of positive class 

samples classified as negative class. 

4.3 Evaluation 

In this section, the proposed MSA-ResNetGB 

model is validated using the performance measures: 

Accuracy, Precision, Recall and F1-Score on two 

public-benchmark datasets. The MSA-ResNetGB 

model was trained on two different datasets to 

classify the DR images based on the severity grades. 
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Table 2. Performance analysis of the proposed model and the cutting-edge models for DR classification on the Kaggle-

APTOS 2019 blindness detection dataset 

Reference Year Classification method Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

[19] 2019 CNN model 77.00 - - - 

[9] 2019 Modified Xception model 83.09 - 88.24 - 

[17] 2021 Composite gated attention DNN 82.54 82.00 83.00 82.00 

[20] 2021 CNN512 model 84.10 - - - 

[21] 2021 Xception Multitask model 86.00 77.00 70.00 73.00 

[22] 2021 Hybrid Inception ResNet-v2 82.18 - - - 

[23] 2019 ExtraTree model 91.07 90.40 89.54 89.97 

[11] 2020 MobileNetV2  model 78.47 68.66 60.01 64.04 

[24] 2021 DenseNet121 model 90.50 93.00 90.00 88.47 

[16] 2021 Tuned XGBoost model 94.20 94.34 92.68 93.51 

[25] 2021 MSA-Net model 84.60 - 91.00 - 

Proposed 2022 MSA-ResNetGB model 94.40 94.52 94.40 94.42 

 

In both datasets, multi-class classification is 

performed as the dataset comprises five classes (0 – 

4). Further, APTOS and IDRiD experimental results 

are discussed in subsequent subsections, which 

include the performance comparison table and 

confusion matrices. The class-wise performance 

evaluation on APTOS and IDRiD are discussed. 

4.3.1. APTOS results: 

In this subsection, the proposed model has 

trained on Kaggle-APTOS 2019 Blindness 

Detection dataset and is evaluated to obtain DR 

classification results. The Kaggle-APTOS dataset 

consists of 3662 training samples in which 10% of 

labeled samples are taken as test data. The multi-

class model is validated by comparing it with the 

latest literature work. Table 2 shows the 

performance analysis of the proposed model and the 

cutting-edge models for DR classification on the 

Kaggle-APTOS 2019 Blindness Detection dataset. 

The most commonly used metric in the literature is 

accuracy and some of the other metrics which are 

not reported in the literature are denoted as ‘-’.  

Table 2 aggregates and compares the recent 

research work on the Kaggle-APTOS dataset. It is 

found from the literature that CNN is the most 

popularly used deep learning method for medical 

image analysis. In Table 2, eleven distinct 

classification models from recent literature were 

utilized to compare the performance of the MSA-

ResNetGB model on the Kaggle-APTOS dataset 

using four metrics: Accuracy, Precision, Recall, and 

F1-Score. According to Table 2, the proposed 

method surpassed the cutting-edge models on the 

Kaggle-APTOS. CNN models such as CNN [19] 

and CNN512 [20] obtained 77% and 84% accuracy, 

respectively, which is 17.4% and 10.3% less than 

the proposed model. The CNN variant models 

mentioned in the literature [9, 11, 17] and [21-25] 

performed better but not greater than the proposed 

model. 

Moreover, the proposed model surpassed the 

Hybrid Inception ResNet-v2 [22] by 12.22%. This 

proves the proposed model's robustness. The 

confusion matrix for the proposed MSA-ResNetGB 

model on the APTOS dataset is shown in Fig. 4. It 

provides the distribution of samples by class, the 

ratio of accurately classified and the misclassified 

samples. In class 0, 70 samples were correctly 

identified as having no DR, 70 samples were 

correctly classified in class 1 as having mild DR, 71 

samples were correctly classed in class 2 as having 

moderate DR and 69 samples were correctly 

classified in class 3 as having severe DR, as well as, 

70 samples were correctly classified in class 4 as 

having PDR. 

4.3.2. IDRiD results: 

In this subsection, the proposed model is trained 

on IDRiD and is evaluated to obtain DR 

classification results. The IDRiD consists of 516 

samples in which 20% of labeled samples are taken 

as test data. The multi-class model is validated by 

comparing it with the latest literature work. 

Table 3 shows the performance analysis of the 

proposed model and the cutting-edge models for DR 

classification on the IDRiD. The most commonly 

used metric in the literature is accuracy and some of 

the other metrics which are not reported in the 

literature are denoted as ‘-’.  

