
Received: May 4, 2022. Revised: June 14, 2022. 555

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.50

Cooperative Traffic Signal Control of n-intersections Using a Double Deep Q-

Network Agent

Salma El bakkal1* Abdellah Lakhouili1 El Hassan Essoufi1

1Hassan First University of Settat, Faculty of sciences and Techniques, Mathematics, Computer Science and

Engineering Sciences laboratory, 26000, Settat, Morocco
* Corresponding author’s Email: s.elbakkal@uhp.ac.ma

Abstract: Intelligent traffic controller leads to manage traffic at intersection in order to minimize traffic congestion

and has been intensively researched for a several decades. Multi-intersection cooperative traffic signal control (CTSC)

is an efficient system that has received a great deal of attention and development in recent years. One problem with

multi-intersection CTSC is that controller’s actions are based only on the traffic state or on the decisions taken at

previous time step (t-1) at adjacent intersection. To address this problem, in this work a Double Deep Q Network

Cooperative Traffic Signal Controller (CTSC-DDQN) is proposed. The CTSC-DDQN algorithm is a reinforcement

learning agent that, depending on current traffic conditions, changes the traffic phase distribution order for n-

intersection simultaneously. Experimental results under real scenarios show that the proposed approach outperforms

other static approach which fixe the time length and the phase order despite the traffic situation and actuated controllers

which change the traffic light properties based on the queue length in term of average Q-length and average waiting

which eventually leads to mitigate traffic congestion. The results show that our could minimize the average waiting

time by up to 79% and the average queue length by up to 80%.

Keywords: Traffic congestion, Cooperative traffic systems, Deep reinforcement learning, Multi-intersection

management.

1. Introduction

All Generally, traffic flow at the intersection is

managed by traffic light controllers. As a result,

controlling traffic light plan at signalized intersection

is a critical issue. Furthermore, traffic congestion

increases energy consumption, car emission and

vehicles traveling time which is a serious problem in

large cities. The goal of the intersection management

is to find the best signal plan to minimize the average

waiting time and the queue length of vehicles.

Based on the literature there are three main types

of the traffic light systems. The static controllers that

use the historical traffic data collected from sensors

to set a fixed periodic model adapted to different

times of a day [1], which not responsive to the actual

traffic situation. The actuated systems that predict

traffic phase based on instantaneous traffic

conditions by increasing the traffic time length based

on the queue length of the intersection lanes [2] And

the adaptive systems that use longer-term

information length such as arrival rate, waiting time

and traveling time to predict the traffic phases order

and traffic phases. Recently, the adaptive systems

were widely discussed and has demonstrated a strong

potential to efficiently mitigate urban traffic

congestion in order to attain acceptable goals

compared to the fixed and actuated systems [3]. Scats

[4] and Scoots [5] are the famous adaptive traffic

systems that control intersection in real time. Scoot

aims to minimize the average queue length by

modifying the traffic light plan using different data

such as traffic flow, queue length, average velocity.

This data is gathered from advanced detectors placed

near to stop lines. And Scats tries to propose a time

plan using only the number of vehicles stacked at stop

lines. Subsequently, several adaptive systems were

proposed using different methods. Particularly after

Received: May 4, 2022. Revised: June 14, 2022. 556

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.50

the artificial intelligence revolution. Since 1990

researchers started to use machine learning

techniques to control traffic signals at intersection [6].

Reinforcement learning (RL) is the most method

applied in traffic management systems because it

helps the controller to take decision based on the

relationship between the actions space and the state

space which are learned by interaction of the agent

with the environment. But RL techniques were

limited only to Q learning table and linear function to

predict the Q value which impose to use a small-size

state space for example, the number of waiting

vehicles or the general data of road traffic [7]. On the

other hand, we cannot describe the complexity of the

traffic with such limited information. Deep

reinforcement learning (DRL) has been developed.

And some researchers have proposed to use these

techniques to develop new adaptive traffic

management methods. The most applied method is

the deep Q network (DQN). It consists to enable a

neural network to approximate the best actions can

take an agent at each given state [8]. This model was

adopted in [9] where the authors propose a DQN

model that manage an intersection by changing the

order phases execution in order to decrease the

cumulative vehicle delay between two actions. Also,

in [10] authors propose a DQN approach that

maximizes the traffic flow through the intersection in

real time. Another DRL approach called Dueling

DQN was adopted in [11] where the neural network

choses the best phase duration based on the position

and speed of vehicles at an intersection. In [12]

authors propose an adaptive controller based on two

agents which are denoted by two different states and

change the control of green lights to make the phase

sequence fixed and control process stable at

intersection using the new version of DQN which

called double deep Q network (DDQN).

