
Received: April 26, 2022. Revised: June 15, 2022. 509

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.46

Interval Based Transaction Record Keeping Mechanism for Adaptive 3D

Network-on-Chip Routing

Muhammad Kaleem1,2* Ismail Fauzi Bin Isnin1

1School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

2Department of Computer Science & Information Technology, University of Sargodha, Sargodha, Pakistan

* Corresponding author’s Email: kaleem.muhammad@graduate.utm.my

Abstract: Due to technology scaling, network-on-chip (NoC) become the viable solution for on-chip many-core

systems. The most critical concern of NoC is congestion management caused due to heavy communication traffic

between nodes. Without an appropriate congestion resolution strategy for reducing heavy in-network traffic, the

efficiency of the entire network is damaged severely. In this paper, an interval based record-keeping mechanism is

presented to reduce network traffic and congestion by maintaining a history table and previous packet transaction

records at each node. Proposed method performs certain validity checks before allowing using previous transaction

record from history table. The performance of the technique is investigated in terms of average delay and compared

to the state-of-the-art routing algorithms using the Access Noxim simulator. The simulation results demonstrate that

the proposed method has outperformed in terms of global average delay, with 8-12% improvement, the average

number of hits is 26-61% greater than misses under different synthetic traffic. The proposed algorithm has been

tested under various topological configurations for efficiency evaluations.

Keywords: Congestion-aware, Network-on-chip, Routing algorithms, Adaptive routing algorithms.

1. Introduction

System-on-chip (SoC) is an emerging technology

containing many processing elements on a single

chip. Most SoC bus system contains dedicated signal

wires for communication. A new paradigm that helps

to facilitate SoC limitations is network-on-chip

(NoC). Hundreds of microprocessors can

communicate by using NoC infrastructure [1]. NoC

contains a common set of wires used to carry similar

signals. Packets can simultaneously use different

links of NoC to achieve a high level of parallelism

hence, the complexity of integrated circuits increases.

NoC also enhances performance in the form of

throughput, latency and scalability compared to

traditional interconnection architectures. However,

thermal aggravation [2], transient and permanent

defects [3], aging [4], high power density [5], and

congestion [6] are some of the variables that

contribute to NoC performance deterioration.

In order to utilize NoC’s potential benefits and

achieve a high level of parallelism, a route discovery

algorithm must be devised and implemented. Unlike

traditional computer communication networks,

packets in NoC are of great significance and they are

not permitted to be dropped even in the presence of

congested regions [7]. This characteristic is known as

lossless. As a result, the most critical concern in the

NoC is congestion management; lacking appropriate

solutions for congestion situations, the efficacy of the

portion or entire network may be severely damaged

[8]. Congestion on the path between source and

destination is also known as In-network congestion

[9]. In-network various solutions have been proposed

such as regulating packet arrival or departure and by

keeping the record of previous iterations and

predictions [10]. To address in-network congestion,

several approaches such as altering the design of

routers and buffers [11], isolating traffic flows [12],

employing adaptive congestion-aware routing

algorithms, and so on have been proposed.

Received: April 26, 2022. Revised: June 15, 2022. 510

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.46

Congestion-aware adaptive routing can determine the

allowed output port for each packet. Path selection

approaches are utilized at each hop to pick the

appropriate output port depending on network status,

as well as ways for spreading congestion information

to each router to keep each router fully informed

about the current condition of the network.

In this work proposed strategy addresses in-

network congestion along with ability to maintain

status of nearby routers for future use. A record

keeping mechanism is presented to maintain

localized history tables after each transaction at every

node. Four parameters are recorded in the history

table: incoming packet direction, target packet

direction, calculated cost and sampling time. If an

entry is found in the table and it is valid in terms of

time lapsed, and also the latest cost of the neighbour

is within the acceptable range, then a packet will be

sent to that neighbour and updating the history table

for future transactions.

Following are the contributions of this work.

1. An interval based record keeping mechanism

(IBRKM) addresses in-network congestion along

with the ability to reduce communication

overhead for transfer of vital stats of nearby

routers for future use is proposed.

2. IBRKM works on a history table record of

transactions carried through the node under

validity conditions.

3. Extensive simulations were performed with

different synthetic traffics to compare the results

with existing techniques.

The organization of the paper is as follows.

Related work on history based congestion-aware

routing techniques is presented in Section 2.

Methodology for the proposed routing approach has

been explained in detailed Section 3. Simulation

setup along with results and discussion has been

expressed in Section 4. In Section 5, this work has

been concluded.

