
Received: May 28, 2022. Revised: June 29, 2022. 336

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

A Modified Workflow Scheduling Algorithm for Cloud Computing Environment

Sara Ahmed1* Fatma A. Omara1

1Computer Science Department, Faculty of Computers and Artificial

Intelligence, Cairo University, Giza-12611, Egypt
* Corresponding author’s Email: asara4372@gmail.com

Abstract: Cloud computing has gained many attentions. Workflow scheduling one of the most important issues in

cloud computing. It involves mapping tasks onto cloud resources – Virtual machines (VMs), to improve scheduling

performance. Because the existing heterogeneous earliest finish time (HEFT) algorithm is considered one of the best

algorithm, so the work in this paper propose a new algorithm based on HEFT algorithm; called modified heterogeneous

earliest finish time (M-HEFT); to reduce the tradeoff among make span, resource utilization, and load balance. The

proposed M-HEFT consists of two phases; task prioritization and task-VM mapping. In Task prioritization phase, a

priority will be provided to each task in directed acyclic graph (DAG) as in the original HEFT algorithm. According

to task-VM phase, tasks allocate to resources according to length of tasks and the load of available VMs with

considering load balance. To evaluate the performance of the proposed algorithm, a comparative study has been done

among the proposed algorithm and three existed algorithms. The experimental results show that the proposed algorithm

outperforms the other algorithms by minimizing make span by 29%, improve resource utilization by 53% and load

balance by 18% in average.

Keywords: Cloud computing, Task scheduling, Workflow scheduling, Heft, Make span, Resource utilization, Load

balance.

1. Introduction

Cloud computing is a new technology become

more popular among individual and organizations.

Cloud computing is internet-based computing, where

sharing resource software and information are

provided with computers and other devices on

demand and followed by paying as you go model.

There are main five characteristics of cloud

computing such as on-demand self-service, where

user can access the required services as needed

automatically, broad network access, services

available over the internet using desktop, laptop,

PDA, mobile phone, resource pooling where

resources are shared among several users, rapid

Elasticity where user can scale in /out resource

capacity to fulfill the increasing /decreasing demands,

and measured service where resources measured and

billing of the usage are delivered[1].

There are four deployment models of cloud

computing, Public cloud, which allows systems and

services to be easily accessible to the public. Private

cloud, which allows systems and services to be easily

accessible within an organization. Hybrid ８cloud is

considered a mixture of private and public clouds, but

each one can remain as separate entities, where

critical activities are performed in Private cloud while

not critical activities are performed in public cloud

[2].

Three services could be provided by cloud

computing; software as a service (SaaS), platform as

a service (PaaS), and infrastructure as a service (IaaS)

[3].Due to the popularity of the cloud, most of the

scientists execute their works on the cloud computing

environment.

Scheduling of scientific workflows under quality

of service (QoS) constraint is considered one of the

main problems in the cloud environment. The

workflow scheduling problem concerns about

allocating each task of the scientific workflow to the

suitable computing resources while meeting set of

mailto:asara4372@gmail.com

Received: May 28, 2022. Revised: June 29, 2022. 337

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

Figure. 1 Simple workflow

Figure. 2 Scientific workflow

QoS constraints like make span, resource utilization

rate, and load balance [4].Resource allocation

involves effective, appropriate selection of resources

that minimize the application execution time, as well

as, maximize the percentage of resource utilization

[5]. So, efficient workflow scheduling technique is

needed to increase resource utilization to assign large

number of tasks in a balanced way within a short time

in the cloud. Therefore, to utilize cloud computing

environment efficiently, a good combination of

optimized scientific workflow scheduling and

resource allocation is needed.

There are two types of workflow; simple and

scientific. Simple workflow represents real work

which consists of group of tasks with sequence of

activities and mechanisms used to perform individual

or group tasks (see Fig. 1). Scientific workflow

represents scientific applications which depend on

other tasks with complexity in execution. These

applications require several analysis tools for data

processing. These applications have time constraints

and require supercomputing support of

heterogeneous computing resources (see Fig. 2) [6].

There are common scientific workflows used as a

benchmark to evaluate the performance of the task

scheduling algorithms such as Montage,

CYBERSHAKE, SIPHT, LIGO and

EPIGENOMICS [7]. The work in this paper uses

LIGO and EPIGENOMICS workflows as a

benchmark, where LIGO (Astrophysics) application

is a memory intensive application used in the physics

field with the aim of detecting gravitational waves,

and EPIGENOMICS (Bioinformatics) application

is a CPU intensive application that automates the

execution of various genome-sequencing operations.

1.1 Workflow structure

A popular representation of a workflow

application is the directed acyclic graph (DAG), G (T,

E), where T is a set tasks and E is a set of directed

edges that represent inter-task data dependencies.

Each node represents an individual application’s task

with a certain amount of computation workload W

with million instructions (MI) as unit of measurement.

Each edge eij represents a precedence constraint that

indicates that task ti should complete executing

before task tj can start. If there is data transmission

from ti to tj, the tj can start only after all the data from

ti has received [8].

1.2 Scheduling scientific workflow

Task scheduling is the process of allocating an

application’s tasks to suitable resources with

considering dependency between them to reduce

make span, maximize resource utilization, improve

load balance, and achieve QoS parameters. Therefore,

task scheduling algorithm is used to utilize resources

more efficiently by reducing the overall execution

time of tasks and satisfying load balance on various

computing resources [9].

 Despite the heterogeneous earliest finish time

(HEFT) algorithm is considered the most popular

algorithm, it suffers from load imbalance and not

satisfy utilization of resources. Therefore, a modified

heterogeneous earliest finish time (M-HEFT)

algorithm has been introduced to improve the

performance of the HEFT algorithm by reducing the

tradeoff among load balancing, resource utilization

and make span. M-HEFT algorithm consists of two

phases; task prioritization and task-VM mapping.

The task prioritization is implemented as the original

HEFT algorithm. According to task-VM mapping

phase, the tasks allocate to VMs based on the length

of tasks and the load of available VMs. If the length

of the ready task is less than or equal to the average

length of all allocated tasks, it will be allocated to the

most idle VM and, in the same time, guarantees

earliest finish time. Otherwise, the task allocates to

VM that guarantees earliest finish time.

Paper is organized as follows; related work is

presented in section 2. section 3 illustrates the

principles of the proposed task scheduling algorithm.