All the works cited previously, focus only to

manage traffic at isolated intersection which signifies

that the signal plan at each intersection is unaffected

by the signal time plan at other adjacent intersections.

Otherwise, congestion at the intersections becomes

more serious due to the urban expansion, which has

led to an increase in the number of intersections,

particularly in large cities. Thus, to manage

intersections in an urban environment, it must be

considered that all the intersections are not isolated.

That is, the state of one intersection is frequently

influenced by the state of the neighbouring

intersections. As a result, traffic signal systems for

multi-intersection becomes complex and difficult to

solve. Therefore, to ensure a good traveling

experience for vehicles in urban areas, it’s necessary

to investigate the signal plans at multi adjacent

intersections. To solve this problem, researchers use

multi-agent systems in order to guarantee the

communication between intersection. The idea is

describing the intersections network with a multi

agent system where each intersection is managed by

one agent and each agent can access to the collective

representation of the traffic environment collected by

all agents installed at adjacent intersection.

Subsequently, the agent chose the best action based

on different algorithm. For example, in [13] the agent

chooses the time length using a deep Q network

approach and in [14] adjust the green time using a

Knowledge Sharing Deep Deterministic Policy

Gradient.

The control approaches for multi-intersection

have already been discussed. Most of the existed

studies that control signals at multi-intersection

adapts the next traffic light plan (which will be

executed at the next time step t+1) based on the

different data collected from the other intersections at

the previous time step t. Since all the agent executes

their chosen action simultaneously. Then, the traffic

at intersection could be affected by the actions

executed at the adjacent intersection. And this case

has not been investigated in the literature. Thus, to

address this issue, this paper proposes a cooperative

traffic light system that change the phase distribution

order at n-intersection using a single double deep Q

network agent (CTSC-DDQN). The CTSC-DDQN

agent learns the at each time step the state of all the

intersections and choose the best phase order with a

view to minimize the average queue length.

The outline of this work is organized as follows:

Section 2 present the background of the method used

in this work. The proposed approach is deeply

presented in Section 3. In Section 4, simulation setups

and parameters are described where the numerical

results are discussed in Section 5. The conclusions

and the perspectives of this paper are presented in

Section 6.

2. Background

This section provides an introduction to RL,

DQN, and DDQN. Table 1 provides description of

different variables used in this article.

2.1 Reinforcement learning

Reinforcement learning (RL) is one of the most

effective proposed methods for solving Markov

Decision Process (MDP) problems. The original RL

agent learns several state-action pairs in order to

maximize its reward (or cost).

Received: May 4, 2022. Revised: June 14, 2022. 557

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.50

Table 1. Annotation list

Parameter Description

at Action selected by the agent at

instant t

st State received from the environment

at instant t

Qt Expected Q-value at instant t

α Learning Rate

Argmax() Function to return the action that

gives the max Q-value

Rt Reward received at instant t

δt Temporal difference between

rewards

γ Discount Factor

Yt Output of a neuron

φ() Sigmoid function

wkj Weight value of a neuron

et Experience of the agent at instant t

θt Target network parameter

𝜃𝑡
− Online network parameter

RL system is composed by three sub elements:

state space, action space, and reward value. firstly,

the RL agent defines the current state 𝑆𝑡 ∈ 𝑆 at time

instant 𝑡, and chooses an action 𝑎𝑡 ∈ 𝐴 based on a

learning rate 𝛼. This latter is a number between 0 and

1 and defines whether the agent will choose a random

action to explore more the environment or whether it

will exploit the environment by selecting the action

that has the maximum expected Q-value based on its

experience. The function used to choose an action is

described as following:

𝑎𝑡
∗ = 𝛼 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄𝑡(𝑠𝑡, 𝑎𝑡) (1)

Then the environment executes the chosen action

and send to the agent the new state 𝑆𝑡+1 and the

delayed reward 𝑅𝑡+1 ,subsequently, and using the Q-

function, the agent modifies the Q-value of the state-

action pair (𝑠𝑡, 𝑎𝑡) using the following equation [15]:

𝑄(𝑡+1) (𝑠𝑡, 𝑎𝑡) = 𝑄𝑡 (𝑠𝑡, 𝑎𝑡) + 𝛼 𝛿𝑡 (𝑠𝑡 , 𝑎𝑡) (2)

where 𝛿𝑡(𝑠𝑡 , 𝑎𝑡) describes the temporal difference

of rewards that based on the Bellman equation in term

of delayed rewards between two estimations which is

presented as following [36]:

 𝛿𝑡(𝑠𝑡 , 𝑎𝑡) =
𝑅𝑡+1(𝑠𝑡+1) + 𝛾𝑚𝑎𝑥𝑎𝜖𝐴𝑄𝑡(𝑠𝑡+1, 𝑎) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡) (3)

Where 0 ≤ 𝛾 ≤ 1 is the discount factor that

indicates the preference for the discounted reward,

and 𝛾𝑚𝑎𝑥𝑎𝜖𝐴𝑄𝑡(𝑠𝑡+1, 𝑎) is used to represent the

long-term discounted reward, while the delayed

cumulative reward 𝑅𝑡+1(𝑠𝑡+1) defines the short-

term reward. And finally, the agent uses a two-

dimensional Q-table to store their respective Q-

values. The different steps that summarize the RL

algorithm are presented in the following algorithm 1:

Algorithm 1: Traditional RL algorithm

1: Procedure

2: Retrieve the environment state 𝑺𝒕 ∈ 𝑺

3: Choose action 𝒂𝒕 ∈ 𝑨.
4: Receive the reward 𝑹𝒕+𝟏(𝒔𝒕+𝟏).
5: Update Q-value 𝑸(𝒕+𝟏) (𝒔𝒕, 𝒂𝒕).

6: End Procedure

2.2 Deep Q-network:

The traditional RL algorithms are effective for

smaller state-action spaces. However, when the state-

action spaces are huge or continuous, the RL

converges slowly and fail to find the optimal policy.

Thus, to solve this problem, researchers proposed to

use the Artificial neural network (ANN). In [16] and

[17] the authors combined Q learning and

Convolutional neural network (CNN) [18] in order to

propose a new method called deep Q-network (DQN).

As shown in Fig. 1, in DQN, the state information fed

to the CNN network using the input layer. This later

represents the state space and it’s coupled to a hidden

layer that describes the different states given by a

nonlinear function. Therefore, the output layer

generates the Q-values 𝑄𝑡(𝑠𝑡, 𝑎𝑡) of each possible

action 𝑎𝑡 ∈ 𝐴. Note that the neurons of the input and

the output layers are fully linked to those in the

hidden layer and each link is described with a weight

value 𝑤𝑘𝑗 That define the significance of the 𝑥𝑗

compared to the other inputs. The output of a neuron

is represented as following:

𝑌𝑘 = 𝜑(∑ 𝑤𝑘𝑗
𝑚
𝑗=0 , 𝑥𝑗) (4)

Where 𝜑() is a Sigmoid function that expresses

the relation between non-linear and linear functions

at every neuron k of the network. The target network

and the experience replay present the main features

of DQN [16]. During the training process, the agent

stores in the replay memory an experience composed

by the current state 𝑠𝑡 , the chosen action 𝑎𝑡 , the

received reward value 𝑅𝑡+1 and the state

𝑠𝑡+1,𝑒𝑡(𝑠𝑡, 𝑎𝑡 , 𝑅𝑡+1, 𝑠𝑡+1), and subsequently selects a

random experience in order to train the network and

calculate the weight 𝜃𝑡 which will be used to predict

the best Q-values at time t 𝑄(𝑠, 𝑎; 𝜃𝑡). In DQN two

neural networks are used. The first one is used to

estimate the Q-value of each action-state pair and it’s

called by the online network. And the second one

Received: May 4, 2022. Revised: June 14, 2022. 558

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.50

Figure. 1 Deep reinforcement learning agent at t and t+1

which is called by the target network, is used to

provide the objective function 𝑌𝑡 . Note that the

online network parameter 𝜃𝑡 is updated every step

and the target network parameter 𝜃𝑡
− is copied from

the online one every fixed N steps. The objective

function is given as following:

𝑌𝑡 = 𝑅𝑡 + 𝛾𝑚𝑎𝑥𝑎𝜖 𝐴𝜑(𝑠𝑡+1, 𝑎; 𝜃𝑡
−) (5)

Or it can be transformed into:

𝑌𝑡 = 𝑅𝑡 +

𝛾(𝑄(𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 + 𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡
−); 𝜃𝑡

−)) (6)

2.3 Double deep Q network DDQN:

In DQN method the expression

𝑚𝑎𝑥𝑎𝜖 𝐴𝜑(𝑠𝑡+1, 𝑎; 𝜃𝑡
−) used in Eq. (5) describes that

the selection and evolution process use the same

target network parameter 𝜃𝑡
− which may lead to

overestimation. Thus, to reduce van and haslet in

proposed to use the online parameter 𝜃𝑡 for action

selection, and the target network parameter 𝜃𝑡
− is

used for action evaluation. Therefore, the new

objective function will be transformed in DDQN into:

𝑌𝑡 = 𝑅𝑡 +

𝛾(𝑄(𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 + 𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡); 𝜃𝑡
−)) (7)

The different steps that summarize the different

steps of the DDQN algorithm are provided in the

following algorithm 2:

Algorithm 2: Traditional DDQN agent

1: Procedure

2: FOR episode=1 to E do:

3: Observe current state 𝑺𝒕 ∈ 𝑺

4: For t=1 to T do

5: Select action 𝒂𝒕 ∈ 𝑨

6: Receive delayed reward

7: Store experience

8: Set target 𝒀𝒕

9: Perform a gradient descent

10: Update networks Q-value.

11: END FOR

12: END FOR.

13: END Procedure

3. Proposal approach

In order to build a traffic light system for multi-

adjacent intersections using RL, we need to define the

basic elements, especially the state space, actions

space and the reward function. In this section, we

present how the three elements are defined in our

proposed approach.

3.1 State space:

Based on the literature, there are different ways to

represent the states space, for example, in [9, 10]

describe the state with the presence and velocity of

the cars at the intersection’s lanes. Otherwise in [11]

the state was presented by the position of the vehicles

at the lanes. However, in these works the agent

mange only one intersection so those representation

are sufficient to represent the environment state. But

in our case, and to teach our agent to act smartly, we

need to give them the best description about the

Received: May 4, 2022. Revised: June 14, 2022. 559

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.50

environment. And to describe deeply a vehicular

network, we should extract two information, the

number and the velocity of the vehicles at all the lanes.

Since we will manage our network with one agent,

we need to simplify the state space. In this work we

describe the environment with the average velocity at

a lane in every intersection of the network, which has

not been investigated in the literature. The average

velocity presents the ratio of the sum of the velocity

and the total numbers of vehicles staying in the lane.

If this parameter converges to 0 means that all the

vehicles struggling in this lane and if is converging to

the maximal velocity value means that we have a

fluent traffic at this lane.

Our studied network contains three types of lanes.

Arrival lanes where the vehicles enter the network,

departure lanes which the vehicles can use it to leave

the network, and the internal lanes which connect the

intersections. Therefore, if our network contains 4

intersections means that we have 56 lanes which

means that our state dimension equal to the lanes

number.

Let’s consider the Fig. 2 as an example to

demonstrate how our builds the state vector values.

This figure shows an example of the traffic states at

three lanes four-way intersection. To generate the

state vector, we translate the intersection to a cell grid

and replace the vehicles with their speed values. Thus,

we can obtain the state vector by calculating the

average speed at each lane and built the vector values

as shown in the figure. Denote that in our work we

suppose that the maximal velocity value equal to 40

m/s. And we describe the free lanes by -1 in order to

differentiate the free lanes from the congested full

lanes which also have an average speed equal to 0.

Figure. 2 State detection process

(a) (b)

Figure. 3 Pahse types: (a) North-south phase and (b) East-

west phase

3.2 Action space:

After the agent has receive the environment state,

it should choose one from the set of all available

actions. Based on the literature, authors propose to fix

the traffic phase splits and modify the order of the

phases such in [19,10], or such in [11] where they

proposed to fix the order and change the phases splits.

Otherwise, in this work we fixed the green duration

for each intersection and we will modify the executed

phase every step. Our system contains N intersections

managed by a traffic light system. Each one has a

program that contains 2 phases, namely by North-

South and East-West phase presented in fig 3. The

agent should choose an appropriate phase

combination for all the intersections to well guide

vehicles in the network based on the current traffic

state.