2. Related work

Recent history-based congestion-aware NoC

routing algorithms are briefly explained and critically

analysed in this section. During idle cycles,

congestion information propagates on conventional

data links in the link-sharing method [13]. Compared

to its counterparts, the link-sharing method provides

a fast and more comprehensive network status

overview to each router. This allows making more

intelligent routing decisions to avoid congestion

regions. Better routing decisions may be made when

more exact and detailed network congestion

information is obtained. To discover less congested

paths, the routing method in [6] employs two routing

tables. One table records directions depending on

propagation delay, while the other records queuing

delays of each router port. Whereas, the presence of a

bottleneck is indicated by the queuing delay.

To balance traffic distribution and meet

efficiency criteria, [14] provides a fully adaptive

routing technique with energy and buffer awareness.

A model feature network state is suggested to

alleviate network congestion. It considers both

historical and present network situations for decision

making. Fully adaptive routing improves

performance by reducing network traffic congestion

and fulfilling standards of high priority packet

performance criteria. Last-level cache (LLC) [15] is a

congestion control approach in which the NoC router

is equipped with modest memory space to hold

instances of heavily used cache blocks. However,

non-negligible hardware overhead is observed.

An adaptive algorithm for reducing the

transferring packet size by sending the calculated

differences between packets [16]. On the bases of the

data localization and error tolerance, this technique

decreases traffic volume in NoCs without sacrificing

substantial quality in the application output. It can

only propagate limited congestion information. When

a packet is generated, the algorithm presented in [10],

stores a recommended route in the header of the

packet based on betweenness centrality, prior packet

history routes, and adaptively degree. Packets can

proceed independently on the path until it hits a

severe congestion situation. The congestion-aware

adaptive routing algorithm will then execute and

define the packet’s next neighbour. The route can be

altered as a result of adaptive routing. However route

can be altered for the fixed number of times. At

reaching a severe congestion situation, there may not

be too many possibilities to overcome congestion.

2D adaptive odd-even routing algorithm extended

to 3D adaptive odd-even routing presented in [17].

According to the 3D OE (three-dimensional Odd-

Even) routing method, few turns such as Up-xy are

not permitted in every even layer, whereas Xy-Down

are not permitted in every odd layer. This feature, on

the other side, limits total adaptability and affects

system performance even further.

The Q-learning mechanism presented in [11],

suggested a feedback-based proactive thermal

management method. An agent learns from its own

action during system activity in a simulation

environment. The reward values for agents are

recorded and updated in the table located in the

router also known as Q-table. Hence it does not

require learning packets to distribute data over the

chip. Packets are detoured from high-risk zones as

Received: April 26, 2022. Revised: June 15, 2022. 511

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.46

rapidly as possible based on Q-table values. Q-

learning-based routing, on the other hand, is based on

average temperatures, which are always lower than

the router's peak temperature, resulting in poor

routing options.

To improve overall node utilization Q-learning

based adaptive routing is presented in [18], focusing

on balancing inter-layer traffic distribution. It also

offers an extensive congestion investigation to reduce

performance degradation. It discovers regional

congestion and thermal hotspots by distributing

traffic of overheated regions in a layer and

continually learning as networks expand. In order to

make an effective routing decision, it employs a Q

learning-based selection of routes for the packets. To

keep record of the status Q-table is employed in each

router. Propagation of information about congestion

situation is slow along with high update traffic.

A collaborative thermal-aware adaptive routing

(CTTAR) strategy [19] is presented for

synchronizing network traffic and temperature

information. Due to unnecessary packet switching in

routers, hotspots are produced. Dynamic buffer

change is employed in CTTAR. To decrease the pace

of temperature rise, routing restrictions are applied

based on expected thermal information around

potential overheated zones. Heat production and

dispersion will be limited by the dynamic buffer

update. Thermal regions are converted to congestion

areas by CTTAR. However, in a high-congestion

condition, it is ineffective.

TADWR [20], stands for a thermal-aware

dynamic weighted routing technique which allows

packets to dynamically adjust the weight of the cost

model according to meet requirements of that

particular area where node is situated and adaptively

select next node. A dynamic model can work in both

thermal and congestion scenarios. However, if

thermal issues and congestion issues occur

concurrently, TADWR is capable of providing a

balanced approach to dealing with both of these

issues. The cost model requires vital stats of

neighbouring nodes such as temperature, workload

and buffer status, to choose an appropriate neighbour.

At every node, fetching stats from all neighbours

increase communicating overhead.

