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Abstract: In recent times, reduction of greenhouse gas (GHG) emission in conventional power grids becomes most 

important towards global sustainability. Thus, adaption of renewable energy (RE) sources in electricity sector has 

become alternative solution. Photovoltaic (PV) technology has become most adapted RE technology even at small 

scale consumers levels due to their clean and noiseless operation, low investment and operational cost and easy to 

install and maintenance. In this paper, a new heuristic approach white shark optimizer (WSO) is introduced for 

solving the PV based distribution generation (DG) in electrical distribution networks (EDNs). Loss minimization, 

voltage profile improvement and reduction in GHG emission are considered for formulating the proposed multi-

objective function. Simulation studies are performed on IEEE 33-bus EDN for different kinds of load penetrations. 

The computational efficiency of WSO is quantified using 50 independent simulations and compared with various 

other recent algorithms such as pathfinder algorithm (PFA), mayfly optimization algorithm (MOA), coyote 

optimization algorithm (COA), and future search algorithm (FSA). In various case studies, WSO has resulted for 

best solution than compared algorithms. A similar kind of overall improvement is observed even for increased load 

penetration levels along with improved voltage profiles by having PV based DGs in EDN optimally. 

Keywords: Photovoltaic system, Electrical distribution system, Greenhouse gas emission, Loss reduction, Load 

models, Voltage stability enhancement, White shark optimizer. 

 

 

1. Introduction 

Electrical distribution networks (EDNs) are 

suffering as a result of low investment and a 

constant increase in demand for electricity. 

Furthermore, the vast majority of EDNs are 

constructed in radial arrangement with high X/R 

ratio branches, resulting in substantial losses and a 

low voltage profile. However, increasing global 

warming and greenhouse gas (GHG) emissions from 

conventional power plants have become a major 

cause of concern for those who want to upgrade 

traditional power systems to use clean and 

renewable energy (RE) sources instead of fossil 

fuels. Integration of RE as distribution generation 

(DG) in electric distribution networks (EDNs) has 

received significant attention in recent years due to a 

variety of technological, economic, and 

environmental objectives. Among different RE 

technologies, photovoltaic (PV) and wind turbine 

(WT) based DGs have become popular. For either 

single or multiple objective functions like as loss 

minimization, voltage profile improvement, voltage 

stability enhancement, operating cost minimization, 

GHG emission reduction, and other factors have 

been proposed in the literature for optimal allocation 

of RE-based DGs. As a multi-variable optimization 

issue, the optimal allocation of DGs problem should 

be handled as a discrete-variable problem with the 

identification of locations as discrete variables and 

the evaluation of correct sizes as continuous 

variables. Aside from that, search variables are 
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constrained by lower and higher bounds as well as 

equal constraints. In order to address these issues, a 

variety of heuristic techniques have been developed 

by various academics. 

In [1], salp swarm algorithm (SSA) is modified 

for the purpose of determining the optimal 

allocation of RE-based DGs in IEEE 33- and 69-bus 

RDSs while taking into account loss minimization, 

voltage profile improvement, voltage stability 

enhancement, operational cost minimization, and 

greenhouse gas (GHG) emission reduction. For 

increased performance and economic operation of 

RDNs, an enhanced grey wolf algorithm (EGWA) is 

used in [2] to determine the most optimal 

placements, sizes, and numbers of DGs, capacitor 

banks (CBs), and voltage regulators (VRs). Particle 

swarm optimization (PSO) is used in [3] to solve 

problems related to PV-based distributed generation 

(DG) systems, including as power and voltage 

quality difficulties, congestion, reactive power 

compensation, and safety concerns. As shown in [4], 

the optimal integration of active and reactive power-

based DGs allocation in the IEEE 69-bus is solved 

by incorporating generic analytical expressions 

(GAE) into an optimal power flow model (OPF). 

When attempting to solve the problem, the primary 

focus is on loss minimization and voltage profile 

improvement. In [5], a fuzzy logic-based 

grasshopper optimization algorithm (GOA) is 

developed for solving optimal DGs, CBs, and EVs 

in the IEEE 69-bus with the goal of loss 

minimization and voltage profile improvement, with 

the goal of loss minimization and voltage profile 

improvement. It is proposed in [6] to use the water 

cycle algorithm (WCA) to address the DGs/CBs 

allocation problem for a variety of technological, 

economic, and environmental objectives. This 

problem is tackled in [7] by combining elements of 

the EGWA and the PSO to provide an optimal 

allocation of DGs/CBs that is based on techno-

economic-environmental objectives. In [8], the 

differential evolution (DE) algorithm is used to 

integrate DGs with power factor controllers in order 

to provide active and reactive power compensation 

and, as a result, to achieve loss reduction and 

improvement in voltage profile. It is proposed in [9] 

to use the Archimedes optimization algorithm 

(AOA) to solve PV-based DGs in agricultural 

feeders with a view to achieving techno-

environmental objectives. In [10], the improved 

harris hawks optimizer (IHHO) is used in 

conjunction with the PSO to solve stochastic PV and 

WT based DGs in RDNs with the goal of reducing 

loss and improving voltage profile, respectively. 

