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Abstract: Intelligent traffic controller leads to manage traffic at intersection in order to minimize traffic congestion 

and has been intensively researched for a several decades. Multi-intersection cooperative traffic signal control (CTSC) 

is an efficient system that has received a great deal of attention and development in recent years. One problem with 

multi-intersection CTSC is that controller’s actions are based only on the traffic state or on the decisions taken at 

previous time step (t-1) at adjacent intersection. To address this problem, in this work a Double Deep Q Network 

Cooperative Traffic Signal Controller (CTSC-DDQN) is proposed. The CTSC-DDQN algorithm is a reinforcement 

learning agent that, depending on current traffic conditions, changes the traffic phase distribution order for n-

intersection simultaneously. Experimental results under real scenarios show that the proposed approach outperforms 

other static approach which fixe the time length and the phase order despite the traffic situation and actuated controllers 

which change the traffic light properties based on the queue length in term of average Q-length and average waiting 

which eventually leads to mitigate traffic congestion. The results show that our could minimize the average waiting 

time by up to 79% and the average queue length by up to 80%. 

Keywords: Traffic congestion, Cooperative traffic systems, Deep reinforcement learning, Multi-intersection 

management. 

 

 

1. Introduction 

All Generally, traffic flow at the intersection is 

managed by traffic light controllers. As a result, 

controlling traffic light plan at signalized intersection 

is a critical issue. Furthermore, traffic congestion 

increases energy consumption, car emission and 

vehicles traveling time which is a serious problem in 

large cities. The goal of the intersection management 

is to find the best signal plan to minimize the average 

waiting time and the queue length of vehicles. 

Based on the literature there are three main types 

of the traffic light systems. The static controllers that 

use the historical traffic data collected from sensors 

to set a fixed periodic model adapted to different 

times of a day [1], which not responsive to the actual 

traffic situation. The actuated systems that predict 

traffic phase based on instantaneous traffic 

conditions by increasing the traffic time length based 

on the queue length of the intersection lanes [2] And 

the adaptive systems that use longer-term 

information length such as arrival rate, waiting time 

and traveling time to predict the traffic phases order 

and traffic phases. Recently, the adaptive systems 

were widely discussed and has demonstrated a strong 

potential to efficiently mitigate urban traffic 

congestion in order to attain acceptable goals 

compared to the fixed and actuated systems [3]. Scats 

[4] and Scoots [5] are the famous adaptive traffic 

systems that control intersection in real time. Scoot 

aims to minimize the average queue length by 

modifying the traffic light plan using different data 

such as traffic flow, queue length, average velocity. 

This data is gathered from advanced detectors placed 

near to stop lines. And Scats tries to propose a time 

plan using only the number of vehicles stacked at stop 

lines. Subsequently, several adaptive systems were 

proposed using different methods. Particularly after 
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the artificial intelligence revolution. Since 1990 

researchers started to use machine learning 

techniques to control traffic signals at intersection [6]. 

Reinforcement learning (RL) is the most method 

applied in traffic management systems because it 

helps the controller to take decision based on the 

relationship between the actions space and the state 

space which are learned by interaction of the agent 

with the environment. But RL techniques were 

limited only to Q learning table and linear function to 

predict the Q value which impose to use a small-size 

state space for example, the number of waiting 

vehicles or the general data of road traffic [7]. On the 

other hand, we cannot describe the complexity of the 

traffic with such limited information. Deep 

reinforcement learning (DRL) has been developed. 

And some researchers have proposed to use these 

techniques to develop new adaptive traffic 

management methods. The most applied method is 

the deep Q network (DQN). It consists to enable a 

neural network to approximate the best actions can 

take an agent at each given state [8]. This model was 

adopted in [9] where the authors propose a DQN 

model that manage an intersection by changing the 

order phases execution in order to decrease the 

cumulative vehicle delay between two actions. Also, 

in [10] authors propose a DQN approach that 

maximizes the traffic flow through the intersection in 

real time. Another DRL approach called Dueling 

DQN was adopted in [11] where the neural network 

choses the best phase duration based on the position 

and speed of vehicles at an intersection. In [12] 

authors propose an adaptive controller based on two 

agents which are denoted by two different states and 

change the control of green lights to make the phase 

sequence fixed and control process stable at 

intersection using the new version of DQN which 

called double deep Q network (DDQN).  