Adaptive thermal-aware routing ATAR [21]

traverses packets in 3D NoC based on the weighted

cost model computation. Temperature is assigned

fixed highest weight, subsequently decreasing weight

to parameters such as path length, next neighbour

queue length, and workload. Queue length and

workload are solely responsible for providing

congestion information. To choose the best

neighbour for forwarding the intended packet, each

router calculates the cost. Change in values of

parameters depends on temperature change or change

in network condition which will require a certain

amount of time. All decisions were made at an

individual node level by ATAR. Communication

overhead for transfer of vital stats from neighbour

nodes is extremely high in order to make decisions

each time. The same procedure is repeated even in a

very small span of time. Sometimes this repetition

interval is so small that fetched stats are barely

changed. Hence, this results in exhausting resources

extensively and increasing delays in decision making.

Both ATAR and TADWR are thermal-aware as well

as congestion-aware routing algorithms.

In 3D NoC, it is challenging to reduce traffic in

NoC, it is even harder in the presence of

communication overhead for transfer of vital stats

from neighbouring nodes, which is supposed to help

and improve routing algorithms. Keeping record of

all successful transactions not only reduces

communication overhead for transfer of vital stats

from neighbouring nodes in future but it also helps to

take better decisions under specified supervision. As

multiple paths exit between source and destination

choosing a next neighbour is even more critical.

3. Methodology

The goal of the presented methodology is to

reduce communication overhead to transfer vital stats

from neighbour nodes in order to make decisions

each time. This work presents a record keeping

mechanism for maintaining localized history tables

after each transaction at every node for future use.

Consider if a packet is generated from the parent

node, now it has to decide which way the packet

should be sent to reach its destination. Each node has

a small history table that records all previous

activities. Only four parameters are recorded during

each successful transfer i.e. incoming packet

direction, target packet direction, calculated cost and

sampling time. Incoming packet direction is the

direction from which the packet is arriving. Target

direction means after completing its process, the

packet is sent in which direction. Time stamping is

the time at which an arriving packet is sent towards

its destination.

Abstract level router architecture for the proposed

scheme is presented in Fig. 1. The routing and

arbitration unit controls the crossbar in order to

forward packets from incoming channels to output

channels. This unit forwards the incoming packet

information to IBRKM unit for decision making.

IBRKM checks the history table to retrieve record of

any previous related decision. Initially, there will be

Received: April 26, 2022. Revised: June 15, 2022. 512

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.46

Figure. 1 Abstract level router architecture for IBRKM

no record hence it will return invalid to routing unit

and routing unit will access cost of all directions,

forward packet to minimum cost node and update

local history table for future occurrences. If a record

exists in the history table, IBRKM fetch record from

the table and fetches the latest cost of the targeted

node. Along with some validation checks discussed

later. If the IBRKM is able to find the next neighbour,

it will inform the routing unit by sending the target

direction and updating the history table for the future.

Considering a packet arriving from any of the

incoming directions Fig. 2, at first algorithm will

check the record of previous entry for that particular

incoming direction otherwise it will calculate cost of

all neighbours and calculate best node and update

table entry for future. If a record is found, now it is

time to check its validity of the record. Entries in the

table may be old and may not be valid any more. In

this work, a mechanism for checking the validity of

the entry is devised. It is observed that lower packet

injection rates due to less traffic and less congestion

table entries can be considered valid for a large

amount of time whereas validity time at a higher

packet injection rate should be considerably shorter.

validity period =
1

PIR
+ table sampling time (1)

Packet injection rate (PIR) is defined as

flits/cycle/node and usually varies from 0.02 to 0.22.

In order to calculate the difference of time in cycles

where table entry should remain valid is proposed in

Eq. (1). For lower PIR validity period should be

greater and vice versa for higher PIR due to less

traffic generation in lower PIR than higher PIR. A

validity period is a time in which a particular entry

will be considered valid as long as it is greater than

the current simulation time. If the entry is invalid it

will simply calculate the cost of all neighbours and

calculate the best node, and update the table entry for

future instances. But if the entry is valid it only

fetches parameters of the previous best neighbour

present in the table entry and recalculates its new

cost. There is a possibility that entry is valid

according to the time period but may experience an

increase or decrease in cost due to changes in

CROSS BAR

LOCAL

EAST

NORTH

WEST

SOUTH

DOWN

UP

LOCAL

EAST

NORTH

WEST

SOUTH

DOWN

UP

Routing &

Arbitration Unit

IBRKM UNIT

Cost Computational

Unit

Latest_Cost

Dir_in

Dir_in

Target_dir

Table_Cost

Entry not found

All_dir

All_Cost

History Table

Updated

Routing

Direction

Dir_in Invalid

Record

Sampling

time

Read/Write

Update Target_dir,

Cost and Sampling

time

Received: April 26, 2022. Revised: June 15, 2022. 513

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.46

Figure. 2 IBRKM strategy flow chart

network conditions. Tiny fractional changes up to a

certain limit (ɣ) can be considered valid but higher

changes may lead to disastrous decisions. To

calculate the change in percentage cost is proposed in

Eq. (2).

