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Abstract: Measuring end-user satisfaction, or quality of experience (QoE) became necessary to improve video 

streaming applications. This measure represents the end-user’s degree of satisfaction with the quality of their video 

conference. This study measures both audio and video QoE, using two types of databases; (UnB-AV database and 

INRS database) have been used in this work. The UnB-AB database has been used as a target dataset. In this work, 

several features for audio and video files have been extracted. The extreme learning machine algorithm has been 

used for predicting the audio-visual QoE, and performance of the proposed model was validated with unseen data. 

Experiments on the two datasets have shown that the ELM model achieving better prediction accuracy when applied 

on the UnB-AV database than INRS database. The prediction accuracy by depended on UnB-AV dataset was (0.13) 

but in depended on INRS dataset was (0.16). 

Keywords: Audio features analysis, Extreme learning machine, Multimedia quality, Video streaming, Quality of 

experience. 

 

 

1. Introduction 

Recently, there has been a significant growth in  

video conferencing applications, especially with the 

COVID-19 pandemic, where video conferencing has 

become a popular method of communicating [1]. 

Millions of people across several nations are in 

quarantine, and the internet is the only way that they 

can communicate, work and attend classes. 

Applications, such as WebEx, Google Hangouts and 

Zoom, are being used by millions of people. 

According to TrustRadius, search impressions for 

video conferencing applications surged by 500% 

during the first four months of the COVID-19 

outbreak. In 2020, meetings that were conducted 

over video were 50% more frequent than they were 

prior to COVID-19. Owl Labs found that 50% of 

people will not return to employment that does not 

allow remote work after COVID-19, which 

emphasises the necessity of investing in the software 

and technology that are required to host large-scale 

virtual meetings. According to Upwork, the number 

of remote employees in the United States will nearly 

double during the next five years compared to pre-

COVID-19 levels. Moreover, by 2025, 36.2 million 

Americans will be working remotely, which a 16.8 

million increase is compared to before the pandemic 

[2]. The COVID-19 pandemic compelled certain 

sectors (e.g. the legal and primary healthcare 

sectors) to convert to digital processes and practices. 

For example, the number of general practitioners 

(GPs) who provide video consultations in Norway 

more than tripled within the first months following 

the initial lockdown [3]. 

Therefore, it has become necessary to measure 

user satisfaction for video conferences because the 

success of the performance of video conference 

applications depends on the user satisfaction of the 

quality of experience (QoE). The QoE is the degree 

of end-user satisfaction that considers all the 

elements that impact it [4]. The QoE is a critical 

measure that network operators and service 

providers can utilize to assess their performance by 

considering all elements that influence it [5]. 

Regarding assessing the video-audio quality, 

there are the following two concepts to consider: 

quality of service and QoE. The first is mostly based 

on well-known network measurements packet loss 
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rate (PLR), jitter, delay, etc). The latter considers a 

larger variety of measures to infer user perception of 

the service quality. As a result, the scientific 

community has adopted QoE as the best method of 

assessing the video-streaming performance [6]. 

Subjective and objective methods are used to assess 

the QoE. In the subjective approach, many viewers 

will be judging the video quality. The most common 

subjective assessment is the mean opinion score 

(MOS), which is used to assess the video quality and 

has a scoring range of one to five. Each number 

represents the degree of user satisfaction with the 

video quality as follows: one is the worst, two is 

poor, three is fair, four is good and five is excellent 

[7]. The objective assessment approach is heavily 

reliant on reference-based data and uses a 

mathematical tool [8]. 

Some research only focuses on the QoE 

measurement for video streaming and ignores audio 

streaming. Limited research focuses on the QoE 

measurement only for voice over internet protocol 

(VOIP) and does not consider the video streaming. 

Most previous research only considers the network-

based features and ignores the impact of the 

frequency and time domain features on the QoE. 

The databases that were used in most previous 

researches are limited in terms of the source stimuli 

(SRC) content and degradation diversity. To solve 

these shortcomings, this paper presents a used 

machine-learning method to predict the QoE based 

on audio-visual information using a database with 

content and degradation diversity that considers the 

network-based features and frequency and time 

domains. 

