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Abstract: This paper presents a novel approach for signal detection in non-orthogonal multiple access (NOMA) 

uplink receivers. We propose converting incoming packets into a stream of 2D image-like vectors. Thereby, 

converting a signal detection problem into a video classification problem. Our approach is true end-to-end learning 

where no manual feature engineering and/or pre-processing is required. Detection is done blindly in a joint fashion 

with no explicit channel estimation and equalization steps required. Successive interference cancellation (SIC) is the 

default method for detecting NOMA packets, but it requires perfect channel estimation to be maintained. Deep 

learning approaches have shown great promise. However, they suffer from overfitting and/or poor performance. We 

show how to improve performance by a better training dataset generation procedure and hyperparameter 

optimization along with the use of CNN as a feature filter. The CNN-LSTM hybrid network has registered a training 

and testing accuracies of 88.61 and 85.36 which are higher than the state-of-the-art approaches and its symbol error 

rate (SER) vs signal-to-noise ratio (SNR) performance is higher by about 9dB than the LSTM approach, maximum 

likelihood and other standard SIC based approaches like the minimum mean square error (MMSE) and least square 

(LS). This suggests deep learning-based receivers as strong candidates for the upcoming generations of wireless 

communication systems.  

Keywords: Deep learning, Non-orthogonal multiple access, SIC, Wireless communication, 5G, CNN LSTM hybrid, 

Hyperparameter optimization. 

 

 

1. Introduction 

The next-generation wireless communication 

system is expected to support varieties of services 

and a numerous number of users. To serve such a 

big number of users, resources, such as spectrum, 

need to be shared. Traditionally, this has been 

provided via orthogonal frequency division multiple 

access (OFDMA). However, OFDMA is not 

efficient in terms of spectral usage and support for 

varieties of services and traffic such as IoT devices 

[1, 2]. 

To share resources between users of a 

communication channel with the OFDMA technique, 

each user is assigned some orthogonal sub-channel 

and guard intervals are inserted between these sub-

channels. As the number of users grows 

tremendously, these guard intervals amount 

significantly and result in poor spectral efficiency 

[3]. In addition, the trade-off between energy 

efficiency and data rate should be ameliorated 

particularly in uplink scenarios where battery saving 

of mobile devices is of the essence [4].  

One suitable technique for the next-generation 

wireless communication that can outperform 

OFDMA in terms of spectral and power efficiency 

and support huge varieties of users and services is 

the so-called non-orthogonal multiple access 

(NOMA) [5-7]. NOMA does not rely on the 

principle of orthogonality to separate users from 

each other, and users have access to all subcarriers. 

A NOMA transmission consists of packets all users 

superimposed to form a single signal or stream [8]. 
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Hence, a more sophisticated algorithm is required to 

separate user data at the receiver. Successive 

interface cancelation (SIC) is one of the proven 

detection algorithms for NOMA. It starts by sorting 

incoming packets in terms of their channel condition 

or quality of service requirements, next the user with 

the strongest/highest requirements is detected while 

assuming all other users as noise, then the detected 

signal is subtracted from the combined signal where 

the next user is detected and so on [9, 10].  

However, SIC-based techniques require perfect 

tracking of channel state by some channel 

estimation mechanism. High mobility networks can 

cause errors in channel estimation and could result 

in a loss of dependability and robustness in 

particular for vehicle users (VUs) [11]. To mitigate 

the issue of the rapid changing channel state, 

schemes for resource allocation have been suggested 

although it is largely still a hard problem [11]. Since 

user signals are detected successively, errors in 

detecting one user signal would result in errors in 

detecting all the remaining user packets. A more 

recent improvement to NOMA is cooperative-

NOMA (C-NOMA). In C-NOMA, users near the 

base station act as a relay for those further away [12]. 

While C-NOMA improves rates significantly, it has 

been shown that imperfect channel state information 

would significantly impact outage probability and 

ergodic rates [13]. Additionally, it has also been 

proven that the error propagation rate is dominated 

by the users with better channel conditions which 

could degrade diversity [14], one of the promised 

features of 5G. 

Since this paper aims to come up with a system 

where link performance is not jeopardized by errors 

in channel estimation or SIC sequential detection 

nature, we turned out to schemes where detection is 

performed in a single-shot fashion such as the case 

with receivers built with deep learning techniques.  

