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Abstract: In this paper, the performance and robustness in remaining useful life (RUL) estimation of turbofan 

engines of the singular spectrum analysis and long short term memory (SSA-LSTM) algorithm with the window 

length optimization are investigated. Specifically, we are interested in how the optimized SSA-LSTM algorithm, i.e., 

the SSA-LSTM algorithm with its window length being optimized, responds to the variation in the number of cells 

and in the number of hidden layers of the LSTM structure. The performance and robustness of an SSA-LSTM 

algorithm are evaluated by two metrics, namely the root mean square (RMSE) ratio and the sensitivity ratio. Four 

optimized SSA-LSTM algorithms and two non-optimized SSA-LSTM algorithms were tested with the prototype 

dataset from the turbofan engines datasets. The simulation results showed that all the optimized SSA-LSTM 

algorithms performed much better in terms of both the RMSE ratios and the sensitivity ratios than the non-optimized 

SSA-LSTM algorithms. The RMSE ratios of the optimized SSA-LSTM algorithms with the window length of 𝐿 =
𝑇/2, 𝐿 = T/4, 𝐿 = log(𝑇)2.3 and 𝐿 =24 were 38.737%, 33.967%, 22.896% and 11.780% respectively. In the same 

order, the sensitivity ratios of all the optimized algorithms were 2.067%, 1.495%, 1.555% and 1.444% respectively. 

Among all the algorithms being evaluated, the 𝐿 = 24  optimized SSA-LSTM algorithm provided the best 

performance in terms of both the RMSE ratio and the sensitivity ratio and hence confirming its best performance and 

robustness for RUL estimation. 

Keywords: Singular spectrum analysis, RUL estimation, Long short-term memory, Performance and robustness, 

Window length optimization. 

 

 

1. Introduction 

Recently, the process of predictive maintenance 

(PdM) has gained considerable interest from the 

industry mainly due to its ability of optimizing the 

use and management of assets [1]. PdM is a process 

that turns historical data of the machine of interest 

into valuable information for action plans in 

maintenance policies in various sectors, e.g., power 

plants, utilities, transportations, communications and 

emergency services [1].  

The remaining useful life (RUL) estimation of a 

machine is an integral part of PdM since it allows 

early detection of failures before the machine 

actually reaches its lifetime or its end-of-life [2]. 

The RUL may be derived from different quantities 

for different fields of maintenance work. For 

mechanical engineers, RUL can be derived from 

fatigue life, crack propagation speed or speed wear 

rate or a corrosion rate in the field of engineering 

materials [2]. For wind turbine engineers, RUL can 

be derived from the gear-mesh frequency [3]. 

Essentially, RUL is a quantifiable term achieved by 

using the past as well as the current datasets of a 

system or a machine to provide early signs of failure 
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needed for the proactive plan in the form of PdM 

[4]. 

The deep learning neural network is one of the 

most effective data-driven techniques for solving the 

RUL estimation problem [5]. The Long Short-Term 

Memory (LSTM) neural network proposed by 

Hochreiter and Schmidhuber in 1997 [6] is a 

powerful type of the recurrent neural network 

(RNN) architecture [7] and is often used as the 

building blocks for the deep learning structures. 

LSTM differs from RNN mainly because of the 

introduction of the forget gate, the input gate and the 

output gate to the structure of the LSTM cell or unit 

[8]. In this way, LSTM can store previous data and 

pass it on to the current step of the process [9]. 

LSTM was originally designed to solve the 

vanishing gradient descent problem of the RNN. It 

is therefore suitable for the RUL estimation problem 

since it can manage long term dependency of 

capacity degradation [10]. The LSTM structure has 

been used in numerous data applications on RUL 

estimation and prediction Turbofan engines [9, 11-

14], Li-Ion Batteries [10, 15], gear [16] and bearing 

[17]. In comparison, the RUL estimation with 

LSTM on battery datasets presented in [15] was 

shown to be more accurate than do the other 

traditional methods such as RNN or Support Vector 

Machine (SVM) [18]. The RUL estimation of 

proton exchange membrane fuel cell (PEMFC) 

dataset has been presented in [19]. The technique 

can quickly and accurately forecast the residual 

service life of the fuel cell compared to the back 

propagation neural network (BPNN) [20]. In 

particular, the RUL estimation of turbofan engines 

by LSTM and the Singular Spectrum Analysis 

(SSA) algorithm [21-23] in the SSA-LSTM 

structure has been presented in [13, 14]. It is shown 

that by first decomposing and reconstructing the 

datasets with the SSA and then followed by the 

LSTM regression can gain accuracy in the results of 

RUL estimation than using the LSTM regression 

only [13, 14].  

The deep learning structure of LSTM is 

established by using multiple cells and hidden layers 

and has been deployed for RUL estimation [5, 24].  
The RUL estimation presented in [17] is derived 

from an end-to-end deep learning framework for 

bearing datasets based on convolutional LSTM 

recurrent units. In the literature, however, the 

guidelines for the suitable numbers of cells and the 

numbers of hidden layers of LSTM for the RUL 

estimation problem are diversified and inconclusive. 

For example, the choice of one hidden layer with 20 

LSTM cells is used in [9], 50 hidden layers with a 

fully connected layer is used in [10], 30 cells with 

two hidden layers in [11], 100 cells with two hidden 

layers in [15], and varying the number of cells from 

32 to 256 for the vanilla LSTM in [12]. 

Interestingly, while increasing the number of hidden 

layers of the LSTM structure generally improves the 

performance of RUL estimation, increasing the 

number of LSTM cells does not necessarily 

guarantee a better result. In [16], it is shown that an 

increase in the number of projection layer cells leads 

to fluctuating and inconsistent prediction errors.  

In this paper, rather than looking for an optimal 

choice of the numbers of cells and the numbers of 

hidden layers of the LSTM neural networks, we 

focus on the performance of the SSA-LSTM 

algorithm [13] and its robustness to the variations in 

its LSTM part for the problem of RUL estimation. 