All the works cited previously, focus only to 

manage traffic at isolated intersection which signifies 

that the signal plan at each intersection is unaffected 

by the signal time plan at other adjacent intersections. 

Otherwise, congestion at the intersections becomes 

more serious due to the urban expansion, which has 

led to an increase in the number of intersections, 

particularly in large cities. Thus, to manage 

intersections in an urban environment, it must be 

considered that all the intersections are not isolated. 

That is, the state of one intersection is frequently 

influenced by the state of the neighbouring 

intersections. As a result, traffic signal systems for 

multi-intersection becomes complex and difficult to 

solve. Therefore, to ensure a good traveling 

experience for vehicles in urban areas, it’s necessary 

to investigate the signal plans at multi adjacent 

intersections. To solve this problem, researchers use 

multi-agent systems in order to guarantee the 

communication between intersection. The idea is 

describing the intersections network with a multi 

agent system where each intersection is managed by 

one agent and each agent can access to the collective 

representation of the traffic environment collected by 

all agents installed at adjacent intersection. 

Subsequently, the agent chose the best action based 

on different algorithm. For example, in [13] the agent 

chooses the time length using a deep Q network 

approach and in [14] adjust the green time using a 

Knowledge Sharing Deep Deterministic Policy 

Gradient.  

The control approaches for multi-intersection 

have already been discussed. Most of the existed 

studies that control signals at multi-intersection 

adapts the next traffic light plan (which will be 

executed at the next time step t+1) based on the 

different data collected from the other intersections at 

the previous time step t. Since all the agent executes 

their chosen action simultaneously. Then, the traffic 

at intersection could be affected by the actions 

executed at the adjacent intersection. And this case 

has not been investigated in the literature. Thus, to 

address this issue, this paper proposes a cooperative 

traffic light system that change the phase distribution 

order at n-intersection using a single double deep Q 

network agent (CTSC-DDQN). The CTSC-DDQN 

agent learns the at each time step the state of all the 

intersections and choose the best phase order with a 

view to minimize the average queue length.  

The outline of this work is organized as follows: 

Section 2 present the background of the method used 

in this work. The proposed approach is deeply 

presented in Section 3. In Section 4, simulation setups 

and parameters are described where the numerical 

results are discussed in Section 5. The conclusions 

and the perspectives of this paper are presented in 

Section 6. 

2. Background 

This section provides an introduction to RL, 

DQN, and DDQN. Table 1 provides description of 

different variables used in this article. 

2.1 Reinforcement learning 

Reinforcement learning (RL) is one of the most 

effective proposed methods for solving Markov 

Decision Process (MDP) problems. The original RL 

agent learns several state-action pairs in order to 

maximize its reward (or cost). 
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Table 1. Annotation list 

Parameter Description 

at  Action selected by the agent at 

instant t 

st State received from the environment 

at instant t 

Qt Expected Q-value at instant t 

α Learning Rate 

Argmax() Function to return the action that 

gives the max Q-value 

Rt Reward received at instant t  

δt Temporal difference between 

rewards 

γ Discount Factor 

Yt Output of a neuron 

φ() Sigmoid function 

wkj Weight value of a neuron  

et Experience of the agent at instant t 

θt Target network parameter 

𝜃𝑡
− Online network parameter 

 

RL system is composed by three sub elements: 

state space, action space, and reward value. firstly, 

the RL agent defines the current state 𝑆𝑡 ∈ 𝑆 at time 

instant 𝑡, and chooses an action 𝑎𝑡 ∈ 𝐴 based on a 

learning rate 𝛼. This latter is a number between 0 and 

1 and defines whether the agent will choose a random 

action to explore more the environment or whether it 

will exploit the environment by selecting the action 

that has the maximum expected Q-value based on its 

experience. The function used to choose an action is 

described as following: 

 

𝑎𝑡
∗ = 𝛼 𝑎𝑟𝑔𝑚𝑎𝑥𝑎  𝑄𝑡(𝑠𝑡, 𝑎𝑡)              (1) 

 

Then the environment executes the chosen action 

and send to the agent the new state 𝑆𝑡+1  and the 

delayed reward 𝑅𝑡+1 ,subsequently, and using the Q-

function, the agent modifies the Q-value of the state-

action pair (𝑠𝑡, 𝑎𝑡) using the following equation [15]: 

 

𝑄(𝑡+1) (𝑠𝑡, 𝑎𝑡  ) = 𝑄𝑡  (𝑠𝑡, 𝑎𝑡  ) + 𝛼 𝛿𝑡  (𝑠𝑡  , 𝑎𝑡)  (2) 

