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Abstract: Cloud computing has gained many attentions. Workflow scheduling one of the most important issues in 

cloud computing. It involves mapping tasks onto cloud resources – Virtual machines (VMs), to improve scheduling 

performance. Because the existing heterogeneous earliest finish time (HEFT) algorithm is considered one of the best 

algorithm, so the work in this paper propose a new algorithm based on HEFT algorithm; called modified heterogeneous 

earliest finish time (M-HEFT); to reduce the tradeoff among make span, resource utilization, and load balance. The 

proposed M-HEFT consists of two phases; task prioritization and task-VM mapping. In Task prioritization phase, a 

priority will be provided to each task in directed acyclic graph (DAG) as in the original HEFT algorithm. According 

to task-VM phase, tasks allocate to resources according to length of tasks and the load of available VMs with 

considering load balance. To evaluate the performance of the proposed algorithm, a comparative study has been done 

among the proposed algorithm and three existed algorithms. The experimental results show that the proposed algorithm 

outperforms the other algorithms by minimizing make span by 29%, improve resource utilization by 53% and load 

balance by 18% in average. 

Keywords: Cloud computing, Task scheduling, Workflow scheduling, Heft, Make span, Resource utilization, Load 

balance. 

 

 

 

1. Introduction 

Cloud computing is a new technology become 

more popular among individual and organizations. 

Cloud computing is internet-based computing, where 

sharing resource software and information are 

provided with computers and other devices on 

demand and followed by paying as you go model. 

There are main five characteristics of cloud 

computing such as on-demand self-service, where 

user can access the required services as needed 

automatically, broad network access, services 

available over the internet using desktop, laptop, 

PDA, mobile phone, resource pooling where 

resources are shared among several users, rapid 

Elasticity where user can scale in /out resource 

capacity to fulfill the increasing /decreasing demands, 

and measured service where resources measured and 

billing of the usage are delivered[1]. 

There are four deployment models of cloud 

computing, Public cloud, which allows systems and   

services to be easily accessible to the public. Private 

cloud, which allows systems and services to be easily 

accessible within an organization. Hybrid ８cloud is 

considered a mixture of private and public clouds, but 

each one can remain as separate entities, where 

critical activities are performed in Private cloud while 

not critical activities are performed in public cloud 

[2]. 

Three services could be provided by cloud 

computing; software as a service (SaaS), platform as 

a service (PaaS), and infrastructure as a service (IaaS) 

[3].Due to the popularity of the cloud, most of the 

scientists execute their works on the cloud computing 

environment. 

Scheduling of scientific workflows under quality 

of service (QoS) constraint is considered one of the 

main problems in the cloud environment. The 

workflow scheduling problem concerns about 

allocating each task of the scientific workflow to the 

suitable computing resources while meeting set of  
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Figure. 1 Simple workflow 

 

  
Figure. 2 Scientific workflow 

 

QoS constraints like make span, resource utilization 

rate, and load balance [4].Resource allocation 

involves effective, appropriate selection of resources 

that minimize the application execution time, as well 

as, maximize the percentage of resource utilization 

[5]. So, efficient workflow scheduling technique is 

needed to increase resource utilization to assign large 

number of tasks in a balanced way within a short time 

in the cloud. Therefore, to utilize cloud computing 

environment efficiently, a good combination of 

optimized scientific workflow scheduling and 

resource allocation is needed. 

There are two types of workflow; simple and 

scientific. Simple workflow represents real work 

which consists of group of tasks with sequence of 

activities and mechanisms used to perform individual 

or group tasks (see Fig. 1). Scientific workflow 

represents scientific applications which depend on 

other tasks with complexity in execution. These 

applications require several analysis tools for data 

processing. These applications have time constraints 

and require supercomputing support of 

heterogeneous computing resources (see Fig. 2) [6].  

There are common scientific workflows used as a 

benchmark to evaluate the performance of the task 

scheduling algorithms such as Montage, 

CYBERSHAKE, SIPHT, LIGO and 

EPIGENOMICS [7]. The work in this paper uses 

LIGO and EPIGENOMICS workflows as a 

benchmark, where LIGO (Astrophysics) application 

is a memory intensive application used in the physics 

field with the aim of detecting gravitational waves, 

and EPIGENOMICS (Bioinformatics) application 

is a CPU intensive application that automates the 

execution of various genome-sequencing operations. 

1.1 Workflow structure 

A popular representation of a workflow 

application is the directed acyclic graph (DAG), G (T, 

E), where T is a set tasks and E is a set of directed 

edges that represent inter-task data dependencies. 

Each node represents an individual application’s task 

with a certain amount of computation workload W 

with million instructions (MI) as unit of measurement. 

Each edge eij represents a precedence constraint that 

indicates that task ti should complete executing 

before task tj can start. If there is data transmission 

from ti to tj, the tj can start only after all the data from 

ti has received [8]. 

