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Abstract: Due to technology scaling, network-on-chip (NoC) become the viable solution for on-chip many-core 

systems. The most critical concern of NoC is congestion management caused due to heavy communication traffic 

between nodes. Without an appropriate congestion resolution strategy for reducing heavy in-network traffic, the 

efficiency of the entire network is damaged severely. In this paper, an interval based record-keeping mechanism is 

presented to reduce network traffic and congestion by maintaining a history table and previous packet transaction 

records at each node. Proposed method performs certain validity checks before allowing using previous transaction 

record from history table. The performance of the technique is investigated in terms of average delay and compared 

to the state-of-the-art routing algorithms using the Access Noxim simulator. The simulation results demonstrate that 

the proposed method has outperformed in terms of global average delay, with 8-12% improvement, the average 

number of hits is 26-61% greater than misses under different synthetic traffic. The proposed algorithm has been 

tested under various topological configurations for efficiency evaluations. 
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1. Introduction 

System-on-chip (SoC) is an emerging technology 

containing many processing elements on a single 

chip.  Most SoC bus system contains dedicated signal 

wires for communication. A new paradigm that helps 

to facilitate SoC limitations is network-on-chip 

(NoC). Hundreds of microprocessors can 

communicate by using NoC infrastructure [1]. NoC 

contains a common set of wires used to carry similar 

signals. Packets can simultaneously use different 

links of NoC to achieve a high level of parallelism 

hence, the complexity of integrated circuits increases. 

NoC also enhances performance in the form of 

throughput, latency and scalability compared to 

traditional interconnection architectures. However, 

thermal aggravation [2], transient and permanent 

defects [3], aging [4], high power density [5], and 

congestion [6] are some of the variables that 

contribute to NoC performance deterioration. 

In order to utilize NoC’s potential benefits and 

achieve a high level of parallelism, a route discovery 

algorithm must be devised and implemented. Unlike 

traditional computer communication networks, 

packets in NoC are of great significance and they are 

not permitted to be dropped even in the presence of 

congested regions [7]. This characteristic is known as 

lossless. As a result, the most critical concern in the 

NoC is congestion management; lacking appropriate 

solutions for congestion situations, the efficacy of the 

portion or entire network may be severely damaged 

[8]. Congestion on the path between source and 

destination is also known as In-network congestion 

[9]. In-network various solutions have been proposed 

such as regulating packet arrival or departure and by 

keeping the record of previous iterations and 

predictions [10]. To address in-network congestion, 

several approaches such as altering the design of 

routers and buffers [11], isolating traffic flows [12], 

employing adaptive congestion-aware routing 

algorithms, and so on have been proposed. 
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Congestion-aware adaptive routing can determine the 

allowed output port for each packet. Path selection 

approaches are utilized at each hop to pick the 

appropriate output port depending on network status, 

as well as ways for spreading congestion information 

to each router to keep each router fully informed 

about the current condition of the network. 

In this work proposed strategy addresses in-

network congestion along with ability to maintain 

status of nearby routers for future use. A record 

keeping mechanism is presented to maintain 

localized history tables after each transaction at every 

node. Four parameters are recorded in the history 

table: incoming packet direction, target packet 

direction, calculated cost and sampling time. If an 

entry is found in the table and it is valid in terms of 

time lapsed, and also the latest cost of the neighbour 

is within the acceptable range, then a packet will be 

sent to that neighbour and updating the history table 

for future transactions.  

Following are the contributions of this work. 

1. An interval based record keeping mechanism 

(IBRKM) addresses in-network congestion along 

with the ability to reduce communication 

overhead for transfer of vital stats of nearby 

routers for future use is proposed. 

2. IBRKM works on a history table record of 

transactions carried through the node under 

validity conditions.  

3. Extensive simulations were performed with 

different synthetic traffics to compare the results 

with existing techniques. 

The organization of the paper is as follows. 

Related work on history based congestion-aware 

routing techniques is presented in Section 2. 