Deep learning is a subset of machine learning 

where the mapping from input to output is learned 

from a massive number of input-output example 

pairs. Deep learning is attractive because it can be 

used to map the complex relationship between input 

and output and its performance continue to improve 

with the addition of more examples [15]. In addition, 

deep learning can be used in end-to-end learning 

scenarios where little to no pre-processing and/or 

feature engineering are required for the successful 

mapping of input-output data pairs [16]. 

The authors in [17, 18] have proposed a semi 

joint detector of users in cooperative-NOMA (C-

NOMA). However, their approach lacks vital details 

on the dataset generation and the accuracy of the 

training and testing datasets. These are vital because 

if the accuracy of testing is significantly lower than 

that of the training then the deep learning network is 

overfitting. Overfitting is when a DL network fails 

to generalize from the training dataset to the testing 

dataset which is kept away during training to assess 

the performance of the network to data that it has 

not encountered before. Analysis of the work in [19] 

shows that the proposed LSTM network overfits by 

a significant margin [20]. Although overfitting is 

studied in [20] and an enhanced version is proposed, 

its total testing accuracy of 74 % versus training 

accuracy of about 90 % still indicates overfitting. 

Authors in [21] have proposed converting incoming 

packets to 3-D tensors where the in-phase (I) and 

quadrature (Q) components of the received signal 

are treated as two image channels and a CNN 

followed by an LSTM network is used for detection. 

The resulting tensor would be of dimension 

(m×2×2) where 2m is the size of the received signal. 

Such tensor would be too shallow for the CNN and 

heavy padding of zeros should be added to keep 

dimensions from shrinking down between 

successive CNN layers. Since padding conveys no 

information, overfitting is inevitable. Although their 

approach is somewhat similar to ours, we will show 

how our modelling and construction of an LSTM-

CNN will result in a far better performance. In 

addition, robustness of their approach was not 

demonstrated and the issue of generating dataset, 

training and bias/overfitting were never reported. 

In this paper, we will propose a CNN-LSTM 

hybrid and we will show how this structure can 

improve performance and overcome overfitting. We 

will also discuss dataset generation and 

hyperparameter optimization in detail. The main 

contributions of this paper are:   

 

• We propose a video classification approach 

for detecting communication signals. Each video 

frame is treated independently and is formed by 

converting incoming packets into 2D image-like-

vectors.  

• True end-to-end learning where there are no 

sub-systems, pre-processing, or manual feature 

extraction. A single deep learning network is the 

entire receiver. In addition, it does not require 

channel estimation and equalization. 

• We study the effect of bias/overfitting to 

improve generalization capabilities. This is seldom 

done in the literature. 

• We perform hyperparameter optimization 

using the black box method. In addition, we propose 

a better dataset generation procedure to improve 

accuracy and reduce overfitting. 
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The rest of the paper is divided into seven 

sections. Section 1 presents the theoretical 

modelling of the NOMA uplink channel and 

receiver. Section 2 discusses channel estimation in 

the standard SIC receivers such as MMSE and LS. 

Section 3 shows the reasoning for choosing the 

CNN-LSTM hybrid model. Section 4 will show how 

we have generated the training dataset. Section 5 

gives the details of the deep learning model and its 

layers. Section 6 presents the results of the 

hyperparameters optimization and finally, section 7 

discusses the SER vs SNR results. 

2. System and channel modelling 

This paper aims to develop an end-to-end deep 

learning network. Much like similar research in this 

area, the performance of the proposed network will 

be demonstrated by a two users receiver in an uplink 

NOMA scenario. By end-to-end, we mean that the 

deep learning network should perform channel 

estimation, equalization and detection implicitly and 

there would be no manual feature engineering 

and/or heavy pre-processing required before 

inputting the received signal to the DL network. The 

detection of the symbols transmitted by users 1 and 

2 are done jointly in a single-shot fashion as is the 

case in [19, 20]. 

For a fair comparison with all similar work in 

the literature, we will follow the same assumptions 

and limitations in the modelling of the uplink 

NOMA channel. Specifically, two user equipment 

(UE), each with a single antenna, are connected to a 

base station (BS) in a typical micro-cell as shown in 

Fig. 1. These two users are classified as the intra-

cell user and edge-user or the near and far user 

according to their fading channel coefficients [17]. 

