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Abstract: Currently global warming is increasing significantly around the world and become one of the typical 

issues for sustainability. In this connection, many sectors are transforming towards sustainable solutions. Integration 

of renewable energy (RE) is one such adaption in electrical power systems, by which the burden on conventional 

plants as well as their greenhouse gas (GHG) emission can be reduced significantly. However, due to radial structure, 

electrical distribution networks (EDNs) may not support for RE integration inappropriately. There are numerous 

methods have been introduced on optimal allocation of RE sources in radial distribution networks (RDNs), but not 

highly focused on maximizing their RE hosting capacity (HC). In this paper, a recent and efficient meta-heuristic 

algorithm, hunter-prey optimization (HPO) is introduced for finding the optimal locations and sizes of photovoltaic 

(PV) systems in RDNs. In addition to the loss minimization and voltage profile improvement, maximization of PV 

hosting capacity (HC) is focused as a major objective. Simulation results are done on IEEE 33-bus RDNs for 

different scenarios. The computational efficiency of proposed HPO is compared with other recent algorithms and it 

is observed that the results of HPO are better than other compared methods in terms of global optima. In addition, 

the enhanced HC of PV systems in RDNs is ensured improved performance in terms of reduced grid-dependency, 

GHG emission and distribution losses along with improved voltage profile. 

Keywords: Radial distribution network, Hunter-prey optimization, Photovoltaic system, Hosting capacity, Multi-

objective optimization. 

 

 

1. Introduction 

Currently, most electrical distribution networks 

(EDNs) are transforming into more clean and green 

technologies by integrating various types of 

renewable energy (RE) based distributed generation 

(DG), electric vehicles (EVs), and energy storage 

systems (ESSs), in response to continuously 

increasing global warming and declining fuel for 

conventional power sources [1]. However, the 

stochastic and intermittent nature of REs has 

presented the EDNs’ operators with a number of 

difficult tasks. In particular, radial distribution 

networks (RDNs) are designed with high X/R ratio 

distribution losses and to cover larger areas, which 

results in high distribution losses and an inadequate 

voltage profile. To overcome these issues, optimal 

network reconfiguration (ONR) [2], optimal 

integration of DG [3], optimal integration of ESSs 

[4], optimal allocation of EV charging infrastructure 

[5], and their simultaneous solutions can provide a 

variety of technological-economical benefits such as 

reduced distribution losses, improved voltage profile, 

increased voltage stability margins, and increased 

reliability. Many researchers are focused on optimal 

integration of RE in EDNs, considering different 

technological, economic, and environmental 

objectives [6]. However, in order to achieve the 

global target of net-zero carbon by 2050 [7], 

maximization of RE hosting capacity (HC) is 
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essential in EDNs [8]. However, the difficulty 

involved in moving towards a net-zero carbon 

electricity system is to be understood [9]. Since 

photovoltaic (PV) technology is one of the most 

highly adapted technologies among various RE 

technologies, even at small consumer sites, many 

researchers are focused on assessment [10] and 

enhancement of its HC in EDNs [11]. With these 

conditions, optimal integration of RE-based DGs in 

EDNs becomes one of the most actively pursued 

optimization problems in electrical engineering. 

Some of such recent works are discussed here.  

The EDNs performance is improved by 

optimally integrating PV and WT type RE sources 

using ant lion optimization (ALO). Simulations are 

performed on IEEE 69-bus EDN for reducing 

distribution losses (𝑓1 ), improving voltage profile 

(𝑓2), and enhancing voltage stability index (𝑓3) [12]. 

Water cycle algorithm (WCA) is introduced for 

integrating PV, WT and CBs optimally. Simulations 

are done on IEEE 33-bus and 69-bus EDNs by 

considering 𝑓1 , 𝑓2  and 𝑓3  along with operating cost 

of DGs (𝑓4) and reduction of GHG emission from 

conventional power plant (𝑓5) [13]. Total harmonic 

distortion (THD) including total voltage harmonic 

distortion and individual harmonic distortion are 

reduced along with 𝑓1 by integrating PV based DGs 

using biogeography-based optimization (BBO), 

genetic algorithm (GA), artificial bee colony (ABC), 

and particle swarm optimization (PSO) [14]. Multi-

objective improved differential search algorithm 

(MOIDSA) with Pareto optimal approach is 

introduced for optimizing  𝑓1 , 𝑓2 , 𝑓3  and 𝑓4  via 

optimally locating and sizing PV and WT (which 

operates fixed power factor 0.866) based DGs in 

IEEE 33-bus and IEEE 69-bus EDNs. A comparison 

is done for two different penetration levels of DGs 

and highlighted that the maximum penetration level 

of DGs can result for better performance [15]. ALO 

is utilized for minimizing multi-economic objective 

function which includes grid power purchase cost, 

reliability cost, and cost of DGs installation cost. In 

addition, the impact of DGs allocation is quantified 

on 𝑓1  and 𝑓2  [16]. Continuous power flow (CPF) 