When solving the DGs allocation problem as a 

single or multi-objective optimization problem using 

IHHO and MOIHHO, the authors treat loss 

minimization, voltage profile improvement, and 

voltage stability enhancement as primary objectives 

[11]. In [12], it is proposed to use an extended 

genetic algorithm (EGA) for the simultaneous 

allocation of DGs and CBs in RDNs while taking 

into account loss minimization, installation and 

operational cost optimization, and other factors. [13] 

shows how butterfly optimization algorithm (BOA) 

may be used to solve the problem of DGs allocation 

in RDNs while taking into account loss 

minimization and voltage profile enhancement. It is 

proposed in [14] to use a modified Jaya algorithm to 

deal with the PV-based DG allocation problem, with 

the goal being to maximize the PV penetration level 

while both reducing losses and improving the 

voltage profile. DG allocation problems with 

technological and economic objectives are 

addressed in [15] by a fuzzy-decision based multi-

objective sine cosine algorithm (MOSCA) based on 

fuzzy decision making. 

From the above discussed literature, optimal 

allocation of DGs in EDNs can result for multi-

objective benefits. Due to multi-objectives, multi-

type variables, and equal and unequal constraints, 

heuristic approaches have been adapted highly to 

solve these problems. In the current energy systems, 

researchers are increasingly focused on developing 

new algorithms that are faster and more efficient 

when solving such complicated and large-scale 

multi-objective optimization problems. The 

algorithms considered in the literature, on the other 

hand, have a number of shortcomings, such as slow 

convergence, being computationally expensive, and 

having difficulties maintaining the variety among 

the possible solutions. In recent times, mixed leader 

based optimizer (MLBO) [16], three influential 

members based optimizer (TIMBO) [17], darts 

game optimizer (DGO) [18], mixed best members 

based optimizer (MBMBO) [19], multi leader 

optimizer [20], random selected leader based 

optimizer [21], equilibrium optimizer (EO) [22], and  

white shark optimizer (WSO)  [23], are some of 

such recent meta-heuristic algorithms. In these 

aspects, the following are the major contributions of 

this paper. 

1) Solving the optimal allocation of PV-based DGs 

problem for multi-objectives includes loss 

minimization, voltage profile improvement and 

GHG reduction.  

2) First application of white shark optimizer (WSO) 

for handling DG allocation in EDN. 
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3) Extension of DG allocation problem for different 

kinds of loads such as residential, industrial, 

commercial and their different penetration levels. 

4) Comparison of WSO performance with other 

recent algorithms namely PFA, MOA, COA, and 

FSA. 

The remaining sections of the paper are 

organized as follows: Section 2 describes the 

mathematical modelling of PV-based distributed 

generation systems that is suitable for load flow 

studies. On the third page, you will find information 

about voltage-dependent modelling for various types 

of loads and their penetration levels. In Section 4, 

the proposed multi-objective optimization problem 

for DG allocation is explained in detail with respect 

to the various constraints. This section covers the 

theoretical concept of the WSO algorithm and its 

simulation. Section 6 presents a number of case 

studies involving IEEE 33-bus and IEEE 69-bus 

Ethernet data networks. Section 7 of this paper 

concludes with a discussion of the overall 

conclusions reached by this paper.  

2. Modelling of photovoltaic systems 

Photovoltaic (PV) systems are typically 

incorporated into the grid via DC/AC inverters, 

which are more efficient. However, as seen by [24], 

the actual DC power generation by PV systems is 

reliant on meteorological and weather conditions.  

 

𝑃𝑉𝐷𝐶(𝑡) = 𝑃𝑃𝑉,𝑟 (
𝐺(𝑡)

𝐺𝑆𝑇𝐶
) − 𝛼𝑡[𝑇𝑐(𝑡) − 𝑇𝑐,𝑆𝑇𝐶]    (1) 

 

𝑇𝑐(𝑡) = 𝑇𝑎(𝑡) + (
𝑁𝑂𝐶𝑇−20

0.8
) × 𝐺(𝑡)            (2) 

 

𝑃𝑉𝐴𝐶(𝑡) = 𝑃𝑉𝐷𝐶(𝑡) × 𝜂𝑖𝑛𝑣                  (3) 

 

where 𝑃𝑉𝐷𝐶(𝑡)  and 𝑃𝑉𝐴𝐶(𝑡)  are the DC and AC 

power generation by PV system, respectively; 𝜂𝑖𝑛𝑣 

is the inverter efficacy, 𝑃𝑃𝑉,𝑟 is the rated PV system 

capacity,  𝐺𝑆𝑇𝐶 and 𝑇𝑐,𝑆𝑇𝐶 are the solar radiation and 

cell temperature at standard test conditions (STC), 

(i.e., radiation  of 1 kW/m2, ambient temperature of 

25o C and sea level air mass (AM) of 1.5), 

respectively; 𝐺(𝑡)  and 𝑇𝑐(𝑡)  are the actual radiation 

and temperature on the module at a time t, 

respectively; 𝛼𝑡  is the module cell temperature 

coefficient, NOCT is the nominal operation cell 

temperature value, 𝑇𝑎(𝑡) is the ambient temperature 

at time t. 

The PV systems are mainly suitable for active 

power injection at a bus in the grid. However, by 

controlling the inverters’ power factor, there is a 

possibility regulated the voltage of PV system 

associated load bus by injecting reactive power into 

the grid.  