In other words, we will model users with strong and 

weak power. The BS is modelled as a typical 

NOMA receiver which works by superimposing 

received users’ signals on each other. 

UE transmission comprises a 64-subcarrier 

OFDM data packet and two pilot packets in a total 

of three packets scenario. For comparison with the 

SIC-based receiver, we will assume perfect CSI at 

the BS. This is because if our DL network cannot 

beat SIC with perfect CSI then there is no feasible 

gain in preferring DL based receivers over SIC ones. 

Referring to Fig. 1, assume the transmitted 

signal by a UE is x𝑖(𝑡) where (x) is the time domain 

signal and the subscript (i) represent UE number. 

Each user will be transmitting a power of Ρ𝑖(𝑡) 

along a multi-fading channel given by the 

coefficient ℏ𝑖(𝑡)  for each user (i). Mainly, a 

Rayleigh channel will be considered with additive 

white Gaussian noise having a variance of 𝜎2 : 

ℕ(𝑡)~𝑁(0, 𝜎2) , the superimposed received signal 

Y(𝑡) at the BS for (N) users is given in Eq. (1). 

 

Y(𝑡) = ∑ √Ρ𝑖(𝑡)ℏ𝑖(𝑡)x𝑖(𝑡) + ℕ(𝑡)N
𝑖=1              (1) 

 

The multi-fading channel 𝒽𝑖(𝓉) is given in Eq. 

(2) which shows its discrete Fourier transform 

  

𝒽𝑖(𝑡) = ∑ ℊ𝑖,𝜆 𝜎(𝑡 − 𝜏𝑖,𝜖)𝜖
𝜆=1                          (2) 

  

where ℊ𝑖,𝜆 is the complex channel gain along path 𝜆 

of user (i) for a total delay of 𝜖 and  𝜎(𝑡 − 𝜏𝑖,𝜖) is  

 

Base Station 

User 

Equipment 1 

User 

Equipment 2 

𝒽1(𝓉) 

𝒽2(𝓉) 

Figure. 1 Two user equipment and a base station operating as NOMA receiver 
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+ ℕ(𝑡) 

Intra-cell user 

Edge user 
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the impulse function delayed by a factor of 𝜏𝑖,𝜖. We 

will assume a Rayleigh channel fading with a total 

delay of 20, also referred to as cyclic prefix (CP). 

SIC decodes signal subsequently starting with the 

highest power user, the power to Interference plus 

noise ratio (SINR) for user (i) where i≠1 is given by 

[22]: 

 

𝑆𝐼𝑁𝑅𝑙 =
𝜅ℇ𝑙|𝒽𝑙|2

𝜅 ∑ ℇ𝑖|𝒽𝑖|2𝑁
𝑖=1 +1

                                     (3) 

 

where 𝒽𝑙 is the multi-fading channel of user (l), ℇ𝑖 

is the power coefficient associated with user (i) 

constrained by: 

 

∑ ℇ𝑖
𝑁
𝑖=1 = 1                                                       (4) 

 

where 𝑁 is the total number of users, 𝜅 is the signal 

to noise ratio given by: 

 

𝜅 =
Ρ

𝜎2                                                               (5) 

 

where 𝜎 is the noise variance, P is the total power of 

all users. For user 1, SINR can be written as [22]: 

 

𝑆𝐼𝑁𝑅1 = ℇ1𝜅|𝒽𝑙|2                                           (6) 

 

and finally, the sum rate for all users is [22]: 

 

ℛ𝑠𝑢𝑚 = log2(1 + 𝜅 ∑ ℇ𝑖|𝒽𝑖|2𝑁
𝑖=1 )                  (7) 

 

We will elaborate further on how the OFDM 

packets of each user are generated in the next 

section where the deep learning model is discussed 

along with the generation of the training dataset. 

3. Channel estimation and detection 

Before the SIC algorithm can be applied, the 

channel must be tracked and estimated. Loss of 

channel state information (CSI) could result in 

degradation of performance and robustness [23]. In 

this paper, we will consider two widely used  

 

estimators for SIC: Least squares (LS) and 

minimum mean square error (MMSE) estimators. 