This paper is organized as follows: In Section 2 

we discuss the literature review. Section 3, in this 

section explains the methodology that has been 

followed to build the proposed system. Section 4 

presents the results of discussion while the 

conclusion is presented in Section 5.  

1.1 Contributions 

The contribution of this paper is three-fold as 

follows: 

• Use machine learning to predict the QoE 

based on visual and audio information. 

• Extract many features for audio and video 

that have a high impact on the QoE. 

• The proposed model has been trained using 

a dataset with SRC content and degradation 

diversity. 

 

 

2. Literature review 

Several studies that measure the QoE have been 

published and can be categorised into video and 

audio QoE measuring. Bao et al. [9] evaluated the 

video QoE using a fuzzy clustering heuristic 

algorithm. They used the server side to save some 

information and quality of service (QoS) parameters 

in a large database. The heuristic rules model used 

the data that was saved in the database to predict the 

user scores. This method is called a fuzzy clustering 

analysis and provides a service QoE that is sent to a 

customer. Mohamed Alreshodi [10] presented a 

fuzzy inference system (FIS) model to predict the 

video quality. The authors investigated the effects of 

QoS parameters on QoE for a variety of video 

content types and assessed video quality from the 

MOS perspective. When the suggested system was 

compared with the regression-based system, the FIS 

model provided a higher accuracy. Ghani et al. [7] 

presented a no-reference technique for assessing the 

video QoE using machine-learning algorithms 

(AdaBoost, C45, Random Forest, multilayer 

perception, artificial neural network (ANN) ), 

comparing its performance and choosing the best 

algorithm that balances time and precision. They 

used bit rate with pixel mode features to predict the 

MOS. The best real-time and accuracy performance 

was provided by the AdaBoost decision tree. Sufiuh 

et al.[11] presented an ANN algorithm to predict the 

video QoE. They extracted seven features and 

utilized them as inputs for training data. The 

features that were extracted were as follows: 

temporal perceptual information (SPI), freezing, 

blurring, luminance, an average of luminance 

difference and blocking. The result provides the best 

correlation between the predicted and measured 

QoE. ZhiGuo et al. [8] comprehensively analysed 

the effects of QoS on the QoE instead of analysing 

each parameter separately using experimental 

methods and an association test technique. The 

authors proposed an algorithm to combine the 

impact of QoS with the temporal or spatial features 

on QoE. Finally, they applied several machine-

learning regression algorithms (K-nearest 

neighbours (KNN), support vector machine (SVM), 

Regression tree, Bagging, ANN) for different QoS 

degradations, echoes and noises in a diverse network 

environment to predict the non-intrusive voice 

quality. The result was accurate for the VOIP QoE 

evaluations when utilising QoS parameters. 

Charonyktakis et al. [12] proposed the modular user-

centric algorithm MLQoE. The correlation between 

the QoE and network QoS metrics for VOIP 

services is based on supervised learning. The 
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approach is modular in that it trains various 

supervised learning models based on gaussian naive 

bayes (GNB), decision tree (DT), support vector 

regression (SVR), multilayer perceptron (MLP) and 

artificial neural network (ANN), then chooses the 

most accurate model after cross-validation. 

Compared to other existing machine-learning 

models, MLQoE can accurately predict the QoE 

score. Demirbilek et. [13] using the quality of an 

audio-visual dataset obtained from Institute National 

de la Recherché Scientific (INRS), they developed 

several no-referenced Machine Learning (ML), to 

compare between accuracy performance for genetic 

programming, ensemble decision tree, deep learning. 

When the INRS dataset was compared to other 

datasets, it was discovered that random forests 

outperformed other prediction models in terms of 

accuracy. In terms of RMSE and Pearson correlation 

measures, decision trees outperform both deep 

learning and genetic programming, they attain 

RMSE results for all models in the range of (0.340) 

to (0.469). 

 

We have summarised the research issues of the 

video QoE measuring as follows: 

• Ignore the audio QoE measurement. 

• The dataset that was used was limited in 

terms of the SRC content and degradation 

diversity. 

• Use a small dataset size. 

• Machine-learning algorithms that have been 

used suffered from slow data training 

process. 

• AdaBoost in [7] requires enough data and 

many iterations to achieve acceptable 

accuracy, which may result in increased 

time complexity. It is not appropriate for 

predictions that require high speed. 