approach is used to maximize the DG penetration by 

integrating different types DGs (synchronous 

generators, synchronous compensator, fuel cells, and 

WTs) optimally. The major objective functions 

solved simultaneously are 𝑓1 , 𝑓2 , 𝑓3  and 𝑓4  along 

with voltage stability margin ( 𝑓5 ) and network 

transfer capability ( 𝑓6 ) [17]. Multi-objective 

modified symbiotic organisms search (MOSOS) 

algorithm is proposed for solving DGs in RDNs 

towards minimizing the annual energy cost, annual 

investment and operation cost of DGs and total 

voltage deviation [18]. Manta ray foraging 

optimization (MRFO) [19], Pareto multi-objective 

sine cosine algorithm (MOSCA) [20], hybrid grey 

wolf optimizer (HGWO) [21], whale optimization 

algorithm (WOA) [22], stud krill herd algorithm 

(SKHA) [23], krill herd algorithm (KHA) [23] and 

pathfinder algorithm (PFA) [24], some of such 

recent meta-heuristic approaches adapted for solving 

the DG allocation problem in RDNs.   

From these works, it can be realized that the 

allocation of DGs at improper locations and sizes 

can result for negative impact on EDNs performance. 

Also, oversized DG penetration or HC can result for 

excessive installation and operational cost along 

with negative impact on EDNs performance. Thus, 

finding optimal locations, sizes and optimal HC of 

DGs can be treated as a complex multi-objective 

optimization problem with multi-type (discrete and 

continuous) search variables and different equal and 

unequal constraints and attained much attention 

among various researchers [25]. Besides, the above 

reviewed literature is exploring the various meta-

heuristic optimization algorithms for solving this 

problem and has been treated as a continuous 

challenge. However, according to o Free Lunch 

(NFL) theorem [26], optimization algorithm's ability 

to solve one set of problems doesn't guarantee it can 

solve another. All optimizers average all 

optimization problems, despite some being superior. 

The NFL theorem enables academics suggest 

innovative optimization algorithms or improve 

existing ones. Some of such recent algorithms are: 

mixed leader based optimizer (MLBO) [27], three 

influential members based optimizer (TIMBO) [28], 

darts game optimizer (DGO) [29], mixed best 

members based optimizer (MBMBO) [30], multi 

leader optimizer (MLO) [31], and random selected 

leader based optimizer (RSLBO) [32]. In this 

context, the following are the major contributions 

for this paper.  

 

• First time, a novel hunter-prey optimization 

(HPO) [33] is introduced in this paper for 

exploring its computation efficiency while 

solving optimal allocation of PV location and 

sizes for different multi-objectives.  

• In addition, finding optimal number of DG 

locations is not paid much attention to attain 

maximum HC of DGs and considered as another 

major contribution of this work.    

 

Rest of the paper is arranged as follows: In 

section 2, the mathematical modelling of PV based 

DGs and their hosting capacities (HC) are modelled. 
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In section 3, the mathematical formulation of 

proposed multi-objective function with different 

constrained is explained. In section 4, the concept of 

HPO is explained with its modelling. Section 5 

discussed the effectiveness of proposed approach 

based on simulation results on IEEE 33-bus RDN 

considering different scenarios. At last, section 6 

presents the overall research findings of this work 

comprehensively. 

2. Modelling of theoretical concepts 

In this section, the effect of a PV system at a 

location is modelled suitably for load flow study, 

and defined the PV HC mathematically.   