These will be used as a benchmark for comparing 

our deep learning model. 

Fig. 2 shows a typical OFDM baseband system 

[24] and assuming the channel has finite impulse 

length, the received signal (Y) can be modelled by 

an N-point discrete Fourier transform [25] 

 

𝑌 = 𝐷𝐹𝑇𝑁(𝐼𝐷𝐹𝑇𝑁(𝑥) ⊗
𝒽

√ℕ
+ 𝑛̃)                    (8) 

 

where 𝐷𝐹𝑇𝑁  is an N-points discrete Fourier 

transform, 𝐼𝐷𝐹𝑇𝑁  is the N-points inverse discrete 

Fourier transform of signal (x), the symbol ⊗ stands 

for cyclic convolution operation and 𝑛̃ is a vector of 

independent and identically distributed complex 

Gaussian noise. Eq. (1) and (8) can be re-written in 

vector format as follows [25]: 

 

𝑌 = 𝑋Ϝ𝒽 + 𝑛̃                                                    (9) 

 

where X is a diagonal matrix of [x0, x2,….xN-1]T and 

Ϝ is the discrete Fourier transform matrix given by 

[25]: 

 

Ϝ = |(
ℳ𝑁

00 ⋯ ℳ𝑁
0(𝑁−1)

⋮ ⋱ ⋮

ℳ𝑁
(𝑁−1)0

⋯ ℳ𝑁
(𝑁−1)(𝑁−1)

)|         (10) 

 

with 

 

ℳN
𝑛𝑙 =

1

√𝑁
𝑒−𝑖2𝜋

𝑛𝑙

𝑁                                            (11) 

 

where l = 0, 1, 2,…, N-1 and n = [n0, n1, … nN-1]T = 

DFTN(𝑛̃). 

It can be shown that the MMSE estimator of 𝒽 

is given by [26]: 

 

𝒽𝑀𝑀𝑆𝐸
` = ℂ𝒽𝑦ℂ𝑦𝑦

−1                                          (12) 

 

 

 
Figure 2. Typical OFDM baseband system 
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where ℂ𝑦𝑦  and ℂ𝒽𝑦  are the auto and cross 

covariance matrices between 𝒽 and 𝑦 given by:  

 

ℂ𝒽𝑦 = ℂ𝒽𝒽𝐹𝐻𝑋𝐻                                           (13) 

 

ℂ𝑦𝑦 = 𝑋Ϝℂ𝒽𝒽Ϝ𝐻𝑋𝐻 + 𝜎2𝐼𝑁                          (14) 

 

where 𝑋 is a diagonal matrix representation of the 

vector (x) and 𝐼𝑁  is the identity matrix. Similarly, 

the least square estimator of 𝒽 becomes [25]: 

 

𝒽𝐿𝑆
` = Ϝℚ𝐿𝑆𝐹𝐻𝑋𝐻𝑦                                        (15) 

 

with 

 

ℚ𝐿𝑆 = (𝐹𝐻𝑋𝐻𝐹𝑋)−1                                      (16) 

 

Along with these two estimators, we also 

consider the maximum likelihood (ML) detector 

because each of the three methods has its advantages 

and drawback. Nonetheless, they provide typical 

benchmark performance to compare performance 

with. 

4. Deep learning model selection 

This section will explain the details of the deep 

learning model that has been selected and the 

reasoning behind our assumptions and choices. 

Firstly, the main goal of this research is to develop 

an end-to-end deep learning network to detect user 

equipment transmission in a NOMA uplink scenario. 

By end-to-end, we mean that the model does not 

need pre-processing and/or feature engineering 

albeit it can be done implicitly within the model 

itself. In addition, channel estimation and 

equalization should be done explicitly as well. 

Hence, the input to the model is the raw received 

superimposed signals of users 1 & 2 and the output 

is a joint label representing the symbols transmitted 

by these users. This is a classification problem. 

While an LSTM implementation may seem like 

the rational choice for the deep learning model as 

the case with previous research discussed in the 

previous section, an LSTM model has some 

drawbacks. Firstly, for the LSTM network to work, 

the received packets should be converted to a single 

sequence. This would result in a long-term 

dependency between the bits which are inserted 

earlier in the sequence with those at the end. Long-

term dependency is a major issue in sequence 

models because it can lead to exploding/vanishing 

gradient during training [27]. Secondly, proposed 

LSTM models in the literature do not generalize 

well from the training data [20]. This issue is often 

called overfitting or high variance.  