Methodology for the proposed routing approach has 

been explained in detailed Section 3. Simulation 

setup along with results and discussion has been 

expressed in Section 4. In Section 5, this work has 

been concluded.  

2. Related work 

Recent history-based congestion-aware NoC 

routing algorithms are briefly explained and critically 

analysed in this section. During idle cycles, 

congestion information propagates on conventional 

data links in the link-sharing method [13]. Compared 

to its counterparts, the link-sharing method provides 

a fast and more comprehensive network status 

overview to each router. This allows making more 

intelligent routing decisions to avoid congestion 

regions. Better routing decisions may be made when 

more exact and detailed network congestion 

information is obtained. To discover less congested 

paths, the routing method in [6] employs two routing 

tables. One table records directions depending on 

propagation delay, while the other records queuing 

delays of each router port. Whereas, the presence of a 

bottleneck is indicated by the queuing delay. 

To balance traffic distribution and meet 

efficiency criteria, [14] provides a fully adaptive 

routing technique with energy and buffer awareness.  

A model feature network state is suggested to 

alleviate network congestion. It considers both 

historical and present network situations for decision 

making. Fully adaptive routing improves 

performance by reducing network traffic congestion 

and fulfilling standards of high priority packet 

performance criteria. Last-level cache (LLC) [15] is a 

congestion control approach in which the NoC router 

is equipped with modest memory space to hold 

instances of heavily used cache blocks. However, 

non-negligible hardware overhead is observed. 

An adaptive algorithm for reducing the 

transferring packet size by sending the calculated 

differences between packets [16]. On the bases of the 

data localization and error tolerance, this technique 

decreases traffic volume in NoCs without sacrificing 

substantial quality in the application output. It can 

only propagate limited congestion information. When 

a packet is generated, the algorithm presented in [10], 

stores a recommended route in the header of the 

packet based on betweenness centrality, prior packet 

history routes, and adaptively degree. Packets can 

proceed independently on the path until it hits a 

severe congestion situation. The congestion-aware 

adaptive routing algorithm will then execute and 

define the packet’s next neighbour. The route can be 

altered as a result of adaptive routing. However route 

can be altered for the fixed number of times. At 

reaching a severe congestion situation, there may not 

be too many possibilities to overcome congestion. 

2D adaptive odd-even routing algorithm extended 

to 3D adaptive odd-even routing presented in [17]. 

According to the 3D OE (three-dimensional Odd-

Even) routing method, few turns such as Up-xy are 

not permitted in every even layer, whereas Xy-Down 

are not permitted in every odd layer. This feature, on 

the other side, limits total adaptability and affects 

system performance even further. 

The Q-learning mechanism presented in [11], 

suggested a feedback-based proactive thermal 

management method. An agent learns from its own 

action during system activity in a simulation 

environment. The reward values for agents are 

recorded and updated in the table located in the 

router also known as Q-table. Hence it does not 

require learning packets to distribute data over the 

chip. Packets are detoured from high-risk zones as 
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rapidly as possible based on Q-table values. Q-

learning-based routing, on the other hand, is based on 

average temperatures, which are always lower than 

the router's peak temperature, resulting in poor 

routing options. 

To improve overall node utilization Q-learning 

based adaptive routing is presented in [18], focusing 

on balancing inter-layer traffic distribution. It also 

offers an extensive congestion investigation to reduce 

performance degradation. It discovers regional 

congestion and thermal hotspots by distributing 

traffic of overheated regions in a layer and 

continually learning as networks expand. In order to 

make an effective routing decision, it employs a Q 

learning-based selection of routes for the packets. To 

keep record of the status Q-table is employed in each 

router. Propagation of information about congestion 

situation is slow along with high update traffic. 

A collaborative thermal-aware adaptive routing 

(CTTAR) strategy [19] is presented for 

synchronizing network traffic and temperature 

information. Due to unnecessary packet switching in 

routers, hotspots are produced. Dynamic buffer 

change is employed in CTTAR. To decrease the pace 

of temperature rise, routing restrictions are applied 

based on expected thermal information around 

potential overheated zones. Heat production and 

dispersion will be limited by the dynamic buffer 

update. Thermal regions are converted to congestion 

areas by CTTAR. However, in a high-congestion 

condition, it is ineffective. 