Most previous research used datasets depending 

on the ACR method, and the ACR method is not 

accurate. 

The following summarises the research issues 

with audio QoE measurements: 

• Ignore audio QoE measurements. 

• The frequency and time domain features for 

audio were not considered. 

• Use a small dataset size and small number 

of features. 

• The dataset that was used was limited in 

terms of the SRC content and degradation 

diversity. 

• Machine-learning algorithms that have been 

used suffered from slow data training. 

 

3. Methodology 

The methodology includes the following six 

sections: datasets, features extraction, features 

selection, normalisation, unnormalisation and model 

steps. Fig. 1 shows the proposed system phases. 

3.1 Datasets 

The following two types of datasets were used in 

this work: UnB-AV and INRS datasets. The two 

datasets are explained as follows: 

3.1.1. The UnB- AV database (target) 

This consists of three datasets of audio-visual 

databases, each of which was utilised in a different 

subjective experiment. The three datasets were 

created using (140) high-definition video sequences 

(with associated audio) as the source. They were 

divided into the following three groups: (60) video 

sequence for experiment one; (40) video sequence 

for experiment two; and (40) video sequence for 

experiment three. Additionally, it included 2,320 

test sequences with audio and video degradations, 

coupled with the psychophysical experiments that 

assessed the audio-visual quality of a series of video 

sequences in all three experiments. For the 

subjective studies, each experiment used the 

immersive technique. In the first experiment, 

although the video component was impaired by 

visual artifacts (PLR, frame freezing and video 

coding), it did not degrade the audio component. For 

the second experiment, when the signal artifacts 

(clipping, chop, background noises and echoes)  

 

 
Figure. 1 The proposed system phases 
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were applied to the audio component, the video 

component remained unaffected. Lastly, both the 

video and audio components were impaired 

regarding the same kinds of degradations that were 

utilised for the previous two experiments. The 

subjects were asked to assess the overall audio-

visual quality in all three experiments. It used the 

following two statistical analysis methods: mean 

quality score (MQS) and mean [14, 15]. 

3.1.2. INRS audio-visual quality database 

In this dataset, the audio and video quality were 

affected by some degradations of the PLR, 

quantization parameter and video frame rates. It 

contained 160 audio-visual files that were extracted 

from a single source video. The H.264/AVC was 

used to encode the source video. The H.AMR-WB 

by Gstream (an open-source (O/S) framework) was 

used to create 32 GP videos as a source at various 

quality levels, with a quantisation parameter (QP) of 

10 fps, 15 fps, 20 fps and 25 fps and frame rate (FR) 

of 10 fps, 15 fps, 20 fps and 25 fps. The network 

emulator was used to generate the PLR to obtain 

more realistic outcomes. However, it was only 

enabled after the first second had been transmitted. 

The audio-visual file name was included in the 

dataset, as well as the computed MOS, various 

parameters that were collected from broadcasted 

videos and the resolution of the videos (720p) [16]. 

3.2 Feature extraction 

3.2.1. Video feature extraction 

The number of features has been extracted to 

enhance the prediction model accuracy. The 

extracted features have a significant linkage to the 

human visual system (HVS). The extracted features 

are presented as follows:  

3.2.1.1. Blocking feature 

Kirsch compass masks were used to extract 

blocking features by rolling one mask through the 

following eight typical compass orientations: W, 

SW, N, NW, S, SE, NE and E. The Krisch mask 

directions are shown in Eq. (1) [17]. 

 

𝐺1 = [
−3 −3 5
−3 0 5
−3 −3 5

] 𝐺2 = [
−3 5 5
−3 0 5
−3 −3 −3

] 

𝐺3 = [
5 5 5

−3 0 −3
−3 −3 −3

] 𝐺4 = [
5 5 −3
5 0 −3

−3 −3 −3
] 

 

 

0 1 0 

1 -4 1 

0 1 0 

Figure. 2 Laplacian kernel 

 

𝐺5 = [
5 −3 −3
5 0 −3
5 −3 −3

] 𝐺6 = [
−3 −3 −3
5 0 −3
5 5 −3

] 

𝐺7 = [
−3 −3 −3
−3 0 −3
5 5 5

] 𝐺8 =  [
−3 −3 5
−3 0 5
−3 5 5

] 

(1) 

3.2.1.2. Blurring feature 

This feature is very important for NR features. 