1.2 Scheduling scientific workflow 

Task scheduling is the process of allocating an 

application’s tasks to suitable resources with 

considering dependency between them to reduce 

make span, maximize resource utilization, improve 

load balance, and achieve QoS parameters. Therefore, 

task scheduling algorithm is used to utilize resources 

more efficiently by reducing the overall execution 

time of tasks and satisfying load balance on various 

computing resources [9]. 

 Despite the heterogeneous earliest finish time 

(HEFT) algorithm is considered the most popular 

algorithm, it suffers from load imbalance and not 

satisfy utilization of resources. Therefore, a modified 

heterogeneous earliest finish time (M-HEFT) 

algorithm has been introduced to improve the 

performance of the HEFT algorithm by reducing the 

tradeoff among load balancing, resource utilization 

and make span. M-HEFT algorithm consists of two 

phases; task prioritization and task-VM mapping. 

The task prioritization is implemented as the original 

HEFT algorithm. According to task-VM mapping 

phase, the tasks allocate to VMs based on the length 

of tasks and the load of available VMs. If the length 

of the ready task is less than or equal to the average 

length of all allocated tasks, it will be allocated to the 

most idle VM and, in the same time, guarantees 

earliest finish time. Otherwise, the task allocates to 

VM that guarantees earliest finish time. 

Paper is organized as follows; related work is 

presented in section 2. section 3 illustrates the 

principles of the proposed task scheduling algorithm. 

The experiment results of the proposed M-HEFT 

algorithm are discussed in section 4. The 

performance evaluation of the proposed M-HEFT 

algorithm using the WorkflowSim simulator is 

illustrated in section 5. Finally, section 6 includes 

conclusion & future work. 
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2. Related work 

Generally, workflow scheduling is represented by 

directed acyclic graph (DAG), where application 

program is represented by DAG in which each task 

represents by node and their communication link 

depicts by edges. Generally, task scheduling is 

known as DAG scheduling [10].  

Scheduling tasks and/or jobs on the data center is 

very difficult because the number of Jobs/tasks 

requesting is very large and require extra resources to 

execute. Therefore, the schedule such jobs on the 

cloud must be optimal and good enough so that each 

request by the user gets response on time, and every 

task/job gets proper resources for its execution [11]. 

On the other hands, the scheduling of workflow needs 

to be care about task precedence constrains and 

Virtual Machines (VMs) configurations in the data 

center. Scheduling the tasks of DAG on VMs with 

different configuration needs to be aware about 

computation and communication costs. Scheduling 

algorithms classified to heuristic and Meta heuristic. 

Heuristic algorithms dependent on the problem and  

try  to  find the  solutions  by  applying  problem 

features  in a complete way. Their solution  is  based 

on learning and exploration in which a 

comprehensive and scientific  search for finding  an 

optimal  response and speeding  to  response  process  

is  applied [12]. Meta heuristic algorithms are 

independent problem, and they used to handle 

different type of problems. [13] In cloud computing, 

heuristic algorithms are designed to resolve the 

problematic issues faster than meta-heuristic 

algorithms, when their performance is too slow. Also, 

heuristic algorithms are used to find an optimum 

solution, when meta-heuristic algorithms failed to 

discover the precise or optimal solution [14]. This 

paper focuses on heuristic algorithm. 

In [15], an algorithm, called scheduling service 

workflow for cost optimization in hybrid cloud is 

introduced. The goal of this algorithm is to reduce 

make span and deadline. This algorithm consists of 

two phases. In the first phase, the workflow is 

scheduled in the private cloud using the private 

resources using the path clustering heuristics (PCH) 

algorithm. After that, the schedule make span is 

determined and compared with the deadline. If 

deadline is not matched, the second phase will be 

executed. In the second phase, resources from the 

public cloud with reasonable cost will be reserved to 

execute a part of the workflow. Path clustering 

heuristics (PCH) algorithm select a path from the 

DAG and the nodes on this path will be allocated on 

the same processor [16], it is a combination of 

clustering and list scheduling heuristics [17]. The 

limitations of this algorithm is that if the problem is 

solved using the first phase only, this will lead to load 

imbalance, but if solved with second phase, Here it is 

important to decide when and what resource need to 

borrow because any mistake with this decision will 

make execution cost very high. 

An improved max-min task scheduling algorithm 

has been introduced [18]. The goal of this algorithm 

is reducing make span. This algorithm calculates the 

average of execution time for all tasks in the 

workflow. Next max-min is used when receiving a 

task with execution time is smaller than the average. 

Otherwise a task with execution time greater than or 

equal to the average is assigned to the VM with 

minimum completion time among all the VMs 

regardless of VM availability. Where the completion 

time represents machine’s ready time with task’s 

execution time. More metrics need to be considered 

to prove the efficiency of this algorithm. 