The experiment results of the proposed M-HEFT

algorithm are discussed in section 4. The

performance evaluation of the proposed M-HEFT

algorithm using the WorkflowSim simulator is

illustrated in section 5. Finally, section 6 includes

conclusion & future work.

Received: May 28, 2022. Revised: June 29, 2022. 338

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

2. Related work

Generally, workflow scheduling is represented by

directed acyclic graph (DAG), where application

program is represented by DAG in which each task

represents by node and their communication link

depicts by edges. Generally, task scheduling is

known as DAG scheduling [10].

Scheduling tasks and/or jobs on the data center is

very difficult because the number of Jobs/tasks

requesting is very large and require extra resources to

execute. Therefore, the schedule such jobs on the

cloud must be optimal and good enough so that each

request by the user gets response on time, and every

task/job gets proper resources for its execution [11].

On the other hands, the scheduling of workflow needs

to be care about task precedence constrains and

Virtual Machines (VMs) configurations in the data

center. Scheduling the tasks of DAG on VMs with

different configuration needs to be aware about

computation and communication costs. Scheduling

algorithms classified to heuristic and Meta heuristic.

Heuristic algorithms dependent on the problem and

try to find the solutions by applying problem

features in a complete way. Their solution is based

on learning and exploration in which a

comprehensive and scientific search for finding an

optimal response and speeding to response process

is applied [12]. Meta heuristic algorithms are

independent problem, and they used to handle

different type of problems. [13] In cloud computing,

heuristic algorithms are designed to resolve the

problematic issues faster than meta-heuristic

algorithms, when their performance is too slow. Also,

heuristic algorithms are used to find an optimum

solution, when meta-heuristic algorithms failed to

discover the precise or optimal solution [14]. This

paper focuses on heuristic algorithm.

In [15], an algorithm, called scheduling service

workflow for cost optimization in hybrid cloud is

introduced. The goal of this algorithm is to reduce

make span and deadline. This algorithm consists of

two phases. In the first phase, the workflow is

scheduled in the private cloud using the private

resources using the path clustering heuristics (PCH)

algorithm. After that, the schedule make span is

determined and compared with the deadline. If

deadline is not matched, the second phase will be

executed. In the second phase, resources from the

public cloud with reasonable cost will be reserved to

execute a part of the workflow. Path clustering

heuristics (PCH) algorithm select a path from the

DAG and the nodes on this path will be allocated on

the same processor [16], it is a combination of

clustering and list scheduling heuristics [17]. The

limitations of this algorithm is that if the problem is

solved using the first phase only, this will lead to load

imbalance, but if solved with second phase, Here it is

important to decide when and what resource need to

borrow because any mistake with this decision will

make execution cost very high.

An improved max-min task scheduling algorithm

has been introduced [18]. The goal of this algorithm

is reducing make span. This algorithm calculates the

average of execution time for all tasks in the

workflow. Next max-min is used when receiving a

task with execution time is smaller than the average.

Otherwise a task with execution time greater than or

equal to the average is assigned to the VM with

minimum completion time among all the VMs

regardless of VM availability. Where the completion

time represents machine’s ready time with task’s

execution time. More metrics need to be considered

to prove the efficiency of this algorithm.

An efficient workflow scheduling algorithm

(EWSA) is introduced [19]. The goal of this

algorithm is maximize resource utilization and while

meeting the deadline. This algorithm is designed to

schedule scientific workflow. The algorithm consists

of two phases; update, and task-VM mapping. The

objective of the update phase is to trace each path in

the DAG and set the execution time for each task, and

then define the VM with needed capability to execute

each task. In task-VM mapping phase, the tasks are

scheduled on proper VMs. This algorithm does not

concern load balance among VMs.

A scheduling algorithm, called MaxChild, is

proposed [20]. The main objective of this algorithm

is to improve the system throughput with proper

resource utilization and high performance by obeying

the required QoS parameters which specified by the

user. According to this algorithm, the task that has

maximum number of Childs is scheduled first to

guarantee that maximum number that tasks could be

available for the next schedules and resource are

utilized properly. The problem of this strategy is that

after a job is submitted to the resource and this

resource is not available, this may affect makes pan.

Also, the status of VMs is not concerned.

An algorithm called deadline–budget workflow

scheduling (DBWS) has been introduced [21]. It aims

to find a feasible schedule within a budget and

deadline constraints. The algorithm consists of two

phases; task selection and resource selection.

According to task selection phase, the DAG tasks will

be selected according to their priorities. To assign a

priority to a task in the DAG, the upward rank is

computed. This rank represents, for a task, the length

of the longest path from this task to the exit node

including average execution time of the task over all

Received: May 28, 2022. Revised: June 29, 2022. 339

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

resources and average communication time. The

resource selection phase consists of two steps; in the

first step, all tasks are divided in different levels

based on their depth in the graph. Then, the user

deadline will be distributed among all levels and sub

deadline for each level will be computed, where all

tasks belonging to the same level have the same sub-

deadline. In the second step, the task will be allocated

to the resource which has closer finish time with

respect to its sub -deadline, and in the same time, has

low cost. This algorithm suffers from computation

overhead.

Heterogeneous earliest finish time algorithm

(HEFT) one of the most popular algorithms for

scheduling workflow [22]. The ultimate objective of

HEFT is to reduce make span. The algorithm consists

of two phases; task prioritization and processor

selection. In the Task Prioritization phase, the

priorities of all tasks are assigned by computing the

rank for each task, which is based on mean

computation time and mean communication cost.

Then, the tasks list is ordered in descending order. In

the Processor Selection phase, the tasks are scheduled

on the processors that give the earliest finish time

(EFT) for the task. The HEFT algorithm is similar as

the EFT, in addition to, scales resources elastically at

runtime. Therefore, it obtains an optimized execution

time. HEFT suffers from load imbalance.

A comparative study has done among four

heuristic algorithms, minx–min, random, suffrage,

and heterogeneous earliest finish time (HEFT), while

using static and dynamic scheduling schemes, and

considered some features that are Number of

machines [23] According to the results of the

comparative study; it is found that the HEFT

algorithm outperforms the other algorithms because

it is a list-based scheduling strategy that considers the

DAG as a whole, while the other algorithms (non-list

scheduling algorithms) consider the nodes ready to be

executed only.