The blur feature is extracted by the implemented 

Laplacian operator. The Laplacian draws attention 

to parts of an image that have a lot of intensity 

variations. The image is convolved with a 3×3 

Laplacian operator. The variance is computed using 

the Laplacian kernel for each frame, after which the 

blur average is calculated for the video frames, as 

shown in Fig. 2 [18]. 

3.2.1.3. Natural senses statistics (NSS) 

The use of an (NSS) model when choosing the 

perceptual features that can provide the satisfying 

result regarding the problem of video quality 

evaluation is a significant research direction. The 

features that have been extracted are as follows: 

(N_H Shape, N_H Variance, N_Shape, N_V Shape, 

N_Shape and N_Variance). The NSS was extracted 

using the Blind Referenceless Image Spatial Quality 

Evaluator (BRISQUE) method. It calculates the 

contrasting normalised coefficients for the 

asymmetric generalised Gaussian distribution [19]. 

3.2.1.4. Average bit frame 

The coding parameters were used to extract the 

average bit frame, which increases the accuracy of 

the prediction performance. The relationship 

between the bit and frame rates is strong, has a 

major influential and is linked to the end QoE. Eq. 

(2) was used to calculate the average bit rate, and it 

represents the average number of bits that were 

utilised to represent a single pixel. The height and 

width of a video indicate its resolution [7]. 

 

AVGBF =BR / Height ×Width × Fr           (2) 

3.2.2. Audio feature extraction 

To obtain a more precise regression of audio, the 

number of features must be extracted. To extract 
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valuable features from prepared audio files, we must 

use the Librosa library, which is a python package 

that is usually used for audio and music signal 

processing analyses. It has numerous functions for 

feature extractions, filters and spectral, temporal 

segmentation [20]. Table 1 describes the features 

that were extracted. 

 
Table 1. The features extracted from audio 

Categories of Features Features Descriptions 

 

 

Time-Domain 

Zero-Crossing Rate (ZCR) It emphasizes how often the signal changes from 

negative to positive and vice versa [21]. 

Root Mean Square (RMS) 

 

RMS of a signal represents the signal's power 

content [22]. 

Tempogram Pulse intensity over time for a particular time lag 1 

or BPM value τ [23]. 

Fourier-tempogram A tempogram is a time-tempo representation that 

encodes the local tempo of a music signal over time  

[23]. 

 

 

 

 

 

 

Frequency Domain 

 

 

Mel-Frequency Cepstral 

Coefficients (MFCC) 

It is one of the most sophisticated technologies and 

is based on the fact that the crucial bandwidths of 

the human ear vary in frequency. The Mel-frequency 

scale, which is a linear frequency space below 1000 

Hz and a logarithmic space above 1000 Hz, is used 

to show this information [24] 

 

Spectral Centroid (SC) SC (also known as brightness) represents the focal 

point in the spectral power distribution of a signal in 

a sample frame [25]. 

 

Mel Spectrogram 

It stimulates the biological auditory systems of 

humans by producing a temporal frequency 

representation of sound [26]. 

 

Tonal Centroid features 

(Tonnetz) 

Changes in the harmonic content of musical audio 

signals, such as chord boundaries in polyphonic 

audio recording, can be detected using these features 

[26]. 

 

Spectral Bandwidth 

It is the second-order statistical value that 

distinguishes low-bandwidth sounds from high-

frequency sounds. It is commonly utilized in music 

classification and sound identification in the 

environment  [27]. 

Spectral Contrast The decibel difference between peaks and troughs in 

the spectrum is known as a spectral contrast [28]. 

Spectral Roll-off It is characteristically defined as the frequency at 

which 95 per cent of spectral energy in a signal is 

collected [29]. 

 

 

Chroma Energy Normalized 

(CENS) 

It is widely utilized in the field of musical signal 

processing. Because Chroma features retain melodic 

and harmonic qualities of music and are resistant to 

changes in instrumentation and timber, they are 

useful in audio matching and retrieval applications 

[26]. 