Thus, we propose to combine the best of both 

approaches in a CNN-LSTM hybrid model. The 

CNN acts as a feature filter and the LSTM works as 

a classifier for the sequence of features coming from 

the CNN part. This approach is often used to 

classify videos by considering them as a sequence of 

independent frames [28]. We will present the 

training set generation in the next section before 

discussing our proposed CNN-LSTM hybrid model. 

5. Training dataset generation 

To keep fair and meaningful with current 

research which also proposed deep learning for 

NOMA uplink receivers, we will consider the same 

scenario as in [19-21]. Referring to Fig. 3, consider 

two user equipment OFDM system with 64-

subcarriers. Data from each user is baseband 

modulated with QPSK before going into the OFDM 

system. In addition, two fixed pilot sequences are to 

form the OFDM packet which is now consisting of 

three symbols: one data and two pilot symbols. Next, 

the inverse discrete Fourier transform is applied to 

the OFDM packet, and a cyclic prefix is added to 

reduce inter-symbol interference. Finally, AWGN is 

added to the transmitted signal. We have assumed a 

Rayleigh channel with a total delay of 20 and a total 

transmitted power of 1. 

At the receiver, the superposition of user 

equipment 1 and 2 is collected and DFT is 

performed. Since our OFDM has 64 subcarriers and 

there are 3 symbols per packet and including both 

the real and imaginary parts out of the DFT step, 

there will be a 64×3×2 feature vector per packet. 

The feature vector is converted to a 2-D vector to 

form an image-like structure through a simple vector 

reshaping operation from a 1×384 1-D vector to a 

64×6 2-D image-like vector, as shown in Fig. 3.  

 

 
Figure. 3 Forming a 2-D image-like structure from the 

received OFDM packets 
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Pilot sequences are shown with subscript (p) and 

data sequences with subscript (d). The real and 

imaginary parts are stacked together to form the 

required dimensions. 

Since QPSK is considered, data symbols consist 

of two bits only which could have one of four 

possible values. Hence, if the symbols transmitted 

by the two users are jointly formed there could be 

one out of 16 possible cases for the transmitted bits 

from both users. Hence, the label is 1 to 16 integers. 

The training dataset is collected by generating 

random data sequences at the transmitter with Es/No 

values ranging from 5 to 40dB with a step of 7dB. 

At each Es/No value, 1000 packets are transmitted, 

received, converted to images and stored along with 

their corresponding label. Hence, the total number 

of samples in the dataset is 96000. Sampling 

uniformly at all extremes of Es/No would result in 

lower overfitting [20]. It has been further divided 

into training, validation and testing subsets at ratios 

of 90 %, 5 % and 5 % respectively. 

6. The CNN-LSTM hybrid architecture 

The core joint detector for the NOMA uplink 

receiver in this paper is the CNN-LSTM hybrid. It 

was built using MATLAB deep learning toolbox 

and was built from the ground up. The weights of 

the CNN and LSTM layers were trained at the same 

time rather than separately or using via transfer 

learning as the case in [29]. This will allow us to 

efficiently optimize the number of layers, filters, and 

LSTM unit numbers which would not be possible 

with vanilla CNN networks such as VGG16, 

GoogleNet, AlexNet…etc.  

Fig. 4 shows the CNN-LSTM hybrid layers used 

during training. The input is a 64×6 OFDM packet 

formed as an image like a 2-D vector. The input 

layers are MATLAB toolbox sequence input layer 

that is used to input a sequence of vector data, or 

images, to a deep learning network. The folding 

layer converts these sequences into images which 

are required by the CNN layers. These layers have 

no tuneable parameters. Each CNN layer has a 

number of filters of size (n,m) which are tuneable. 