∆ cost percentage = |
new cost−table_cost

table_cost
| × 100 (2)

Where new cost is the current cost and table_cost

is the previously calculated cost and fetched from the

history table. In order to validate a change in cost

percentage it should be less than a certain limit (ɣ).

In this work the validity limit has been defined by

performing a set of simulations in section IV.

Suppose the changes are greater than a certain limit

(ɣ) it will simply calculate the cost of all neighbours

and calculate the best node and update the table entry

for the future. In that case, it will simply calculate the

cost of all neighbours, calculate the best node, update

the table entry for the future, and consider hit in the

history table. Hit is considered only if entry is found

in the table; it is valid in terms of time and also the

cost variation is also in the acceptable range. Failing

to satisfy any conditions will be considered as a miss

from the history table. If the variation is within the

prescribed limit, the next direction is returned and

updates the history table for future transactions.

Received: April 26, 2022. Revised: June 15, 2022. 514

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.46

Algorithm 1. IBRKM

Input: destination node, source node, T, L, Q, W, dir_in

Output: path

1: function IBRKM(route_data, d_node , s_node)

2: if s_node= d_node then

3: directions ← direction_local

4: else

5: set i_node ← s_node

6: while i_node ≠ d_node do

7: if(Node[i_node].dir_in[2] != 0)

8: if ((1/PIR)+ Node[i_node].dir_in[3] >

Currentcyclenum)

9: latest_cost ← α1.e.T + α2.e. L + α3.e. Q + α4.e.

W

10: if (((latest_cost – table_cost)/table_cost)*100) <

ɣ)

11: set Node[i_node].dir_in[3] =

Currentcyclenum

12: set Node[i_node].dir_in[2] = latest_cost

13: set direction ← Node[i_node].dir_in[1]

14: P=push.back.direction

15: break

16: set dir ← getAvailableDirections(i_node)

17: for k Є dir do

18: set e ← i_node

19: set cost ← α1.e.T + α2.e. L + α3.e. Q + α4.e.

W

20: if V[s_node][i_node]+cost

<V[s_node][e.next] then

21: set V[s_node][e.next]← cost

22: end for

23: set i_node ← mincostNode(V, s_node,

directions)

24: set direction ← direction_mincostnode(i_node)

25: set Node[i_node].dir_in[3] =

Currentcyclenum

26: set Node[i_node].dir_in[2] = mincost

27: set Node[i_node].dir_in[1] = direction

28: P= push.back.direction

29: end while

30: end else

31: return directions

IBRKM algorithm has three sections. The first

section, checks the history table and performs

validity checks. If validity is compromised or entry is

not found, will calculate all neighbours' cost and

calculate the new best node in the second section.

The third section, will update the record of the

history table according to the finding of section two

for future references.

Algorithm 1 accepts arguments like the route data,

the destination node and the source node. Whereas,

route data contains parameters of node such as path

length, Temperature, next router buffer, and

workload where path length is donated by L,

temperature is donated by T, next router buffer is

donated by Q, and workload is donated by W. The

source node (s_node) is the node from which the

packets are generated. The destination node (d_node)

is the node where the packets will be terminated. The

incoming direction of the packet which can be from

South, North, West, East, Up, Down, or Local, is

represented by dir_in. route_data contains T, L, Q, W

and dir_in. The algorithm will first examine the

position of the destination and source nodes. If

destination node and source node is same, will return

after pushing direction Local in [line 2-3]. Now it

will search in the history table to explore the

previous record. If cost in the table is zero, it is

accessing this record for the first time. So, the

algorithm will calculate all possible neighbours and

calculate their cost [line 17-21]; after calculating

least cost node information is updated in the history

table for future references. If the record is found for

the same incoming direction, it will calculate the new

cost for that neighbour only and if inspection of time

validity and cost are validated. If entry is not found

or invalid, it will look for all possible neighbour

directions form the current node in [line 7-9]. All

available directions for the node can be determined

by getAvailableDirections() function. Fetch values

for the parameters T, L, Q, and W for the

intermediate node represented by i_node. The sum of

weighted cost is then computed. mincostNode() is

used to determine the node number of minimum cost

node among all the neighbours. If the computed cost

is less than the existing cost, the cost matrix is

updated at [line 10]. The lowest cost node will now

become the new i_node. Update record of minimum

cost, target direction and current cycle number in the

history table for future occurrences [line 11-14],

whereas the current cycle number is determined by

Currentcyclenum() function. The direction of the

minimum cost node is pushed in directions by

push.back.directions and returned. If any of the

validity conditions are false, the algorithm will

calculate all possible neighbours and calculate their

cost [line 17-21], the cost model considered in this

work is similar to [21] in [line 19], after calculating

least cost node information is updated in the history

table for future references [line 25-28]. The

minimum cost node direction is pushed in a direction

array and repeated until the destination is arrived.