Chroma(stft) It is a well-known technique for analysing a signal's 

frequency distribution [30]. 

Poly-features It is used to calculate the coefficients of fitting an 

nth-order polynomial to a spectrogram's columns 

[31]. 

Time-Frequency Domain Chroma Constant-Q 

Transform (CQT) 

Converts a data series from the time domain to the 

4frequency domain. It has something to do with the 

Fourier transform [32]. 
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3.3 Features selection 

In this stage, we used the information gain 

method to select the best features that have a high 

impact on the audio-visual QoE. The features with 

the highest impact on the video streaming were as 

follows: average bit frame, PLR, QP, freezing frame, 

blocking and blur. The features that provided the 

best and highest impact and correlation on the audio 

QoE were as follows: chop, clipping, echoes, noises, 

ZCR, MFCC, SC, tempogram, Mel spectrogram, 

RMS, Tonnetz,spectral bandwidth, spectral contrast, 

spectral roll-off, CQT, CENS, Chroma (stft) and 

poly-features. 

3.4 Normalisation and unnormalisation 

All input and output variables were transformed 

into ranges (zero to one) using the MinMax scaler 

method.  

The following equations were used for 

normalisation and unnormalisation. 

 

Xni = (Xi-min (Xi)/ (max (Xi)-min (Xi))    i=1,2….n 

(3) 

 

Ynp= (Yp-min (Yp)/ (max (Yp)-min (Yp))  ,p=1,2…2 

(4) 

Where: 

Xni: ith normalized input value in the dataset. 

Xi : ith input value in the dataset. 

Min(Xi): minimum input value in the dataset. 

Max(Xi): maximum input value in the dataset. 

Ynp: ith normalized output value in the dataset. 

YP : ith normalized output value in the dataset. 

Min(Yp): minimum normalized output value in the 

dataset. 

Max(Yp): maximum normalized output value in the 

dataset. 

 

The following equation is used to convert data 

back into unnormalize units: 

 

Xuni=Xni×(max (Xi)-(min (Xi) +min (Xi), i=1,2,3...n 

(5) 

 

Yunp=Ynp× (max (Yp) – min (Yp) +min (Yp), 

p=1,2…n (6) 

Where: 

Xuni: ith unnormalized input value in the dataset. 

Xni : ith input value in the dataset. 

Min(Xi): minimum input value in the dataset. 

Max(Xi): maximum input value in the dataset. 

Yunp: ith unnormalized output value in the dataset. 

YnP : ith unnormalized output value in the dataset. 

Min(Yp): minimum unnormalized output value in 

the dataset. 

Max(Yp): maximum  unnormalized output value in 

the dataset. 

 

The minimum and maximum values in the 

dataset were selected using the min (.) and max (.) 

operators in Eqs. (3) to (6). 

3.5 Proposed model overview 

The extreme learning machine (ELM) is a single 

hidden layer feed-forward neural network (SLFN) 

that chooses hidden nodes at random and calculates 

the output weights of SLFNs analytically [33]. As a 

result, it only requires one iteration [34] and does 

not need to train in an iterative way like traditional 

neural networks. The hidden layer's output weights 

are calculated by taking the generalised inverse of 

its output. This procedure enhances the network 

construction of the ELM [35]. In general, this 

algorithm provides an excellent generalisation 

performance at a fast learning rate. The traditional 

feed-forward neural network learning methods are 

much slower than ELMs. Typically, on average, 

ELMs will achieve the least output weight norms 

and training errors [36]. Training data is used to 

create a prediction when using ML to predict video 

QoE assessments. This prediction should be able to 

generalise effectively to fresh data with no ground 

truth [37]. 

3.5.1. ELM steps 

ELM algorithm steps are presented as follows:  

Input: Set of training samples se𝑡 {𝑥𝑖, 𝑡𝑖}𝑖=1
𝑁 ⊂ 

Rn×Rm, set of testing samples {𝑦𝑖}𝑖=1
𝑀 ⊂Rn, L is the 

number of hidden layer nodes and g(.) is the 

activation function. 