An efficient workflow scheduling algorithm 

(EWSA) is introduced [19]. The goal of this 

algorithm is maximize resource utilization and while 

meeting the deadline. This algorithm is designed to 

schedule scientific workflow. The algorithm consists 

of two phases; update, and task-VM mapping. The 

objective of the update phase is to trace each path in 

the DAG and set the execution time for each task, and 

then define the VM with needed capability to execute 

each task. In task-VM mapping phase, the tasks are 

scheduled on proper VMs. This algorithm does not 

concern load balance among VMs. 

A scheduling algorithm, called MaxChild, is 

proposed [20]. The main objective of this algorithm 

is to improve the system throughput with proper 

resource utilization and high performance by obeying 

the required QoS parameters which specified by the 

user. According to this algorithm, the task that has 

maximum number of Childs is scheduled first to 

guarantee that maximum number that tasks could be 

available for the next schedules and resource are 

utilized properly. The problem of this strategy is that 

after a job is submitted to the resource and this 

resource is not available, this may affect makes pan. 

Also, the status of VMs is not concerned.  

An algorithm called deadline–budget workflow 

scheduling (DBWS) has been introduced [21]. It aims 

to find a feasible schedule within a budget and 

deadline constraints. The algorithm consists of two 

phases; task selection and resource selection. 

According to task selection phase, the DAG tasks will 

be selected according to their priorities. To assign a 

priority to a task in the DAG, the upward rank is 

computed. This rank represents, for a task, the length 

of the longest path from this task to the exit node 

including average execution time of the task over all 
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resources and average communication time. The 

resource selection phase consists of two steps; in the 

first step, all tasks are divided in different levels 

based on their depth in the graph. Then, the user 

deadline will be distributed among all levels and sub 

deadline for each level will be computed, where all 

tasks belonging to the same level have the same sub-

deadline. In the second step, the task will be allocated 

to the resource which has closer finish time with 

respect to its sub -deadline, and in the same time, has 

low cost. This algorithm suffers from computation 

overhead. 

Heterogeneous earliest finish time algorithm 

(HEFT) one of the most popular algorithms for 

scheduling workflow [22]. The ultimate objective of 

HEFT is to reduce make span. The algorithm consists 

of two phases; task prioritization and processor 

selection. In the Task Prioritization phase, the 

priorities of all tasks are assigned by computing the 

rank for each task, which is based on mean 

computation time and mean communication cost. 

Then, the tasks list is ordered in descending order. In 

the Processor Selection phase, the tasks are scheduled 

on the processors that give the earliest finish time 

(EFT) for the task. The HEFT algorithm is similar as 

the EFT, in addition to, scales resources elastically at 

runtime. Therefore, it obtains an optimized execution 

time. HEFT suffers from load imbalance. 

A comparative study has done among four 

heuristic algorithms, minx–min, random, suffrage, 

and heterogeneous earliest finish time (HEFT), while 

using static and dynamic scheduling schemes, and 

considered some features that are Number of 

machines [23] According to the results of the 

comparative study; it is found that the HEFT 

algorithm outperforms the other algorithms because 

it is a list-based scheduling strategy that considers the 

DAG as a whole, while the other algorithms (non-list 

scheduling algorithms) consider the nodes ready to be 

executed only. 

A modification has been done to the heterogeneous 

earliest finish time (HEFT) algorithm to enhance the 

performance on the cloud environment [24]. According to 

this modification, the priority for every task in the DAG 

has been defined by calculating the order of execution; 

average of task on all the processor + max (order of task 

value of predecessor task of current task) + 

communication cost between predecessor task node to 

current node) starting with the last node in the DAG. By 

this modification, the algorithm outperforms the HEFT 

algorithm with respect to make span. This algorithm not 

concerns load balance metrics. 

An efficient task scheduling algorithm for DAG 

in cloud computing environment has been proposed 

[25].  The goal of this algorithm is reduce make span. 

The algorithm consists of two phases; task priority 

and resource selection. According to the task priority 

phase, the priority of the tasks is defined using critical 

path and static level (CPS) Attributes. Then, the tasks 

are sorted in decreasing order. In the resource 

selection phase, the selection of resource is based on 

the earliest start time (EST) and the earliest finish 

time (EFT). The algorithm outperforms the HEFT 

algorithm with respect to make span. This algorithm 

suffers from load imbalance. 

Multi-Objective Workflow Optimization 

Strategy (MOWOS) has been introduced [26]. The 

goal of this algorithm is reducing execution cost and 

makes span. MOWOS Strategy consists of three sub 

algorithms; task spiriting algorithm, minimum VM 

(MinVM) selection algorithm, and maximum VM 

(MaxVM) selection algorithm. MOWOS Strategy 

uses a task-splitting mechanism to break down large 

tasks into smaller chunks to reduce workflow 

schedule. This algorithm suffers from load imbalance. 