Specifically, we are interested on how the window 

length optimization in the SSA part can contribute to 

the robustness of the SSA-LSTM algorithm to the 

variations in the LSTM part. In order to answer this 

question, we introduce the metrics called the root 

mean square error (RMSE) ratio and the sensitivity 

ratio to respectively measure the performance in 

terms of RMSE and the robustness in terms of 

sensitivity of an underlying SSA-LSTM algorithm 

to the variations in the number of cells in the hidden 

layers of the LSTM parts of the SSA-LSTM 

algorithms.  

For computational tractability, we constrained 

the testing the LSTM structures with one hidden 

layer for the unstacked LSTM [6] structure and with 

two hidden layers for the stacked LSTM [25] 

structure. The turbofan engine datasets from 

Prognostics Center of Excellence (PCoE) at Ames 

Research Center [26] were used for all of the 

testings. The decomposed and reconstructed datasets 

for LSTM were compiled by SSA [21-23] using the 

process of prototype dataset selection following the 

methodology presented in [13, 14].  

The organization for the remaining of the paper 

is as follows. In Section 2, the definition of the 

Singular Spectrum Analysis (SSA) algorithm as well 

as that of the trajectory matrix of a dataset, the 

window length and the basis functions are presented. 

The Long Short Term Memory (LSTM) structures 

are also explained in this section. In Section 3, the 

SSA-LSTM algorithm of [13] for RUL estimation is 

revisited. Section 4 describes the metrics for 

robustness measuring, i.e., the RMSE ratio and the 

sensitive ratio of an optimized or a non-optimized 

SSA-LSTM algorithm. In Section 5, sensitivity 

testing and evaluation results are provided. Finally, 

the conclusion is provided in Section 6. For ease of 

reference, a list of symbols used in this paper is 

given in Table 1. 
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Table 1. The list of symbols 

Symbol Description 

𝑥(𝑡) 
𝑡 
𝑇 

𝐿 

 

𝐾 

𝑿 

𝑼, 𝑽 
𝑫 
𝜎 

𝜃𝑘(𝑡) 
�̂�(𝑡) 
𝑥′(𝑓)(𝑡) 
𝑥(𝑓)(𝑡) 
�̂�(𝑓)(𝑡) 
𝑥′(𝑅𝑈𝐿)(𝑡) 
�̂�(𝑅𝑈𝐿)(𝑡) 
𝑐(𝑡) 
ℎ(𝑡) 
𝑊 

𝑏 

𝑔(𝑡) 
𝑖(𝑡), 𝑓(𝑡), 𝑜(𝑡) 

 

𝑁,𝑀 

 

𝑛 

𝑚 

�̃�1, �̃�2 

 

�̃�1
2, �̃�2

2 

 

�̂� 

 

�̂�2 

 

∆𝐸 

∆𝜎2 

Time series data 

Index of time series data 

End of index of time series data 

Window length of the SSA algorithm 

 

Embedding dimension 

Trajectory matrix 

Eigenvector matrices of 𝑿 

Eigenvalue matrix of 𝑿 

Singular value of 𝑿 

The 𝑘𝑡ℎ basis function 

Total reconstruction of time series  

Raw feature data 

Normalized feature data 

Reconstructed feature data 

Raw RUL data 

RUL estimate 

Internal state of LSTM 

Hidden layer state of LSTM 

Weight parameter of LSTM 

Bias of gate of LSTM 

Input node of LSTM 

Input, forget and output gates of LSTM 

Network respectively 

Maximum of cells of unstacked and 

stacked LSTM respectively 

The 𝑛𝑡ℎ cell of unstacked LSTM 

The 𝑚𝑡ℎ cell of stacked LSTM 

Tests of RMSE of unstacked and 

stacked LSTM respectively 

Tests of variance of unstacked and 

stacked LSTM respectively 

The summation of errors of �̃�1 and �̃�2 

 

The summation of variances of �̃�1
2 and 

�̃�2
2 

The RMSE ratio 

The sensitivity ratio 

2. The methodologies of the singular 

spectrum analysis and the long short-

term memory neural networks 

2.1 The singular spectrum analysis (SSA) 

The Singular Spectrum Analysis (SSA) is a 

statistical model for analysis of general time series 

[21]. It can be applied to stationary as well as non-

stationary time series since no a priori information 

about the data structure is required [22, 23]. The 

singular value decomposition (SVD) [27] is the base 

model of SSA, and the trajectory matrix is applied to 

the process of SVD in the first step of SSA. 
The trajectory matrix of a times series 𝑥(𝑡), 𝑡 =

1,2, . . . , 𝑇, is arranged as an 𝐿 × 𝐾 Hankel matrix as 
 

𝑿 =

[
 
 
 
 
𝑥(1)  𝑥(2)         𝑥(3)         ⋯   𝑥(𝐾)        
𝑥(2)  𝑥(3)         𝑥(4)         ⋯   𝑥(𝐾 + 1)

𝑥(3)  𝑥(4)         𝑥(5)         ⋯   𝑥(𝐾 + 2)
⋮          ⋮                ⋮                 ⋱    ⋮               
𝑥(𝐿)  𝑥(𝐿 + 1) 𝑥(𝐿 + 2)  ⋯   𝑥(𝑇)        ]

 
 
 
 

  (1) 

 

where 𝐿 is the window length and 𝐾 is the 

embedding dimension which can be described as 

𝐾 = 𝑇 − 𝐿 + 1. The methods of selecting the 

optimized window length are proposed in [13] for 

𝐿 = 24, in [21] for 𝐿 = 𝑇/2, in [28] for 𝐿 = 𝑇/4 

and in [29] for 𝐿 = 𝑙𝑜𝑔 (𝑇)𝑐 . For the rest of the 

paper, the SSA-LSTM algorithm of [13] whose 

window lengths defined by these optimized window 

lengths are then called the optimized SSA-LSTM 

algorithms whereas those with any other window-

lengths are called the non-optimized SSA-LSTM 

algorithms.  