A modification has been done to the heterogeneous

earliest finish time (HEFT) algorithm to enhance the

performance on the cloud environment [24]. According to

this modification, the priority for every task in the DAG

has been defined by calculating the order of execution;

average of task on all the processor + max (order of task

value of predecessor task of current task) +

communication cost between predecessor task node to

current node) starting with the last node in the DAG. By

this modification, the algorithm outperforms the HEFT

algorithm with respect to make span. This algorithm not

concerns load balance metrics.

An efficient task scheduling algorithm for DAG

in cloud computing environment has been proposed

[25]. The goal of this algorithm is reduce make span.

The algorithm consists of two phases; task priority

and resource selection. According to the task priority

phase, the priority of the tasks is defined using critical

path and static level (CPS) Attributes. Then, the tasks

are sorted in decreasing order. In the resource

selection phase, the selection of resource is based on

the earliest start time (EST) and the earliest finish

time (EFT). The algorithm outperforms the HEFT

algorithm with respect to make span. This algorithm

suffers from load imbalance.

Multi-Objective Workflow Optimization

Strategy (MOWOS) has been introduced [26]. The

goal of this algorithm is reducing execution cost and

makes span. MOWOS Strategy consists of three sub

algorithms; task spiriting algorithm, minimum VM

(MinVM) selection algorithm, and maximum VM

(MaxVM) selection algorithm. MOWOS Strategy

uses a task-splitting mechanism to break down large

tasks into smaller chunks to reduce workflow

schedule. This algorithm suffers from load imbalance.

A new min-min algorithm called optimized min-

min (OMin-Min) for scientific workflow has been

introduced [27]. The goal of this algorithm is to

reduce make span and try to avoid neglecting long

task as min-min algorithm. According to this

algorithm, tasks that have minimum and maximum

execution times (MinT and MaxT) will be defined,

and then the task with minimum execution time will

be assigned to resource that produces minimum

execution time. Otherwise, the task with minimum

execution time assigns to resource that produces

minimum execution time. This algorithm not

concerns load balance metrics.

Unfortunately, most of the existed algorithms

have problem with respect to resource utilization and

load balancing among VMs in the distributed systems.

Therefore, a modified heterogeneous earliest finish

time (M-HEFT) algorithm has been introduced by the

work in this paper to overcome the limitations of

other algorithms (i.e., load balance, and resource

utilization).

 Table 1 shows a comparison between the

aforementioned algorithms.

3. The proposed task scheduling algorithm

The proposed task-scheduling algorithm is based

on the existed HEFT algorithm with some

modifications to improve resource utilization, and

load balance, in addition to, make span. The proposed

algorithm is called M-HEFT. The goal of M-HEFT is

to make no idle VM which will lead to maximize

resource utilization, and make resources more

balanced and reduce make span as well.

The proposed M-HEFT algorithm consists of two

Received: May 28, 2022. Revised: June 29, 2022. 340

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

Table 1. Comparison of workflow scheduling algorithms

Scheduling algorithm
Scheduling

parameters
Finding Environment

Scheduling Service

Workflow for cost

optimization in hybrid

cloud [15]

Make span and

deadline

This algorithm can reduce the make

span comparing to the local

execution, as well as, the cost

comparing to the execution in the

public cloud. We can note that in the

private cloud, the higher the number

of slices, the higher the execution

time, as well as cost.

Cloud

environment

An improved Max-Min

task scheduling [18]
Make span

Improved Max-Min algorithm

outperforms the Max-Min algorithm

in most of the cases with respect to

make span.

Cloud

environment

An Efficient Workflow

Scheduling Algorithm

(EWSA) [19]

Resource

utilization and

deadline

This algorithm maximizes the

resource utilization and meet the

deadline of the application

Cloud

environment

MaxChild [20]
Make span and

resource utilization

MaxChild was found to be the most

efficient algorithm with respect to

make span and resource utilization

comparing to FCFS, MAX-MIN, and

MAX-MAX algorithm.

Cloud

environment

Deadline–Budget

Workflow Scheduling

(DBWS) has been

introduced [21]

Deadline and

budget

This algorithm achieves better rates of

successful schedules compared to

other heuristic-based approaches for

the real world applications consider.

Cloud

environment

Heterogeneous Earliest

Finish Time Algorithm

(HEFT) [22]

Make span This algorithm reduces make span
Cloud

environment

A modification has been

done to the Heterogeneous

Earliest Finish Time

(HEFT) algorithm [24]

Make span

This algorithm reduces the make span and

satisfies load balancing compare to

existing HEFT and CPOP algorithms.

Cloud

environment

An efficient task

scheduling algorithm for

DAG in cloud computing

environment [25]

Make span, speed,

efficiency and

scheduling length

ratio.

The algorithm outperforms the HEFT

algorithm with respect to make span,

speed, efficiency and scheduling

length ratio.

Cloud

environment

 Multi-Objective

Workflow Optimization

Strategy (MOWOS) [26]

Make span ,cost

and resource

utilization

The proposed MOWOS algorithm has

less execution cost, better execution

make span, and utilizes the resources

than the existing HSLJF and

SECURE algorithms.

Cloud

environment

Optimized Min-Min

(OMin-Min) [27]
Make span

The algorithm outperforms the Round

Robbin, Modified Max-Min (MMax-

Min) Min-Min and Max-Min

algorithms with respect to make span.

Cloud

environment

Received: May 28, 2022. Revised: June 29, 2022. 341

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

Algorithm 1: M-HEFT scheduling algorithm

Input: DAG and VMs configuration

Output: Mapping scheme for the requested tasks

cloudlets on the available resources VMs.

1: set the computation cost for each task on each

resource CCTi,j

2: set the communication cost between tasks and their

successors Ci,k

3: for each task i=1 to Ti in DAG

4: calculate rank value for every task in DAG

rank of task (Ti) =
∑ CCTi

VmNum
+ max (rank (Tk) + C(Ti, Tk))

5: end for

6: arrange tasks in a list in decreasing order based on

their rank value of (Ti).

7: compute Average task length (AL) for all tasks in

the DAG

8: for each task in ready list

9: check if task length greater than or equal AL

10: map task to VM which has the earliest finish time

11: else if the task length less than AL

12: map task to the most idle VM which has earliest

finish time

13: end for

14: end

phases; Task prioritization phase to assign priority for

each task in the DAG, and Task-VM mapping phase

to allocate task to suitable VM.