2.1 Photovoltaic systems 

According to different types of DGs definitions 

and technologies [17], PV systems can be mainly 

treated as a real power compensator at a location in 

the network. Thus, the effect of PV system at a 

location can be realized by off-setting its capacity 

from the connected load, mathematically, 

 

𝑃𝑑(𝑘)̅̅ ̅̅ ̅̅ ̅ = 𝑃𝑑(𝑘) − 𝑃𝑉𝐼𝐶(𝑘)                 (1) 

 

where  𝑃𝑑(𝑘)̅̅ ̅̅ ̅̅ ̅ is the net effective load demand after 

integrating a PV system at bus-k, 𝑃𝑑(𝑘)  is the 

connected peak load demand at bus-k,  𝑃𝑉𝐼𝐶(𝑘) is the 

installed capacity of PV system at bus-k. 

2.2 Hosting capacity of PV systems 

As defined in literature, HC is the ratio of 

installed capacity of PV systems to the network peak 

load demand [11]. Mathematically,  

 

𝑃𝑉𝐻𝐶 = (∑ 𝑃𝑉𝐼𝐶(𝑖)
𝑛𝑃𝑉
𝑖=1 ∑ 𝑃𝑑(𝑘)

𝑛𝑏𝑢𝑠
𝑘=1⁄ )   (2) 

 

where 𝑃𝑉𝐻𝐶 is the total hosting capacity (HC) of PV 

systems in the network, 𝑛𝑃𝑉  and 𝑛𝑏𝑢𝑠  are the 

number of PV systems and number of buses in the 

networks, respectively. 

3. Problem formulation 

The proposed multi-objective function includes 

maximization of PV HC, minimization of 

distribution losses, voltage profile improvement, and 

reduction of GHG emission from conventional 

power plants. Mathematically, 

 

𝑂𝐹 = 𝑚𝑖𝑛(𝑃𝑔𝑟 + 𝑃𝑙𝑜𝑠𝑠 + 𝐴𝑉𝐷𝑝𝑟 + 𝐺𝐻𝐺𝑒𝑚)  (3) 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐼𝑏𝑟
2𝑛𝑏𝑟

𝑏𝑟=1 × 𝑟𝑏𝑟                 (4) 

 

𝐴𝑉𝐷𝑝𝑟 =
1

𝑛𝑏𝑢𝑠
∑ (|𝑉|(𝑟) − |𝑉|(𝑖))𝑛𝑢𝑠

1    (5) 

 

𝐺𝐻𝐺𝑒𝑚 = (𝐶𝑂2 + 𝑆𝑂2 + 𝑁𝑂𝑥) × [𝑃𝑔𝑟]      (6) 

 

𝑃𝑔𝑟 = 𝑃𝑙𝑜𝑠𝑠 + (∑ 𝑃𝑑(𝑘)
𝑛𝑏𝑢𝑠
𝑘=1 − ∑ 𝑃𝑉𝐼𝐶(𝑖)

𝑛𝑃𝑉
𝑖=1 )  (7) 

 

where 𝑂𝐹 is the overall objective function, 𝑃𝑙𝑜𝑠𝑠  is 

the real power distribution loss, 𝐴𝑉𝐷𝑝𝑟  is the 

average of network voltage profile, 𝐺𝐻𝐺𝑒𝑚  is the 

GHG emission form conventional plant, |𝑉|(𝑟) and 

|𝑉|(𝑖) are the voltage magnitudes of reference/sub-

station bus and bus-i, respectively, 𝐶𝑂2 , 𝑆𝑂2  and 

𝑁𝑂𝑥  are the major pollutants from conventional 

power plants, 𝑃𝑔𝑟  is the net-effective grid-

dependency of the network after installing PV 

systems. Here, by maximizing PVHC, the grid-

dependency of the network can be reduced 

significantly.  

The multi-objective function expressed in Eq. (3) 

is constrained by the following equal and unequal 

planning and operational constants.  

 
|𝑉|(𝑖),𝑚𝑖𝑛 ≤ |𝑉|(𝑖) ≤ |𝑉|(𝑖),𝑚𝑎𝑥                             (8) 

 

𝐼𝑏𝑟 ≤ 𝐼𝑏𝑟,𝑚𝑎𝑥                                                       (9) 

 

𝑃𝑉𝐻𝐶 ≤ ∑ 𝑃𝑑(𝑘)
𝑛𝑏𝑢𝑠
𝑘=1                                        (10) 

 

𝑃𝑉𝐼𝐶(𝑖),𝑚𝑖𝑛 ≤ 𝑃𝑉𝐼𝐶(𝑖) ≤ 𝑃𝑉𝐼𝐶(𝑖),𝑚𝑎𝑥                    (11) 

 

Here, Eq. (8) is used to maintain the voltage 

profile of a bus within minimum and maximum 

tolerable limits, Eq. (9) is defined to maintain all 

branch currents less than their maximum limits, Eq. 