The singular value decomposition (SVD) of  𝐗 

can be derived as follows: 

 

𝑿 = 𝑼𝑫𝑽𝑇                           (2) 

 

where 𝑼 = (𝒖1, 𝒖2, ⋯ , 𝒖𝐿)  and 𝑽 =
(𝒗1, 𝒗2, ⋯ , 𝒗𝐾) are the left and right eigenvector 

matrices respectively. The matrix of eigenvalues is 

denoted as 𝑫 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, . . . , 𝜎𝐿), where 𝜎𝑖 is the 

𝑖𝑡ℎ element of 𝑫 [22], and the value of 𝜎𝑖 is ordered 

in the decreasing magnitude, i.e., 𝜎1 > 𝜎2 >, . . . , >
𝜎𝐿 [21]. 

The reconstruction of SSA for synthesis the one-

dimension time series by 𝑿𝑖 can be performed as 

grouping of matrix 𝑥𝑙,𝑘
(𝑖)

 where 𝑥(𝑖) is the group of 

the eigentriple 𝑿𝑖 from the set of indices 𝑖 = 1,… , 𝑑 

into 𝑚  disjoint subsets, i.e., 𝐼1, … , 𝐼𝑚, and 𝑑 =
𝑟𝑎𝑛𝑘(𝑿) is the number of nonzero eigenvalues 𝜎𝑖. 
The 𝑗𝑡ℎ subset has 𝑝 components, i.e., 𝐼𝑗 =

{𝑗1, … , 𝑗𝑝}. If 𝑚 = 𝑑, the grouping is called the 

elementary grouping and each group has only one 

member, i.e.,  𝐼𝑗 = {𝑗}, 𝑗 = 1,… , 𝑑.  So the 

trajectory matrix can be decomposed as 𝑿 = 𝑿𝐼1 +

⋯+ 𝑿𝐼𝑚  where 𝑿𝐼𝑗 = 𝑿𝑗1 +⋯+ 𝑿𝑗𝑝 . The diagonal 

averaging of 𝑥𝑙,𝑜
(𝑘)

, 1 ≤ 𝑙 ≤ 𝐿 and 1 ≤ 𝑜 ≤ 𝐾, of 

𝑿𝐼𝑘  for 𝐼𝑘 = 𝐼1, … , 𝐼𝑚 can provide the element of 

the one-dimension time series of SSA 𝜃𝑖(𝑡), 𝑖 =
1, . . . , 𝐿 and 𝑡 = 1, . . . , 𝑇, and the diagonal averaging 

operation is defined as: 

 

𝜃𝑘(𝑡) =

{
 
 

 
  

1

𝑡
∑ 𝑥𝑞,𝑡−𝑞+1                     

(𝑘) ; 1 ≤ 𝑡 < 𝐿 𝑡
𝑞=1

  
1

𝐿
∑ 𝑥𝑞,𝑡−𝑞+1                     

(𝑘) ; 𝐿 ≤ 𝑡 < 𝐾.𝐿
𝑞=1

1

𝑇−𝑡+1
∑ 𝑥𝑞,𝑡−𝑞+1

(𝑘) ; 𝐿 ≤ 𝑡 < 𝐾𝐿
𝑞=𝑡−𝐾+1

 (3) 
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where 𝜃𝑘(𝑡), 𝑘 = 1, . . . , 𝑚  and 𝑡 = 1, . . . , 𝑇, is 

denoted as the 𝑘𝑡ℎ basis function of the SSA 

decomposition, and the reconstruction of time series 

𝑥(𝑡) describes as the total of all order 𝜃𝑘(𝑡) at 𝑘 =
1, . . . , 𝑚 is determined by the summation of the basis 

functions, 

 

𝑥(𝑡) = ∑ 𝜃𝑘(𝑡)
𝑚
𝑘=1 .                      (4) 

2.2 The long short-term memory (LSTM) 

The Long Short-Term Memory (LSTM) is an 

upgraded type of Recurrent Neural Networks 

(RNNs) and was introduced by Hochreiter and 

Schmidhuber [6]. The diagram of an LSTM cell is 

described in Fig. 1. An LSTM network performs 

forgetting, ignoring and selecting operations 

involving previous cell state 𝑐(𝑡 − 1), the previous 

output of the hidden layer ℎ(𝑡 − 1) and the current 

input 𝑥(𝑡) to generate the prediction of the current 

cell state and the current hidden layer, 

i.e., 𝑐(𝑡), ℎ(𝑡), respectively. All the above-

mentioned operations are associated with weights 

for state (𝑊𝑥), weights for hidden layer input 

(𝑊ℎ) and bias of the gate (𝑏) and  nonlinear 

activation function either a tanh (𝜙) or a sigmoid 

(𝜎) function [8, 30]. 

From Fig. 1, the elements of the cell, i.e., input 

node 𝑔(𝑡), input gate 𝑖(𝑡), forget gate 𝑓(𝑡), internal 

state 𝑐(𝑡)  and output gate 𝑜(𝑡) , are described as 

follows [8]: 

 

𝑔(𝑡) =  ∅(𝑊𝑔𝑥𝑥(𝑡) +𝑊𝑔ℎℎ(𝑡 − 1) + 𝑏𝑔),   (5) 

 

𝑖(𝑡) =  𝜎(𝑊𝑖𝑥𝑥(𝑡) +𝑊𝑖ℎℎ(𝑡 − 1) + 𝑏𝑖),     (6) 

 

𝑓(𝑡) =  𝜎(𝑊𝑓𝑥𝑥(𝑡) +𝑊𝑓ℎℎ(𝑡 − 1) + 𝑏𝑓),   (7) 

 

𝑜(𝑡) =  𝜎(𝑊𝑜𝑥𝑥(𝑡) +𝑊𝑜ℎℎ(𝑡 − 1) + 𝑏𝑜),   (8) 

 

𝑐(𝑡) = 𝑔(𝑡)⨂𝑖(𝑡) + 𝑐(𝑡 − 1)⨂𝑓(𝑡),         (9) 

 

ℎ(𝑡) = ∅(𝑐(𝑡))⨂𝑜(𝑡),                  (10) 

 

( )x t

( 1)h t −

( 1)c t −

   



( )h t

( )c t

( )f t ( )i t
g(t) o(t)

fw iw
gw ow

Figure. 1 The diagram of an LSTM cell 

where ⨂ is the element wise multiplication  which 

plays an important role in an LSTM network. First, 

it acts like a gate to the memory section to 

remember in forgetting particular information. It is 

also used as a selection gate to filter unrelated 

information before being released as a prediction. 