A new min-min algorithm called optimized min-

min (OMin-Min) for scientific workflow has been 

introduced [27]. The goal of this algorithm is to 

reduce make span and try to avoid neglecting long 

task as min-min algorithm. According to this 

algorithm, tasks that have minimum and maximum 

execution times (MinT and MaxT) will be defined, 

and then the task with minimum execution time will 

be assigned to resource that produces minimum 

execution time. Otherwise, the task with minimum 

execution time assigns to resource that produces 

minimum execution time. This algorithm not 

concerns load balance metrics. 

Unfortunately, most of the existed algorithms 

have problem with respect to resource utilization and 

load balancing among VMs in the distributed systems. 

Therefore, a modified heterogeneous earliest finish 

time (M-HEFT) algorithm has been introduced by the 

work in this paper to overcome the limitations of 

other algorithms (i.e., load balance, and resource 

utilization). 

 Table 1 shows a comparison between the 

aforementioned algorithms. 

3. The proposed task scheduling algorithm 

The proposed task-scheduling algorithm is based 

on the existed HEFT algorithm with some 

modifications to improve resource utilization, and 

load balance, in addition to, make span. The proposed 

algorithm is called M-HEFT. The goal of M-HEFT is 

to make no idle VM which will lead to maximize 

resource utilization, and make resources more 

balanced and reduce make span as well. 

The proposed M-HEFT algorithm consists of two  
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Table 1. Comparison of workflow scheduling algorithms 

 

Scheduling algorithm 
Scheduling 

parameters 
Finding Environment 

Scheduling Service 

Workflow for cost 

optimization in hybrid 

cloud [15] 

Make span and 

deadline 

This algorithm can reduce the make 

span comparing to the local 

execution, as well as, the cost 

comparing to the execution in the 

public cloud. We can note that in the 

private cloud, the higher the number 

of slices, the higher the execution 

time, as well as cost. 

Cloud 

environment 

An improved Max-Min 

task scheduling [18] 
Make span 

Improved Max-Min algorithm 

outperforms the Max-Min algorithm 

in most of the cases with respect to 

make span. 

Cloud 

environment 

An Efficient Workflow 

Scheduling Algorithm 

(EWSA) [19] 

Resource 

utilization and 

deadline  

This algorithm maximizes the 

resource utilization and meet the 

deadline of the application 

Cloud 

environment 

MaxChild [20] 
Make span  and 

resource utilization  

MaxChild was found to be the most 

efficient algorithm with respect to 

make span and resource utilization 

comparing to FCFS, MAX-MIN, and 

MAX-MAX algorithm. 

 

Cloud 

environment 

 

Deadline–Budget 

Workflow Scheduling 

(DBWS) has been 

introduced [21] 

Deadline and 

budget 

This algorithm achieves better rates of 

successful schedules compared to 

other heuristic-based approaches for 

the real world applications consider. 

Cloud 

environment 

Heterogeneous Earliest 

Finish Time Algorithm 

(HEFT) [22] 

Make span This algorithm reduces make span  
Cloud 

environment 

A modification has been 

done to the Heterogeneous 

Earliest Finish Time 

(HEFT) algorithm [24] 

Make span 

This algorithm reduces the make span and 

satisfies load balancing compare to 

existing HEFT and CPOP algorithms. 

Cloud 

environment 

An efficient task 

scheduling algorithm for 

DAG in cloud computing 

environment [25] 

Make span, speed, 

efficiency and 

scheduling length 

ratio. 

The algorithm outperforms the HEFT 

algorithm with respect to make span, 

speed, efficiency and scheduling 

length ratio. 

Cloud 

environment 

  Multi-Objective 

Workflow Optimization 

Strategy (MOWOS) [26] 

Make span ,cost 

and resource 

utilization  

The proposed MOWOS algorithm has 

less execution cost, better execution 

make span, and utilizes the resources 

than the existing HSLJF and 

SECURE algorithms. 

Cloud 

environment 

Optimized Min-Min 

(OMin-Min) [27] 
Make span 

The algorithm outperforms the Round 

Robbin, Modified Max-Min (MMax-

Min) Min-Min and Max-Min 

algorithms with respect to make span. 

Cloud 

environment 
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Algorithm 1: M-HEFT scheduling algorithm 

Input: DAG and VMs configuration 

Output: Mapping scheme for the requested tasks 

cloudlets on the available resources VMs. 

1: set the computation cost for each task on each 

resource CCTi,j 

2: set the communication cost between tasks and their 

successors Ci,k        

3: for each task i=1 to Ti  in DAG 

4: calculate rank value for every task in DAG 

rank of task (Ti) = 
∑ CCTi  

VmNum
+ max (rank (Tk) + C(Ti, Tk))   

5: end for 

6: arrange tasks in a list in decreasing order based on 

their rank value of (Ti). 

7: compute Average task length (AL) for all tasks in 

the DAG 

8: for each task in ready list 

9: check if task length greater than or equal AL 

10: map task to VM which has the earliest finish time   

11: else if the task length less than AL 

12: map task to the most idle VM which has earliest     

finish time   

13: end for 

14: end 

 

 

phases; Task prioritization phase to assign priority for 

each task in the DAG, and Task-VM mapping phase 

to allocate task to suitable VM. 