To ensure a good learning experience for our

agent, we assumed in this work that at each step, the

agent has two possibilities, either it chooses the

action based on the fact that the number of

intersections having the North-South (NS) phase is

equal to those having East-West (ES) phase or it will

activate the same phase for all the intersections in the

next step. For example, if we have 4 intersections the

number of possible actions is 8 and the set of possible

actions is described in the Table 1.

Due to traffic control security measures, the

chosen action using our agent will note be executed

immediately. And to address this issue, an additional

traffic signal phase configuration will be added

before the chosen action.

Table 2. Action space

 I1 I 2 I 3 I 4

A 1 NS ES NS ES

A 2 ES NS ES NS

A 3 ES ES NS NS

A 4 NS NS ES ES

A 5 NS ES ES NS

A 6 ES NS NS ES

A 7 NS NS NS NS

A 8 ES ES ES ES

Received: May 4, 2022. Revised: June 14, 2022. 560

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.50

Figure. 4 CNN network architecture

Instead of instantly transitioning from the old

traffic signal phase to the new chosen one, a series of

yellow traffic signal phases will be executed based on

the current phase. All the proposed actions have a

yellow configuration which cannot be selected by our

agent as an action, but are part of the traffic

configuration in order to slow down and stop the

traffic before activating the red light.

3.3 Reward:

The most important element of our reinforcement

learning agent is the reward function. After the agent

has executed the selected action, it receives a value

called the reward. The reward is the value that helps

the agent to builds an optimal policy which leads to

maximize the cumulative long-term reward. In this

work, we define the reward as a change in cumulative

average queue length in all the intersections between

actions. This allows for the reward to be positive

which means that the agent will be rewarded or

negative, which will be observed as a punishment for

the agent. Note that to receive a reward the agent

should observe the new environment state which was

influenced by the chosen action and calculate the new

reward using the following equation:

𝑅𝑡 = ∑ 𝐴𝑉𝑄𝑖,𝑡−1

𝑛
𝑖=1 − ∑ 𝐴𝑉𝑄𝑖,𝑡

𝑛
𝑖=1 (8)

Where AVQ describes the average queue length

and n describes the total number of network

intersections.

3.4 Algorithm:

In this work we inspired by DDQN and we

propose a Convolutional Neural network architecture

which will be used to train our agent. The whole

network is presented in Fig. 4.

The state is fed from the input layer that has NL

neurons; each represents the average speed at

corresponding lane 𝐿 ∈ 𝑁𝐿 . Subsequently, the

information flows forward to a hidden layer which

composed with three fully connected (FC) each has

300 neurons connected with Relu function that

performs gradient descent, and finally, the

information arrives to the output layer that has

multiple neurons, each representing the Q values

corresponding to all possible action.

Note that our algorithm will use two networks to

calculate the Q target based on the traditional DDQN

presented in algorithm 2. To effectively manage the

traffic signal at intersections, our agent uses the

algorithm presented in algorithm 2. At episode 𝑒 ∈
𝐸 the agent discovers the environment state 𝑆𝑡 ∈ 𝑆 as

part of the initialization. At time instant 𝑡 ∈ 𝑇. Then,

the agent selects an action 𝑎𝑡 ∈ 𝐴 and store

experience in a replay memory. Subsequently, the

agent randomly selects a mini-batch of experiences

from the replay memory to set the target value and

update the networks with the new generated value.

4. Simulation setup and parameters:

In order to show the performance of the proposed

approach, it is significant to set appropriate traffic

network parameters.

As shown in Fig. 5, our network size is 4*4,

which means that they are 16 adjacent intersections.

Each intersection has 3 lanes. Where the left lane is

for left turn, the middle lane allows vars to go straight

only, and right lane allows vehicles to turn right. See

Fig. 6 for more details.

The method by which vehicles are arriving to the

network has a significant impact on the simulation’s

quality.

Figure. 5 Studied network

Received: May 4, 2022. Revised: June 14, 2022. 561

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.50

Figure. 6 Intersection configuration

Table 3. Arrival distribution

𝝀 value Traffic state

𝜆 = 0.1 free traffic state

𝜆 = 1 jammed traffic state

𝜆 = [0,1] random traffic state

Table 4. DDQN parameters

Parameters Values

Replay memory size 60 000

Experience sampling 0.5

Discount factor 𝛾 0.7

Learning rate 𝛼 0.0002

Mini-batch size 200

Starting 𝜖 1

Ending 𝜖 0.01

Exploring episodes 100

Exploiting episodes 2000

The most popular method selects a random

number using probability distribution that meet the

time intervals between vehicles. Experimental

research has shown that different vehicle flows are

estimated by different probability [20]. In this paper,

the vehicles production rat flows the poison process

and to test different traffic scenarios we represent in

Table 2 the production rate 𝜆 setting tested in this

work. For example, to generate a free traffic we set

𝜆 = 0.1 which describe that every 10 seconds a

vehicle enters

into the network from all the inputs, and for

random traffic state we vary the 𝜆 values from 0 to 1

randomly during simulation.