Finally, it performs as an ignoring gate for 

unimportant information containing in the output. 
Three diagrams of LSTM structurers are shown 

in Fig. 2(a) to 2(c). In Fig. 2(a), an unstacked LSTM 

structure with 𝑁  LSTM cells is shown where cell 

(𝑁)  represent the 𝑁𝑡ℎ  cell. This is basically a 

cascaded version of multiple LSTM cells shown in 

Fig. 1. In Fig. 2(b), the stacked LSTM layer is 

described as the two hidden layers in LSTM neural 

networks and ℎ(1)(𝑡)  and ℎ(2)(𝑡)  are the output 

values of the first and second hidden layer 

respectively. In Fig. 2(c), the LSTM prediction 

network is set in the sequence to sequence 

prediction model by LSTM neural network [30]. 

3. The model for performance and 

robustness evaluation of the SSA-LSTM 

algorithm  

The amalgamation of the SSA and LSTM neural 

networks has been studied in [13, 14] resulting in 

the SSA-LSTM algorithm. The accuracy of RUL 

estimation of various algorithms is investigated in 

[13] where the comparison results show that LSTM 

can offer the best performance compared to other 

neural network structures. The RUL datasets of 

multiple turbofan engines time series [26] have the 

same trendy profiles and there are 200 datasets 

recorded from several sensors under different 

conditions of both normal and fault modes. In [14], 

the application of features for the turbofan datasets 

is described.  

Since the features of each sensor in dataset have 

different scales, normalization is needed before all 

the features are used. The normalized feature 

𝑥(𝑓)(𝑡) is represented as: 

 

𝑥(𝑓)(𝑡) =
𝑥′(𝑓)(𝑡)−𝑥′min

(𝑓) (𝑡)

𝑥′max
(𝑓) (𝑡)−𝑥′

min
(𝑓) (𝑡)

,                  (11) 

 

where 𝑥′(𝑓)(𝑡) is the raw feature data with its the 

minimum value and maximum value are described 

as 𝑥′min
(𝑓) (𝑡) and 𝑥′max

(𝑓) (𝑡) respectively. 

The normalized feature 𝑥(𝑓)(𝑡) is included in the 

first step of system model at process of SSA for 

RUL estimation by LSTM in Fig. 3. 

In Fig. 3, a structural illustration for the 

performance and robustness evaluation of the SSA- 
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Figure. 2 The diagram of: (a) the unstacked LSTM, (b) the stacked LSTM, and (c) the LSTM prediction 
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Figure. 3 The system model for performance and 

robustness evaluation of an SSA-LSTM algorithm 

 

LSTM algorithm of [13, 14] are shown where 

𝑥(𝑓)(𝑡) is the reconstructed feature from process of 

reconstruction of SSA, 𝑥′(𝑅𝑈𝐿)(𝑡) the raw RUL data 

and �̂�(𝑅𝑈𝐿)(𝑡) the result of RUL estimation by this 

system model. We use the root mean square error 

(RMSE) and the variance of the RMSEs as metrics 

for the performance evaluation. The RMSEs of an 

unstacked LSTM case with 𝑛 cells are denoted by 

the random variables 𝑅𝑀𝑆𝐸𝑛, 𝑛 = 1,… ,𝑁 where 𝑁 

is the maximun number of LSTM cells. The RMSEs 

for a stacked LSTM case with 𝑛 cells of the first 

hidden layer and 𝑚 cells of the second hidden layer 

are denoted by the random variable  𝑅𝑀𝑆𝐸𝑛
𝑚, 𝑛 =

1,… ,𝑁 and  𝑚 = 1,… ,𝑀  where 𝑁  and 𝑀  are the 

maximum numbers of the first hidden layer and the 

second hidden layer of LSTM cells respectively. 

4. The metrics of performance and 

robustness 

The performance and robustness of an SSA-

LSTM algorithm are evaluated by two metrics: The 

RMSE ratio and the sensitivity ratio. The RMSE 

ratio is the ratio of the total RMSE of the underlying 

SSA-LSTM algorithm to that of the baseline 

prototype dataset. The sensitivity ratio is the ratio of 

the total variance of the underlying SSA-LSTM 

algorithm to that of the baseline prototype dataset. 

Both metrics are evaluated as a result from varying 

the number of cells and/or the number of hidden 

layers of the LSTM part in the SSA-LSTM structure. 

For the unstacked LSTM case with 𝑁 cells, we 

first calculate the test of RMSE (�̃�1) which is 

basically the averaged RMSE of 𝑁 cells and the test 

of variance (�̃�1
2) as the variance of the RMSEs of 𝑁 

cells. The equations of �̃�1 and �̃�1
2 for the unstacked 
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LSTM architecture with 𝑁  cells are defined as 

follows:  

�̃�1 =
∑ 𝑅𝑀𝑆𝐸𝑛
𝑁
𝑛=1

𝑁
,                       (12) 

 

�̃�1
2 = 𝜎2(𝑅𝑀𝑆𝐸𝑁),                    (13) 

 

where 𝜎2(⋅) is the variance operator. For the stacked 

LSTM case with two hidden layers with 𝑁 and 𝑀 

cells for the first and second hidden layer 

repectively, the test of RMSE �̃�2 and the test of 

variance �̃�2
2  are derived by averaging respectively 

the test of RMSE �̃�1 Eq. (12) and the test of 

variance �̃�1
2 Eq. (13) up to 𝑀 cells of the second 

hidden layer: 

 

�̃�1
𝑚 =

∑ 𝑅𝑀𝑆𝐸𝑛
𝑚𝑁

𝑛=1

𝑁
,                      (14) 

 

�̃�2 =
∑ �̃�1

𝑚𝑀
𝑚=1

𝑀
,                          (15) 

 

�̃�2
2 =

∑ �̃�1
2,𝑚𝑀

𝑚

𝑀
,                          (16) 

 

where �̃�1
𝑚 is the average of �̃�1 of Eq. (12) and 

�̃�1
2,𝑚 is the test of variance Eq. (13) considered up to 

𝑚 cells of the second hidden layer. For the stacked 

LSTM case, the total RMSE and the total variance 

are first defined respectively as: 

 

�̂� = �̃�1 + �̃�2,                        (17) 

 

�̂�2 = �̃�1
2 + �̃�2

2,                       (18) 

 

where �̂� is the summation of errors of �̃�1 and �̃�2 

whereas �̂�2 the summation of variances of �̃�1
2 and 

�̃�2
2. Note that for the unstacked LSTM case, the total 

RMSE �̂� and the total variance �̂�2 are simply �̃�1 

and �̃�1
2 respectively. 