Table 3 aggregates and compares the recent 

research work on the IDRiD. In Table 3, four  
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Table 3. Performance analysis of the proposed model and the cutting-edge classification models for DR classification on 

the IDRiD dataset 

Reference Year Classification method Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

[10] 2019 AlexNet model 90.07 - - - 

[12] 2020 CANet model 65.10 - - - 

[13] 2021 EfficientNet B0 model 86.00 - - - 

[26] 2019 GNN-based model 79.30 - - - 

Proposed 2022 MSA-ResNetGB model 94.17 91.48 91.57 91.45 

 

 
Figure. 4 Confusion matrix for MSA-ResNetGBmodel on 

the Kaggle-APTOS 2019blindness detection dataset 

 

 
Figure. 5 Confusion matrix for MSA-ResNetGB model 

on the IDRiD 

 

distinct classification models from recent literature 

were used to analyze the performance of the MSA-

ResNetGB model on the IDRiD using four metrics: 

Accuracy, Precision, Recall, and F1-Score. 

According to Table 3, CNN and the pre-trained 

models [10, 12, 13, 26] surpassed the proposed 

model on the IDRiD. The proposed model obtained 

4.1% greater than AlexNet model [10], 29.07% 

greater than CANet model [12], 8.17% greater than 

EffiecientNet B0 model [13] and 14.87% greater 

than GNN-based model [26]. The confusion matrix 

for the MSA-ResNetGB model on the IDRiD is 

shown in Fig. 5. 

The matrix shown in Fig. 5 provides the 

distribution of image samples by class, as well as the 

ratio of accurately classified and misclassified 

samples. In class 0, 4 samples were correctly 

identified as having no DR, 31 samples were 

correctly classified in class 1 as having mild DR, 32 

samples were correctly classed in class 2 as having 

moderate DR and 12 samples were correctly 

classified in class 3 as having severe DR, as well as, 

18 samples were correctly classified in class 4 as 

having PDR. 

4.4 Discussion 

The empirical values of the proposed MSA 

ResNetGB model on the Kaggle-APTOS and IDRiD 

datasets are discussed and validated in this section. 

The model performance on the two datasets was 

analyzed and evaluated individually with the 

cutting-edge models in the previous sections. 

According to the previous section, it is discovered 

that both benchmark datasets outperformed the 

literature models. The model learns the DR structure 

with varied feature selection and localization due to 

the combination of local and global feature 

representations, resulting in improved performance. 

The multi-scale attention strategy, which is 

implemented in the high-level interpretation space, 

focuses on the key region in identifying the DR 

severity levels. Table 4 compares the performance 

of the MSA-ResNetGB model on the Kaggle-

APTOS and IDRiD datasets. 

The MSA-ResNetGB model on the Kaggle-

APTOS dataset achieved 94.40% accuracy, 94.53% 

precision, 94.40% recall, and 94.43% F1-Score, 

which is higher than the performance on the IDRiD 

dataset, which achieved 94.18% accuracy, 91.48% 

precision, 91.57% recall, and 91.45% F1-Score. 

When compared to the Kaggle-APTOS dataset, 

the performance loss in IDRiD is mostly due to a 

lack of image samples. For computer vision and  
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Table 4. Performance of MSA-ResNetGB model on the 

Kaggle-APTOS and IDRiD dataset 

Dataset 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 
APTOS 94.40 94.53 94.40 94.43 

IDRiD  94.18 91.48 91.57 91.45 

 

 
Figure. 6 Class-wise performance evaluation of MSA-

ResNetGB model on Kaggle-APTOS and IDRiD dataset 

 

images, data augmentation strategies produce 

effective outcomes. Fig. 6 represents the class-wise 

performance evaluation of the MSA-ResNetGB 

model on the Kaggle-APTOS and IDRiD datasets.  
As previously stated, these datasets have five 

distinct classes labeled from 0 to 4. According to Fig. 

6, on the Kaggle-APTOS dataset, 96%, 93%, 92%, 

99% and 93% of accuracy were attained in classes 0, 

1, 2, 3, and 4, respectively. On the IDRiD dataset, 

accuracy rates of 100%, 94%, 94%, 92%, and 95% 

were reached for classes 0, 1, 2, 3, and 4, 

respectively. The Kaggle-APTOS dataset shows that 

class 3 performs better while class 2 performs less. 

In the IDRiD dataset, however, class 0 generates 

better results while class 3 produces lower results. 

5. Conclusion 

In this paper, the MSA-ResNetGB model was 

proposed to detect and classify RF samples based on 

DR severity grades. Initially, the encoder network 

was used to integrate the RF picture into the high-

level feature interpretation space. The MSFP model 

was then used to describe the RF pattern at various 

scales. In addition, the MSA strategy was used on 

the high-level interpretation to increase the feature 

interpretation's differentiation efficiency. Further, 

the whole MSA-ResNetGB structure was trained on 

the cross-entropy error to correctly characterize the 

DR criticality grades. Finally, when validated with 

cutting-edge models to classify DR severity classes, 

the MSA-ResNetGB test results on Kaggle-APTOS 

and IDRiD revealed 94.40% and 94.17% accuracy, 

respectively. 
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