The novelty of the M-HEFT algorithm is in Task-

VM mapping phase where it based on average length

of tasks and load balance on VMs. According to

Task-VM mapping phase, the average length for all

tasks is calculated, and then the ready task is mapped

on the most idle VM which guarantees earliest finish

time if its length is less than or equal average length.

Otherwise ready task maps to the VM that guarantees

earliest finish time.

In this section will describe each phase in details.

3.1 Task prioritization phase

In this phase, a priority will assign to each task in

the workflow DAG according to rank value. The

phase starts by computing computation cost (CCT)

for each task in DAG (Ti) on each VMj using Eq. (1).

CCT (Ti, VMj) =
Ti.length

VMj.MIPS
 (1)

Where, Ti.length is the needed time to execute Ti, and

VMj.MIPS is the speed of VMj.

Then, communication cost is calculated between

tasks and their successors C (Ti,Tk). Then, rank value

for each task (Ti) is calculated which equal to the

average computation cost of the task on all VMs +

max (rank value of successor task of the current task

+ communication cost between successor task and

current task) (see Eq. (2)).

Rank (Ti) =
∑ CCTi

VmNum
+ max (rank (Tk) + C(Ti, Tk)) (2)

Finally, sort the tasks in a list in decreasing order

based on their rank value.

3.2 Task – VM mapping phase

In this phase, M-HEFT algorithm tries to select the

best VM for each task by calculating the average task

length (AL) for all tasks using Eq. (3).

AL=
∑Ti length

TaskNum
 (3)

Where, Ti length is the needed computation time of

task Ti, and taskNum is the number of tasks in the

DAG.

If the length of the ready task less than (AL), the

task will be mapped to the idlest VM (that has the

most available time), in the same time, it has the

earliest finish time. Else, map the task to VM that has

earliest finish time using Eq. (4), Eq. (5).

Finish Time (Ti, VMj) = CCT (Ti, VMj)

+ ST (Ti, VMj) (4)

Start Time (Ti, VMj) = max {Tavil(VMj),FT (Tk)

 + C (TK,Ti) } (5)

Remove the task from list and update available time

for each VM. Repeat these steps till all tasks allocate

to VMs.

3.3 Pseudo code of the proposed M-HEFT

algorithm

The pseudo code of the proposed M-HEFT

algorithm is described in Algorithm. 1.

3.4 Flowchart of the proposed M-HEFT algorithm

The flowchart represents a process of scheduling

tasks of DAG by proposed M-HEFT algorithm which

described in Fig. 3 to explain more how the proposed

algorithm works.

4 Experimental results

4.1 Performance metrics

Three metrics are used to evaluate the

performance of the proposed M-HEFT algorithm;

make span, resource utilization rate, and ideal load

Received: May 28, 2022. Revised: June 29, 2022. 342

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

Figure. 3 The flow chart of the proposed M-HEFT algorithm

balance.

Make span is the maximum time required for

completion of the whole DAG tasks [21]. Make span

should be minimized. Eq. (6) is used to calculate

make span.

Make span = max {CTi } (6)

where CTi is the completion time of the longest task

Ti.

Resource utilization rate (RUR) is the ratio

between the total busy time of VMi and the make span

of the parallel application in percentage (see equation

Eq. (7), and Eq. (8)) [28]. Resource utilization should

be maximized.

RUR (VMj) % = (
∑vmj Busy Time

Make span
) X 100 (7)

RUR for DAG=
∑RUR (VMj)

VmNum
 (8)

Ideal load balance (ILB) is the ratio between the

total number of tasks and the number of VMs and it

determines using Eq. (9) [29].

Ideal Load Balance (ILB) =

Number of Tasks/ Number of usedVM (9)

Difference from ideal rate of load balance (DLB)

is the difference between actual load balance and the

ideal load in VMi. It is calculated using Eq. (10) [28].

DLB (VMj) % = ∑Number of tasks (VMj)-ILB (VMj)

 (10)

Average difference from ideal rate of load

balance (ADLB) is the ratio between the total

summations of DLB for each VMi over their number.

It is calculated using Eq. (11) [30].

ADLB (VMj) =
∑ DLB (VMj)

m
j=1

VmNum
 (11)

Received: May 28, 2022. Revised: June 29, 2022. 343

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

Table 2. Vm configuration and used workflow

Entities Values

Workflows
Ligo 100, 1000

Epigenomics 100,1000

Data center 1 1

VMs
Quantity 5,10,15,20

Speed 50-1000

CPU

Quantity 1

Ram 512

Bandwidth 1000Mbps

Improvement rate in terms of used metrics (make

span, resource utilization and load balance), it is the

performance improvement rate of the proposed M-

HEFT algorithm over the current HEFT and proposed

strategies mentioned in [25, 27]. It is computed using

Eq. (12).

IRm=(
ABS(M(existing algorithm)-M(proposed algorithm))

M(existing algorithm)
) x 100

 (12)

4.2 Experimental environment

The proposed algorithm has been simulated using

WorkflowSim1.0 toolkit integrated into net beans

IDE 8.0.2 with the configurations shown in Table 2.

WorkflowSim is an open source workflow simulator,

which is an extension of the CloudSim framework

[31]. The experiments have done using two

workflows; Ligo (Astrophysics), and epigenomics

(Bioinformatics).

5 Performance evaluation of the proposed

M-HEFT algorithm

To evaluate the performance of the proposed

algorithm, a comparative study has been contacted

among the proposed algorithm, the heterogeneous

earliest finish time (HEFT) algorithm [24], the

algorithm mentioned in [25] and the algorithm

mentioned in [27] with respect to make span, resource

utilization, and load balancing metrics. This study has

been implemented with considering heterogeneous

environment using WorkflowSim, and two

benchmarks, Ligo and epigenomics with 100 and

1000 tasks, and 5, 10, 15 and 20 VMs.

5.1 Make span evaluation

The implementation results of the comparative

study among our proposed M-HEFT algorithm, the

algorithm mentioned in [25] and the algorithm

mentioned in [27] with respect to make span with

considering Ligo and epigenomics benchmark with

100 and 1000 tasks using 5, 10, 15 and 20 VMs are

discussed as the follow.

5.1.1. Make span for 100 and 1000 tasks of ligo

Make span results for 100 tasks of Ligo using 5,

10, 15 and 20 VMs are discussed in Table 3, and Fig.

4.

Make span results for 1000 tasks of Ligo using

5, 10, 15 and 20 VMs are discussed in Table 4, and

Fig. 5.