 

where 𝛿𝑡(𝑠𝑡 , 𝑎𝑡)  describes the temporal difference 

of rewards that based on the Bellman equation in term 

of delayed rewards between two estimations which is 

presented as following [36]: 

 
 𝛿𝑡(𝑠𝑡 , 𝑎𝑡) = 
𝑅𝑡+1(𝑠𝑡+1) + 𝛾𝑚𝑎𝑥𝑎𝜖𝐴𝑄𝑡(𝑠𝑡+1, 𝑎) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡) (3) 

 

Where 0 ≤ 𝛾 ≤ 1  is the discount factor that 

indicates the preference for the discounted reward, 

and 𝛾𝑚𝑎𝑥𝑎𝜖𝐴𝑄𝑡(𝑠𝑡+1, 𝑎)  is used to represent the 

long-term discounted reward, while the delayed 

cumulative reward  𝑅𝑡+1(𝑠𝑡+1)  defines the short-

term reward. And finally, the agent uses a two-

dimensional Q-table to store their respective Q-

values. The different steps that summarize the RL 

algorithm are presented in the following algorithm 1: 

 
Algorithm 1: Traditional RL algorithm 

1: Procedure  

2: Retrieve the environment state 𝑺𝒕 ∈ 𝑺 

3: Choose action 𝒂𝒕 ∈ 𝑨. 
4: Receive the reward  𝑹𝒕+𝟏(𝒔𝒕+𝟏). 
5: Update Q-value 𝑸(𝒕+𝟏) (𝒔𝒕, 𝒂𝒕 ).  

6: End Procedure 

2.2 Deep Q-network: 

The traditional RL algorithms are effective for 

smaller state-action spaces. However, when the state-

action spaces are huge or continuous, the RL 

converges slowly and fail to find the optimal policy. 

Thus, to solve this problem, researchers proposed to 

use the Artificial neural network (ANN). In [16] and 

[17] the authors combined Q learning and 

Convolutional neural network (CNN) [18] in order to 

propose a new method called deep Q-network (DQN). 

As shown in Fig. 1, in DQN, the state information fed 

to the CNN network using the input layer. This later 

represents the state space and it’s coupled to a hidden 

layer that describes the different states given by a 

nonlinear function. Therefore, the output layer 

generates the Q-values 𝑄𝑡(𝑠𝑡, 𝑎𝑡)  of each possible 

action 𝑎𝑡 ∈ 𝐴. Note that the neurons of the input and 

the output layers are fully linked to those in the 

hidden layer and each link is described with a weight 

value 𝑤𝑘𝑗  That define the significance of the 𝑥𝑗 

compared to the other inputs. The output of a neuron 

is represented as following: 

 

𝑌𝑘 =  𝜑(∑ 𝑤𝑘𝑗
𝑚
𝑗=0 ,  𝑥𝑗)                    (4) 

 

Where 𝜑() is a Sigmoid function that expresses 

the relation between non-linear and linear functions 

at every neuron k of the network. The target network 

and the experience replay present the main features 

of DQN [16]. During the training process, the agent 

stores in the replay memory an experience composed 

by the current state 𝑠𝑡 , the chosen action 𝑎𝑡 , the 

received reward value 𝑅𝑡+1  and the state 

𝑠𝑡+1,𝑒𝑡(𝑠𝑡, 𝑎𝑡 , 𝑅𝑡+1, 𝑠𝑡+1), and subsequently selects a 

random experience in order to train the network and 

calculate the weight 𝜃𝑡 which will be used to predict 

the best Q-values at time t 𝑄(𝑠, 𝑎; 𝜃𝑡). In DQN two 

neural networks are used. The first one is used to 

estimate the Q-value of each action-state pair and it’s 

called by the online network. And the second one  
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Figure. 1 Deep reinforcement learning agent at t and t+1 

 
which is called by the target network, is used to 

provide the objective function 𝑌𝑡  . Note that the 

online network parameter 𝜃𝑡  is updated every step 

and the target network parameter 𝜃𝑡
− is copied from 

the online one every fixed N steps. The objective 

function is given as following: 

 

𝑌𝑡 =  𝑅𝑡 +  𝛾𝑚𝑎𝑥𝑎𝜖 𝐴𝜑(𝑠𝑡+1, 𝑎; 𝜃𝑡
−)          (5) 