In order to get a good traffic signal policy, our

DDQN agent is trained for 2000 episodes, each

episode lasts 3600s. Detailed parameters of the agent

networks are presented in Table 3. In this work, we

used the ADAptive Moment estimation (Adam) [21]

to update the learning rate during the training process.

To simulate our algorithm, we used Simulation of

Urban Mobility (SUMO) (i.e., version 1.9.2). SUMO

is an open-source simulator, which simulates in real-

time [22]. The RL agent was developed with python,

which provides a set of open-source library that help

to create our algorithm. And to connect our python

code with SUMO program, the TraCI (Traffic

Control Interface) was used to facilitate the

interaction between the python files and SUMO

simulator using TCP/IP protocol.

5. Results and discussions

In this section we evaluate our proposed CTSC-

DDQN method by comparing its results with those

obtained from the static, the actuated approaches

under free traffic state, jammed traffic state and

random traffic state. Note that the static and actuated

algorithm was implemented by the SUMO simulator.

This simulation will lead to compare the tree

algorithm using the same constraint and network

parameters.

5.1 Cumulative delayed reward:

With a focus to lead our agent to learn the best

action value function. We perform two types of tests:

exploring and exploiting tests. The exploring test is

when the agent takes random actions with no

consideration for reward. This test helps our agent to

explore more the environment attempting to discover

the best action-state pair. The accumulated delayed

reward for the CTSC-DDQN under free, jammed and

random traffic state during the exploring test is shown

Fig. 7.

The figure shows a divergence in term of reward

values and this caused because the agent is acting

randomly which make them unstable during this test

phase.

Otherwise, the agent’s behaviour changes during

the exploiting tests as shown in Fig. 8.

In this figure the cumulative reward is more

optimized and more stable in comparing to the

exploring phase and this is because the agent exploits

the environment and take into consideration the

reward values before taking action during episode

time. In addition, the CTSC-DDQN achieves a higher

delayed reward in different traffic state as shown in

Fig. 8 which explain that our agent adapts with any

traffic situation and keeps its stability while time is

increasing.

5.2 Average queue length

Fig. 9 presents the average queue length of the

three kinds of traffic controllers under free, jammed

Received: May 4, 2022. Revised: June 14, 2022. 562

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.50

Figure. 7 Cumulative reward during exploring test

Figure. 8 Cumulative reward during exploiting test

Figure. 9 Average Q-length results

and random traffic state as the time increase. The

average queue length for free traffic varies up 129

vehicles for static controllers and 66 vehicles for the

actuated controllers. Otherwise, with the CTSC-

DDQN, the average queue length is less than 25

vehicles. See Fig. 9.

For the jammed traffic state, the queue length

varies up to 207 with static approach, up to 159

vehicles with actuated approach. Otherwise, with our

approach, the average queue length is less than 54

vehicles and its stable during the time. See Fig. 9.

Similar behaviour is observed for the random

traffic state. The average queue length varies up to

154 vehicles with static approach and up to 94

vehicles with the actuated approach where it is less

than 47 vehicles with CTSC-DDQN approach. See

Fig. 9.

From these results we can confirm that our

proposed approach reduces the queue length by up to

70% and 50% respectively from the static and

actuated approaches under random traffic state. And

reduces by up to 74% and 66% respectively,

compared to the static and actuated approaches under

jammed traffic state. And under free traffic, with our

approach the average the average queue length is

reduced by up to 80% from the static approach and

up to 62% from the actuated approach.

5.3 Average waiting time:

The average waiting time in the network of the

three types of traffic controllers under free, jammed

and random traffic state as the time increases is

shown in fig. 10.

For free traffic state, the average waiting time

varies to 12 min for actuated approaches. However,

the CTSC-DDQN has his average waiting time less

than 5 min and it’s stable with time.