According to the comparative results in Table 3

and Fig. 4, it is found that the proposed M-HEFT

algorithm improves make span by 14% with respect

to HEFT algorithm, and 40% with respect to

algorithm in [25], and 44% with respect to algorithm

in [27] in average with considering 100 tasks in Ligo.

According to the comparative results in Table 4 and

Fig. 5, it is found that the proposed M-HEFT

algorithm improves make span by 46% with respect

to HEFT algorithm, and 11% with respect to

algorithm in [25], and 13% with respect to algorithm

in [27] in average with considering 1000 tasks in

Ligo.

5.1.1 Make span for 100 and 1000 tasks of epigenomics

Make span results for 100 tasks of epigenomics

using 5, 10, 15 and 20 VMs are discussed in Table 5,

and Fig. 6. Make span results for 1000 tasks of

epigenomics using 5, 10, 15 and 20 VMs are

discussed in Table 6, and Fig. 7.

According to the comparative results in Table 5

and Fig. 6, it is found that the proposed M-HEFT

algorithm improves make span by 15% with respect

to HEFT algorithm, and 41% with respect to

algorithm in [25], and 48% with respect to algorithm

in [27] in average with 100 tasks in Ligo. According

to the comparative results in Table 6 and Fig. 7, it is

found that the proposed M-HEFT algorithm improves

make span by 54% with respect to HEFT algorithm,

and 12% with respect to algorithm in [25], and 14%

with respect to algorithm in [27] in average with 1000

tasks in epigenomics.

5.2 Resource utilization evaluation

The implementation results of the comparative

study among our proposed M-HEFT, propose

algorithm [25], and algorithm in [27], and HEFT

algorithms with respect to resource utilization with

considering Ligo and epigenomics benchmark with

100 and 1000 tasks using 5, 10, 15 and 20 VMs are

discussed as the follow.

Received: May 28, 2022. Revised: June 29, 2022. 344

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

Table 3. Make span results for 100 tasks of ligo

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT 43195.33 10043.61 4784.83 3360.4

Algorithm [25] 34479.03 17224.36 9383.23 6204.83

Algorithm [27] 34674.23 17598.23 10173.00 7820.00

Proposed M-HEFT 31710.37 9023.57 4646.04 2836.96

Figure. 4 Make span results for 100 tasks of ligo

Table 4. Make span results for 1000 tasks of ligo

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT 316515.75 255772.8 62360.67 105685.8

Algorithm [25] 307040.59 87822 50968.25 29652.74

Algorithm [27] 308075.18 87945.32 51598.46 30757.41

Proposed M-HEFT 304147.05 87225.67 40624.22 22723.3

Figure. 5 Make span results for 1000 tasks of ligo

Table 5. Make span results for 100 tasks of epigenomics

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT 569754.69 193400 141876 114244.72

Algorithm [25] 656837.59 411632 189023 164725.11

Algorithm [27] 675509.87 413795.00 225311.52 250584.03

Proposed M-HEFT 5448 183010 111433 81473.38

1000.00
4000.00
7000.00

10000.00
13000.00
16000.00
19000.00
22000.00
25000.00
28000.00
31000.00
34000.00
37000.00
40000.00
43000.00

5 10 15 20

M
a

k
e

sp
a

n
 i

n
 (

se
c
.)

Vm Number

Heft

Proposed

Algorithm [25]

Proposed

Algorithm [27]

Proposed M-

Heft

10000.00
30000.00
50000.00
70000.00
90000.00

110000.00
130000.00
150000.00
170000.00
190000.00
210000.00
230000.00
250000.00
270000.00
290000.00
310000.00
330000.00
350000.00

5 10 15 20

M
ak

e
 s

p
an

 in
 (

se
c.

)

Vm Number

Heft

Proposed

Algorithm [25]

Proposed

Algorithm [27]

Proposed M-Heft

Received: May 28, 2022. Revised: June 29, 2022. 345

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

Figure. 6 Make span results for 100 tasks of epigenomics

Table 6. Make span results for 1000 tasks of epigenomics

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT 5178814.39 2921064 4249865 2230593.1

Algorithm [25] 5191570.65 867429 867429 532190.83

Algorithm [27] 5202232.30 1691359.69 898372.57 559629.85

Proposed M-HEFT 5155803 1420167 714205 451127.66

Figure. 7 Make span results for 1000 tasks of epigenomics

Table 7. Resource utilization rate results for 100 tasks of ligo

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT 38.93 41.86 40.24 31.28

Algorithm [25] 48.79 24.41 19.91 16.94

Algorithm [27] 47.58 24.31 18.62 15.34

Proposed M-HEFT 53.03 46.59 42.24 37.05

5.2.1. Resource utilization for 100 and 1000 tasks of

ligo

Resource utilization results for 100 tasks of Ligo

using 5, 10, 15 and 20 VMs are discussed in Table

7,and Fig. 8. Resource utilization results for 1000

tasks of Ligo using 5, 10, 15 and 20 VMs are

discussed in Table 8, and Fig. 9.

According to the comparative results in Table 7

and Fig. 8, it is found that the proposed M-HEFT

algorithm improves resource utilization by 18% with

respect to HEFT algorithm, and 82% with respect to

algorithm in [25], and 93% with respect to algorithm

in [27] in average with 100 tasks in Ligo. According

to the comparative results in Table 8 and Fig. 9, it is

found that the proposed M-HEFT algorithm improves

resource utilization by 97% with respect to HEFT

algorithm, and 15% with respect to algorithm in [25],

and 18% with respect to algorithm in [27] in average

with 1000 tasks in Ligo.

10000.00

110000.00

210000.00

310000.00

410000.00

510000.00

610000.00

710000.00

5 10 15 20

M
a

k
e

sp
a

n
 i

n
 (

se
c
.)

Vm Number

Heft

Proposed

Algorithm [25]

Proposed

Algorithm [27]

Proposed M-Heft

200000.00
550000.00
900000.00

1250000.00
1600000.00
1950000.00
2300000.00
2650000.00
3000000.00
3350000.00
3700000.00
4050000.00
4400000.00
4750000.00
5100000.00

5 10 15 20

M
ak

e
 s

p
an

 in
 (

se
c.