The novelty of the M-HEFT algorithm is in Task-

VM mapping phase where it based on average length 

of tasks and load balance on VMs. According to 

Task-VM mapping phase, the average length for all 

tasks is calculated, and then the ready task is mapped 

on the most idle VM which guarantees earliest finish 

time if its length is less than or equal average length. 

Otherwise ready task maps to the VM that guarantees 

earliest finish time.   

In this section will describe each phase in details. 

3.1 Task prioritization phase 

In this phase, a priority will assign to each task in 

the workflow DAG according to rank value. The 

phase starts by computing computation cost (CCT) 

for each task in DAG (Ti) on each VMj using Eq. (1). 

 

CCT (Ti, VMj) =
Ti.length           

VMj.MIPS    
               (1) 

 

Where, Ti.length is the needed time to execute Ti, and 

VMj.MIPS is the speed of VMj. 

Then, communication cost is calculated between 

tasks and their successors C (Ti,Tk). Then, rank value 

for each task (Ti) is calculated which equal to the 

average computation cost of the task on all VMs + 

max (rank value of successor task of the current task 

+ communication cost between successor task and 

current task) (see Eq. (2)). 

 

Rank (Ti) = 
∑ CCTi  

VmNum
+ max (rank (Tk) + C(Ti, Tk)) (2) 

 

Finally, sort the tasks in a list in decreasing order 

based on their rank value. 

3.2 Task – VM mapping phase 

In this phase, M-HEFT algorithm tries to select the 

best VM for each task by calculating the average task 

length (AL) for all tasks using Eq. (3). 

 

AL= 
∑Ti length    

TaskNum 
                        (3) 

 

Where, Ti length is the needed computation time of 

task Ti, and taskNum is the number of tasks in the 

DAG.  

If the length of the ready task less than (AL), the 

task will be mapped to the idlest VM (that has the 

most available time), in the same time, it has the 

earliest finish time. Else, map the task to VM that has 

earliest finish time using Eq. (4), Eq. (5). 

 

Finish Time (Ti, VMj) = CCT (Ti,   VMj)  

+ ST (Ti, VMj)         (4) 

 

Start Time (Ti, VMj) = max {Tavil(VMj),FT (Tk) 

 + C (TK,Ti) }   (5) 

 

Remove the task from list and update available time 

for each VM. Repeat these steps till all tasks allocate 

to VMs. 

3.3 Pseudo code of the proposed M-HEFT 

algorithm  

The pseudo code of the proposed M-HEFT 

algorithm is described in Algorithm. 1. 

3.4 Flowchart of the proposed M-HEFT algorithm  

The flowchart represents a process of scheduling 

tasks of DAG by proposed M-HEFT algorithm which 

described in Fig. 3 to explain more how the proposed 

algorithm works. 

4 Experimental results 

4.1 Performance metrics 

Three metrics are used to evaluate the 

performance of the proposed M-HEFT algorithm; 

make span, resource utilization rate, and ideal load  
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Figure. 3 The flow chart of the proposed M-HEFT algorithm 

 

balance. 

Make span is the maximum time required for 

completion of the whole DAG tasks [21]. Make span 

should be minimized. Eq. (6) is used to calculate 

make span.  

 

Make span = max {CTi }                  (6) 

 

where CTi is the completion time of the longest task 

Ti. 

Resource utilization rate (RUR) is the ratio 

between the total busy time of VMi and the make span 

of the parallel application in percentage (see equation 

Eq. (7), and Eq. (8)) [28]. Resource utilization should 

be maximized.  

 

RUR (VMj) % = (
∑vmj Busy Time 

Make span
) X 100         (7) 

 

RUR for DAG=
∑RUR (VMj)          

VmNum      
             (8) 

 

Ideal load balance (ILB) is the ratio between the 

total number of tasks and the number of VMs and it 

determines using Eq. (9) [29]. 

 

Ideal Load Balance (ILB) =  

Number of Tasks/ Number of usedVM      (9) 

 

Difference from ideal rate of load balance (DLB) 

is the difference between actual load balance and the 

ideal load in VMi. It is calculated using Eq. (10) [28]. 

 

DLB (VMj) % = ∑Number of tasks (VMj)-ILB (VMj) 

 (10) 

 

Average difference from ideal rate of load 

balance (ADLB) is the ratio between the total 

summations of DLB for each VMi over their number. 

It is calculated using Eq. (11) [30]. 

 

ADLB (VMj) =  
∑ DLB (VMj)  

m
j=1  

VmNum    
           (11) 
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Table 2. Vm configuration and used workflow 

Entities Values 

Workflows 
Ligo 100, 1000 

Epigenomics 100,1000 

Data center 1 1 

VMs 
Quantity 5,10,15,20 

Speed 50-1000 

CPU 

Quantity 1 

Ram 512 

Bandwidth 1000Mbps 

 

 

Improvement rate in terms of used metrics (make 

span, resource utilization and load balance), it is the 

performance improvement rate of the proposed M-

HEFT algorithm over the current HEFT and proposed 

strategies mentioned in [25, 27]. It is computed using 

Eq. (12). 