With Eqs. (17) and (18), we define �̂�(𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒) 

as the total RMSE and �̂�2(𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒)  the total 

variance derived from the prototype dataset. Also, 

we define  �̂�(𝑆𝑆𝐴−𝐿𝑆𝑇𝑀) as the total RMSE and 

�̂�2(𝑆𝑆𝐴−𝐿𝑆𝑇𝑀) as the total variance from any of an 

SSA-LSTM algorithm that uses either a non-

optimized (arbitrary) window length or an optimized 

window length from one of the algorithms proposed 

in [13, 21, 28, 39].  

We define the RMSE ratio (∆𝐸) as the ratio of 

�̂�(𝑆𝑆𝐴−𝐿𝑆𝑇𝑀) to �̂�(𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒) and the sensitivity ratio 

(∆𝜎2) as the ratio of �̂�2(𝑆𝑆𝐴−𝐿𝑆𝑇𝑀) to  

�̂�2(𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒), i.e.,  

∆𝐸 =
�̂�(𝑆𝑆𝐴−𝐿𝑆𝑇𝑀)

�̂�(𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒)
,                      (19) 

∆𝜎2 =
�̂�2(𝑆𝑆𝐴−𝐿𝑆𝑇𝑀)

�̂�2(𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒)
.                     (20) 

 

In Algorithm 1, the performance and robustness 

of the SSA-LSTM algorithms are evaluated by 

means of the RMSE ratio and the sensitivity ratio. 

At different combinations of the number of cells and 

the number of hidden layers of the LTSM part, the 

RMSE ratio and the sensitivity ratio of an SSA-

LSTM algorithm are computed for both the 

unstacked and stacked (with two hidden layers) 

LSTM structures. Algorithm 1 is divided into two 

conditions: the unstacked LSTM case and the 

stacked LSTM case. For the unstacked LSTM case, 

the number of hidden layer is one, i.e., 𝑖𝑚𝑎𝑥 =  1 

and the test of RMSE �̃�1 and the test of variance �̃�1
2 

are calculated by Eqs. (12) and (13) respectively. 

The RMSE ratio ∆𝐸 and the sensitivity ratio 

∆𝜎2 are then calculated by Eqs. (19) and (20) the 

maximum number of LSTM cells of the first hidden 

layer is 100 (𝑁 = 100). The second condition is for 

the stacked LSTM case where two hidden layers are 

considered, i.e., 𝑖𝑚𝑎𝑥 = 2. In this case, the 

algorithm first calculates �̃�𝑛
𝑚 and �̃�1

2,𝑚
 where the 

maximum number of LSTM cells of the first and the 

second hidden layers are 100 and 10 respectively, 

i.e., 𝑁 = 100 and 𝑀 = 10. The second step is to 

compute �̃�2 by Eq. (15) and �̃�2
2 by Eq. (16). The 

third step is summing the values of �̂� by Eq. (17) 

and �̂�2 by Eq. (18). 

 

Algorithm 1: Algorithm for evaluating the 

performance and robustness of the SSA-LSTM 

algorithm. 

Input:     𝑥(𝑓)(𝑡) // Feature time series data.  

   𝑥(𝑅𝑈𝐿)(𝑡) // RUL time series data. 

Define:   𝑥(𝑓)(𝑡) // Synthetic feature time series. 

   𝑖_𝑚𝑎𝑥 // The maximum number of hidden              

layers. 

   𝑛 // The 𝑛𝑡ℎ cell of the first hidden layer  

   𝑚 //The 𝑚𝑡ℎ cell of the second hidden 

layer. 

  𝑁 // The number of cells of the first hidden 

layer to be computed.   

   𝑀//The number of cells of the second 

hidden layer to be computed. 

   RMSE // Root mean square error. 

   �̃� // The test of RMSE. 

   �̃�2 // The test of variance. 

   �̂�// The accumulating error. 

   �̂�2// The accumulating variance.  
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Output: ∆𝐸 // the RMSE ratio. 

   ∆𝜎2 // the sensitivity ratio. 

Analysis and Synthesis of  𝑥(𝑓)(𝑡)  by SSA. 

Training LSTM neural network by 𝑥(𝑓)(𝑡) and  

𝑥′(𝑅𝑈𝐿)(𝑡). 
𝑖_𝑚𝑎𝑥 <=  2  

For 𝑚 to 10  

  For 𝑛 to 100 

     If 𝑖_𝑚𝑎𝑥 =  1 

         Evaluate error of testing LSTM neural network 

by 𝑅𝑀𝑆𝐸𝑛, 𝑛 = 1,… ,𝑁. 

       End 

       Else 

        Evaluate error of testing LSTM neural network 

by 𝑅𝑀𝑆𝐸𝑛
𝑚, 𝑛 = 1,… ,𝑁 and 𝑚 = 1,… ,𝑀. 

       End 

    End 

End 

Compute �̃�1 by (12) and �̃�1
2 by (13).  

Compute �̃�2 by (15) and �̃�2
2 by (16).  

Summing value of �̂� by (17) and �̂�2 by (18). 

Evaluate ∆𝐸 by (19) and ∆𝜎2 by (20). 

 

Finally, the last step is to evaluate the 

performance of the underlying SSA-LSTM in the 

RMSE ratio ∆𝐸 by Eq. (19) and in the sensitivity 

ratio ∆𝜎2 by Eq. (20) for different numbers of cells 

and hidden layers. The outputs ∆𝐸 and ∆𝜎2 are used 

to compare between the window length optimized 

and non-optimized SSA-LSTM algorithms as 

discussed in the next Section. 