)

Vm Number

Heft

Proposed

Algorithm [25]

Proposed

Algorithm [27]

Proposed M-Heft

Received: May 28, 2022. Revised: June 29, 2022. 346

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

Figure. 8 Resource utilization rate results for 100 tasks of ligo

Table 8. Resource utilization rate results for 1000 tasks of ligo

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT 57.55 20.80 32.45 18.18

Algorithm [25] 58.73 51.38 39.71 38.39

Algorithm [27] 58.14 50.95 38.56 37.15

Proposed M-HEFT 60.05 52.249 50.53 50.10

Figure. 9 Resource utilization rate results for 1000 tasks of Ligo

5.2.2. Resource utilization for 100 and 1000 tasks of

epigenomics

Resource utilization results for 100 tasks of

epigenomics using 5, 10, 15 and 20 VMs are

discussed in Table 9, and Fig. 10. Resource utilization

results for 1000 tasks of epigenomics using 5, 10, 15

and 20 VMs are discussed in Table 10, and Fig. 11.

According to the comparative results in Table 9

and Fig. 10, it is found that the proposed M-HEFT

algorithm improves resource utilization by 19% with

respect to HEFT algorithm, and 79% with respect to

algorithm in [25], and 96% with respect to algorithm

in [27] in average with 100 tasks in epigenomics.

According to the comparative results in Table 10 and

Fig. 11, it is found that the proposed M-HEFT

algorithm improves resource utilization by 96% with

respect to HEFT algorithm, and 14% with respect to

algorithm in [25], and 20% with respect to algorithm

in [27] in average with 1000 tasks in Epigenomics.

5.3 Load balance rate

The implementation results of the comparative study

among our proposed M-HEFT, proposed algorithm

[25], and algorithm [27], and HEFT algorithms with

respect to load balance rate with considering Ligo and

Epigenomics benchmark with 100 and 1000 tasks

using 5, 10, 15 and 20 VMs are discussed as the

follow.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

5 10 15 20

R
es

o
u

rc
e

U
ti

li
za

ti
o

n
 R

a
te

Vm Number

Heft

Proposed

Algorithm [25]

Proposed

Algorithm [27]

Proposed M-Heft

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

5 10 15 20

R
es

o
u

rc
e
 U

ti
li

za
ti

o
n

 R
a

te

Vm Number

Heft

Proposed
Algorithm [25]

Proposed
Algorithm [27]

Proposed M-Heft

Received: May 28, 2022. Revised: June 29, 2022. 347

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

Table 9. Resource utilization rate results for 100 tasks of epigenomics

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT 56.64 41.72 25.27 17.66

Algorithm [25] 49.13 19.60 18.97 12.24

Algorithm [27] 48.76 18.81 16.42 10.56

Proposed M-HEFT 59.23 44.09 32.18 24.76

Figure. 10 Resource utilization rate results for 100 tasks of epigenomics

Table 10. Resource utilization rate results for 1000 tasks of epigenomics

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT 59.15 26.39 20.06 18.04

Algorithm [25] 59.40 46.63 39.50 36.22

Algorithm [27] 59.13 46.24 36.32 33.48

Proposed M-HEFT 60.45 54.29 47.98 42.72

Figure. 11 Resource utilization rate results for 1000 tasks of epigenomics

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

5 10 15 20

R
es

o
u

rc
e
 U

ti
li

za
ti

o
n

 R
a

te

Vm Number

Heft

Proposed

Algorithm [25]

Proposed

Algorithm [27]

Proposed M-Heft

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

5 10 15 20

R
es

o
u

rc
e
 U

ti
li

za
ti

o
n

 R
a

te

Vm Number

Heft

Proposed

Algorithm [25]

Proposed

Algorithm [27]

Proposed M-Heft

Received: May 28, 2022. Revised: June 29, 2022. 348

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

Table 11. The average difference from ideal load balance (ILB) results for 100 tasks of ligo

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT 8.8 4 3.20 2.70

Algorithm [25] 7 3.8 2.3 1.4

Algorithm [27] 7.1 3.9 2.5 1.7

Proposed M-HEFT 6.8 2 2 1

Figure. 12 The average difference from ideal load balance (ILB) results for 100 tasks of ligo

Table 12. The average difference from ideal load balance (ILB) results for 1000 tasks of ligo

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT 79.5 63.4 33.3 34.3

Algorithm [25] 78.6 38 30.3 22.5

Algorithm [27] 78.8 38.2 30.5 22.8

Proposed M-HEFT 78.4 36.3 27.4 19.4

Figure. 13 The average difference from ideal load balance (ILB) results for 1000 tasks of ligo

5.3.1. Load balance rate for 100 and 1000 tasks of ligo

Load balance rate results for 100 tasks of Ligo

using 5, 10, 15 and 20 VMs are discussed in Table 11,

and Fig. 12. Load balance rate results for 1000 tasks

of Ligo using 5, 10, 15 and 20 VMs are discussed in

Table 12, and Fig. 13.

algorithm in [25], and 29% with respect to algorithm

in [27] in average with 100 tasks in Ligo. According

to the comparative results in Table 12 and Fig. 13, it

is found that the proposed M-HEFT algorithm

improves load balance by 26% with respect to HEFT

algorithm and 7% with respect to algorithm in [25],

and 8% with respect to algorithm in [27] in average

with 1000 tasks in Ligo.

0

2

4

6

8

10

5 10 15 20

D
if

fe
r
en

ce
 f

ro
m

 i
d

ea
l

L
o

a
d

 B
a

la
n

ce

Vm Number

Heft

Proposed

Algorithm [25]

Proposed

Algorithm [27]

Proposed M-Heft

0

20

40

60

80

100

5 10 15 20

D
if

fr
e
en

ce
 f

ro
m

 I
d

ea
l

L
o

a
d

 B
sl

a
n

ce

Vm Number

Heft

Proposed

Algorithm [25]

Proposed

Algorithm [27]

Proposed M-Heft

Received: May 28, 2022. Revised: June 29, 2022. 349

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

Table 13. The average difference from ideal load balance (ILB) results for 100 tasks of epigenomics

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT 10.8 4.6 2.70 2.1

Algorithm [25] 9.6 5 3.00 2.1

Algorithm [27] 9.7 5.1 3.2 2.3

Proposed M-HEFT 8 4.4 2.6 2.1

Figure. 14 The average difference from ideal load balance (ILB) results for 100 tasks of epigenomics

Table 14. The average difference from ideal load balance (ILB) results for 1000 tasks of epigenomics