 

𝑃𝑑,𝑖(𝑡)
̅̅ ̅̅ ̅̅ ̅̅ = 𝑃𝑑,𝑖(𝑡) − 𝑃𝑉𝐴𝐶,𝑖(𝑡)                (4) 

 

𝑄𝑑,𝑖(𝑡)
̅̅ ̅̅ ̅̅ ̅̅ = 𝑄𝑑,𝑖(𝑡) − 𝑃𝑉𝐴𝐶,𝑖(𝑡) × 𝑡𝑎𝑛(𝜑𝑖𝑛𝑣,𝑖)     (5) 

 

where 𝑃𝑑,𝑖(𝑡)
̅̅ ̅̅ ̅̅ ̅̅  and 𝑄𝑑,𝑖(𝑡)

̅̅ ̅̅ ̅̅ ̅̅  are the real and reactive 

power loads of bus-i after integrating a PV system, 

respectively; 𝑃𝑑,𝑖(𝑡) and 𝑄𝑑,𝑖(𝑡) are the base case real 

and reactive power loads, respectively; 𝜑𝑖𝑛𝑣,𝑖 is the 

inverter’s operating power factor.  

3. Modelling of load penetration  

In general, different kinds of loads are associated 

with EDNs and thus, the load consumption may 

differ due to their dependency on voltage profile. In 

[25], the network performance for different kinds of 

loads is analysed using voltage-dependent load 

modelling. The active and reactive power loads of a 

bus can be expressed as follows:  

 

𝑃𝑑,𝑖(𝑡)
̅̅ ̅̅ ̅̅ ̅ = 𝑃𝑑,𝑖(𝑡) × (

|𝑉𝑖(𝑡)|

|𝑉𝑟𝑒𝑓|
)
𝛼𝑙

× (1 + 𝛾𝑝(𝑡))      (6) 

 

𝑄𝑑,𝑖(𝑡)
̅̅ ̅̅ ̅̅ ̅̅ = 𝑄𝑑,𝑖(𝑡) × (

|𝑉𝑖(𝑡)|

|𝑉𝑟𝑒𝑓|
)
𝛽𝑙

× (1 + 𝛾𝑝(𝑡))     (7) 

 

where 𝑃𝑑,𝑖(𝑡)
̅̅ ̅̅ ̅̅ ̅ and 𝑄𝑑,𝑖(𝑡) are the modified active and 

reactive power loads of bus-i, respectively; 𝛾𝑝𝑒𝑛 is 

the penetration level w.r.t. base case; |𝑉𝑖(𝑡)|  and 

|𝑉𝑟𝑒𝑓| are the voltage magnitude of bus-i at time-t 

and reference voltage, respectively; 𝛼𝑙 and 𝛽𝑙 are the 

exponents for active and reactive powers based on 

type of load, respectively.  

4. Problem formulation 

Loss minimization, voltage profile improvement, 

and reduction of GHG emission are aimed in this 

work while solving optimal allocation of PV based 

DGs in EDNs. A multi-objective function is defined 

by, 

 

𝑂𝐹 = 𝑃𝑙𝑜𝑠𝑠 + 𝑉𝐷 + 𝐺𝐻𝐺𝑒𝑚              (8) 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ (𝑖𝑏
2 × 𝑟𝑏)

𝑛𝑏𝑟
𝑘=1                   (9) 

 

𝑉𝐷 =
1

𝑛𝑏
∑ 𝑉𝑖(𝑡)

𝑛𝑏
𝑖=1                    (10) 

 

𝐺𝐻𝐺𝑒𝑚 = 𝑃𝑑(𝑠/𝑠) × (𝐶𝑂2 + 𝑁𝑂𝑥 + 𝑆𝑂2)   (11) 
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where 𝑃𝑙𝑜𝑠𝑠 is the total real power losses,  𝑉𝐷 is the 

voltage deviation,  𝐺𝐻𝐺𝑒𝑚 is the GHG emission, 𝑖𝑏 

and 𝑟𝑏  are the branch current and resistance 

respectively; 𝑛𝑏  and 𝑛𝑏𝑟  are the number of buses 

and number of branches in the network, 

respectively; 𝑃𝐷 is the total load demand, 𝐶𝑂2, 𝑁𝑂𝑥 

and 𝑆𝑂2  are the most pollutants of conventional 

power plants [6].

 The 𝑂𝐹 is subjected to the following equal and 

unequal constraints such as (i) generation-demand 

balance for active and reactive powers, (ii) voltage 

limits, (iii) branch current/MVA limits, and are 

given by Eqs. (12) to (15), respectively.  