We will consider finding the optimal number of 

CNN layers, number of filters and their sizes in the 

next section. CNN layers are feature filters where 

each image is converted into a feature vector for 

classification usually by a fully connected neural 

network. Once the feature vector is obtained, it is 

converted to sequence format and fed to LSTM 

layers. Each LSTM layer has a tuneable number of 

units. LSTM is used to transform the input sequence 

of data to a domain where the classes could be 

somehow separable and therefore much easier to 

classify. The LSTM sequence at the output is rolled 

into a 1-D vector and fed to a fully connected (FC) 

neural network. The softmax layer calculates the 

probability of associating each inputted image with 

a label. Finally, the classification layer picks the 

label with the highest probability. The arrow 

between the folding and unfolding layers indicates 

sharing of parameters, more specifically, the batch 

size used in training. 

7. Hyperparameter optimization results 

In deep learning, a hyperparameter is a 

parameter that can be tuned during training to 

maximize the performance of the network [30]. 

Although there are many algorithms for automating 

the process of finding the best values for the 

hyperparameter vector, we opted for a simple grid 

search algorithm due to the discrete nature of the 

hyperparameters to be optimized and their limited 

range.  It works by specifying values for each 

hyperparameter and letting the network cycle 

through these values while registering performance. 

The hyperparameters that have been considered 

are number of CNN layers, number of filters in each 

layer, filter size, and number of LSTM units. Our 

approach is to only vary one hyperparameter while 

keeping all the others fixed. Once the best value is 

registered, we update its value and vary the next one 

 

 

 
Figure. 4 The CNN-LSTM hybrid deep learning showing images as input and how CNN and LSTM is interconnected via 

folding and unfolding 
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Table 1. Results of performing hyperparameter 

optimization. 

Run 

No. 

No. of 

CNN 

layers 

No. 

of 

filters 

Filter 

size 

No. of 

LSTM 

Units 

Training 

accuracy 

(%) 

Validation 

accuracy 

(%) 

1 1 4 (3,3) 64 83.69 80.98 

2 1 8 (3,3) 64 86.02 83.83 

3 1 16 (3,3) 64 87.65 85.83 

4 1 32 (3,3) 64 88.41 84.97 

5 1 64 (3,3) 64 87.03 82.95 

6 1 16 (5,5) 64 88.03 85.34 

7 1 32 (5,5) 64 88.61 85.36 

8 1 16 (7,7) 64 88.22 84.81 

9 1 32 (5,5) 32 84.94 82.37 

10 1 32 (7,7) 128 89.18 85.42 

11 2 32 (5,5) 64 86.72 84.73 

 

and so on. Table 1 shows the result of the 

hyperparameter optimization where the best values 

are highlighted in bold. 

In the beginning, we considered a single CNN 

and LSTM layers and started varying the number of 

filters and their sizes. There has not been a 

considerable increase in accuracy when filter size is 

raised beyond (5, 5). Similarly, LSTM units of 128 

have registered the best training accuracy but at the 

cost of a slight increase in overfitting due to the 

difference between training and validation accuracy. 

Increasing the number of CNN layers did not have 

much of an impact on the results. 

It seems that the crucial step in coming up with a 

good deep learning model for the task of this paper 

is the CNN filter that transforms raw data vector 

into a feature vector. Once that is done, the job of 

the deeper layers, i.e., the LSTM and fully 

connected layers, becomes much easier. LSTM units 

of 64 rival the number of OFDM subcarriers and 

seem like a logical number. We have concluded that 

a single CNN and LSTM layers are the best choices 

with details as shown in run 7 of table number 1. 

8. Symbol error rate results 

Once the hyperparameter optimization step is 

done as described in the previous section, we tested 

the resulting network to obtain the symbol error rate 

(SER) versus signal to noise ratio (SNR) curve. For  
 

 
(a) 

 
(b) 

Figure. 5 SER vs SNR curves of the CNN-LSTM 

approach vs LSTM, SIC MMSE, LS and ML for: (a) user 

equipment 1 and (b) user equipment 2 

 

that, we have followed the same two-users uplink 

scenario described in the previous sections and in 

[19-21] for a fair comparison. We have compared 

our results with standard SIC MMSE, LS-based 

receivers and the Maximum Likelihood method. We 

will also compare our approach to the recently 

proposed LSTM and CNN-LSTM deep learning 

receivers of references [20, 21]. 