For jammed and random state, the average varies

up to 28min and 18min, respectively with static

controllers and with 18 min and 11 min with the

actuated controllers. Otherwise, with CTSC-DDQN

controllers the average waiting time varies less than

6 min and 4 min respectively under jammed and

random traffic state.

From these results we can confirm that our

proposed approach reduces average waiting time by

up to 78% and 64% respectively from the static and

actuated approaches under random traffic state. And

reduces by up to 79% and 66% respectively,

compared to the static and actuated approaches under

jammed traffic state. It can be seen that just

modifying the phase distribution order led to an

important improvement in term of the average queue

and average waiting time in comparison with the

Figure. 10 Average waiting time results

0

50

100

150

200

250

Free Random Jammed

A
v

er
a

g
e

Q
 l

en
g

th

(V
eh

/s
)

CTSC-DDQN Actuated Static

0

500

1000

1500

Free Random Jammed

T
im

e
(S

)

CTSC-DDQN Actuated Static

Received: May 4, 2022. Revised: June 14, 2022. 563

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.50

Table 5. Comparison of methods

Adaptive

algorithm

Number of

intersections

Compared

against

Queue length

improvement

Waiting time

improvement

Our approach 16 Static method 79% 80%

MADQN [13] 16 Static method 75% 70%

Dual DDQN [12] Isolated intersection Static method 57% 72%

static and actuated controllers under different

scenarios.

The proposed CTSC-DDQN aims to reduce the

average waiting time and average queue length at

multiple intersections using a single agent based on

the traffic state in real time. Hence, it reduces the

average waiting time by up to 79 % and the average

queue length by up to 80%. The good performance

obtained is explained by the use of the proposed

algorithm which manage traffic light by changing the

phase distribution based on the adjacent intersection

states. When the static controller fixes the signals’

time under different traffic scenarios. And the

actuated controller changes the time length based on

the queue length of the vehicles stacked at the

intersection and it’s don’t take into consideration the

arrival vehicles from the adjacent intersection. Also,

the existed adaptive system proposed in [12] which

manage only one isolated intersection it reduces the

average queue length by only 72% and the waiting

time by 57% compared to the static controller and this

is because it don’t take into consideration the adjacent

traffic situation. In addition, the multi agent deep Q

network approach which proposed in [13] reduces the

average queue length by only 75% and the waiting

time by only 70% and this is because it is based only

on the traffic situation before taking action in addition

these results are overestimated because it used the

DQN and as shown in section 2 the DDQN resolve

the DQN overestimation which means that our results

are more significates than the [13] results. For more

details we summarized in Table 3 the different results

obtained using our proposed approach and the

existing approaches in literature.

6. Conclusion

One of the most challenging problems within

traffic light systems is the traffic coordination at

intersections. The advancements in deep

reinforcement learning methods, especially the

double deep Q network algorithm have shown great

potentials for improving traffic light system

performance. In this work, the cooperative traffic

signal control is investigated, a double deep Q

network agent is proposed to manage n-intersections

in real time. the proposed approach uses an artificial

intelligence method called double deep Q-network

(DDQN) which use a single agent method in order to

overcome the problem of dimensionality. This work

proposes a cooperative traffic light controller that

uses double deep Q network to describe and store the

traffic states, also uses target network and experience

replay to keep training stable during episodes time.

Simulation of different traffic scenarios using

SUMO simulator demonstrates that CTSC-DDQN

outperforms other static and actuated approaches by

minimizing the average waiting time by up to 79%

and the average queue length by up to 80%. Recently,

traffic light systems have received much attention

and research, although, they are still a developing

field.

As part of Our future works, we would like to

focus on improving the performance of the proposed

approach by including multi-agent system in order to

facilitate the communication between intersection.

Also, it will be interesting to take account the

optimization of the green time length.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Contributions of author are elaborated as follows.
EL Bakkal salma: conceptualization,

implementation and writing the paper.

Lakhouili Abdellah and EL Hassan Essoufi:

Methods validation, Paper reviewing, formal analysis

and supervision. All authors read and approved the

final manuscript.

References:

[1] B. Yin, M. Dridi, and A. E. Moudni, “Traffic

network micro-simulation model and control

algorithm based on approximate dynamic

programming”, IET Intelligent Transport

Systems, Vol. 10, No. 3, pp. 186-196, 2016.

[2] S. B. Cools, C. Gershenson, and B. D’Hooghe,

“Self-organizing traffic lights: A realistic

simulation”, Advances in Applied Self-

Oganizing Systems, pp. 45-55, 2013.