Step 1: The output matrix H in the hidden layer 

is computed using the following equation: 

 

(𝑐1, . , 𝑐𝐿; 𝑏1. . 𝑏𝐿; 𝑥1. . 𝑥𝑛) = 

[

𝑔(𝑐1, 𝑏1, 𝑥1) 𝑔(𝑐𝐿 , 𝑏𝐿 , 𝑥1)

⋮ ⋮
𝑔(𝑐1, 𝑏1, 𝑥𝑁)   𝑔(𝑐𝐿 , 𝑏𝐿 , 𝑥𝑁)

]

𝑁×𝐿

 (7) 

 

Where (ci,bi), i=1,2,3,……,L are hidden node 

parameters that are produced at random, where ci 

represents the input weight of the ith hidden layer 

node, and bi represents the deviation of the ith 

hidden layer node. 

Step 2: To compute the output weight matrix β 

in the hidden layer, Eq. (8) was used. 
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β = H+ T                               (8) 

 

Where β is the output weight, H+ is the 

generalized Moore-Penrose inverse matrix of hidden 

node output matrix H, and T is the target output. 

Output: Weight matrix b output. 

Supervised techniques were used by the 

proposed model as a regression system to predict the 

video QoE using the training dataset. We trained the 

proposed model with two types of datasets to 

improve the accuracy prediction. As the INRS 

dataset had one SRC content and limited 

degradation diversity, to achieve a more accurate 

prediction, we used the UnB-AV dataset. In the 

UnB-AV dataset, as experiment one only contained 

audio information, we trained this information to 

predict the audio QoE. Experiment two contained 

video information that had been trained to predict 

the QoE. Finally, to predict the audio-visual QoE, 

we used experiment three to train the proposed 

model. The proposed model (ELM) consists of the 

following three layers: layer one used many features 

as inputs for the dataset; the second layer is the 

hidden layer that includes some neurons and is equal 

to the number of inputs for each dataset; and the last 

layer contains one neuron that represents the output 

and reflects the predictions for audio, video or 

audio-visual QoE. The rectified linear unit (ReLu) 

was used as an activation function. This work was 

achieved using Python language, version 3.8. 

4. Results and discussion 

The validation of the proposed prediction model 

used the unseen data (testing data). The actual 

values of the QoE were compared with the predicted 

values of the QoE. To evaluate the proposed 

model’s accuracy regarding predicting QoE for 

audio, video and audio-visual information using the 

UnB-AV dataset, the following three types of 

validation metrics were used: root mean square error 

(RMSE), mean square error (MSE) and mean 

absolute error (MAE). As shown in Table 2, 

although the RMSE score was 0.18 in the UnB-AV 

dataset for predicting audio QoE (experiment 2), its 

prediction error rate was less than for the MSE and 

MAE, which scored 0.03 and 0.13, respectively. 

After merging the audio and video information to 

predict the audio-visual QoE and evaluating the 

accuracy, we found that the model achieved a high 

accuracy and scored an RMSE of 0.13 when 

predicting with MQS. 

To evaluate the ELM model performance, by 

using the INRS dataset that was used for predictions 

with audio-visual QoE, we compared our results  
 

Table 2. Accuracy results for predicting QoE with the 

proposed system for the UnV-AV dataset 

Types of 

Multimedia 
RMSE MAE MSE 

Video 0.11 0.08 0.012 

Audio 0.18 0.13 0.03 

Audio-

Visual 
0.13 0.10 0.01 

 
Table 3. Performances of the ELM model in comparison 

with other researcher 

Previous 

Research 

Types of 

Multimedia 
RMSE 

Demirbilek [13] Audiovisual 0.340–0.469 

Osama [7] Audio-Visual 0.072 

 

The Proposed 

Model (ELM) 

Video 0.11 

Audio-Visual 0.13 

 

with the results for latest methods from other 

researchers. In [13], as mention in literature review 

section, authors they used their proposed system to 

predict the QoE for audio-visual and obtained an 

RMSE of 0.34–0.46 to evaluate the model accuracy. 

However, the proposed model scored a lowest error 

rate and better RMSE value of 0.13 for predictions 

with audio QoE.  When we merged the audio and 

video information, we obtained the lowest accuracy 

regarding predicting the QoE for video only, with a 

RMSE score of 0.13. In [7], they implemented 

RMSE to measure the model’s performance and 

obtained a score of 0.07. Table 3 shows the different 

accuracy and correlation metrics from different 

researchers. 