TADWR [20], stands for a thermal-aware 

dynamic weighted routing technique which allows 

packets to dynamically adjust the weight of the cost 

model according to meet requirements of that 

particular area where node is situated and adaptively 

select next node. A dynamic model can work in both 

thermal and congestion scenarios. However, if 

thermal issues and congestion issues occur 

concurrently, TADWR is capable of providing a 

balanced approach to dealing with both of these 

issues. The cost model requires vital stats of 

neighbouring nodes such as temperature, workload 

and buffer status, to choose an appropriate neighbour.  

At every node, fetching stats from all neighbours 

increase communicating overhead.  

Adaptive thermal-aware routing ATAR [21] 

traverses packets in 3D NoC based on the weighted 

cost model computation. Temperature is assigned 

fixed highest weight, subsequently decreasing weight 

to parameters such as path length, next neighbour 

queue length, and workload. Queue length and 

workload are solely responsible for providing 

congestion information. To choose the best 

neighbour for forwarding the intended packet, each 

router calculates the cost. Change in values of 

parameters depends on temperature change or change 

in network condition which will require a certain 

amount of time. All decisions were made at an 

individual node level by ATAR. Communication 

overhead for transfer of vital stats from neighbour 

nodes is extremely high in order to make decisions 

each time. The same procedure is repeated even in a 

very small span of time. Sometimes this repetition 

interval is so small that fetched stats are barely 

changed. Hence, this results in exhausting resources 

extensively and increasing delays in decision making. 

Both ATAR and TADWR are thermal-aware as well 

as congestion-aware routing algorithms. 

In 3D NoC, it is challenging to reduce traffic in 

NoC, it is even harder in the presence of 

communication overhead for transfer of vital stats 

from neighbouring nodes, which is supposed to help 

and improve routing algorithms. Keeping record of 

all successful transactions not only reduces 

communication overhead for transfer of vital stats 

from neighbouring nodes in future but it also helps to 

take better decisions under specified supervision. As 

multiple paths exit between source and destination 

choosing a next neighbour is even more critical.  

3. Methodology 

The goal of the presented methodology is to 

reduce communication overhead to transfer vital stats 

from neighbour nodes in order to make decisions 

each time. This work presents a record keeping 

mechanism for maintaining localized history tables 

after each transaction at every node for future use.  

Consider if a packet is generated from the parent 

node, now it has to decide which way the packet 

should be sent to reach its destination. Each node has 

a small history table that records all previous 

activities. Only four parameters are recorded during 

each successful transfer i.e. incoming packet 

direction, target packet direction, calculated cost and 

sampling time. Incoming packet direction is the 

direction from which the packet is arriving. Target 

direction means after completing its process, the 

packet is sent in which direction. Time stamping is 

the time at which an arriving packet is sent towards 

its destination. 

Abstract level router architecture for the proposed 

scheme is presented in Fig. 1. The routing and 

arbitration unit controls the crossbar in order to 

forward packets from incoming channels to output 

channels. This unit forwards the incoming packet 

information to IBRKM unit for decision making. 

IBRKM checks the history table to retrieve record of 

any previous related decision. Initially, there will be  
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Figure. 1 Abstract level router architecture for IBRKM 

 

no record hence it will return invalid to routing unit 

and routing unit will access cost of all directions, 

forward packet to minimum cost node and update 

local history table for future occurrences. If a record 

exists in the history table, IBRKM fetch record from 

the table and fetches the latest cost of the targeted 

node. Along with some validation checks discussed 

later. If the IBRKM is able to find the next neighbour, 

it will inform the routing unit by sending the target 

direction and updating the history table for the future. 