5. Testing and evaluation results 

First, from the 200 turbofan engine datasets of 

[27], we selected a prototype as a dataset which 

provides the lowest RUL estimation error 

determined by the LSTM network [13]. The RMSEs 

of the RUL estimation of the prototype using an 

unstacked LSTM structure as the number of LSTM 

cells varied from one to 100 are plotted in Fig.4. 

This result showed that there was no straightforward 

relationship between the number of cells and the 

RMSE. It was noted that the maximum RMSE of 

27.49 was obtained at 93 cells and the minimum 

RMSE of 19.62 at 16 cells. 

We then tested the effect of the window length 

variations to the SSA-LSTM algorithms with the 

unstacked LSTM architecture in the LSTM part as 

the number of LSTM cells varied.  

First, we considered four methods of selecting 

the optimized window length from [13, 21, 28, 29] 
for the SSA part in the SSA-LSTM algorithm  
 

 
Figure. 4 The RMSE profile of estimated RUL for the 

prototype estimated by the LSTM algorithm as the 

number of LSTM cells varied from one to 100 
 

 
Figure. 5 The RMSE profiles of the estimated RULs 

for the prototype estimated by the SSA-LSTM algorithm 

as the number of LSTM cells varied from 1 to 100 of the 

four optimized window lengths, i.e., 𝐿 = 𝑇/2 [21], 𝐿 =
24 [13], 𝐿 = 𝑙𝑜𝑔 (𝑇)𝐶  [29] and 𝐿 = 𝑇/4 [28] and two 

non-optimized ones, i.e., 𝐿 = 1 and 𝐿 = 𝑇 − 1 

 

 

described in [13]. The first optimized SSA-LSTM 

uses the window length 𝐿 = 𝑇/2 from [21] where 

the second to the fourth ones were 𝐿 = 24 [13], 𝐿 =
𝑙𝑜𝑔 (𝑇)𝐶 [29] and 𝐿 = 𝑇/4 [28] respectively. We 

from now on call the SSA-LSTM algorithm of [13] 

with its window length 𝐿 in the SSA part from [13], 

[21], [28], or [29] as the optimized SSA-LSTM 

algorithm. 

For arbitrary window length 𝐿 SSA-LSTM, it is 

called as the non-optimized SSA-LSTM algorithm. 

To compare with the optimized SSA-LSTM, we 

adopted 𝐿 = 1 and 𝐿 = 𝑇 − 1 for the non-optimized 

SSA-LSTM algorithms. The choice of 𝐿 = 1  was 

chosen to revert the non-optimized SSA-LSTM 

algorithm to the prototype-based LSTM algorithm 

and 𝐿 = 𝑇 − 1 was the largest window length that 

can be taken. 

In Figure. 5, the RMSE profiles of the estimated 

RUL results of the four optimized SSA-LSTM 

algorithms with 𝐿 = 𝑇/2  [21], 𝐿 = 24  [13], 𝐿 =
𝑙𝑜𝑔 (𝑇)𝐶  [29] and 𝐿 = 𝑇/4  [28] and two non-

optimized SSA-LSTM algorithms, i.e., 𝐿 = 1  and 

𝐿 = 𝑇 − 1, are shown as the number of cells varied 

from 1 to 100. It was shown that, as the number of 

LSTM cells varied, the RMSE plots of the non-

optimized SSA-LSTM algorithms were highly 

fluctuated while those of the optimized SSA-LSTM  
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(a)                                                                                                        (b) 

 
(c)                                                                                                        (d) 

 
(e)                                                                                                        (f) 

Figure. 6 The RMSE profiles of the estimated RULs of the optimized and non-optimized SSA-LSTM algorithms with 

the two hidden layered stacked LSTM architecture. All plots are performed as the numbers of cells of both hidden layers 

vary where 𝑛 and 𝑚 as the number of cells in first layer and in second layer respectively. The maximum number of cells 

of first layer is 100 and that of the second layer is 10. The RMSE plots of the non-optimized SSA-LSTM algorithms are 

shown in (a) for 𝐿 = 1 and in (f) for 𝐿 = 𝑇 − 1 and those of the optimized SSA-LSTM algorithms are shown in (b) for 

𝐿 = 𝑇/2, in (c) for 𝐿 = 24, in (d) for 𝐿 = 𝑙𝑜𝑔 (𝑇)2.3 and in (e) for 𝐿 = 𝑇/4 

 

 
Table 2. The test of variance (�̃�2) for RMSEs of 

estimated RULs for a prototype with the optimized SSA-

LSTM algorithms, i.e., 𝐿 = 𝑇/2 [21], 𝐿 = 24 [13], 𝐿 =
𝑙𝑜𝑔 (𝑇)𝐶 [29] and 𝐿 = 𝑇/4 [28] and two non-optimized 

SSA-LSTM algorithms, i.e., 𝐿 = 1 and 𝐿 = 𝑇 − 1, as the 

number of LSTM cells varied from 1 to 100 

Algorithms �̃�2 

𝐿 = 1 3.657 

𝐿 = 𝑇/2  0.213 

𝐿 = 24 0.136 

𝐿 = 𝑙𝑜𝑔 (𝑇)2.3 0.140 

𝐿 = 𝑇/4  0.163 

𝐿 = 𝑇 − 1 3.233 

 

 

ones were mostly leveled off. It was also interesting 

to see that the RMSEs of the four optimized SSA-

LSTM algorithms were significantly lower than 

those of the two non-optimized ones. As compared 

to all algorithms, the non-optimized 𝐿 = 1 SSA-

LSTM algorithm produced the highest RMSEs for 

all numbers of cells and was followed by the 𝐿 =
𝑇 − 1 non-optimized one. In contrast, the optimized 

SSA-LSTM algorithm with 𝐿 = 24 from [13] 

offered the lowest RMSEs for all numbers of cells in 

both hidden layers. 

We then performed the test of variance of the 

RMSEs (�̃�2) by (13) for all algorithms and the 

results are shown in Table 2. It was clearly shown 

that �̃�2 of all the optimized SSA-LSTM algorithms 

were significantly lower than those of the 𝐿 = 1 and 

𝐿 = 𝑇 − 1 non-optimized ones. Also, of all the 

optimized counterparts, �̃�2 of the 𝐿 = 24 optimized 

SSA-LSTM algorithm from [13] was the lowest.  