4. Results and discussion

A cycle-accurate Access Noxim [22] simulator

has been used to simulate IBRKM. The Access

Noxim simulator works in conjunction with Noxim
[23] and HotSpot [24]. Noxim was built with the

System C library. A command-based interface is

used to define and set NoC settings, such as the

Received: April 26, 2022. Revised: June 15, 2022. 515

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.46

Table 1. Simulation parameters
Parameters Value

Simulation Time (Cycles) 200,000

Network Dimension 8 x 8 x 4

Packet size (Flits) 2~10

Buffer Size (Flits) 16

Warm-up Time (Cycles) 10,000

Synthetic Traffic Pattern Bit-Reversal, Random,

Shuffle

Packet injection interval 0.02

Packet injection rate (PIR)

(flits/cycle/node)

0.02-0.22

buffer capacity, routing algorithm, network size and

dimensions, traffic distribution system, number of

network nodes, packet injection rate, etc. The

simulator is capable of evaluating NoC capacity in

terms of thermal profile, power consumption,

throughput, and global average delay. For deep

investigation of a single transaction Access-Noxim

also provides a transaction level analysis mode.

4.1 Simulation setup

The proposed routing algorithm's performance is

evaluated using an 8 x 8 x 4 3D NoC. Table 1 lists

the parameters considered in the simulations.

Different synthetic traffics utilized to analyse the

capabilities of IBRKM compared to its adversaries.

IBRKM is compared with state-of-the-art TADWR,

ATAR, OE 3D, and fully-adaptive routing. Different

PIR (Packet Injection Rate) simulations are made to

run for 200,000 cycles. PIR (flits/cycle/node) is

ranging from 0.02 to 0.22 with a 0.02 interval. The

time interval distribution determines the occasion at

which the packet is injected.

4.2 Performance evaluation

Bit-reversal, random, and shuffle traffic patterns

are used in this section. Graphs for global average

delay (cycle) are exhibited for each synthetic traffic.

Fig. 3(a) depicts the global average delay of 3D OE,

fully-adaptive routing, ATAR, TADWR, and

IBRKM in Bit-Reversal traffic. As it can be seen that

injection rates ranging from 0.02 to 0.06 for ATAR

and from 0.02 to 0.10 for TADWR, both algorithms

produce similar results compared to IBRKM;

however, as the injection rate increases, the results

begin to diverge. In comparison to state-of-the-art

routing algorithms, the graph demonstrates that after

0.10, IBRKM with a history-based record

mechanism has sustained. However, due to lack of

ability to handling heavy traffic loads both fully

adaptive and 3D OE routing rocketed sharply even at

lower PIR. Percentage improvement in global

average delay is 12.07 % over TADWR and 49.75 %

over ATAR in Bit-Reversal traffic.

Fig. 3(b) depicts the global average delay of 3D

OE, fully-adaptive routing, ATAR, TADWR and

IBRKM under random traffic. It can be seen that

injection rates ranging from 0.02 to 0.10 for ATAR

and from 0.02 to 0.12 for TADWR, both algorithms

produce similar results compared with IBRKM, but

when injection rates rise beyond 0.12, the difference

becomes more pronounced. Analysing the graph it is

apparent that after 0.12, IBRKM with a history-based

record mechanism sustained as compared to ATAR

and TADWR. However, due to lack of ability to

handling heavy traffic loads both fully adaptive and

3D OE routing flew vigorously even at lower PIR.

Percentage improvement in global average delay is

11.17 % over TADWR and 32.24 % over ATAR.

The global average delay of 3D OE, fully-

adaptive routing, ATAR, TADWR and IBRKM

under Shuffle traffic is presented in Fig. 3(c). It can

be seen that while the injection rate is between 0.02

and 0.04 for ATAR and from 0.02 to 0.12 for

TADWR, both algorithms produce identical results

compared to IBRKM, but when the injection rate

exceeds PIR 0.12, the difference between TADWR,

ATAR and IBRKM becomes evident. Analysing the

graph, it is noticeable that after the PIR 0.12, IBRKM

with a history-based record keeping mechanism

performed better than TADWR and ATAR. However,

due to lack of ability to handling heavy traffic loads

both fully adaptive and 3D OE routing shot severely

even at lower PIR. Percentage improvement in

global average delay is 8.12% over TADWR and

36.43 % over ATAR.