Considering a packet arriving from any of the 

incoming directions Fig. 2, at first algorithm will 

check the record of previous entry for that particular 

incoming direction otherwise it will calculate cost of 

all neighbours and calculate best node and update 

table entry for future. If a record is found, now it is 

time to check its validity of the record. Entries in the 

table may be old and may not be valid any more. In 

this work, a mechanism for checking the validity of 

the entry is devised. It is observed that lower packet 

injection rates due to less traffic and less congestion 

table entries can be considered valid for a large 

amount of time whereas validity time at a higher 

packet injection rate should be considerably shorter.  

 

validity period =  
1

PIR
+ table sampling time    (1) 

 

Packet injection rate (PIR) is defined as 

flits/cycle/node and usually varies from 0.02 to 0.22. 

In order to calculate the difference of time in cycles 

where table entry should remain valid is proposed in 

Eq. (1). For lower PIR validity period should be 

greater and vice versa for higher PIR due to less 

traffic generation in lower PIR than higher PIR. A 

validity period is a time in which a particular entry 

will be considered valid as long as it is greater than 

the current simulation time. If the entry is invalid it 

will simply calculate the cost of all neighbours and 

calculate the best node, and update the table entry for 

future instances. But if the entry is valid it only 

fetches parameters of the previous best neighbour 

present in the table entry and recalculates its new 

cost. There is a possibility that entry is valid 

according to the time period but may experience an 

increase or decrease in cost due to changes in  
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Figure. 2 IBRKM strategy flow chart 

 

network conditions. Tiny fractional changes up to a 

certain limit (ɣ) can be considered valid but higher 

changes may lead to disastrous decisions. To 

calculate the change in percentage cost is proposed in 

Eq. (2). 

 

∆ cost percentage =  |
new cost−table_cost

table_cost
| × 100 (2) 

 

Where new cost is the current cost and table_cost 

is the previously calculated cost and fetched from the 

history table. In order to validate a change in cost 

percentage it should be less than a certain limit (ɣ). 

In this work the validity limit has been defined by 

performing a set of simulations in section IV. 

Suppose the changes are greater than a certain limit 

(ɣ) it will simply calculate the cost of all neighbours 

and calculate the best node and update the table entry 

for the future. In that case, it will simply calculate the 

cost of all neighbours, calculate the best node, update 

the table entry for the future, and consider hit in the 

history table. Hit is considered only if entry is found 

in the table; it is valid in terms of time and also the 

cost variation is also in the acceptable range. Failing 

to satisfy any conditions will be considered as a miss 

from the history table. If the variation is within the 

prescribed limit, the next direction is returned and 

updates the history table for future transactions. 
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Algorithm 1. IBRKM 

Input: destination node, source node, T, L, Q, W, dir_in 

Output: path 

1: function IBRKM( route_data, d_node , s_node) 

2:  if s_node= d_node then 

3:    directions ← direction_local 

4:  else 

5:     set i_node ← s_node 

6:     while i_node ≠ d_node  do 

7:         if( Node[i_node].dir_in[2] != 0) 

8:         if ((1/PIR)+ Node[i_node].dir_in[3] > 

Currentcyclenum) 

9:           latest_cost ← α1.e.T + α2.e. L + α3.e. Q + α4.e. 

W 

10:         if (((latest_cost – table_cost)/table_cost)*100) < 

ɣ) 

11:                set Node[i_node].dir_in[3] = 

Currentcyclenum 

12:                set Node[i_node].dir_in[2] = latest_cost 

13:                set direction ← Node[i_node].dir_in[1] 

14:                P=push.back.direction 

15:                break 

16:        set dir ← getAvailableDirections(i_node) 

17:           for k Є dir do 

18:               set e ← i_node 

19:               set cost ← α1.e.T + α2.e. L + α3.e. Q + α4.e. 

W 

20:               if V[s_node][i_node]+cost 

<V[s_node][e.next] then 

21:                    set V[s_node][e.next]← cost 

22:         end for 

23:         set i_node ← mincostNode(V, s_node, 

directions) 

24:         set direction ← direction_mincostnode( i_node) 

25:                set Node[i_node].dir_in[3] = 

Currentcyclenum 

26:                set Node[i_node].dir_in[2] = mincost 

27:                set Node[i_node].dir_in[1] = direction 

28:                P= push.back.direction 

29:      end while  

30:     end else 

31: return directions 

 

IBRKM algorithm has three sections. The first 

section, checks the history table and performs 

validity checks. If validity is compromised or entry is 

not found, will calculate all neighbours' cost and 

calculate the new best node in the second section. 