(10) is defined for avoiding over compensation,  and 

Eq. (11) is used to define the DG capacity limits in 

the optimization problem.  

4. Hunter-prey optimization 

Nature may be able to help us solve challenges. 

In nature, creatures interact in numerous ways. 

Hunter–prey interaction is one of such and the most 

fascinating phenomena in population biology. 

Animals utilize a variety of tools and methods to 

hunt. Because prey is usually crowded, the hunter 

chooses prey that isn’t near the swarms (average 

herd position). After finding his target, the hunter 

pursues and hunts it down. Meanwhile, the prey 

looks for food, escapes a predator attack, and finds 

safety. This protected area is ideal for prey in terms 
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of safety or fitness in optimization problems. With 

this background, a simple meta-heuristic algorithm 

namely hunter-prey optimization (HPO) is 

developed uniquely [33]. In the same way that other 

algorithms have initialization, exploration, and 

exploration phases, HPO has these phases as well. 

Their modelling is shown here. 

4.1 Initialization 

In a search space, a uniformly distributed random 

number theory is used to generate the initial 

population of prey or hunters inside the lower and 

higher bounds of their respective populations. 

 

ℎ𝑝𝑖 = 𝑟𝑎𝑛𝑑(1, 𝑛𝑣).∗ (𝑢ℎ𝑝 − 𝑙ℎ𝑝) + 𝑙ℎ𝑝              (12) 

 

where ℎ𝑝𝑖  is the position of hunter/prey, 𝑙ℎ𝑝  and 

𝑢ℎ𝑝 are the lower and upper limits of hunter/prey, 

respectively; 𝑟𝑎𝑛𝑑 is uniformly distributed random 

number, 𝑛𝑣 is the number of variables or dimension 

of the problem.   

At this step, the fitness of each population is 

evaluated in terms of the proposed objective 

function, and the population with the best fitness is 

advanced to the pre-iterative stage as the current 

iterative global best. 

4.2 Exploration phase for updating hunter 

position  

To help search variables identify the optimum 

place, a searching process must repeated. 

Exploration and exploitation are two stages of the 

search process. Exploration is the algorithm’s 

inclination to function randomly, causing many 

changes in solutions. Large changes in solutions 

make it more vital to keep seeking for new places to 

look. Thus, in exploitation phase, there is a need to 

reduce randomness so the algorithm can search for 

global optima. The exploration phase of HPO for 

updating hunter position at an iteration k is defined 

by,  

 

ℎ𝑝𝑖𝑗(𝑘 + 1) = ℎ𝑝𝑖𝑗(𝑘) + 0.5{[2𝐵𝑝𝐴𝑝𝑃𝑝𝑟(𝑗) −

           ℎ𝑝𝑖𝑗(𝑘)] + [2(1 − 𝐵𝑝)𝐴𝑝𝛾𝑗 − ℎ𝑝𝑖𝑗(𝑘)]}  (13) 

 

where ℎ𝑝𝑖𝑗(𝑘 + 1)  is the modified position of 

hunter for next iteration, 𝑃𝑝𝑟(𝑗)
 
is the position of 

prey, 𝛾𝑗 
is the mean of all prey positions , 𝐴𝑝 

is the 

adaptive parameter, 𝐵𝑝  
is the parameter used for 

balancing exploration and exploitation phases.  

The following relations are employed for 

defining the 𝐴𝑝, and 𝐵𝑝,  

 𝐵𝑝 = 1 −
0.98×𝑘

𝑘𝑚𝑎𝑥
 and  

 

 𝐴𝑝 = 𝑟2 ⊗ 𝑖𝑑𝑥 + 𝑟3 ⊗ (~𝑖𝑑𝑥)              (14) 

 

where 𝑟1̅ = 𝑟𝑎𝑛𝑑(1, 𝑛𝑣) <  𝐵𝑝 , 𝑟2 = 𝑟𝑎𝑛𝑑() , 𝑟3̅ =

𝑟𝑎𝑛𝑑(1, 𝑛𝑣) , 𝑖𝑑𝑥 = (𝑟1 == 0) , 𝑟1̅  and 𝑟3̅  are the 

random vectors in [0, 1] with a size equals to 

number of variables, respectively, 𝑟2  
is a random 

number, idx is the index number of the  𝑟1̅ when it 

satisfies 𝑟1 = 0 , ⊗  is element by element 

multiplication, 𝑘 and 𝑘𝑚𝑎𝑥  
are the current iteration 

number and maximum iterations, respectively. 