[3] P. Jing, H. Huang, and L. Chen, “An adaptive

traffic signal control in a connected vehicle

environment: A systematic review”, Information,

Vol. 8, No. 3, p. 101, 2017.

Received: May 4, 2022. Revised: June 14, 2022. 564

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.50

[4] A. G. Sims and K. W. Dobinson, “The Sydney

coordinated adaptive traffic (scat) system

philosophy and benefits”, IEEE Transactions on

Vehicular Technology, Vol. 29, No. 2, pp. 130-

137, 1980.

[5] P. Hunt, D. Robertson, R. Bretherton, and M. C.

Royle, “The scoot on-line traffic signal

optimisation technique”, Traffic Engineering &

Control, Vol. 23, No. 4, 1982.

[6] S. Araghi, A. Khosravi, and D. Creighton, “A

review on computational intelligence methods

for controlling traffic signal timing”, Expert

Systems with Applications, Vol. 42, No. 3, pp.

1538-1550, 2015.

[7] A. J. Miller, “A queueing model for road traffic

flow”, Journal of the Royal Statistical Society:

Series B (Methodological), Vol. 23, No. 1, pp.

64-75, 1961.

[8] H. Hasselt, “Double q-learning”, Advances in

Neural Information Processing Systems, Vol. 23,

2010.

[9] W. Genders and S. Razavi, “Using a deep

reinforcement learning agent for traffic signal

control”, arXiv Preprint arXiv:1611.01142,

2016.

[10] A. Vidali, L. Crociani, G. Vizzari, and S.

Bandini, “A deep reinforcement learning

approach to adaptive traffic lights management”,

WOA, pp. 42-50, 2019.

[11] X. Liang, X. Du, G. Wang, and Z. Han, “Deep

reinforcement learning for traffic light control in

vehicular networks”, arXiv Preprint

arXiv:1803.11115, 2018.

[12] J. Gu, Y. Fang, Z. Sheng, and P. Wen, “Double

deep q-network with a dual-agent for traffic

signal control”, Applied Sciences, Vol. 10, No. 5,

p. 1622, 2020.

[13] F. Rasheed, K. L. A. Yau, and Y. C. Low, “Deep

reinforcement learning for traffic signal control

under disturbances: A case study on Sunway city,

Malaysia”, Future Generation Computer

Systems, Vol. 109, pp. 431-445, 2020.

[14] Z. Li, H. Yu, G. Zhang, S. Dong, and C. Z. Xu,

“Network-wide traffic signal control

optimization using a multi-agent deep

reinforcement learning”, Transportation

Research Part C: Emerging Technologies, Vol.

125, p. 103059, 2021.

[15] R. S. Sutton and A. G. Barto, “Introduction to

reinforcement learning”, MIT Press Cambridge,

1998.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,

I. Antonoglou, D. Wierstra, and M. Riedmiller,

“Playing atari with deep reinforcement learning”,

arXiv Preprint arXiv:1312.5602, 2013.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,

J. Veness, M. G. Bellemare, A. Graves, M.

Riedmiller, A. K. Fidjeland, and G. Ostrovski,

“Human-level control through deep

reinforcement learning”, Nature, Vol. 518, No.

7540, pp. 529-533, 2015.

[18] Y. Bengio, “Deep learning of representations:

Looking forward”, In: Proc. of International

Conf. on Statistical Language and Speech

Processing, pp. 1-37, 2013.

[19] L. Li, Y. L, and F. Y. Wang, “Traffic signal

timing via deep reinforcement learning”,

IEEE/CAA Journal of Automatica Sinica, Vol. 3,

No. 3, pp. 247-254, 2016.

[20] R. Riccardo and G. Massimiliano, “An empirical

analysis of vehicle time headways on rural two-

lane two-way roads”, Procedia-Social and

Behavioral Sciences, Vol. 54, pp. 865-874, 2012.

[21] D. P. Kingma and J. Ba, “Adam: A method for

stochastic optimization”, arXiv Preprint

arXiv:1412.6980, 2014.

[22] M. Behrisch, L. Bieker, J. Erdmann, and D.

Krajzewicz, “Sumo simulation of urban

mobility: an overview”, In: Proc. of SIMUL

2011, The Third International Conf. on

Advances in System Simulation. ThinkMind,

2011.