We then progressed to consider the effect of the 

window length to the SSA-LSTM algorithm with 

the stacked LSTM architecture as the number of 

cells for both hidden layers varied. In this case, the 

RMSEs of the RUL estimates derived from four 

optimized and two non-optimized SSA-LSTM 

algorithms were evaluated at the combinational 

number of cells of both hidden layers. The RMSE 

profiles of each algorithm are plotted in Fig. 6(a) to 

6(f) where the maximum number of cells in the first 

hidden layer was 100 and that of the second hidden 

layer was 10. The RMSE profiles of the non-

optimized SSA-LSTM algorithms are shown in Fig. 

6(a) and 6(f) for 𝐿 = 1 and 𝐿 = 𝑇 − 1 respectively 

whereas those for the optimized ones are shown in 

Fig. 6(b), 6(c), 6(d) and 6(e) for 𝐿 = 𝑇/2, 𝐿 = 24, 

𝐿 = 𝑙𝑜𝑔 (𝑇)2.3and 𝐿 = 𝑇/4 respectively. Two 

remarks can be made from Fig. 6(a) to 6(f). First, it 

is clearly shown that the RMSE profiles of the 

optimized SSA-LSTM algorithms as shown in Fig. 

6(b) to 6(e) were significantly lower than those of 

 



Received:  May 11, 2022.     Revised: June 29, 2022.                                                                                                       373 

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022           DOI: 10.22266/ijies2022.1031.32 

 

 
Figure. 7 The estimated RULs of the four optimized and the two non-optimized SSA-LSTM algorithms with the 

unstacked LSTM architecture are plotted in comparison with the true RULs plotted in the black solid lines. All the plots 

in the left column are for 𝑛 = 16 and those in the right column are for 𝑛 = 93. The plots in both columns of the first row 

to the sixth row in both columns are for the 𝐿 = 1, 𝐿 = 𝑇/2, 𝐿 = 24, 𝐿 = 𝑙𝑜𝑔 (𝑇)2.3, 𝐿 =  𝑇/4 and 𝐿 = 𝑇 − 1 

respectively 

 

 
Figure. 8 The estimated RULs of the four optimized and the two non-optimized SSA-LSTM algorithms with the 

stacked LSTM structure are plotted in comparison with the true RULs plotted in the black solid lines. All the plots in the 

left column are for 𝑛 = 16 and 𝑚 = 4 and those in the right column are for 𝑛 = 16 and 𝑚 = 9. The plots in both 

columns of the first row to the sixth row in both columns are for the 𝐿 = 1, 𝐿 = 𝑇/2, 𝐿 = 24, 𝐿 = 𝑙𝑜𝑔 (𝑇)2.3, 𝐿 =  𝑇/4 

and 𝐿 = 𝑇 − 1 respectively 
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the non-optimized ones in Fig. 6(a) and 6(f). 

Second, the RMSE profiles of all the optimized 

SSA-LSTM algorithms were much more leveled off 

than those of the non-optimized ones. Both remarks 

leads to a suggestion that, once the window length L 

is optimized, the SSA-LSTM algorithm can be much 

less sensitive to the choice of combinational 

numbers of LSTM cells of either layers. 

To illustrate the relationship between the 

performance in RUL estimation and the number of 

cells in the hidden layers of the LSTM part, the 

estimated RULs of the optimized and non-optimized 

SSA-LSTM algorithms were compared with the true 

RUL evaluated with the unstacked and stacked 

LSTM structures in Fig. 7 and 8 respectively. In 

Fig.7, the unstacked LSTM case, the number of 

LSTM cells 𝑛 was chosen according to the 

prototype-based LSTM algorithm in Fig. 4 where 

𝑛 = 16 was associated with the best performance 

and 𝑛 = 93 with the worst performance. It was 

noticed that for the 𝐿 = 1 and 𝐿 = 𝑇 − 1 non-

optimized SSA-LSTM algorithms with larger 

numbers of cells at 𝑛 = 93, all the plots of are 

noisier than those with smaller number of cells at 

𝑛 = 16. However, the RUL estimates for an 

optimized SSA-LSTM algorithm at the numbers of 

cells at 𝑛 = 16 and at 𝑛 = 93 were comparable to 

each other and were also noticeably less noisy than 

those of their non-optimized counterparts. 

 

 
(a) 

 
(b) 

 
Figure. 9 (a) The tests of variance and (b) the tests of 

RMSE of the non-optimized (𝐿 = 1 and 𝐿 = 𝑇 − 1) and 

the optimized (𝐿 = 𝑇/2, 𝐿 = 24, 𝐿 = 𝑙𝑜𝑔 (𝑇)2.3 and 𝐿 =
𝑇/4) SSA-LSTM algorithms are shown for the unstacked 

and the stacked LSTM structures 

 

 
Figure. 10 The RMSE ratio and the sensitivity ratio of 

all SSA-LSTM algorithms are shown of the stacked 

LSTM architecture 

 

Similar to the unstacked LSTM case in Fig. 7, 

the estimated RULs of all SSA-LSTM algorithms 

with the stacked LSTM architecture were compared 

for two combinational numbers the same numbers of 

cells of in the first and second hidden layers are 

plotted in Fig. 8. 

In Fig. 8, those of the stacked SSA-LSTM 

algorithms with 𝑛 = 16 and 𝑚 = 4 are plotted in 

the left column and those with 𝑛 = 16 and 𝑚 = 4 

are in the right column. Note that for both of the 

non-optimized 𝐿 = 1 and 𝐿 = 𝑇 − 1 SSA-LSTM 

algorithms, the RUL estimates at the larger number 

of cells in the second hidden layer (𝑛 = 16 and 𝑚 =
9) were noisier than those at the smaller one (𝑛 =
16 and 𝑚 = 4). For any of the optimized SSA-

LSTM algorithms, however, the level of noise of 

their RUL estimates were comparable regardless of 

the number of cells of the second hidden layer. Also, 

as in the unstacked case, the RUL estimates were 

also noticeably less noisy than those of the non-

optimized counterparts.  