 

Or it can be transformed into: 

 
𝑌𝑡 =  𝑅𝑡 + 

𝛾(𝑄(𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 + 𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡
−); 𝜃𝑡

−)) (6) 

2.3 Double deep Q network DDQN: 

In DQN method the expression 

𝑚𝑎𝑥𝑎𝜖 𝐴𝜑(𝑠𝑡+1, 𝑎; 𝜃𝑡
−) used in Eq. (5) describes that 

the selection and evolution process use the same 

target network parameter 𝜃𝑡
−  which may lead to 

overestimation. Thus, to reduce van and haslet in 

proposed to use the online parameter 𝜃𝑡  for action 

selection, and the target network parameter 𝜃𝑡
−  is 

used for action evaluation. Therefore, the new 

objective function will be transformed in DDQN into: 

 

𝑌𝑡 =  𝑅𝑡 + 

𝛾(𝑄(𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 + 𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡); 𝜃𝑡
−)) (7) 

 

The different steps that summarize the different 

steps of the DDQN algorithm are provided in the 

following algorithm 2: 

 

Algorithm 2: Traditional DDQN agent 

1: Procedure 

2: FOR episode=1 to E do:   

3: Observe current state 𝑺𝒕 ∈ 𝑺 

4: For t=1 to T do 

5: Select action 𝒂𝒕 ∈ 𝑨  

6: Receive delayed reward  

7: Store experience  

8: Set target 𝒀𝒕   

9: Perform a gradient descent  

10: Update networks Q-value.  

11: END FOR 

12: END FOR.  

13: END Procedure 

3. Proposal approach 

In order to build a traffic light system for multi-

adjacent intersections using RL, we need to define the 

basic elements, especially the state space, actions 

space and the reward function. In this section, we 

present how the three elements are defined in our 

proposed approach. 

3.1 State space: 

Based on the literature, there are different ways to 

represent the states space, for example, in [9, 10] 

describe the state with the presence and velocity of 

the cars at the intersection’s lanes. Otherwise in [11] 

the state was presented by the position of the vehicles 

at the lanes. However, in these works the agent 

mange only one intersection so those representation 

are sufficient to represent the environment state. But 

in our case, and to teach our agent to act smartly, we 

need to give them the best description about the 
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environment. And to describe deeply a vehicular 

network, we should extract two information, the 

number and the velocity of the vehicles at all the lanes. 

Since we will manage our network with one agent, 

we need to simplify the state space. In this work we 

describe the environment with the average velocity at 

a lane in every intersection of the network, which has 

not been investigated in the literature. The average 

velocity presents the ratio of the sum of the velocity 

and the total numbers of vehicles staying in the lane. 

If this parameter converges to 0 means that all the 

vehicles struggling in this lane and if is converging to 

the maximal velocity value means that we have a 

fluent traffic at this lane. 

Our studied network contains three types of lanes. 

Arrival lanes where the vehicles enter the network, 

departure lanes which the vehicles can use it to leave 

the network, and the internal lanes which connect the 

intersections. Therefore, if our network contains 4 

intersections means that we have 56 lanes which 

means that our state dimension equal to the lanes 

number. 

Let’s consider the Fig. 2 as an example to 

demonstrate how our builds the state vector values. 

This figure shows an example of the traffic states at 

three lanes four-way intersection. To generate the 

state vector, we translate the intersection to a cell grid 

and replace the vehicles with their speed values. Thus, 

we can obtain the state vector by calculating the 

average speed at each lane and built the vector values 

as shown in the figure. Denote that in our work we 

suppose that the maximal velocity value equal to 40 

m/s. And we describe the free lanes by -1 in order to 

differentiate the free lanes from the congested full 

lanes which also have an average speed equal to 0. 

 

 
Figure. 2 State detection process 

 

 
(a)                                          (b) 

Figure. 3 Pahse types: (a) North-south phase and (b) East-

west phase 

3.2 Action space: 

After the agent has receive the environment state, 

it should choose one from the set of all available 

actions. Based on the literature, authors propose to fix 

the traffic phase splits and modify the order of the 

phases such in [19,10], or such in [11] where they 

proposed to fix the order and change the phases splits. 

Otherwise, in this work we fixed the green duration 

for each intersection and we will modify the executed 

phase every step. Our system contains N intersections 

managed by a traffic light system. Each one has a 

program that contains 2 phases, namely by North-

South and East-West phase presented in fig 3. The 

agent should choose an appropriate phase 

combination for all the intersections to well guide 

vehicles in the network based on the current traffic 

state. 