The position of a prey 𝑃𝑝𝑟  
is calculated first 

using average of all prey positions  𝛾𝑗 , and the 

Euclidean distance between of each search variable 

to this mean position, as given by,  

 

𝛾𝑗 = 𝑚𝑒𝑎𝑛(ℎ𝑝𝑖𝑗) 
 
and 

 

𝐷𝑒𝑢𝑐(𝑖) = √∑ (ℎ𝑝𝑖𝑗 − 𝛾𝑗)
2𝑛𝑣

𝑗=1               (15) 

 

According to Eq. (16), the prey which has 

maximum distance from mean distance  𝛾𝑗 , is 

considered as the prey for hunting 𝑃𝑝𝑟(𝑗)
 
as given 

by, 

 

𝑃𝑝𝑟
̅̅ ̅̅ = ℎ𝑝𝑖

̅̅ ̅̅ |𝑖 𝑖𝑠 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 max (𝑒𝑛𝑑)𝑠𝑜𝑟𝑡(𝐷𝑒𝑢𝑐) (16) 

 

The method will approach slow convergence rate 

if we always consider the search agent with the 

largest distance from the average position (𝛾𝑗 ) in 

each iteration. When the hunter kills his target, he 

may moves on to the next victim in the chain of 

events, as described in the hunting scenario. HPO is 

investigating a reduction strategy in order to address 

this issue, as follows: 

 

𝑃𝑝𝑟
̅̅ ̅̅ = ℎ𝑝𝑖

̅̅ ̅̅ |𝑖 𝑖𝑠 𝑠𝑜𝑟𝑡𝑒𝑑 𝑜𝐷𝑒𝑢𝑐(𝑝𝑏𝑒𝑠𝑡) , 

𝑝𝑏𝑒𝑠𝑡 = 𝑟𝑜𝑢𝑛𝑑(𝐵𝑝 × 𝑛𝑣)               (17) 

4.3 Exploitation phase for updating prey position  

In the event of an attack, prey seeks to flee and 

find a safe haven assuming that the prey has a better 

probability of surviving, HPO assume that the 

optimum safe place is the best global position. 

 

ℎ𝑝𝑖𝑗(𝑘 + 1) = 𝐺𝑝𝑟(𝑗) + 𝐵𝑝𝐴𝑝𝑐𝑜𝑠(2𝜋𝑟4) ×

                                                   (𝐺𝑝𝑟(𝑗) − ℎ𝑝𝑖𝑗)       (18) 

 

where ℎ𝑝𝑖𝑗(𝑘 + 1) is the prey position for the next  
 



Received:  May 11, 2022.     Revised: June 13, 2022.                                                                                                       579 

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022           DOI: 10.22266/ijies2022.0831.52 

 

Table 1. Comparison of literature for single PV allocation   

Method  
PV Sizes (kW)  

and Locations 

GHGem 

(lb/h) 
×103 

Ploss  

(kW) 

AVDper 

(p.u.) 

Ploss 

Reduction 

(%) 

GHG 

Reduction 

(%) 

HC 

(%) 

Grid 

Dependency  

(%) 

MRFO [19] 2590.217 (6) 2530.48 111.03 0.972 47.378 68.52 69.72 32.30 

HGWO [21] 2590 (6) 2530.48 111.03 0.972 47.378 68.52 69.72 32.30 

WOA [22] 2589.6 (6) 2530.48 111.03 0.972 47.378 68.52 69.72 32.30 

SKHA [23] 2590.215 (6) 2530.48 111.03 0.972 47.378 68.52 69.72 32.30 

KHA [23] 2590.216 (6) 2530.48 111.03 0.972 47.378 68.52 69.72 32.30 

PFA [24] 2590.264 (6) 2530.48 111.03 0.972 47.378 68.52 69.72 32.30 

HPO 2590 (6) 2530.48 111.03 0.972 47.378 68.52 69.72 32.30 

 

Table 2. Comparison of literature for two PVs allocation 

Method  
PV Sizes (kW)  

and Locations 
HC (kW) 

GHGem 

(lb/h) ×103 

Ploss  

(kW) 

AVDper 

(p.u.) 