Considerable improvement in terms of hits can be

observed due to the history-based record keeping

mechanism observed in Fig. 4. It can be seen that at

lower packet injection rates history table hits are

greater than misses; it is because the number of hits

depends on validity conditions. If validity conditions

are relaxed, especially if it is allowed always to keep

the historical data valid, hits will increase many folds

but authenticity will be compromised. Hence a

balanced approach is required to keep routing

significant.

In Fig. 4, different values for ɣ such as 5 %, 10 %,

and 20 % are applied respectively on Bit-Reversal

traffic to observe their impact on the number of hits

at various packet injection rates. The hit ratio can be

calculated using Eq. (3) given below.

𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 (%) =
Number of Hits

Number of Hits+Number of Misses
 x 100 (3)

Received: April 26, 2022. Revised: June 15, 2022. 516

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.46

(a)

(b)

(c)

Figure. 3 Comparison of global average delay under

various traffic patterns: (a) Bit-reversal traffic, (b) Random

traffic, and (c) Shuffle traffic

Increasing the validity difference for cost from 5 %

to 20 % for Bit-Reversal traffic it can be seen that at

5 % Fig. 4(a) the number of hits as compared to

misses are less than 10 % Fig. 4(b) and 20 % Fig.

4(c). On close examination it is observed that 20 %

of hits are similar to 10 %. This means that the value

(a)

(b)

(c)

Figure. 4 Number of hits vs misses in millions when: (a)

ɣ=5, (b) ɣ=10, and (c) ɣ=20

for ɣ should not be greater than 10 %. Hence during

our experiments ɣ is assigned 10 % and various

traffic synthesis are applied, such as Random, Bit-

Reversal and Shuffle. It is observed that 26.34 %

more hits in Random traffic, 46.97 % more hits in

Bit-Reversal and 60.24 % more hits in Shuffle traffic.

In this work, IBRKM has been tested with

different configurations of 3D mesh topology

namely: 2x2x4, 4x4x4, 8x8x4. Where, each of the

0

0.2

0.4

0.6

0.8

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22N
o

.
o

f
H

it
s

/
M

is
se

s
in

 M
il

li
o

n
s

Packet Injection Rate (Flits/ Cycle/ Node)

Hits

Misses

0

0.2

0.4

0.6

0.8

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22N
o

.
o

f
H

it
s

/
M

is
se

s
in

 M
il

li
o

n
s

Packet Injection Rate (Flits/ Cycle/ Node)

Hits

Misses

0

0.2

0.4

0.6

0.8

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22N
o

.
o

f
H

it
s

/
M

is
se

s
in

 M
il

li
o

n
s

Packet Injection Rate (Flits/ Cycle/ Node)

Hits

Misses

Received: April 26, 2022. Revised: June 15, 2022. 517

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.46

Figure. 5 IBRKM hit ratio under bit-reversal traffic

Figure. 6 IBRKM hit ratio under random traffic

configurations has different number of nodes and

links. IBRKM has been assessed under synthetic

traffic such as Bit-Reversal, Random and Shuffle

traffic.

In general as PIR increases, the hit ratio suffers

due to increasing traffic and the expiry of validity

checks. In Bit-Reversal traffic initially at lower PIR,

6x6x4 performed better, and as PIR is high it

performs poorly in Fig. 5. Whereas, 8x8x4 and

4x4x4 shows similar but stable response to Bit

Reversal traffic.

Random traffic is also applied to the various

topologies Fig. 6. 8x8x4 stood up and performed far

better than other counterparts. Simultaneously, 4x4x4

is amongst the worst. As 8x8x4 is the biggest

topology and 2x2x4 is the smallest.

Shuffle traffic is applied in Fig. 7. All

configurations have performed well initially and as

the PIR increases hit ratio started to reduce. 8x8x4

performs slightly better even in higher PIR. Overall

in all traffics, 8x8x4 has been performing slightly

better than other configurations, which helps the

argument that IBRKM is scalable and better

performance is observed in bigger configurations.

The hardware overhead of IBRKM over TADWR

and ATAR is substantially 25% higher. Besides

higher area, it presents approximately 52% better

Figure. 7 IBRKM hit ratio under shuffle traffic

Table 2. Area efficiency (T/H) comparison after

normalization

 ATAR TADWR IBRKM

Throughput

Improvement (T)
1 1.41 1.90

Hardware Cost

Overhead (H)
1 1.12 1.25

Area Efficiency

(T/H)
1 1.26 1.52

efficiency over ATAR and 25% over TADWR. A

normalized comparison of throughput and area is

given in Table 2.