The third section, will update the record of the 

history table according to the finding of section two 

for future references.  

Algorithm 1 accepts arguments like the route data, 

the destination node and the source node. Whereas, 

route data contains parameters of node such as path 

length, Temperature, next router buffer, and 

workload where path length is donated by L, 

temperature is donated by T, next router buffer is 

donated by Q, and workload is donated by W. The 

source node (s_node) is the node from which the 

packets are generated. The destination node (d_node) 

is the node where the packets will be terminated. The 

incoming direction of the packet which can be from 

South, North, West, East, Up, Down, or Local, is 

represented by dir_in. route_data contains T, L, Q, W 

and dir_in. The algorithm will first examine the 

position of the destination and source nodes. If 

destination node and source node is same, will return 

after pushing direction Local in [line 2-3]. Now it 

will search in the history table to explore the 

previous record. If cost in the table is zero, it is 

accessing this record for the first time. So, the 

algorithm will calculate all possible neighbours and 

calculate their cost [line 17-21]; after calculating 

least cost node information is updated in the history 

table for future references. If the record is found for 

the same incoming direction, it will calculate the new 

cost for that neighbour only and if inspection of time 

validity and cost are validated. If entry is not found 

or invalid, it will look for all possible neighbour 

directions form the current node in [line 7-9]. All 

available directions for the node can be determined 

by getAvailableDirections() function. Fetch values 

for the parameters T, L, Q, and W for the 

intermediate node represented by i_node. The sum of 

weighted cost is then computed. mincostNode() is 

used to determine the node number of minimum cost 

node among all the neighbours. If the computed cost 

is less than the existing cost, the cost matrix is 

updated at [line 10]. The lowest cost node will now 

become the new i_node. Update record of minimum 

cost, target direction and current cycle number in the 

history table for future occurrences [line 11-14], 

whereas the current cycle number is determined by 

Currentcyclenum() function. The direction of the 

minimum cost node is pushed in directions by 

push.back.directions and returned. If any of the 

validity conditions are false, the algorithm will 

calculate all possible neighbours and calculate their 

cost [line 17-21], the cost model considered in this 

work is similar to [21] in [line 19], after calculating 

least cost node information is updated in the history 

table for future references [line 25-28]. The 

minimum cost node direction is pushed in a direction 

array and repeated until the destination is arrived. 

4. Results and discussion 

A cycle-accurate Access Noxim [22] simulator 

has been used to simulate IBRKM. The Access 

Noxim simulator works in conjunction with Noxim 
[23] and HotSpot [24]. Noxim was built with the 

System C library. A command-based interface is 

used to define and set NoC settings, such as the  
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Table 1. Simulation parameters 
Parameters Value 

Simulation Time (Cycles) 200,000 

Network Dimension  8 x 8 x 4 

Packet size (Flits) 2~10 

Buffer Size (Flits) 16 

Warm-up Time (Cycles) 10,000 

Synthetic Traffic Pattern Bit-Reversal, Random, 

Shuffle 

Packet injection interval 0.02 

Packet injection rate (PIR) 

(flits/cycle/node) 

0.02-0.22 

 

buffer capacity, routing algorithm, network size and 

dimensions, traffic distribution system, number of 

network nodes, packet injection rate, etc. The 

simulator is capable of evaluating NoC capacity in 

terms of thermal profile, power consumption, 

throughput, and global average delay. For deep 

investigation of a single transaction Access-Noxim 

also provides a transaction level analysis mode. 

4.1 Simulation setup 

The proposed routing algorithm's performance is 

evaluated using an 8 x 8 x 4 3D NoC. Table 1 lists 

the parameters considered in the simulations. 

Different synthetic traffics utilized to analyse the 

capabilities of IBRKM compared to its adversaries. 