From the results for the proposed model on 

UnB-AV and INRS datasets, we can conclude the 

following: 

The difference between the actual values for 

QoE and predictions of QoE was insignificant. 

As shown in Fig. 3, the prediction for QoE is 

represented by the orange colour, and the blue 

colour represents the measured QoE. This refers 

to the proposed model that was appropriate for 

predictions with audio, video and audio-visual 

QoE. Table 4, and Table 5 shows a sample of a  

comparison data between the actual QoE values 

and predicting QoE values. 

• The extracted features improved the prediction 

model accuracy. 

• Most features that were extracted for audio and 

video had a high impact on the QoE. Previous 

research proved that the features that were 

extracted for video streaming had a high impact 

on the video QoE. However, in this paper, we 

proved that the frequency and time domain 

features that we extracted for audio had a high 
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impact on the QoE. As shown in Fig. 4, all time 

and frequency domain affected the QoE. Fig. 5 

and Table 5 shows the correlation and impact for 

the features that we extracted for audio on the 

QoE. For example, the QoE becomes excellent 

(five value) in the high value tempogram and has 

a bad value when the tempogram value starts to 

decrease.  

• As it did not take much time to run the ELM 

model, this model was very appropriate form 

Predicting audio-visual QoE. 

 

 
 

(a) 

 
(b) 

 
(c) 

 
(d) 

Figure. 3 (a) Comparison between actual value and the prediction value for audio information (UnV-AV dataset), (b) 

Comparison between actual value and the prediction value for video information (UnV-AV dataset), (c) Comparison 

between actual value and the prediction value for audio-visual information (UnV-AV dataset), and (d) Comparison 

between actual value and the prediction value for audio-visual information (INRS dataset) 
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Table 4. A comparison between actual QoE values and predicting QoE values for UnB-AV database 

Actual Videos 

QoE Values 

Predicting 

Videos QoE 

Values 

Actual Audio 

QoE Values 

Predicting 

Audio QoE 

Values 

Actual 

Audio-

Visual QoE 

Values 

Predicting 

Audio-

Visual QoE 

Values 

4.75852 4.27645 3.9 3.96522 3.75 4.01841 

4.35375 4.57145 2.02667 3.81961 3.38 3.74369 

2.16065 2.04329 3.88 3.88113 3.81333 4.01841 

4.21407 4.00417 3.43333 2.39872 3 3.74369 

2.13355 1.98871 1.97 1.86384 3.47403 2.65192 

2.63561 2.45623 5 4.25813 2.4675 2.49791 

1.4873 2.70355 3.86 3.52104 2.2 1.69059 

3.25581 3.46851 2.02333 2.71415 2.06 1.8228 

2.07622 1.95521 1.86294 1.79466 1.52167 1.32178 

2.63257 2.42244 1.678 2.64895 1.715 0.881207 

3.46775 3.02543 2.8 2.55977 1.55 1.77569 

3.9785 3.22963 1 1.22104 1.31333 1.03931 

 
Table 5. A comparison between actual QoE values and predicting QoE values for INRS database 

Actual Videos 

QoE values 

Predicting 

Videos QoE 

Values 

Actual 

Audio QoE 

values 

Predicting 

Audio QoE 

Values 

Actual 

Audio-

Visual QoE 

Values 

Predicting 

Audio-

Visual QoE 

Values 

2.791 2.69796 3.55767 3.20749 2.791 3.31601 

1.46306 1.32924 3.19195 2.791 1.46306 1.93709 

3.26803 3.17725 1.58958 1.46306 3.26803 3.54332 

3.15656 3.01367 3.57578 3.26803 3.15656 3.01141 

3.19536 3.21605 3.23443 3.15656 3.19536 3.54916 

3.08753 2.82422 3.55767 3.19536 3.08753 3.97399 

2.29991 2.21667 3.13231 3.08753 2.29991 2.29845 

4.56546 3.58408 1.67448 2.29991 4.56546 3.87346 

2.38523 3.16989 3.438 4.56546 2.38523 3.2071 

4.61638 3.68694 3.15343 3.18523 4.61638 4.57469 

2.01926 2.747 3.55767 4.61638 2.01926 2.85533 

1.31538 0.494684 2.6475 2.41926 1.31538 2.11228 

 