Fig. 5 shows two symbol error rate (SER) vs. 

signal-to-noise ratio (SNR) curves: (a) one for user 

equipment 1, labelled as UE1, and (b) for user 

equipment 2, labelled UE2. Our approach is shown 

in red and labelled “CNN-LSTM” and the LSTM 

network of reference [20] is shown as “LSTM” in 

magenta. Other standard methods are shown with 

their corresponding abbreviations. 

We noticed that our approach is about 9dB 

ahead of the LSTM approach even when SNR is as 

low as 4dB. This result is consistent in both UE1 

and UE2. Comparison with reference [21] was not 
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possible at CP of 20 due to lack of data but will be 

considered at CP of 16. Although the LSTM and 

CNN-LSTM methods lie ahead of the SIC based 

receivers which proves the performance power of 

the deep learning approach, the effect of overfitting 

can be noticed once the scenario is slightly changed. 

If the network could not cope with changes, then it 

indicates an inability to generalize from learnt 

examples. For that, we have changed the cyclic 

prefix (CP) value from 20 to 16. CP should be 

chosen larger than the impulse response time of the 

channel to reduce interference. Reducing its value 

would increase interference but allows us to assess 

the robustness of the deep learning approach to these 

changes. Fig. 6 shows the effect of reducing CP to 

16 for user equipment 1 and 2. It can be clearly 

shown that the LSTM approach has lost its 

performance benefits over MMSE, and LS as shown 

in Fig. 5. However, our approach is still ahead of all 

other receiver types which proves the robustness of 

our approach. 

The CNN-LSTM network of reference [21] did 

not perform well at low SNR values as the case with 

our approach. This could be the result of training the 

network at a high SNR value of 50db. Thus, the DL 

network did not have enough training examples to 

generalize a good transformation relationship at low 

SNR values. There are also some other differences 

including the folding/unfolding layer which [21] did 

not discuss.  

All in all, results show a great impact on the 

choice of the right receiver for the next generation 

technology. Firstly, deep learning is a great 

competitor to classical receivers such as SIC. 

Secondly, an end-to-end communication receiver 

designed blindly with deep learning is quite possible. 

Thirdly, the power of CNN as a feature filter had 

resulted in improving the performance of the deep 

learning receiver over other LSTM based receivers 

which did not utilize CNN. The SER vs SNR curves 

of our approach showed improvement by over one 

significant figure which strongly suggests CNN-

LSTM receiver for future consideration in NOMA 

and other communication systems. 

9. Conclusion 

NOMA is a widely accepted promising 

technology for next-generation wireless technology. 

Its appeal comes from its spectral efficiency which 

would support a greater number of users. Its 

robustness, power and bandwidth management 

capabilities would result in a great variety of user 

types including IoTs. 

The de facto method for detecting NOMA  
 

 
(a) 

 
(b) 

Figure 6. SER vs SNR when CP is 16 for CNN-

LSTM of reference [21], CNN-LSTM Hybrid, LSTM, 

SIC MMSE, SIC LS and ML methods for: (a) user 

equipment 1 (b) user equipment 2 

 

signals is the SIC technique. However, SIC requires 

perfect channel knowledge to maintain reliability 

and link performance. In addition, SIC works 

sequentially by detecting the user with the highest 

power and then the next in ascending order. If the 

previous user signal is not detected correctly, then 

the next ones are lost. 

Deep learning is another recently proposed 

method. However, the deep learning approaches in 

the literature lack bias/variance analysis. Hence, 

their generalization capabilities are unknown. In 

addition, using a vanilla LSTM network may result 

in long-term dependencies which gives rise to 

vanishing/exploding gradient problems during 

training. 

We have proposed an end-to-end deep learning 

network with both CNN and LSTM parts. We have 

shown how converting the received NOMA signal 

into a 2-D image-like vector and feeding that to the 

CNN part have improved performance and reduced 

overfitting compared to the LSTM approaches in the 
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literature. 

We have shown the superiority of our approach 

using a two-user uplink NOMA scenario and trained 

a CNN-LSTM network jointly and showed a 

procedure for the optimization of its 

hyperparameters. The resulting network showed an 

improvement in the SER vs SNR as compared to the 

LSTM method in the literature by at least one 

significant figure. The generalization power of our 

approach is shown by reducing the cyclic prefix and 

noticing its effect on SER. Results indicate 

significant robustness as compared to the LSTM 

method and other standard methods such as MMSE, 

LS and ML. 
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