To ensure a good learning experience for our 

agent, we assumed in this work that at each step, the 

agent has two possibilities, either it chooses the 

action based on the fact that the number of 

intersections having the North-South (NS) phase is 

equal to those having East-West (ES) phase or it will 

activate the same phase for all the intersections in the 

next step. For example, if we have 4 intersections the 

number of possible actions is 8 and the set of possible 

actions is described in the Table 1. 

Due to traffic control security measures, the 

chosen action using our agent will note be executed 

immediately. And to address this issue, an additional 

traffic signal phase configuration will be added 

before the chosen action. 

 
Table 2. Action space 

 I1 I 2 I 3 I 4 

A 1 NS ES NS ES 

A 2 ES NS ES NS 

A 3 ES ES NS NS 

A 4 NS NS ES ES 

A 5 NS ES ES NS 

A 6 ES NS NS ES 

A 7 NS NS NS NS 

A 8 ES ES  ES ES 
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Figure. 4 CNN network architecture 

 

Instead of instantly transitioning from the old 

traffic signal phase to the new chosen one, a series of 

yellow traffic signal phases will be executed based on 

the current phase. All the proposed actions have a 

yellow configuration which cannot be selected by our 

agent as an action, but are part of the traffic 

configuration in order to slow down and stop the 

traffic before activating the red light. 

3.3 Reward: 

The most important element of our reinforcement 

learning agent is the reward function. After the agent 

has executed the selected action, it receives a value 

called the reward. The reward is the value that helps 

the agent to builds an optimal policy which leads to 

maximize the cumulative long-term reward. In this 

work, we define the reward as a change in cumulative 

average queue length in all the intersections between 

actions. This allows for the reward to be positive 

which means that the agent will be rewarded or 

negative, which will be observed as a punishment for 

the agent. Note that to receive a reward the agent 

should observe the new environment state which was 

influenced by the chosen action and calculate the new 

reward using the following equation: 

 
𝑅𝑡 =  ∑ 𝐴𝑉𝑄𝑖,𝑡−1

𝑛
𝑖=1 − ∑ 𝐴𝑉𝑄𝑖,𝑡

𝑛
𝑖=1          (8) 

 

Where AVQ describes the average queue length 

and n describes the total number of network 

intersections. 

3.4 Algorithm: 

In this work we inspired by DDQN and we 

propose a Convolutional Neural network architecture 

which will be used to train our agent. The whole 

network is presented in Fig. 4.  

The state is fed from the input layer that has NL 

neurons; each represents the average speed at 

corresponding lane 𝐿 ∈ 𝑁𝐿 . Subsequently, the 

information flows forward to a hidden layer which 

composed with three fully connected (FC) each has 

300 neurons connected with Relu function that 

performs gradient descent, and finally, the 

information arrives to the output layer that has 

multiple neurons, each representing the Q values 

corresponding to all possible action. 

Note that our algorithm will use two networks to 

calculate the Q target based on the traditional DDQN 

presented in algorithm 2. To effectively manage the 

traffic signal at intersections, our agent uses the 

algorithm presented in algorithm 2. At episode 𝑒 ∈
𝐸 the agent discovers the environment state 𝑆𝑡 ∈ 𝑆 as 

part of the initialization. At time instant 𝑡 ∈ 𝑇. Then, 

the agent selects an action 𝑎𝑡 ∈ 𝐴  and store 

experience in a replay memory. Subsequently, the 

agent randomly selects a mini-batch of experiences 

from the replay memory to set the target value and 

update the networks with the new generated value. 

4. Simulation setup and parameters: 

In order to show the performance of the proposed 

approach, it is significant to set appropriate traffic 

network parameters.  

As shown in Fig. 5, our network size is 4*4, 

which means that they are 16 adjacent intersections. 

Each intersection has 3 lanes. Where the left lane is 

for left turn, the middle lane allows vars to go straight 

only, and right lane allows vehicles to turn right. See 

Fig. 6 for more details. 

The method by which vehicles are arriving to the 

network has a significant impact on the simulation’s 

quality. 