 

IRm=(
ABS(M(existing algorithm)-M(proposed algorithm))

M(existing algorithm)
) x 100 

 (12)  

4.2 Experimental environment 

The proposed algorithm has been simulated using 

WorkflowSim1.0 toolkit integrated into net beans 

IDE 8.0.2 with the configurations shown in Table 2. 

WorkflowSim is an open source workflow simulator, 

which is an extension of the CloudSim framework 

[31]. The experiments have done using two 

workflows; Ligo (Astrophysics), and epigenomics 

(Bioinformatics). 

5 Performance evaluation of the proposed 

M-HEFT algorithm 

To evaluate the performance of the proposed 

algorithm, a comparative study has been contacted 

among the proposed algorithm, the heterogeneous 

earliest finish time (HEFT) algorithm [24], the 

algorithm mentioned in [25] and the algorithm 

mentioned in [27] with respect to make span, resource 

utilization, and load balancing metrics. This study has 

been implemented with considering heterogeneous 

environment using WorkflowSim, and two 

benchmarks, Ligo and epigenomics with 100 and 

1000 tasks, and 5, 10, 15 and 20 VMs. 

5.1 Make span evaluation  

The implementation results of the comparative 

study among our proposed M-HEFT algorithm, the 

algorithm mentioned in [25] and the algorithm 

mentioned in [27] with respect to make span with 

considering Ligo and epigenomics benchmark with 

100 and 1000 tasks using 5, 10, 15 and 20 VMs are 

discussed as the follow. 

5.1.1. Make span for 100 and 1000 tasks of ligo  

Make span results for 100 tasks of Ligo using 5, 

10, 15 and 20 VMs are discussed in Table 3, and Fig. 

4.  

Make span results for 1000 tasks of Ligo using 

5, 10, 15 and 20 VMs are discussed in Table 4, and 

Fig. 5. 

According to the comparative results in Table 3 

and Fig. 4, it is found that the proposed M-HEFT 

algorithm improves make span by 14% with respect 

to HEFT algorithm, and 40% with respect to 

algorithm in [25], and 44% with respect to algorithm 

in [27] in average with considering 100 tasks in Ligo. 

According to the comparative results in Table 4 and 

Fig. 5, it is found that the proposed M-HEFT 

algorithm improves make span by 46% with respect 

to HEFT algorithm, and 11% with respect to 

algorithm in [25], and 13% with respect to algorithm 

in [27]  in average with considering 1000 tasks in 

Ligo. 

5.1.1 Make span for 100 and 1000 tasks of epigenomics  

Make span results for 100 tasks of epigenomics 

using 5, 10, 15 and 20 VMs are discussed in Table 5, 

and Fig. 6. Make span results for 1000 tasks of 

epigenomics using 5, 10, 15 and 20 VMs are 

discussed in Table 6, and Fig. 7. 

According to the comparative results in Table 5 

and Fig. 6, it is found that the proposed M-HEFT 

algorithm improves make span by 15% with respect 

to HEFT algorithm, and 41% with respect to 

algorithm in [25], and 48% with respect to algorithm 

in [27] in average with 100 tasks in Ligo. According 

to the comparative results in Table 6 and Fig. 7, it is 

found that the proposed M-HEFT algorithm improves 

make span by 54% with respect to HEFT algorithm, 

and 12% with respect to algorithm in [25], and 14% 

with respect to algorithm in [27] in average with 1000 

tasks in epigenomics. 

5.2 Resource utilization evaluation  

The implementation results of the comparative 

study among our proposed M-HEFT, propose 

algorithm [25], and algorithm in [27], and HEFT 

algorithms with respect to resource utilization with 

considering Ligo and epigenomics benchmark with 

100 and 1000 tasks using 5, 10, 15 and 20 VMs are 

discussed as the follow. 
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Table 3. Make span results for 100 tasks of ligo 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT 43195.33 10043.61 4784.83 3360.4 

Algorithm [25] 34479.03 17224.36 9383.23 6204.83 

Algorithm [27] 34674.23 17598.23 10173.00 7820.00 

Proposed M-HEFT 31710.37 9023.57 4646.04 2836.96 

 

 
Figure. 4 Make span results for 100 tasks of ligo 

 

 
Table 4. Make span results for 1000 tasks of ligo 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT 316515.75 255772.8 62360.67 105685.8 

Algorithm [25] 307040.59 87822 50968.25 29652.74 

Algorithm [27] 308075.18 87945.32 51598.46 30757.41 

Proposed M-HEFT 304147.05 87225.67 40624.22 22723.3 

 

 
Figure. 5 Make span results for 1000 tasks of ligo 

 

 