IBRKM is compared with state-of-the-art TADWR, 

ATAR, OE 3D, and fully-adaptive routing. Different 

PIR (Packet Injection Rate) simulations are made to 

run for 200,000 cycles. PIR (flits/cycle/node) is 

ranging from 0.02 to 0.22 with a 0.02 interval. The 

time interval distribution determines the occasion at 

which the packet is injected. 

4.2 Performance evaluation 

Bit-reversal, random, and shuffle traffic patterns 

are used in this section. Graphs for global average 

delay (cycle) are exhibited for each synthetic traffic. 

Fig. 3(a) depicts the global average delay of 3D OE, 

fully-adaptive routing, ATAR, TADWR, and 

IBRKM in Bit-Reversal traffic. As it can be seen that 

injection rates ranging from 0.02 to 0.06 for ATAR 

and from 0.02 to 0.10 for TADWR, both algorithms 

produce similar results compared to IBRKM; 

however, as the injection rate increases, the results 

begin to diverge. In comparison to state-of-the-art 

routing algorithms, the graph demonstrates that after 

0.10, IBRKM with a history-based record 

mechanism has sustained. However, due to lack of 

ability to handling heavy traffic loads both fully 

adaptive and 3D OE routing rocketed sharply even at 

lower PIR. Percentage improvement in global 

average delay is 12.07 % over TADWR and 49.75 % 

over ATAR in Bit-Reversal traffic.  

Fig. 3(b) depicts the global average delay of 3D 

OE, fully-adaptive routing, ATAR, TADWR and 

IBRKM under random traffic. It can be seen that 

injection rates ranging from 0.02 to 0.10 for ATAR 

and from 0.02 to 0.12 for TADWR, both algorithms 

produce similar results compared with IBRKM, but 

when injection rates rise beyond 0.12, the difference 

becomes more pronounced. Analysing the graph it is 

apparent that after 0.12, IBRKM with a history-based 

record mechanism sustained as compared to ATAR 

and TADWR. However, due to lack of ability to 

handling heavy traffic loads both fully adaptive and 

3D OE routing flew vigorously even at lower PIR. 

Percentage improvement in global average delay is 

11.17 % over TADWR and 32.24 % over ATAR. 

The global average delay of 3D OE, fully-

adaptive routing, ATAR, TADWR and IBRKM 

under Shuffle traffic is presented in Fig. 3(c). It can 

be seen that while the injection rate is between 0.02 

and 0.04 for ATAR and from 0.02 to 0.12 for 

TADWR, both algorithms produce identical results 

compared to IBRKM, but when the injection rate 

exceeds PIR 0.12, the difference between TADWR, 

ATAR and IBRKM becomes evident. Analysing the 

graph, it is noticeable that after the PIR 0.12, IBRKM 

with a history-based record keeping mechanism 

performed better than TADWR and ATAR. However, 

due to lack of ability to handling heavy traffic loads 

both fully adaptive and 3D OE routing shot severely 

even at lower PIR.  Percentage improvement in 

global average delay is 8.12% over TADWR and 

36.43 % over ATAR. 

Considerable improvement in terms of hits can be 

observed due to the history-based record keeping 

mechanism observed in Fig. 4. It can be seen that at 

lower packet injection rates history table hits are 

greater than misses; it is because the number of hits 

depends on validity conditions. If validity conditions 

are relaxed, especially if it is allowed always to keep 

the historical data valid, hits will increase many folds 

but authenticity will be compromised. Hence a 

balanced approach is required to keep routing 

significant. 

In Fig. 4, different values for ɣ such as 5 %, 10 %, 

and 20 % are applied respectively on Bit-Reversal 

traffic to observe their impact on the number of hits 

at various packet injection rates. The hit ratio can be 

calculated using Eq. (3) given below. 