 

𝑃𝑑(𝑠/𝑠) = 𝑃𝑙𝑜𝑠𝑠 + 𝑃𝐷 − 𝑃𝑉𝑃              (12) 

 
𝑄𝑑(𝑠/𝑠) = 𝑄𝑙𝑜𝑠𝑠 + 𝑄𝐷 − 𝑃𝑉𝑄             (13) 

 
|𝑉𝑖|𝑚𝑖𝑛 ≤ |𝑉𝑖| ≤ |𝑉𝑖|𝑚𝑎𝑥               (14) 

 
|𝐼𝑏| ≤ |𝐼𝑏|𝑚𝑎𝑥                       (15) 

 

where 𝑃𝑑(𝑠/𝑠) and 𝑄𝑑(𝑠/𝑠) are the active and reactive 

power demands of substation, respectively; 𝑃𝑙𝑜𝑠𝑠 

and 𝑄𝑙𝑜𝑠𝑠  are the active and reactive power losses, 

respectively; 𝑃𝐷  and 𝑄𝐷  are the active and reactive 

power demands of the network, respectively; 𝑃𝑉𝑃 

and 𝑃𝑉𝑄 are the active and reactive power supplied 

by PV systems, respectively; |𝑉𝑖|𝑚𝑖𝑛  and |𝑉𝑖|𝑚𝑎𝑥 

are the voltage magnitude minimum and maximum 

limits, respectively; |𝐼𝑏|and |𝐼𝑏|𝑚𝑎𝑥  are the branch 

current and its maximum limit, respectively;  

5. White shark optimizer 

The great white shark may detect prey (food 

source) in the deep ocean. However, the food 

source's location within a search space is unknown. 

In this scenario, white sharks must look for food in 

the ocean's depths. White shark optimizer (WSO) 

used three great white shark behaviours to seek prey 

(i.e. the best food source) [23]: (1) movement 

towards prey dependent on prey movement causing 

wave pauses, (2) the white shark's random quest for 

prey at the ocean's depths, using its connected 

senses of hearing and smell, (3) the white shark's 

behaviour while searching nearby prey. In this 

scenario, the great white shark approaches the best 

white shark closest to the optimal meal. Based on 

these behaviours, all white shark locations will be 

updated to represent the best possibilities if the prey 

is not identified quickly. 

5.1 Initialization phase: 

White Shark Optimizer (WSO) is a population-

based algorithm and uses uniformly distributed 

random number theory to generate initial population 

within the search space limits and is given by, 

 

𝑤𝑠𝑖
𝑗
= 𝑙𝑏𝑖 + 𝑟 × 𝑢𝑏𝑖                  (16) 

 

𝑤𝑠 =

[
 
 
 
𝑤𝑠1

1 𝑤𝑠2
1 ⋯ ⋯ 𝑤𝑠𝑑

1

𝑤𝑠1
2 𝑤𝑠1

2 ⋯ ⋯ 𝑤𝑠𝑑
2

⋮
𝑤𝑠1

𝑛
⋮

𝑤𝑠1
𝑛

⋮
⋯

⋱
⋯

⋮
𝑤𝑠1

𝑛]
 
 
 

         (17) 

 

where 𝑤𝑠𝑖
𝑗
 is the initial position vector of the jth 

white shark in the ith dimension, 𝑙𝑏𝑖 and 𝑢𝑏𝑖 are the 

lower and upper limits of the search space in the ith 

dimension, respectively; 𝑟  is a random number 

generated between 0 and 1; 𝑛 and 𝑑 are the number 

of population or white sharks and dimension of 

search variables, respectively.  

The fitness of each candidate solution generated 

using Eq. (16) is evaluated for the defined objective 

function expressed in Eq. (8) and correspondingly 

determines the best candidate solution at the initial 

phase. 

5.2 Movement speed towards prey: 

As predators, white sharks spend much of their 

time hunting and tracking prey. They generally use 

their incredible senses of hearing, sight, and smell to 

track prey. After hearing a halt in the waves, a white 

shark moves in an undulating pattern, as seen in Eq. 

(18), 

 

𝑣𝑘+1
𝑗

= 𝛼 [𝑣𝑘
𝑗
+ 𝑓1 × (𝑤𝑠𝑔𝑏,𝑘 − 𝑤𝑠𝑘

𝑗
) × 𝑟1 +

𝑓2 × (𝑤𝑠𝑏
𝑣𝑗

− 𝑤𝑠𝑘
𝑗
) × 𝑟2], 𝑗 = 1,2, . . , 𝑛              (18) 

 

where 𝑗 is the index of a white shark in a population 

size of 𝑛, 𝑣𝑘+1
𝑗

 and 𝑣𝑘
𝑗
 are the new velocity vector of 

jth white shark for the iteration (𝑘 + 1), and current 

iteration 𝑘 , respectively; 𝑤𝑠𝑔𝑏,𝑘  is the global best 

position obtained up to 𝑘 th iteration, 𝑤𝑠𝑘
𝑗

 is the 

current iteration position of 𝑗th white shark, 𝑤𝑠𝑏
𝑣𝑗

 is 

𝑗th best position vector known to the whole swarm, 

𝑟1  and 𝑟2  are the random numbers, respectively; 𝑓1 

and 𝑓2 are the forces developed for controlling the 

effect of 𝑤𝑠𝑔𝑏,𝑘  and 𝑤𝑠𝑏
𝑣𝑗

 on 𝑤𝑠𝑘
𝑗
, and are defined 

in Eqs. (19) and (20) respectively; 𝑣𝑗 is the 𝑗th index 

vector of a white shark reaching to best position and 

it is defined by Eq. (21), and 𝛼 is constriction factor 
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which defines the convergence characteristics of 

WSO and is given in Eq. (22). 