Table 5. Make span results for 100 tasks of epigenomics 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT 569754.69 193400 141876 114244.72 

Algorithm [25] 656837.59 411632 189023 164725.11 

Algorithm [27] 675509.87 413795.00 225311.52 250584.03 

Proposed M-HEFT 5448 183010 111433 81473.38 
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Figure. 6 Make span results for 100 tasks of epigenomics 

 
Table 6.  Make span results for 1000 tasks of epigenomics 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT 5178814.39 2921064 4249865 2230593.1 

Algorithm [25] 5191570.65 867429 867429 532190.83 

Algorithm [27] 5202232.30 1691359.69 898372.57 559629.85 

Proposed M-HEFT 5155803 1420167 714205 451127.66 

 

 
Figure. 7 Make span results for 1000 tasks of epigenomics 

 

Table 7. Resource utilization rate results for 100 tasks of ligo 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT 38.93 41.86 40.24 31.28 

Algorithm [25] 48.79 24.41 19.91 16.94 

Algorithm [27] 47.58 24.31 18.62 15.34 

Proposed M-HEFT 53.03 46.59 42.24 37.05 

 

5.2.1. Resource utilization for 100 and 1000 tasks of 

ligo  

Resource utilization results for 100 tasks of Ligo 

using 5, 10, 15 and 20 VMs are discussed in Table 

7,and Fig. 8. Resource utilization results for 1000 

tasks of Ligo using 5, 10, 15 and 20 VMs are 

discussed in Table 8, and Fig. 9. 

According to the comparative results in Table 7 

and Fig. 8, it is found that the proposed M-HEFT 

algorithm improves resource utilization by 18% with 

respect to HEFT algorithm, and 82% with respect to 

algorithm in [25], and 93% with respect to algorithm 

in [27] in average with 100 tasks in Ligo. According 

to the comparative results in Table 8 and Fig. 9, it is 

found that the proposed M-HEFT algorithm improves 

resource utilization by 97% with respect to HEFT 

algorithm, and 15% with respect to algorithm in [25], 

and 18% with respect to algorithm in [27] in average 

with 1000 tasks in Ligo.
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Figure. 8 Resource utilization rate results for 100 tasks of ligo 

 
Table 8. Resource utilization rate results for 1000 tasks of ligo 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT 57.55 20.80 32.45 18.18 

Algorithm [25] 58.73 51.38 39.71 38.39 

Algorithm [27] 58.14 50.95 38.56 37.15 

Proposed M-HEFT 60.05 52.249 50.53 50.10 

 

 
Figure. 9 Resource utilization rate results for 1000 tasks of Ligo 

 

5.2.2. Resource utilization for 100 and 1000 tasks of 

epigenomics  

Resource utilization results for 100 tasks of 

epigenomics using 5, 10, 15 and 20 VMs are 

discussed in Table 9, and Fig. 10. Resource utilization 

results for 1000 tasks of epigenomics using 5, 10, 15 

and 20 VMs are discussed in Table 10, and Fig. 11. 

According to the comparative results in Table 9 

and Fig. 10, it is found that the proposed M-HEFT 

algorithm improves resource utilization by 19% with 

respect to HEFT algorithm, and 79% with respect to 

algorithm in [25], and 96% with respect to algorithm 

in [27] in average with 100 tasks in epigenomics. 

According to the comparative results in Table 10 and 

Fig. 11, it is found that the proposed M-HEFT 

algorithm improves resource utilization by 96% with 

respect to HEFT algorithm, and 14% with respect to 

algorithm in [25], and 20% with respect to algorithm 

in [27] in average with 1000 tasks in Epigenomics. 

5.3 Load balance rate 

The implementation results of the comparative study 

among our proposed M-HEFT, proposed algorithm 

[25], and algorithm [27], and HEFT algorithms with 

respect to load balance rate with considering Ligo and 

Epigenomics benchmark with 100 and 1000 tasks 

using 5, 10, 15 and 20 VMs are discussed as the 

follow. 
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Table 9. Resource utilization rate results for 100 tasks of epigenomics 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT 56.64 41.72 25.27 17.66 

Algorithm [25] 49.13 19.60 18.97 12.24 

Algorithm [27] 48.76 18.81 16.42 10.56 

Proposed M-HEFT 59.23 44.09 32.18 24.76 

 

 
Figure. 10 Resource utilization rate results for 100 tasks of epigenomics 

 

 
Table 10. Resource utilization rate results for 1000 tasks of epigenomics 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT 59.15 26.39 20.06 18.04 

Algorithm [25] 59.40 46.63 39.50 36.22 

Algorithm [27] 59.13 46.24 36.32 33.48 

Proposed M-HEFT 60.45 54.29 47.98 42.72 

 

 
Figure. 11 Resource utilization rate results for 1000 tasks of epigenomics 
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Table 11. The average difference from ideal load balance (ILB) results for 100 tasks of ligo 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT 8.8 4 3.20 2.70 