 

 
Figure. 5 Studied network 
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Figure. 6 Intersection configuration 

 
Table 3. Arrival distribution 

𝝀 value Traffic state 

𝜆 = 0.1 free traffic state 

𝜆 = 1 jammed traffic state 

𝜆 = [0,1] random traffic state 

 

Table 4. DDQN parameters 

Parameters Values 

Replay memory size 60 000 

Experience sampling 0.5 

Discount factor 𝛾 0.7 

Learning rate 𝛼 0.0002 

Mini-batch size 200 

Starting 𝜖 1 

Ending 𝜖 0.01 

Exploring episodes 100 

Exploiting episodes 2000 

 

The most popular method selects a random 

number using probability distribution that meet the 

time intervals between vehicles. Experimental 

research has shown that different vehicle flows are 

estimated by different probability [20]. In this paper, 

the vehicles production rat flows the poison process 

and to test different traffic scenarios we represent in 

Table 2 the production rate 𝜆  setting tested in this 

work. For example, to generate a free traffic we set 

𝜆 = 0.1  which describe that every 10 seconds a 

vehicle enters  

into the network from all the inputs, and for 

random traffic state we vary the 𝜆 values from 0 to 1 

randomly during simulation. 

In order to get a good traffic signal policy, our 

DDQN agent is trained for 2000 episodes, each 

episode lasts 3600s. Detailed parameters of the agent 

networks are presented in Table 3. In this work, we 

used the ADAptive Moment estimation (Adam) [21] 

to update the learning rate during the training process. 

To simulate our algorithm, we used Simulation of 

Urban Mobility (SUMO) (i.e., version 1.9.2). SUMO 

is an open-source simulator, which simulates in real-

time [22]. The RL agent was developed with python, 

which provides a set of open-source library that help 

to create our algorithm. And to connect our python 

code with SUMO program, the TraCI (Traffic 

Control Interface) was used to facilitate the 

interaction between the python files and SUMO 

simulator using TCP/IP protocol.  

5. Results and discussions 

In this section we evaluate our proposed CTSC-

DDQN method by comparing its results with those 

obtained from the static, the actuated approaches 

under free traffic state, jammed traffic state and 

random traffic state. Note that the static and actuated 

algorithm was implemented by the SUMO simulator. 

This simulation will lead to compare the tree 

algorithm using the same constraint and network 

parameters. 

5.1 Cumulative delayed reward: 

With a focus to lead our agent to learn the best 

action value function. We perform two types of tests: 

exploring and exploiting tests. The exploring test is 

when the agent takes random actions with no 

consideration for reward. This test helps our agent to 

explore more the environment attempting to discover 

the best action-state pair. The accumulated delayed 

reward for the CTSC-DDQN under free, jammed and 

random traffic state during the exploring test is shown 

Fig. 7.  

The figure shows a divergence in term of reward 

values and this caused because the agent is acting 

randomly which make them unstable during this test 

phase.  

Otherwise, the agent’s behaviour changes during 

the exploiting tests as shown in Fig. 8. 

In this figure the cumulative reward is more 

optimized and more stable in comparing to the 

exploring phase and this is because the agent exploits 

the environment and take into consideration the 

reward values before taking action during episode 

time. In addition, the CTSC-DDQN achieves a higher 

delayed reward in different traffic state as shown in 

Fig. 8 which explain that our agent adapts with any 

traffic situation and keeps its stability while time is 

increasing. 

5.2 Average queue length 

Fig. 9 presents the average queue length of the 

three kinds of traffic controllers under free, jammed  
 



Received:  May 4, 2022.     Revised: June 14, 2022.                                                                                                         562 

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022           DOI: 10.22266/ijies2022.0831.50 

 

 
Figure. 7 Cumulative reward during exploring test 

 

 
Figure. 8 Cumulative reward during exploiting test 

 

 
Figure. 9 Average Q-length results 

 
and random traffic state as the time increase. The 

average queue length for free traffic varies up 129 

vehicles for static controllers and 66 vehicles for the 

actuated controllers. Otherwise, with the CTSC-

DDQN, the average queue length is less than 25 

vehicles. See Fig. 9. 

For the jammed traffic state, the queue length 

varies up to 207 with static approach, up to 159 

vehicles with actuated approach. Otherwise, with our 

approach, the average queue length is less than 54 

vehicles and its stable during the time. See Fig. 9. 

Similar behaviour is observed for the random 

traffic state. The average queue length varies up to 

154 vehicles with static approach and up to 94 

vehicles with the actuated approach where it is less 

than 47 vehicles with CTSC-DDQN approach. See 

Fig. 9. 