5. Conclusion

Congestion in NoC due to heavy traffic is a

concern that needs to be addressed. Congestion is

capable of generating more concerns such as thermal

difficulties, thermal and traffic hotspots and

increased delay in the network. Congestion can be

removed by improving congestion strategy or by

reducing excessive in-network traffic load. This work

proposes IBRKM routing algorithm that addresses

in-network congestion and reduce communication

overhead for transfer of vital stats of nearby routers

for future use. IBRKM works on a history table

record of previous transactions carried in the node

under validity conditions. The Proposed algorithm

performs certain validity checks before using

recorded iteration from the history table. With the

help of proposed technique up to 26-61 % of valid

records were found from the history table which is a

significant improvement. As far as global average

delay is concerned, 8 to 12 % improvement is found

under different synthetic traffic compared to the

state-of-the-art. IBRKM is scalable and better

performance is observed in bigger configurations.

Conflicts of Interest

There are no conflicts of interest declared by the

authors.

0

10

20

30

40

50

60

70

80

90

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

H
it

 R
at

io
 (

P
er

ce
n
ta

g
e)

Packet Injection Rate (flits/cycle/node)

2x2x4 4x4x4 6x6x4 8x8x4

0

10

20

30

40

50

60

70

80

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

H
it

 R
at

io
 (

P
er

ce
n
ta

g
e)

Packet Injection Rate (flits/cycle/node)

2x2x4 4x4x4 6x6x4 8x8x4

0

10

20

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

H
It

 R
at

io
 (

p
er

ce
n
ta

g
e)

Packet Injection Rate (flits/cycle/node)

2x2x4 4x4x4 6x6x4 8x8x4

Received: April 26, 2022. Revised: June 15, 2022. 518

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.46

Author Contributions

The visualization, writing-original draft

presentation, writing-review, paper conceptualization,

investigation, methodology, validation formal

analysis, software, data curation, investigation,

formal analysis has been performed by 1st author.

The project administration and supervision has been

performed by 2nd author.

Acknowledgments

This research is supported by Ministry of Higher

Education Malaysia (MOHE) and conducted in

collaboration with Research Management Center

(RMC) at the Universiti Teknologi Malaysia (UTM)

under Fundamental Research Grant Scheme with

grant number: R.J130000.7851.5F029. The authors

appreciate greatly for the support.

References

[1] T. Boraten and A. K. Kodi, “Runtime techniques

to mitigate soft errors in Network-on-Chip

(NoC) architectures”, IEEE Trans. Comput. Des.

Integr. Circuits Syst., Vol. 37, No. 3, pp. 682-

695, 2018.

[2] R. Salamat, M. Khayambashi, M. Ebrahimi, and

N. Bagherzadeh, “LEAD: An Adaptive 3D-NoC

Routing Algorithm with Queuing-theory Based

Analytical Verification”, IEEE Trans. Comput.,

No. 1, p. 1, 2018.

[3] E. Fusella and A. Cilardo, “Lattice-Based Turn

Model for Adaptive Routing”, IEEE Trans.

Parallel Distrib. Syst., No. 1, p. 1, 2018.

[4] Z. Ghaderi, A. Alqahtani, and N. Bagherzadeh,

“AROMa: Aging-Aware Deadlock-Free

Adaptive Routing Algorithm and Online

Monitoring in 3D NoCs”, IEEE Trans. Parallel

Distrib. Syst., Vol. 29, No. 4, pp. 772-788, 2018.

[5] Y. Y. Chen, E. J. Chang, H. K. Hsin, K. C. J.

Chen, and A. Y. A. Wu, “Path-diversity-aware

fault-tolerant routing algorithm for network-on-

chip systems”, IEEE Trans. Parallel Distrib.

Syst., Vol. 28, No. 3, pp. 838-849, 2017.

[6] S. T. Muhammad, M. Saad, A. A. E. Moursy, M.

A. E. Moursy, and H. F. A. Hamed, “CFPA:

Congestion aware, fault tolerant and process

variation aware adaptive routing algorithm for

asynchronous Networks-on-Chip”, J. Parallel

Distrib. Comput., 2019.

[7] D. Kouzapas, “Towards fault adaptive routing in

metasurface controller networks”, J. Syst.

Archit., Vol. 106, No. December 2019, p.

101703, 2020.

[8] M. Kaleem and I. F. B. Isnin, “A Survey on

Network on Chip Routing Algorithms Criteria”,

Adv. Intell. Syst. Comput., Vol. 1188, pp. 455-

466, 2021.