 

𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 (%) = 
Number of Hits 

Number of Hits+Number of Misses
 x 100 (3) 
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(a) 

 

 
(b) 

 

 
(c) 

Figure. 3 Comparison of global average delay under 

various traffic patterns: (a) Bit-reversal traffic, (b) Random 

traffic, and (c) Shuffle traffic 

 

Increasing the validity difference for cost from 5 % 

to 20 % for Bit-Reversal traffic it can be seen that at 

5 % Fig. 4(a) the number of hits as compared to 

misses are less than 10 % Fig. 4(b) and 20 % Fig. 

4(c). On close examination it is observed that 20 % 

of hits are similar to 10 %. This means that the value  
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(b) 

 

 
(c) 

Figure. 4 Number of hits vs misses in millions when: (a) 

ɣ=5, (b) ɣ=10, and (c) ɣ=20 

 

for ɣ should not be greater than 10 %. Hence during 

our experiments ɣ is assigned 10 % and various 

traffic synthesis are applied, such as Random, Bit-

Reversal and Shuffle. It is observed that 26.34 % 

more hits in Random traffic, 46.97 % more hits in 

Bit-Reversal and 60.24 % more hits in Shuffle traffic.  

In this work, IBRKM has been tested with 

different configurations of 3D mesh topology 

namely: 2x2x4, 4x4x4, 8x8x4. Where, each of the  
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Figure. 5 IBRKM hit ratio under bit-reversal traffic 

 

 
Figure. 6 IBRKM hit ratio under random traffic 

 

configurations has different number of nodes and 

links. IBRKM has been assessed under synthetic 

traffic such as Bit-Reversal, Random and Shuffle 

traffic. 

In general as PIR increases, the hit ratio suffers 

due to increasing traffic and the expiry of validity 

checks. In Bit-Reversal traffic initially at lower PIR, 

6x6x4 performed better, and as PIR is high it 

performs poorly in Fig. 5. Whereas, 8x8x4 and 

4x4x4 shows similar but stable response to Bit 

Reversal traffic. 

Random traffic is also applied to the various 

topologies Fig. 6. 8x8x4 stood up and performed far 

better than other counterparts. Simultaneously, 4x4x4 

is amongst the worst. As 8x8x4 is the biggest 

topology and 2x2x4 is the smallest.  

Shuffle traffic is applied in Fig. 7. All 

configurations have performed well initially and as 

the PIR increases hit ratio started to reduce. 8x8x4 

performs slightly better even in higher PIR. Overall 

in all traffics, 8x8x4 has been performing slightly 

better than other configurations, which helps the 

argument that IBRKM is scalable and better 

performance is observed in bigger configurations. 

The hardware overhead of IBRKM over TADWR 

and ATAR is substantially 25% higher. Besides 

higher area, it presents approximately 52% better 
 

 
Figure. 7 IBRKM hit ratio under shuffle traffic 

 

Table 2. Area efficiency (T/H) comparison after 

normalization 

 ATAR TADWR IBRKM 

Throughput 

Improvement (T) 
1 1.41 1.90 

Hardware Cost 

Overhead (H) 
1 1.12 1.25 

Area Efficiency 

(T/H) 
1 1.26 1.52 

 

efficiency over ATAR and 25% over TADWR. A 

normalized comparison of throughput and area is 

given in Table 2. 

5. Conclusion 

Congestion in NoC due to heavy traffic is a 

concern that needs to be addressed. Congestion is 

capable of generating more concerns such as thermal 

difficulties, thermal and traffic hotspots and 

increased delay in the network.  Congestion can be 

removed by improving congestion strategy or by 

reducing excessive in-network traffic load. This work 

proposes IBRKM routing algorithm that addresses 

in-network congestion and reduce communication 

overhead for transfer of vital stats of nearby routers 

for future use. IBRKM works on a history table 

record of previous transactions carried in the node 

under validity conditions. The Proposed algorithm 

performs certain validity checks before using 

recorded iteration from the history table. With the 

help of proposed technique up to 26-61 % of valid 

records were found from the history table which is a 

significant improvement. As far as global average 

delay is concerned, 8 to 12 % improvement is found 

under different synthetic traffic compared to the 

state-of-the-art. IBRKM is scalable and better 

performance is observed in bigger configurations. 
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