 

𝑓1 = 𝑓𝑚𝑎𝑥 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) × 𝑒−(4𝑘 𝑘⁄ )2    (19) 

 

𝑓2 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) × 𝑒−(4𝑘 𝑘⁄ )2    (20) 

 

𝑣𝑗 = [𝑛 × 𝑟𝑎𝑛𝑑(1, 𝑛)] + 1                (21) 

 

𝛼 =
2

|2−𝛾−√𝛾2−4𝛾|
                       (22) 

 

where 𝑟𝑎𝑛𝑑(1, 𝑛) is uniformly distributed random 

number vector in the range of [0, 1], 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 

are the minimum and maximum forces to be 

maintained for attaining a good motion by the white 

sharks, respectively. After number of rigorous 

simulations, the authors’ of WSO are fixed 𝑓𝑚𝑖𝑛=0.5 

and 𝑓𝑚𝑎𝑥=1.5, respectively; 𝛾 is used as acceleration 

coefficient and fixed to 4.125 based on analysis.  

5.3 Movement towards optimal prey: 

Great white sharks spend most of their time 

seeking for suitable prey. As a result, the white 

sharks' postures change. They frequently move near 

prey when they hear or smell its waves. In some 

cases, prey escapes because a white shark 

approaches or it is hungry. The prey's scent is often 

left where the white shark may sense it. In this case, 

the white shark follows a school of fish to random 

locations in quest of prey. In this scenario, white 

sharks approached prey using the position update 

mechanism outlined in Eq. (23).  

 

𝑤𝑠𝑘+1
𝑗

= 

{
𝑤𝑠𝑘

𝑗
∙ − ⊕ 𝑤𝑠𝑜 + 𝑢 ∙ 𝑎 + 𝑙 ∙ 𝑏; 𝑟𝑎𝑛𝑑 < 𝑚𝑣

𝑤𝑠𝑘
𝑗
+ 𝑣𝑘

𝑖 𝐹⁄ ;                               𝑟𝑎𝑛𝑑 ≥ 𝑚𝑣
 (23) 

 

where 𝑤𝑠𝑘+1
𝑗

 is the new location vector of the 𝑗th 

white shark in the (𝑘 + 1)th iteration step, − is a 

negation operator, 𝑎  and 𝑏  are one-dimensional 

binary vectors defined by Eqs. (24) and (25), 

respectively;  𝑙𝑏  and 𝑢𝑏  are the lower and upper 

limits of the search space, respectively, 𝑤𝑠𝑜  is a 

logical vector defined by Eq. (26), 𝐹  is the 

frequency of a white shark's wavy motion defined 

by Eqs. (27) and (28), respectively. 

 

𝑎 = 𝑠𝑔𝑛(𝑤𝑠𝑘
𝑗
− 𝑢𝑏) > 0              (24) 

 

𝑏 = 𝑠𝑔𝑛(𝑤𝑠𝑘
𝑗
− 𝑙𝑏) > 0              (25) 

 

𝑤𝑠𝑜 =⊕ (𝑎, 𝑏)                        (26) 

 

𝐹 = 𝐹𝑚𝑖𝑛 +
𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛

𝐹𝑚𝑎𝑥+𝐹𝑚𝑖𝑛
                 (27) 

 

𝑚𝑣 =
1

(𝑎0+𝑒(𝑘 2⁄ −𝑘) 𝑎1⁄ )
                 (28) 

5.4 Movement towards the best white shark: 

Great white sharks can keep their position in 

front of the best one that is near to the prey. Eq. (29) 

shows how this phenomenon is expressed. 

 

𝑤𝑠̅̅̅̅ 𝑘+1
𝑗

= 𝑤𝑠𝑔𝑏,𝑘 + 𝑟1𝐷𝑝,𝑤𝑠
̅̅ ̅̅ ̅̅ ̅𝑠𝑔𝑛(𝑟2 − 0.5), 

𝑟3 < 𝑆𝑠𝑡                               (29) 

 

𝐷𝑝,𝑤𝑠
̅̅ ̅̅ ̅̅ ̅ = 𝑟3(𝑤𝑠𝑔𝑏,𝑘 − 𝑤𝑠𝑘

𝑗
)              (30) 

 

𝑆𝑠𝑡 = |1 − 𝑒(−𝑎2×𝑘 𝑘𝑚𝑎𝑥⁄ )|               (31) 

 

where 𝑤𝑠̅̅̅̅ 𝑘+1
𝑗

 is the current position of the 𝑗th white 

shark in relation to its prey, 𝑠𝑔𝑛(𝑟2 − 0.5) returns 

either 1 or -1 to change the search direction, 𝐷𝑝,𝑤𝑠
̅̅ ̅̅ ̅̅ ̅  

is the space between the white shark and the prey 

(i.e., food supply), 𝑆𝑠𝑡  is a measure that is 

recommended to indicate the power of their senses 

of smell and sight, when white sharks following 

similar white sharks which are close to ideal prey, it 

is a measure that is recommended to indicate the 

power of their senses of smell and sight, 𝑎2  is a 

constant value that's used to regulate actions like 

exploration and exploitation, 𝑘𝑚𝑎𝑥 is the maximum 

number of iterations. 