[9] F. Bahman, A. Reza, M. Reshadi, and S.

Vazifedan, “CACBR: Congestion Aware Cluster

Buffer base routing algorithm with minimal cost

on NOC”, CCF Trans. High Perform. Comput.,

2020.

[10] R. Akbar and F. Safaei, “A novel congestion-

aware routing algorithm with prediction in

mesh-based networks-on-chip”, Nano Commun.

Netw., Vol. 26, p. 100322, 2020.

[11] N. Shahabinejad and H. Beitollahi, “Q-Thermal:

A Q-Learning-Based Thermal-Aware Routing

Algorithm for 3-D Network On-Chips”, IEEE

Trans. Components, Packag. Manuf. Technol.,

Vol. 10, No. 9, pp. 1482-1490, 2020.

[12] J. Huang, W. Zhong, Z. Li, and S. Chen,

“Lagrangian relaxation-based routing path

allocation for application-specific network-on-

chips”, Integration, Vol. 61, No. June 2017, pp.

20-28, 2018.

[13] C. Chen, Q. Li, N. Li, H. Liu, and Y. Dai,

“Link-Sharing: Regional Congestion Aware

Routing in 2D NoC by Propagating Congestion

Information on Idle Links”, In: Proc. of 2018

IEEE 3rd International Conference on

Integrated Circuits and Microsystems, pp. 291-

297, 2018.

[14] J. Wang, H. Gu, Y. Yang, and K. Wang, “An

energy-and buffer-aware fully adaptive routing

algorithm for Network-on-Chip”,

Microelectronics J., Vol. 44, No. 2, pp. 137-144,

2013.

[15] J. Augustine, K. Raghavendra, J. Jose, and M.

Mutyam, “Router Buffer Caching for Managing

Shared Cache Blocks in Tiled Multi-Core

Processors”, In: Proc. of 2020 IEEE 38th

International Conference on Computer Design,

pp. 239-246, 2020.

[16] M. Momeni and A. J. Pozveh, “An Adaptive

Approximation Method for Traffic Reduction in

Network on Chip”, In: Proc. of 2020 6th Iranian

Conference on Signal Processing and Intelligent

Systems, pp. 1-5, 2020.

[17] N. Dahir, T. Mak, R. A. Dujaily, and A.

Yakovlev, “Highly adaptive and deadlock-free

routing for three-dimensional networks-on-chip”,

IET Comput. Digit. Tech., Vol. 7, No. 6, pp.

255-263, 2013.

[18] S. C. Lee and T. H. Han, “Q-Function-Based

Traffic-and Thermal-Aware Adaptive Routing

for 3D Network-on-Chip”, Electronics, Vol. 9,

No. 3, p. 392, 2020.

[19] L. Shen, N. Wu, G. Yan, and F. Ge,

Received: April 26, 2022. Revised: June 15, 2022. 519

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.46

“Collaborative thermal-and traffic-aware

adaptive routing scheme for 3D Network-on-

Chip systems”, IEICE Electron. Express, pp. 18-

20200425, 2021.

[20] M. Kaleem and I. F. B. Isnin, “Thermal-aware

Dynamic Weighted Adaptive Routing Algorithm

for 3D Network-on-Chip”, Int. J. Adv. Comput.

Sci. Appl., Vol. 12, No. 11, pp. 342-348, 2021.

[21] R. Dash, A. Majumdar, V. Pangracious, A. K.

Turuk, and J. L. R. Martín, “ATAR: An

Adaptive Thermal-Aware Routing Algorithm for

3-D Network-on-Chip Systems”, IEEE Trans.

Components, Packag. Manuf. Technol., No. 99,

pp. 1-8, 2018.

[22] K. Y. Jheng, C. H. Chao, H. Y. Wang, and A. Y.

Wu, “Traffic-thermal mutual-coupling co-

simulation platform for three-dimensional

network-on-chip”, In: Proc. of 2010

International Symposium on VLSI Design,

Automation and Test, pp. 135-138, 2010.

[23] V. Catania, A. Mineo, S. Monteleone, M. Palesi,

and D. Patti, “Noxim: An open, extensible and

cycle-accurate network on chip simulator”, In:

Proc. of 2015 IEEE 26th International

Conference on Application-specific Systems,

Architectures and Processors, pp. 162-163,

2015.

[24] W. Huang, S. Ghosh, S. Velusamy, K.

Sankaranarayanan, K. Skadron, and M. R. Stan,

“HotSpot: A compact thermal modeling

methodology for early-stage VLSI design”,

IEEE Trans. Very Large Scale Integr. Syst., Vol.

14, No. 5, pp. 501-513, 2006.