ALO [16] 487.18 (33), 498.3 (15) 985 5824.69 115.037 0.9643 

PSO [16] 500 (32), 500 (15) 1000 5792.26 113.720 0.9645 

GA [16] 491.45 (32), 500 (15) 991 5810.73 114.191 0.9644 

ALO [16] 474.67 (17), 493.86 (16) 969 5905.61 137.605 0.9678 

PSO [16] 461.49 (16), 485.33 (33) 947 5908.85 117.480 0.9637 

GA [16] 469.77 (17), 470.93 (15) 941 5957.81 135.269 0.9671 

MRFO [19] 1157.6 (30), 851.5089 (13) 2009 3671.57 87.167 0.9795 

HPO 1157.81 (30), 852.2 (13) 2010.01 3671.57 87.167 0.9795 

 

Table 3. Comparison of literature for three PVs allocation 

Method  
PV Sizes (kW)  

and Locations 
HC (kW) 

GHGem 

(lb/h) ×103 

Ploss  

(kW) 

AVDper 

(p.u.) 

WCA [13]* 854.6(14), 1101.7(24), 1181(29) 3137 1334.84 51.808 0.9840 

GA [14]* 694.7(14), 1184.4(24), 1462.8(28) 3342 921.80 54.511 0.9833 

ABC [14]* 1137.2(9), 1067.4(24), 803.1(32) 3008 1605.80 53.299 0.9803 

PSO [14]* 1062.5(9), 1044.7(24), 951.8(30) 3059 1498.64 52.461 0.9804 

BBO [14]* 753.9(14), 1009.4(24), 1071.4(30) 2835 1951.84 50.697 0.9807 

MOSCA [20]* 609.8(33), 629.3(13), 1159.4(6) 2399 2859.74 56.362 0.9798 

SPEA2 [20]* 1151.9(9), 774.2(25), 750.4(33) 2677 2288.54 55.351 0.9788 

MOIDSA [15] 968.7(30), 800(13), 1036.3(25) 2805 2015.43 51.622 0.9802 

MOIDSA [15] 793.4(31), 396(25), 933.1(14) 2123 3426.67 55.309 0.9790 

MRFO [19] 792(13), 1068(24), 1027(30) 2887 1844.60 50.646 0.9807 

HPO 802(13), 1091(24), 1054(30) 2947 1721.64 50.653 0.9813 

*Revised answers w.r.t base case load flow 

 

iteration, 𝐺𝑝𝑟 
is the global best position of prey, 𝑟4 

is 

the random number between 0 and 1.  

4.4 Identification of hunter or prey from the 

updated variables  

In order to use Eqs. (13) and (18) to update the 

hunter and prey positions, the search variables must 

first be used to identify the hunter and prey. 

According to Eq. (19), if  𝑟5 < 𝑅𝑝, then ℎ𝑝𝑖𝑗 
will be 

treated as a hunter else, as a prey.  

ℎ𝑝𝑖𝑗(𝑘 + 1) = {
𝐸𝑞(13) 𝑖𝑓 𝑟5 < 𝑅𝑝

𝐸𝑞(17) 𝑒𝑙𝑠𝑒            
            (19) 

 

where 𝑟5 
is the random number between 0 and 1, 𝑅𝑝 

is a regulating parameter, which is set to 0.1.    

As seen in the different phases of HPO, it is a 

highly efficient and competitive algorithm in real-

time applications because of its unique ability to 

solve both unimodal and multimodal issues while 

maintaining a good balance between exploration and 

exploitation [26].  
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Table 4. Comparison of network performance in different case studies with HPO results  

No. of 

PVs 

Ploss 

(kW) 

Loss  

Reduction 

 (%) 

GHG 

Emission  

(lb/h) ×103 

GHG 

Reduction 

 (%) 

Qloss 

(kVAr) 
Vmin (p.u) 

AVDpr 

(p.u) 

0 210.99 - 8039.1 - 143.03 0.9038 (18) 0.9453 

1 111.03 47.38 2530.48 68.52 81.68 0.9424 (18) 0.972 

2 87.25 58.65 3671.5 54.33 59.773 0.9685 0.9795 

3 72.79 65.50 1722.3 78.59 50.65 0.9687 0.9813 

4 67.64 67.94 1138.4 85.84 47.1681 0.9703 0.9828 

 

Table 5. Comparison of different algorithms for scenario 4 

Algorithm  Worst best Mean Median Std. 