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT 140.2 80.3 49.6 36.95

Algorithm [25] 77.6 49.7 33.4 23.75

Algorithm [27] 77.5 50.55 34.46 23.55

Proposed M-HEFT 77.4 39.7 28.16 23.65

Figure. 15 The average difference from ideal load balance (ILB) results for 1000 tasks of epigenomics

5.3.2. Load balance rate for 100 and 1000 tasks of

epigenomics

Load balance rate results for 100 tasks of

epigenomics using 5, 10, 15 and 20 VMs are

discussed in Table 13, and Fig. 14. Load balance rate

results for 1000 tasks of Epigenomics using 5, 10, 15

and 20 VMs are discussed in Table 14, and Fig. 15

According to the comparative results in Table 13

0

2

4

6

8

10

12

5 10 15 20

D
if

fr
e
n

ce
 f

ro
m

 I
d

ea
l

L
o

a
d

B
a

la
n

ce

Vm Number

Heft

Proposed

Algorithm [25]

Proposed

Algorithm [27]

Proposed M-Heft

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

5 10 15 20

D
if

fe
r
en

ce
 f

ro
m

 I
d

ea
l

L
o

a
d

 B
a

la
n

ce

Vm Number

Heft

Proposed

Algorithm [25]

Proposed

Algorithm [27]

Proposed M-Heft

Received: May 28, 2022. Revised: June 29, 2022. 350

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

and Fig. 14, it is found that the proposed M-HEFT

algorithm improves load balance by 8% with respect

to HEFT algorithm, and 4% with respect to algorithm

in [25], and 5% with respect to algorithm in [27] in

average with 100 tasks in epigenomics. According to

the comparative results in Table 14 and Fig. 15, it is

found that the proposed M-HEFT algorithm improves

load balance by 44% with respect to HEFT algorithm,

and 9% with respect to algorithm in [25], and 10%

with respect to algorithm in [27] with 1000 tasks in

epigenomics.

6. Conclusion and future work

Task Scheduling is one of the main issues for

achieving good performance over a cloud

environment. In this paper, a modified task

scheduling algorithm, called M-HEFT, has been

introduced to improve the performance of the

existing HEFT with respect to make span, resource

utilization, and load balance. To evaluate the

performance of the proposed M-HEFT algorithm, a

comparative study has been contacted using two

benchmarks, LIGO and EPIGENOMICS, with 100

and 1000 tasks and implemented on WorkflowSim

simulator considering 5, 10, 15 and 20 VMs.

According to the implementation results, it is

found that the proposed M-HEFT improves the make

span algorithm by 32% in average with respect to the

original HEFT algorithm, and by 26% in average with

respect to the proposed algorithm [25], and by 30%

in average with respect to the algorithm in [27]. The

resource utilization has been improved using the

proposed M-HEFT algorithm by 58% in average with

respect to the original HEFT algorithm, and by 48%

in average with respect to the proposed algorithm

[25], and by 54% in average with respect to the

algorithm in [27]. In addition, the load balance has

been improved using the proposed M-HEFT

algorithm by 31% in average with respect to the

original HEFT algorithm, and by 11% in average with

respect to the proposed algorithm [25], and by 13%

in average with respect to the algorithm in [27].

As a future work, there is a need to enhance our

M-HEFT algorithm by considering extra

performance parameters such as budget, power

consumption, and deadline.

Conflicts of interest

There is no conflict of interest.

Author contributions

Conceptualization, Fatma A. Omara, Sara Ahmed;

methodology, Sara Ahmed; software, Sara Ahmed;

validation, Fatma A. Omara and Sara Ahmed; formal

analysis, Sara Ahmed; investigation, Fatma A.

Omara, Sara Ahmed; resources, Fatma A. Omara,

Sara Ahmed; data curation, Fatma A. Omara, Sara

Ahmed; writing original draft preparation, Sara

Ahmed; writing review and editing, Fatma A. Omara,

Sara Ahmed; visualization, Fatma A. Omara, Sara Ahmed;

supervision, Fatma A. Omara.

References

[1] R. Jain and D. Nagpal, “A Review on Cloud

Computing and its Models”, International

Journal of Advanced Trends in Computer

Applications (IJATCA), Vol. 1, No. 2, pp. 1-4,

2020.

[2] A. Sharma and S. Tyagi, “Task Scheduling in

Cloud Computing”, International Journal of

Scientific & Engineering Research, Vol. 7, No.

12, pp. 1-5, 2016.

[3] A. A. Motlagh, A. Meagher, and A. Masoud,

“Task scheduling mechanisms in cloud

computing: A systematic review”, International

Journal of Communication System, Vol. 33, No.

6, pp. 1-23, 2020.

[4] J. Meena and M. Vardhan, “Comparative

analysis of scientific workflow scheduling

algorithms in Cloud under Budget constraint”,

In: Proc. of the 3rd International Conf. on

Advances in Internet of Things and Connected

Technologies (ICIOTCT-2018), Jaipur, India,

2018.

[5] Dr. T. L. A. Beena, “Resource Utilization of

Workflow Scheduling Algorithms in Public

Cloud”, International Journal of Scientific

Research in Science, Engineering and

Technology, Vol. 4, No. 1, pp. 1132-1139, 2018.

[6] S. Jaybhaye and V. Attar, “A review on

scientific workflow scheduling in cloud

computing”, In: Proc. of the 2nd International

Conference on Communication and Electronics

Systems (ICCES), Coimbatore, India, 2017.

[7] M. A. Rodriguez and R. Buyya, “A taxonomy

and survey on scheduling algorithms for

scientific workflows in IaaS cloud computing

environments”, Concurrency and Computation-

practice and experience, Vol. 29, No. 8, pp. 1-

32, 2017.

[8] F. Wu, Q. Wu, and Y. Tan,” Workflow

scheduling in cloud: a survey”, Journal of

Supercomputing, Vol. 71, No. 9, pp. 3373–3418,

2015.

[9] P. Rani1 and P. Nagpal, “Optimized Task

Scheduling Algorithm for cloud computing

environment”, International Journal of

https://www.researchgate.net/profile/Sangita-Jaybhaye
https://www.researchgate.net/profile/Vahida-Attar-2
https://link.springer.com/article/10.1007/s11227-015-1438-4#auth-Fuhui-Wu
https://link.springer.com/article/10.1007/s11227-015-1438-4#auth-Qingbo-Wu
https://link.springer.com/journal/11227
https://link.springer.com/journal/11227

Received: May 28, 2022. Revised: June 29, 2022. 351

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

Emerging Trends & Technology in Computer

Science (IJETTCS), Vol. 6, No. 5, pp. 39-47,

2017.