Algorithm [25] 7 3.8 2.3 1.4 

Algorithm [27] 7.1 3.9 2.5 1.7 

Proposed M-HEFT 6.8 2 2 1 

 

 
Figure. 12 The average difference from ideal load balance (ILB) results for 100 tasks of ligo 

 
Table 12. The average difference from ideal load balance (ILB) results for 1000 tasks of ligo 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT 79.5 63.4 33.3 34.3 

Algorithm [25] 78.6 38 30.3 22.5 

Algorithm [27] 78.8 38.2 30.5 22.8 

Proposed M-HEFT 78.4 36.3 27.4 19.4 

 

 
Figure. 13 The average difference from ideal load balance (ILB) results for 1000 tasks of ligo 

 

5.3.1. Load balance rate for 100 and 1000 tasks of ligo  

Load balance rate results for 100 tasks of Ligo 

using 5, 10, 15 and 20 VMs are discussed in Table 11, 

and Fig. 12. Load balance rate results for 1000 tasks 

of Ligo using 5, 10, 15 and 20 VMs are discussed in 

Table 12, and Fig. 13. 

algorithm in [25], and 29% with respect to algorithm 

in [27] in average with 100 tasks in Ligo. According 

to the comparative results in Table 12 and Fig. 13, it 

is found that the proposed M-HEFT algorithm 

improves load balance by 26% with respect to HEFT 

algorithm and 7% with respect to algorithm in [25], 

and 8% with respect to algorithm in [27] in average 

with 1000 tasks in Ligo.
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Table 13. The average difference from ideal load balance (ILB) results for 100 tasks of epigenomics 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT 10.8 4.6 2.70 2.1 

Algorithm [25] 9.6 5 3.00 2.1 

Algorithm [27] 9.7 5.1 3.2 2.3 

Proposed M-HEFT 8 4.4 2.6 2.1 

 

 
Figure. 14 The average difference from ideal load balance (ILB) results for 100 tasks of epigenomics 

 

 
Table 14. The average difference from ideal load balance (ILB) results for 1000 tasks of epigenomics 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT 140.2 80.3 49.6 36.95 

Algorithm [25] 77.6 49.7 33.4 23.75 

Algorithm [27] 77.5 50.55 34.46 23.55 

Proposed M-HEFT 77.4 39.7 28.16 23.65 

 

 
Figure. 15 The average difference from ideal load balance (ILB) results for 1000 tasks of epigenomics 

 

5.3.2. Load balance rate for 100 and 1000 tasks of 

epigenomics  

Load balance rate results for 100 tasks of 

epigenomics using 5, 10, 15 and 20 VMs are 

discussed in Table 13, and Fig. 14. Load balance rate 

results for 1000 tasks of Epigenomics using 5, 10, 15 

and 20 VMs are discussed in Table 14, and Fig. 15 

According to the comparative results in Table 13 
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and Fig. 14, it is found that the proposed M-HEFT 

algorithm improves load balance by 8% with respect 

to HEFT algorithm, and 4% with respect to algorithm 

in [25], and 5% with respect to algorithm in [27] in 

average with 100 tasks in epigenomics. According to 

the comparative results in Table 14 and Fig. 15, it is 

found that the proposed M-HEFT algorithm improves 

load balance by 44% with respect to HEFT algorithm, 

and 9% with respect to algorithm in [25], and 10% 

with respect to algorithm in [27] with 1000 tasks in 

epigenomics. 

6. Conclusion and future work 

Task Scheduling is one of the main issues for 

achieving good performance over a cloud 

environment. In this paper, a modified task 

scheduling algorithm, called M-HEFT, has been 

introduced to improve the performance of the 

existing HEFT with respect to make span, resource 

utilization, and load balance. To evaluate the 

performance of the proposed M-HEFT algorithm, a 

comparative study has been contacted using two 

benchmarks, LIGO and EPIGENOMICS, with 100 

and 1000 tasks and implemented on WorkflowSim 

simulator considering 5, 10, 15 and 20 VMs.   

According to the implementation results, it is 

found that the proposed M-HEFT improves the make 

span algorithm by 32% in average with respect to the 

original HEFT algorithm, and by 26% in average with 

respect to the proposed algorithm [25], and by 30% 

in average with respect to the algorithm in [27]. The 

resource utilization has been improved using the 

proposed M-HEFT algorithm by 58% in average with 

respect to the original HEFT algorithm, and by 48% 

in average with respect to the proposed algorithm 

[25], and by 54% in average with respect to the 

algorithm in [27]. In addition, the load balance has 

been improved using the proposed M-HEFT 

algorithm by 31% in average with respect to the 

original HEFT algorithm, and by 11% in average with 

respect to the proposed algorithm [25], and by 13% 

in average with respect to the algorithm in [27]. 

As a future work, there is a need to enhance our 

M-HEFT algorithm by considering extra 

performance parameters such as budget, power 

consumption, and deadline. 
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