TLBO 137.01 67.64 70.84 67.67 11.02 

BOA 100.96 67.64 71.22 67.82 6.92 

BES 96.42 67.63 69.87 67.74 5.86 

COA 85.15 67.75 71.27 68.27 4.84 

HPO 90.94 67.63 69.96 67.64 4.73 

 

5. Results and discussion 

As mentioned earlier, the major objective of this 

work is to integrate PV systems optimally in RDN 

using a new hunter-prey optimization (HPO) for 

maximizing the hosting capacity (HC), minimizing 

the losses, improving the voltage profile and 

reducing the GHG emission from conventional 

plants. The computational efficiency of HPO is 

evaluated using four scenarios. The simulations are 

performed on IEEE 33-bus RDN and its bus data 

and branch data are taken from [27]. For the HPO 

and other algorithms, the maximum number of 

iterations and number of population are considered 

as 50 and 30, respectively. And, the number of 

search variables is equal to 2 times of the number of 

PV systems to be integrated optimally.   

By performing load flow [28], it is observed that 

the network is suffering by total real and reactive 

power losses equal to 210.99 kW and 143.03 kVAr, 

respectively for serving a total real and reactive 

power loadings of 3715 kW and 2300 kVAr, 

respectively. Also, the minimum voltage magnitude 

is registered at bus-18 as 0.9038 p.u. and the average 

voltage magnitude of the network is determined as 

0.9453 p.u. Since, there are no PV systems/ DGs 

available in the standard network, the total load and 

losses have been supplied by main-grid only and 

consequently grid-dependency is 100 %. Thus, by 

assuming the grid-supply is from conventional 

power plants, the GHG emission is determined as 

8039.1×103 lb/h.  This operating state is treated as 

base case, and compared with the forthcoming cases 

in each scenario.    

5.1 Maximum HC with single PV location 

In this scenario, the maximum capacity of PV 

system along with its location is optimized using 

HPO algorithm. The results of HPO are as follows: 

location is bus-6 and size is 2590.241 kW. Thus the 

network performance is improved as follows: the 

real and reactive power losses are 111.023 kW and 

81.684 kVAr, respectively. The minimum voltage 

magnitude at bus-18 is raised to 0.9424 p.u and the 

average voltage magnitude is increased to 0.972 p.u. 

By having this optimized PV system, the GHG 

emission is determined as 2530.48×103 lb/h.   

In comparison to base case, the losses and GHG 

emission are reduced by 47.38 % and 68.52 %, 

respectively. On the other hand, the HC and grid-

dependency are become 69.72 % and 32.3 %, 

respectively.  

The results of HPO are compared with literature 

works and given in Table 1. From this, it can be 

seen that the HPO is behaved as well competitive 

algorithm to MRFO [19], HGWO [21], WOA [22], 

SKHA [23], KHA [23], and PFA [24]. All these 

algorithms have resulted for almost same HC of PV 

system and correspondingly network performance.  

5.2 Maximum HC with two PV locations 

In this scenario, the maximum capacities of two 

PV systems along with their location are optimized. 

The results of HPO are as follows: the locations are 

buses 30 and 13 and the sizes are 1157.64 kW and 

851.5 kW, respectively. Thus the network 

performance is improved as follows: the real and 

reactive power losses are 87.1669 kW and 59.773 
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kVAr, respectively. The minimum voltage 

magnitude at bus-18 is raised to 0.9685 p.u and the 

average voltage magnitude is increased to 0.9795 

p.u. By having this optimized PV system, the GHG 

emission is determined as 3671.5×103 lb/h.  In 

comparison to the base case, the losses and GHG 

emission are reduced by 58.69 % and 54.33 %, 

respectively. On the other hand, the HC and grid-

dependency are become 54.11 % and 48.24 %, 

respectively.  

The results of HPO are compared with literature 

works and given in Table 2. From this, it can be 

seen that the HPO is outperformed than ALO, PSO 

and GA [16], and MRFO [19] by its global optima.  

5.3 Maximum HC with three PV locations 

In this scenario, the maximum capacities of three 

PV systems along with their location are optimized. 