5.5 Fish school behaviour: 

The initial two best answers were kept in order 

to mathematically recreate the behaviour of the 

school of white sharks, and the positions of other 

white sharks were updated in accordance with these 

best solutions. To define the fish school behaviour 

of white sharks, the following formula was 

proposed: 

 

𝑤𝑠𝑘+1
𝑗

=
𝑤𝑠𝑘

𝑗
+𝑤𝑠̅̅ ̅̅ 𝑘+1

𝑗

2×𝑟4
                     (32) 

 

where 𝑟1 , 𝑟2 , 𝑟3 , and 𝑟4  are uniformly distributed 

random numbers in the range [0, 1], respectively.  

Eq. (32) reveals that white sharks can adjust 

their position in accordance with the best white 

shark's location, which is quite close to prey. Great 

white sharks' final position (as search agents) would 

be someplace in the search space that is extremely 
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close to ideal prey. The collective behaviour of 

WSO is identified by fish school behaviour and the 

movement of white sharks towards the best white 

shark, which expands the possibility for improved 

exploration and exploitation features.  

6. Results and discussion 

The simulations are carried out on a PC with 

specifications of 4 GB of RAM, a 64-bit operating 

system, and an Intel® CoreTM i5-2410M CPU 

running at 2.30 GHz, with the MATLAB program. 

Simulations are carried out on IEEE 33-bus 

standard EDN [26]. The case studies on each EDN 

are categorized as follows: Case 1: constant power, 

Case 2: residential, Case 3: commercial, and Case 4: 

industrial load models. Each case is repeated for 

three load penetration levels of 0% (base case), 25% 

and 50%, respectively.  

6.1 Case 1: constant power load model 

For the constant power (CP) load model, both 𝛼𝑙 

and 𝛽𝑙 are equal to 0 in Eqs. (6) and (7). For base 

case (i.e., 𝛾𝑝 = 0 ), the load flow results are as 

follows: The total demand is 3715 kW and 2300 

kVAr, respectively. By performing load flow [27], 

the network has total losses of 202.6711 kW, and 

135.1409 kVAr, respectively. The minimum voltage 

magnitude is registered at bus-18 as 0.9131 p.u. and 

the average voltage deviation is observed as 0.9485 

p.u. Since there are no DGs in the network, the total 

load and losses are supplied by main-grid. The 

supply from main-grid is considered as conventional 

fuel based sources and thus, total GHG emission is 

estimated at 8022.1×103 lb/h [6]. 

By optimizing the proposed objective function 

expressed in Eq. (8) using WSO, the best locations 

and sizes of PV-DGs are determined as 754.53 kW, 

1071.23 kW and 1100 kW at buses 14, 24 and 30, 

respectively. In comparison to base case, the 

network performance is improved significantly. The 

losses are reduced to 71.4572 kW, and 49.3916 

kVAr, respectively. The minimum voltage 

magnitude is registered at bus-33 as 0.9687 p.u. and 

the average voltage deviation is observed as 0.9822 

p.u. Since network as PV-DGs, the total load and 

losses are supplied by main-grid are decreased, thus, 

total GHG emission is reduced to 1761.9×103 lb/h.  

The results of WSO are compared with literature 

works and given in Table 1. In comparison to SSA 

[1], WCA [6], and GA [13], WSO results are 

superior in terms of global optima. On the other 

hand, WSO is performed highly competitive to 

EGWO-PSO [7], HHO-PSO [10] and Jaya [14]. In  
 

 
Figure. 1 Convergence characteristics of different 

algorithms 

 

Table 1, (∗) indicates the re-simulation of load 

flow with the solution given by that corresponding 

algorithm. 

In Table 2, the computational efficiency of WSO 

is quantified using 50 independent simulations of 

PFA [28], MOA [29], COA [30] and FSA [31] and 

WSO. The convergence characteristics of these 

algorithms for best results are given in Fig. 1.  

Similarly, WSO is extended to find PV 

allocation for different penetration levels of load. 

The network performances without PVs and with 

optimal PVs for different penetrations are given in 

Table 3.  

It can be seen that the overall performance is 

improved significantly with optimal PV allocation in 

the network irrespective of loading levels. 

 

6.2 Case 2: residential load model 

For residential load model, the 𝛼𝑙 = 0.92  and 

𝛽𝑙 = 4.04 are in Eqs. (6) and (7), and the outcomes 

are as follows: Total demand is 3564.55 kW and 

1885.06 kVAr. Load flow results in network losses 

of 159.336 kW and 105.851 kVAr. Bus-18 has a 

minimum voltage of 0.9234 p.u. and an average 

voltage deviation of 0.9544 p.u. Because there are 

no DGs in the network, main-grid supplies all load 

and losses. The main-grid supply is considered fossil 

fuel based, hence overall GHG emissions are 

estimated as 7625.256×103 lb/h.  

Using WSO to optimize the proposed objective 

function Eq. (8), the best placements and sizes of 

PV-DGs are determined to be buses 24, 30, and 14. 