 
Figure. 4 The Correlation between time and frequency domain with the audio QoE 
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Figure. 5 The QoE depend on the tempogram feature 

 
Table 6. Shows the sample of data for the time and frequency domain impacts on the QoE 

Tempogram Chroma_ 

Cqt 

Spectral_ 

Centroid 

Spectral_ 

Bandwidth 

Fourier_ 

Tempogram 

Poly_Features RMS QoE 

18.01216 0.59107 2231.431 2258.473 0.270678 0.27532 0.062137 4.87 

16.45556 0.555938 1778.193 2234.007 0.273136 0.268275 0.037583 2.68 

14.24353 0.619521 3196.019 3655.905 0.289347 0.279878 0.062137 2.2075 

13.76668 0.631257 3726.78 4186.354 0.300147 0.280906 0.062137 2.085982 

13.32156 0.642852 4653.118 4995.482 0.309395 0.281661 0.062137 2.31 

17.87725 0.586376 2262.033 2285.511 0.271771 0.273672 0.063628 3.275 

17.82678 0.593706 2275.049 2310.799 0.277721 0.274342 0.063263 3.285 

17.71329 0.599856 2320.073 2379.652 0.280681 0.275407 0.063882 2.558075 

17.58824 0.608973 2395.336 2472.675 0.288025 0.276311 0.065571 1.39 

16.38276 0.6057 2333.67 2545.891 0.281416 0.279026 0.061589 2.46 

15.00344 0.598923 2460.507 3108.749 0.277051 0.27586 0.057946 1.220 

16.08505 0.566087 2258.991 2560.545 0.295808 0.266284 0.051955 2.5375 

17.42992 0.595705 2249.946 2313.242 0.268995 0.275791 0.062149 3.476667 

17.16071 0.594891 2281.125 2380.3 0.235696 0.275939 0.059616 3.525 

17.10775 0.594919 2265.946 2370.696 0.266979 0.275835 0.061742 4.52 

16.46979 0.604454 2356.154 2558.504 0.207616 0.276899 0.05609 2.6575 

14.68198 0.612263 2924.454 3342.863 0.281545 0.279042 0.062137 1.99 

20.04716 0.53414 2805.258 3569.874 0.243772 0.256659 0.049524 4.24 

17.55556 0.593116 2454.545 3399.705 0.26444 0.268291 0.039527 3 

 

5. Conclusions 

This paper proposed a method for measuring 

audio-visual information QoE based on machine 

learning algorithms. The study used two types of 

datasets: training and testing datasets. The UnV-AV 

dataset was used as a target dataset because it 

contains diverse audio-visual material (e.g. TV 

commercials, music, documentaries, cartoons, sports 

and interviews) and some degradations. Several 

features that have a high impact on the audio-visual 

QoE were extracted to increase the prediction 

accuracy. This study consisted of three experiments: 

predicting audio, predicting video and predicting 

merged audio-visual. The results indicate that audio 

degradations have a high impact on the QoE. This 

study proved that the time and frequency domain 

features significantly impact the audio QoE. Table 6 

shows the sample of data for the time and frequency 

domain impacts on the QoE. 

Extreme learning machine (ELM) model has 

been used to predict QoE, and it is validated using 

testing data (unseen data). We can conclude that the 

ELM model is highly suited to predicting audio-

visual information because it produces minor 

training errors and provides generalized execution 

because of the algorithm structure. The result 
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indicates that the ELM model was appropriate for 

predicting audio-visual QoE at high speed; it does 

not have to learn iteratively and it needs a single 

iteration process. Experiments on the two datasets 

revealed that the ELM model performed better on 

the UnB-AV database than the INRS database in 

terms of prediction accuracy. The prediction 

accuracy while using the UnB-AV dataset was 

(0.13), whereas when using the INRS dataset. It was 

(0.16). In this work the shortcomings in the previous 

researches have been solved by predicting not only 

video QoE or only audio QoE, but has been 

predicted with both audio and video information. 

The audio-video QoE prediction in this work depend 

not only on the network features but also on the 

pixel mode features for video and Frequency-time 

domain for audio. 
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