From these results we can confirm that our 

proposed approach reduces the queue length by up to 

70% and 50% respectively from the static and 

actuated approaches under random traffic state. And 

reduces by up to 74% and 66% respectively, 

compared to the static and actuated approaches under 

jammed traffic state. And under free traffic, with our 

approach the average the average queue length is 

reduced by up to 80% from the static approach and 

up to 62% from the actuated approach. 

5.3 Average waiting time: 

The average waiting time in the network of the 

three types of traffic controllers under free, jammed 

and random traffic state as the time increases is 

shown in fig. 10. 

For free traffic state, the average waiting time 

varies to 12 min for actuated approaches. However, 

the CTSC-DDQN has his average waiting time less 

than 5 min and it’s stable with time. 

For jammed and random state, the average varies 

up to 28min and 18min, respectively with static 

controllers and with 18 min and 11 min with the 

actuated controllers. Otherwise, with CTSC-DDQN 

controllers the average waiting time varies less than 

6 min and 4 min respectively under jammed and 

random traffic state. 

From these results we can confirm that our 

proposed approach reduces average waiting time by 

up to 78% and 64% respectively from the static and 

actuated approaches under random traffic state. And 

reduces by up to 79% and 66% respectively, 

compared to the static and actuated approaches under 

jammed traffic state. It can be seen that just 

modifying the phase distribution order led to an 

important improvement in term of the average queue 

and average waiting time in comparison with the 

 

 
Figure. 10 Average waiting time results 
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Table 5. Comparison of methods 

Adaptive 

algorithm 

Number of 

intersections 

Compared 

against 

Queue length 

improvement 

Waiting time 

improvement 

Our approach 16 Static method 79% 80% 

MADQN [13] 16 Static method 75% 70% 

Dual DDQN [12] Isolated intersection Static method 57% 72% 

 

static and actuated controllers under different 

scenarios.  

The proposed CTSC-DDQN aims to reduce the 

average waiting time and average queue length at 

multiple intersections using a single agent based on 

the traffic state in real time. Hence, it reduces the 

average waiting time by up to 79 % and the average 

queue length by up to 80%. The good performance 

obtained is explained by the use of the proposed 

algorithm which manage traffic light by changing the 

phase distribution based on the adjacent intersection 

states. When the static controller fixes the signals’ 

time under different traffic scenarios. And the 

actuated controller changes the time length based on 

the queue length of the vehicles stacked at the 

intersection and it’s don’t take into consideration the 

arrival vehicles from the adjacent intersection. Also, 

the existed adaptive system proposed in [12] which 

manage only one isolated intersection it reduces the 

average queue length by only 72% and the waiting 

time by 57% compared to the static controller and this 

is because it don’t take into consideration the adjacent 

traffic situation. In addition, the multi agent deep Q 

network approach which proposed in [13] reduces the 

average queue length by only 75% and the waiting 

time by only 70% and this is because it is based only 

on the traffic situation before taking action in addition 

these results are overestimated because it used the 

DQN and as shown in section 2 the DDQN resolve 

the DQN overestimation which means that our results 

are more significates than the [13] results. For more 

details we summarized in Table 3 the different results 

obtained using our proposed approach and the 

existing approaches in literature. 

6. Conclusion 

One of the most challenging problems within 

traffic light systems is the traffic coordination at 

intersections. The advancements in deep 

reinforcement learning methods, especially the 

double deep Q network algorithm have shown great 

potentials for improving traffic light system 

performance. In this work, the cooperative traffic 

signal control is investigated, a double deep Q 

network agent is proposed to manage n-intersections 

in real time. the proposed approach uses an artificial 

intelligence method called double deep Q-network 

(DDQN) which use a single agent method in order to 

overcome the problem of dimensionality. This work 

proposes a cooperative traffic light controller that 

uses double deep Q network to describe and store the 

traffic states, also uses target network and experience 

replay to keep training stable during episodes time. 

Simulation of different traffic scenarios using 

SUMO simulator demonstrates that CTSC-DDQN 

outperforms other static and actuated approaches by 

minimizing the average waiting time by up to 79% 

and the average queue length by up to 80%. Recently, 

traffic light systems have received much attention 

and research, although, they are still a developing 

field. 

As part of Our future works, we would like to 

focus on improving the performance of the proposed 

approach by including multi-agent system in order to 

facilitate the communication between intersection. 

Also, it will be interesting to take account the 

optimization of the green time length. 
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