The sizes in kW are, 1065.36, 942.64, and 714.64, 

respectively. The network performance is much 

better than the base scenario. The losses are now 

60.1361 kW and 41.4619 kVAr. Bus-33 has a 

minimum voltage of 0.9672 p.u. and an average 

voltage deviation of 0.9814 p.u. Since PV-DGs  
 

65

70

75

80

85

90

95

100

105

1 4 7 1013161922252831343740434649

F
it

n
es

s 
F

u
n

ct
io

n

Iteration 

PFA [21]

MOA [22]

COA [23]

FSA [24]

WSO



Received:  May 6, 2022.     Revised: June 9, 2022.                                                                                                           464 

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022           DOI: 10.22266/ijies2022.0831.41 

 

Table 1. Comparison of WSO’ performance with literature works  

Algorithm PV size in kW (bus #) 
Ploss 

(kW) 

Qloss 

(kW) 

Vmin in p.u. 

(bus #) 

VD 

(p.u.) 

GHGem 

(lb/h)×103 

Base  - 202.6711 135.1409 0.9131 (18) 0.9485 8022.1 

SSA [1]* 753.6 (13), 1100.4 (23), 1070.6 (29) 76.0102 52.8281 0.9651 (33) 0.9810 1773.3 

WCA [6]* 854.6 (14), 1101.7 (24), 1181 (29) 72.9586 50.6075 0.9697 (33) 0.9850 1330.9  

EGWO-PSO [7] 754 (14), 1099 (24), 1071 (30) 71.4572 49.3900 0.9686 (33) 0.9822 1764.3 

HHO-PSO [10]* 761.4 (14), 1094.7 (24), 1068 (30) 71.4595 49.3893 0.9686 (33) 0.9823 1766.0 

GA [13]* 761 (14), 1170 (240, 1082 (30) 71.5355 49.5225 0.9694 (33) 0.9827 1583.9 

Jaya [14]* 755.59 (14), 1097.04 (24), 1071.6 (30) 71.4572 49.3900 0.9686 (33) 0.9822 1764.3 

WSO 754.53 (14), 1071.23 (30), 1100 (24) 71.4572 49.3916 0.9687 (33) 0.9822 1764.3 

 
Table 2. Comparison of WSO’ performance with other algorithms 

Algorithm PV size in kW (bus #) 
Ploss 

(kW) 

VD 

(p.u.) 

GHGem  

(lb/h)×103 

Parameters  

mean median std. 

PFA [21] 854.50 (14), 1102 (24), 1182 (29) 74.56 0.9706 1402.011 71.466 70.523 4.104 

MOA [22] 755.78 (14), 1100 (24), 1083.04 (30) 71.46 0.9824 1764.298 71.268 70.517 2.495 

COA [23] 1084.4 (30), 756.49 (14), 1085.62 (24) 71.46 0.9824 1764.298 72.330 70.520 3.281 

FSA [24] 756.49 (14), 1084.4 (30), 1085.62 (24) 71.46 0.9824 1764.298 71.289 70.517 2.410 

WSO  754.53 (14), 1071.23 (30), 1100 (24) 71.46 0.9822 1764.298 71.178 70.517 2.034 

 
Table 3. WSO’ performance for constant power (CP) load model with different penetration levels 

𝛾𝑝  

(%) 

Without PVs With PVs 

Ploss 

(kW) 

VD 

(p.u.) 

GHGem  

(lb/h)×103 
PV size in kW (bus #) 

Ploss 

(kW) 

VD  

(p.u.) 

GHGem 

(lb/h)×103 

0 202.6766 0.9485 8022.07 1071.42(30), 753.98 (14), 1099.44 (24) 71.457 0.9822 1764.298 

0.25 329.8519 0.9342 10184.25 1275.14(30), 966.49 (14), 1372.71 (24) 113.610 0.9770 2340.516 

0.5 496.3486 0.9192 12426.94 1141.02(14), 1671.24 (24), 1632.46 (30) 166.040 0.9731 2649.304 

 
Table 4. WSO’ performance for residential load model with different penetration levels 

𝛾𝑝  

(%) 

Without PVs With PVs 

Ploss 

(kW) 

VD 

(p.u.) 

GHGem  

(lb/h)×103 
PV size in kW (bus #) 

Ploss 

(kW) 

VD  

(p.u.) 

GHGem 

(lb/h)×103 

0 159.336 0.9544 7625.256 1065.36(24), 942.64 (30), 714.64 (14) 60.136 0.9814 2125.866 

0.25 244.008 0.9436 9532.101 1155.78(30), 1328.80 (24), 886.66 (14) 91.365 0.9766 2745.024 

0.5 344.986 0.9331 11437.75 1056.82 (14), 1591.03 (24), 1363.05 (30) 127.967 0.9718 3388.422 

 
Table 5. WSO’ performance for commercial load model with different penetration levels 

𝛾𝑝  

(%) 

Without PVs With PVs 

Ploss 

(kW) 

VD 

(p.u.) 

GHGem  

(lb/h)×103 
PV size in kW (bus #) 

Ploss 

(kW) 

VD  

(p.u.) 

GHGem 

(lb/h)×103 

0 154.935 0.9551 7433.643 717.10 (14), 954.97 (30), 1066.42 (24) 61.456 0.9815 2079.159 

0.25 235.125 0.9447 9237.393 1330.28(24), 889.79 (14), 1172.00 (30) 93.821 0.9766 2679.978 

0.5 329.207 0.9346 11019.5 1060.35 (14), 1382.56 (30), 1592.90 (24) 132.004 0.9718 3304.880 

 
Table 6. WSO’ performance for industrial load model with different penetration levels 

𝛾𝑝  

(%) 

Without PVs With PVs 

Ploss 

(kW) 

VD 

(p.u.) 