[10] W. Zheng, C. Wang, and D. Zhang, “A

Randomization Approach for Stochastic

Workflow Scheduling in Clouds”, Hindawi

Publishing Corporation Scientific Programming,

Vol. 2016, No. 8, pp. 1-13, 2016.

[11] R. Singh and P. Pateriya, “Workflow Scheduling

in Cloud Computing,” International Journal of

Computer Applications, Vol. 61, No. 11, pp. 38-

40, 2013.

[12] N. Soltani, B. Soleimani, and B. Barekatain,

“Heuristic Algorithms for Task Scheduling in

Cloud Computing: A Survey”, International

Journal of Computer Network and Information

Security, Vol. 9, No. 8, pp. 16-22, 2017.

[13] A. Gade, M. N. Bhat, and N. Thakare,” A

Review on Meta-heuristic Independent Task

Scheduling Algorithms in Cloud Computing”,

In: Proc. of International Conference On

Computational Vision and Bio Inspired

Computing (ICCVBIC), pp. 1165–1180,

Coimbatore, India, 2018.

[14] S. Madni, M. A. Latiff, M. Abdullahi, S.

Abdulhamid, and M. Usman, “Performance

comparison of heuristic algorithms for task

scheduling in IaaS cloud computing

environment”, Journal Plos One, Vol. 12, No. 5,

pp. 1-26, 2017.

[15] L. F. Bittencour, C. R. Senna, and E. Madeira,

“Scheduling service workflows for cost

optimization in hybrid clouds”, In: Proc. of

International Conference on Network and

Service Management (CNSM), Niagra, Canada,

pp. 394–397, 2010.

[16] L. F. Bittencourt, E. R. Madeira, F. Cicerre and,

L. Buzato, “A path clustering heuristic for

scheduling task graphs onto a grid”, In: Proc. of

3rd International Workshop on Middleware for

Grid Computing (MGC05), Grenoble, France, p.

1, 2005.

[17] S. Kaur, P. Bagga, R. Hans and, H. Kaur,

“Review - Computer Engineering and Computer

science Quality of Service (QoS) Aware

Workflow Scheduling (WFS) in Computing: A

Systematic Review”, Arabian Journal for

Science and Engineering, Vol. 44, No. 4, pp.

2867–2897, 2019.

[18] A. S. A. A. Haboobi, “Improving Max-Min

scheduling Algorithm for Reducing the

Makespan of Workflow Execution in the Cloud”,

International Journal of Computer Applications,

Vol. 177, No. 3, pp. 5-7, 2017.

[19] M. Adhikari and T. Amgoth, “Efficient

algorithm for workflow scheduling in cloud

computing environment”, In: Proc. of 9th

International Conference on Contemporary

Computing (IC3), Noida, India, pp. 1-7, 2016.

[20] J. P. Pinto, A. Hukkeri, and S. B, “A Study On

Workflow Scheduling Algorithms In Cloud”,

International Journal of Latest Trends in

Engineering and Technology, Special Issue, pp.

43-48, 2017.

[21] M. Ghasemzadeh, H. Arabnejad, and J. Barbosa,

“Deadline-Budget constrained Scheduling

Algorithm for Scientific Workflows in a Cloud

Environment”, In: Proc. of 20th International

Conference on Principles of Distributed Systems

(OPODIS), Dagstuhl, Germany, pp. 1–16, 2016.

[22] N. Almezeini and A. Hafez, “An Enhanced

Workflow Scheduling Algorithm in Cloud

Computing”, In: Proc. of 6th International

Conference on Cloud Computing and Services

Science, Rome, Italy, pp. 67–73, 2016.

[23] S. Kaur, P. Bagga, R. Hans, and H. Kaur,

“Quality of Service (QoS) Aware Workflow

Scheduling (WFS) in cloud Computing: A

Systematic Review”, Arabian Journal for

Science and Engineering, Vol. 4, No. 4, pp.

2867–2897, 2019.

[24] K. Dubeya, M. Kumarb, and S. C. Sharmaa,

“Modified HEFT Algorithm for Task

Scheduling in Cloud Environment”, In: Proc. of

6th International Conference on Smart

Computing and Communications (ICSCC-2017),

Kurukshetra, India, pp. 725-732, 2017.

[25] N. Rajak and D. Shukla, “Ambient

Communications and Computer Systems”,

Springer, Singapore, Vol. 1097, 2020.

[26] J. K. Konjaang and L. Xu, “Multi-objective

workflow optimization strategy (MOWOS) for

cloud computing”, Journal of Cloud Computing,

Vol. 10, No. 1, pp. 1-19, 2021.

[27] S. S. Murad, R. Badeel, N. S. A. Alsandi, R. F.

Alshaaya, R. A. Ahmed, A. Muhammed, and M.

Derahman, “Optimized MIN-MIN Task

Scheduling Algorithm for Scientific Workflows

in a Cloud Environment”, Journal of Theoretical

and Applied Information Technology, Vol. 100,

No. 2, pp. 480-506, 2022.

[28] A. A. Rahayfeh, S. Atiewi, A. Abuhussein, and

M. Almiani, “Novel approach to task scheduling

and load balancing using the dominant sequence

clustering and mean shift clustering algorithms”,

Future Internet, Vol. 11, No. 5, pp. 1-19, 2019.

[29] D. M. Abdelkader and F. A. Omara, “Dynamic

task scheduling algorithm with load balancing

for heterogeneous computing system”, Egyptian

https://link.springer.com/conference/iccvbic
https://link.springer.com/conference/iccvbic
https://link.springer.com/conference/iccvbic

Received: May 28, 2022. Revised: June 29, 2022. 352

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.30

Informatics Journal, Vol. 13, No. 2, pp. 135-145,

2012.

[30] F. Adifard and S. M. Babamir, “Autonomic task

scheduling algorithm for dynamic workloads

through a load balancing technique for the

cloud-computing environment”, Cluster

Computing Journal, Vol. 24, No. 2, pp. 1075-

1101, 2021.

[31] W. Chen and E. Deelman, “Workflosim: A

tooklit for simulating scientific workflows in

distributed environments”, In: Proc. of 8th

International conference in E-sciences (e-

Science), Chicago, USA, pp. 1-8, 2012.