The results of HPO are as follows: the locations are 

buses 24, 30 and 13 and the sizes are 1091.33 kW, 

1053.64 kW, and 801.7 kW, respectively. Thus the 

network performance is improved as follows: the 

real and reactive power losses are 72.7865 kW and 

50.6529 kVAr, respectively. The minimum voltage 

magnitude at bus-33 is raised to 0.9687 p.u and the 

average voltage magnitude is increased to 0.9813 

p.u. By having this optimized PV system, the GHG 

emission is determined as 1722.3×103 lb/h 

In comparison to base case, the losses and GHG 

emission are reduced by 65.5 % and 78.59 %, 

respectively. On the other hand, the HC and grid-

dependency are become 79.33 % and 22.63 %, 

respectively. The results of HPO are compared with 

literature works and given in Table 3. From this, it 

can be seen that the HPO is outperformed than 

WCA [13], GA [14], ABC [14], PSO [14], BBO 

[14], MOSCA [20], SPEA2 [20], MOIDSA [15], 

MOIDSA [15], and MRFO [19], by its global 

optima.  

5.4 Maximum HC with optimal PV locations 

In addition to optimal number of PV systems, 

i.e., four, a comparison of all scenarios is given in 

Table 4. In optimal number of PV scenario, the 

maximum capacities of four PV systems along with 

their location are optimized. The results of HPO are 

as follows: the locations are buses 6, 14, 24, and 31 

and the sizes are 926.4 kW, 646.82 kW, 967.22 kW 

and 686.25 kW, respectively. Thus the network 

performance is improved as follows: the real and 

reactive power losses are 67.6315 kW and 47.1681 

kVAr, respectively. The minimum voltage 

magnitude at bus-18 is raised to 0.9703 p.u and the  

 

 
Figure. 1 Convergence characteristics of compared 

algorithms 

 

average voltage magnitude is increased to 0.9828 

p.u. By having this optimized PV system, the GHG 

emission is determined as 1138.4×103 lb/h. In 

comparison to base case, the losses and GHG 

emission are reduced by 67.94 % and 85.84 %, 

respectively. On the other hand, the HC and grid-

dependency are become x% and y%, respectively.  

As it can be seen that the HC of PV systems is 

increased significantly with four PV systems and 

thus, the network performance is also improved 

significantly. The four objectives functions are 

moderated as follows: grid-dependency is decreased, 

PV hosting capacity is increased, GHG emission 

reduced, losses are reduced, and voltage profile is 

increased.  

The optimal number of PVs allocation is 

compared by implementing teaching-learning-based 

optimization (TLBO) [29], bald eagle search (BES) 

[30], coyote optimization algorithm (COA) [31], and 

butterfly optimization algorithm (BOA) [32]. Based 

on 50 independent runs, the performance of HPO is 

and other algorithms are compared in Table 5. From 

the lower values of worst, best, median and standard 

deviation, HPO is said to be high efficient and 

competitive algorithm to solve high-dimensional 

optimization problems. In addition, the convergence 

characteristics of all these algorithms are given in 

Fig. 1. 

6. Conclusion 

The integration of renewable energy (RE) into 

radial distribution networks (RDNs) is one such 

adaptation that can be made to electrical power 

systems in order to reduce the burden on 

conventional plants as well as their greenhouse gas 

(GHG) emissions. However, because of their radial 

structure, RDNs may be unable to provide adequate 

support for RE integration. A number of methods 

have been developed for the optimal allocation of 

renewable energy sources in radial distribution 
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networks (RDNs), but none have been specifically 

designed to maximize the capacity of RDNs to host 

renewable energy sources (HC). It is discussed in 

this paper how a recent and efficient meta-heuristic 

algorithm, hunter-prey optimization (HPO), can be 

used to find the optimal locations and sizes of 

photovoltaic (PV) systems in renewable energy 

systems. The maximization of PV hosting capacity 

(HC), in addition to loss minimization and voltage 

profile improvement, has been identified as a major 

goal. The results of simulations are performed on 

IEEE 33-bus RDNs for a variety of scenarios. 

Comparing the computational efficiency of the 

proposed HPO with other recent algorithms, it is 

discovered that the results of the proposed HPO are 

superior to the results of the other compared 

methods in terms of global optima. Improved 

performance in terms of reduced grid-dependency, 

GHG emissions, and distribution losses, as well as 

an improved voltage profile, are also ensured by the 

increased HC of PV systems in RDNs, in addition to 

improved voltage profile. 
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