GHGem  

(lb/h)×103 
PV size in kW (bus #) 

Ploss 

(kW) 

VD  

(p.u.) 

GHGem 

(lb/h)×103 

0 161.698 0.9543 7876.426 706.13 (14), 909.91 (30), 1058.30 (24) 56.098 0.9814 2239.563 

0.25 250.867 0.9432 9926.201 1318.69 (24), 875.97 (14), 1114.44 (30) 84.001 0.9768 2894.779 

0.5 360.334 0.9323 12009.72 1577.77 (24), 1315.51 (30), 1044.70 (14) 116.114 0.9722 3569.647 
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reduce main-grid load and losses, overall GHG 

emissions are lowered to 2125.866×103 lb/h. 

In a similar vein, WSO has been extended to 

find PV allocation for different levels of load 

penetration. According to the penetration levels 

shown in Table 4, the network's performances 

without PVs and with optimal PVs are both 

excellent.  

6.3 Case 3: commercial load model 

In Eqs. (6) and (7), the 𝛼𝑙 = 1.51 and 𝛽𝑙 = 3.4 

are to be considered for this load model. The load 

flow results for the base scenario are: 3475.38 kW 

and 1948.15 kVAr total demand. There are 154.935 

kW and 102.872 kVAr losses when executing load 

flow. Bus-18 has a minimum voltage of 0.9246 p.u. 

and an average voltage deviation of 0.9551 p.u.. It is 

fed by main-grid because there are no DGs. So the 

overall GHG emissions are calculated as 

7433.64×103 lb/h from main-grid supply. 
Using WSO to optimize the proposed objective 

function Eq. (8), the best placements and sizes of 

PV-DGs are determined to be buses 14, 30, and 24. 

The sizes in kW are: 717.10, 954.97, and 1066.42, 

respectively. The network performance is much 

better than the base scenario. These locations and 

sizes are found by maximizing the proposed 

objective function. The network performance is 

much better than in the base situation. The losses are 

61.456 kW and 42.333 kVAr. Bus-33 measures 

0.9673 p.u. minimum voltage and 0.9815 p.u. 

average voltage deviation. A reduction in main-grid 

load and losses reduces GHG emissions to 2079.16 

×103 lb/h. 

6.4 Case 4: industrial load model 

In Eqs. (6) and (7), the 𝛼𝑙 = 0.18 and 𝛽𝑙 = 6 are 

to be considered for this load model. The results for 

the base case are as follows: Total demand is 

3684.85 kW and 1717.78 kVAr. Load flow results 

in losses of 161.698 kW and 107.486 kVAr. Bus-18 

has a minimum voltage magnitude of 0.9228 p.u. 

and an average voltage deviation of 0.9543 p.u. 

Since there are no DGs in the network, main-grid 

supplies all load and losses. The main-grid supply is 

deemed fossil fuel based, hence total GHG emission 

is estimated as 7876.426 ×103 lb/h. 

Using WSO to optimize the proposed objective 

function, the best placements and sizes of PV-DGs 

are identified to be buses 14, 30, and 24. The 

optimal sizes in kW are: 706.13, 909.91, 1058.30, 

respectively. The network performance is much 

better than base case. The losses drop to 56.097 kW 

and 38.733 kVAr. Bus-33 has a minimum voltage 

magnitude of 0.9673 p.u. and an average voltage 

deviation of 0.9814 p.u. Since PV-DGs reduce 

main-grid load and losses, overall GHG emission is 

lowered to 2239.563×103 lb/h. 

Similarly, simulations are repeated for an 

increased penetration level of 25% and 50% and the 

best results obtained by WSO are given in Table 5 

and Table 6, for the commercial and industrial load 

models, respectively. From these results, it can be 

said that the optimal allocation of PV-based DGs in 

EDN can result for improved operation irrespective 

of increased load penetration levels. 

7. Conclusion  

The optimal allocation of PV-based DG 

allocation problem in EDN is solved using a new 

and efficient nature-inspired meta-heuristic method 

white shark optimizer (WSO). Loss minimization, 

voltage profile improvement, and GHG reduction 

are among the multi-objective problems tackled. In 

addition, the simulations in IEEE 33-bus EDN are 

extended to include several types of loads, including 

as residential, industrial, and commercial, as well as 

their various penetration levels. In addition, the 

proposed methodology is resulted for loss reduction 

by 64.74%, 62.26%, 60.33%, and 65.31% for 

constant power, residential, commercial and 

industrial load models at base case. On the other 

side, the GHG emission is reduced 78%, 72.12%, 

72.03%, and 71.57% for constant power, residential, 

commercial and industrial load models at base case. 

The results of a comparison of PFA, MOA, COA 

FSA, and WSO are presented. In terms of global 

optima and computing time, WSO's results have 

been found to be superior. Furthermore, regardless 

of higher load penetration levels, the proper 

deployment of PV-based DGs in EDN can result in 

overall improved operation. However, the emerging 

electric vehicles (EVs) and their stochastic nature 

needs to be considered while solving the 

intermittency nature RE-based DGs, so that a 

cooperative and effective operation can be achieved 

in modern EDNs.  
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