For the non-optimized SSA-LSTM algorithms, 

both Fig. 7 and 8 show that there is no 

straightforward relationship between the number of 

LSTM cells in either hidden layers and their RUL 

estimation performance: Using more cells does not 

guarantee a better performance. However, the 

performance in RUL estimation of the optimized 

SSA-LSTM algorithm was not sensitive to the 

choices of the numbers of cells in either hidden 

layers. 

In Fig. 9 (a) and (b), the test of variance and the 

test of RMSE of all SSA-LSTM algorithms are 

shown respectively. Note that the 𝑦-axes of the plots 

in Fig. 9 (a) and 9(b) are in logarithmic scales in 

order to cover large differences of the maximum and 

the minimum values produced by all algorithms. In 

Fig. 9(a), the tests of variance of each algorithm for 

the unstacked (�̃�1
2) and the stacked (�̃�2

2) LSTM 

structures were computed by Eqs. (13) and (16) 
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Table 3. The test of variance (�̃�2) and the test of RMSE 

(�̃�) of each SSA-LSTM algorithm for the unstacked 

(�̃�1
2 and �̃�1) and stacked (�̃�2

2 and �̃�2) LSTM structures 

Algorithm �̃�2 �̃� 

�̃�1
2  �̃�2

2 �̃�1    �̃�2 

𝐿 = 1 9.024 3.657 19.824 18.418 

𝑇/2 0.255 0.213 7.618 7.196 

𝐿 = 24  0.176 0.136 2.346 2.159 

𝐿 = 𝑙𝑜𝑔 (𝑇)2.3 0.191 0.140 4.618 4.138 

L=T/4  0.211 0.163 6.674 6.316 

L=T-1 8.31 3.233 16.298 15.312 

 

Table 4. The total RMSE (�̂�) and the total variance 
(�̂�2) of each SSA-LSTM algorithm for the stacked LSTM 

architecture 
Algorithm �̂� �̂�2 

𝐿 = 1 38.242 1.442 

𝑇/2 14.814 0.753 

𝐿 = 24 4.505 0.405 

𝐿 = 𝑙𝑜𝑔 (𝑇)2.3 8.756 0.674 

𝐿 = 𝑇/4 12.99 0.497 

𝐿 = 𝑇 − 1 31.61 1.297 

 

Table 5. The RMSE ratio (∆𝐸) and the sensitivity ratio 

(∆𝜎2) 
Algorithm ∆𝐸  ∆𝜎2 

𝐿 = 1 100% 100% 

𝑇/2 38.737% 2.067% 

𝐿 = 24 11.780% 1.444% 

𝐿 = 𝑙𝑜𝑔 (𝑇)2.3 22.896% 1.555% 

𝐿 = 𝑇/4 33.967% 1.495% 

𝐿 = 𝑇 − 1 82.657% 50.893% 

 

 

respectively. Both �̃�1
2 and �̃�2

2 of all the optimized 

SSA-LSTM algorithms, i.e., 𝐿 = 𝑇/2, 𝐿 = 24, 𝐿 =
𝑙𝑜𝑔 (𝑇)2.3 and 𝐿 = 𝑇/4, were much lower than 

those of the 𝐿 = 1 and 𝐿 = 𝑇 − 1 non-optimized 

ones and were comparable to each other for the 

same unstacked or stacked architecture. The 

numerical values of �̃�1
2 and �̃�2

2 of all algorithms are 

listed in Table.3. The 𝐿 = 24 optimized SSA-LSTM 

algorithm produced the lowest �̃�1
2 and �̃�2

2 at 0.176 

and 0.136 respectively.  

The test of RMSE of each algorithm for the 

unstacked (�̃�1) and the stacked (�̃�2) LSTM 

structures as computed by Eqs. (12) and (15) 

respectively are shown in Fig. 9 (b). Similar to the 

case of the test of variance, both �̃�1 and �̃�2 of all the 

optimized SSA-LSTM algorithms, i.e., 𝐿 = 𝑇/2, 

𝐿 = 24, 𝐿 = 𝑙𝑜𝑔 (𝑇)2.3 and 𝐿 = 𝑇/4, were much 

lower than those of the 𝐿 = 1 and 𝐿 = 𝑇 − 1 non-

optimized ones. However, unlike in the case of the 

tests of variance, the plots of �̃�1 and �̃�2 of all the 

optimized SSA-LSTM algorithms in the same 

unstacked or stacked architecture exhibited 

fluctuations with the 𝐿 = 24 optimized SSA-LSTM 

algorithm produced the lowest �̃�1 and �̃�2 at 2.346 

and 2.159 respectively. 

Next, we investigated the RMSE ratio and the 

sensitivity ratio of all algorithms. In order to do that, 

the total RMSE and the total variance of the SSA-

LSTM algorithm must be first evaluated. The total 

RMSE �̂� was derived from the tests of RMSE �̃�1 

and �̃�2 as in Eq. (17), whereas the total variance �̂�2 

was from the tests of variance �̃�1
2 and �̃�2

2 as in Eq. 

(18). Both �̂� and �̂�2 for all SSA-LSTM algorithms 

are shown in Table 4. 

The RMSE ratio ∆𝐸 and the sensitivity ratio 

∆𝜎2 were then calculated from �̂� and �̂�2 in Eqs. 

(19) and (20) respectively. For relative comparisons, 

the values of ∆𝐸 and ∆𝜎2 were normalized by those 

of the 𝐿 = 1 non-optimized SSA-LSTM algorithm 

which were at the maximum. All the RMSE ratios 

and the sensitivity ratios were ranging from 0% to 

100% in the percentage form. All ∆𝐸 and ∆𝜎2 are 

plotted in the logarithmic scale as in Fig.10 and their 

values are shown in Table 5. It was shown how the 

optimized and non-optimized SSA-LSTM 

algorithms responded differently to the variation in 

the number of cells. Both the RMSE ratio and 

sensitivity ratio of any of the optimized SSA-LSTM 

algorithms were lower than those of the non-

optimized counterparts. The RMSE ratios ∆𝐸 of the 

optimized SSA-LSTM algorithms were ranging 

from 11.780% for L=24 to 38.737% for 𝐿 = 𝑇/2 as 

compared to those of the non-optimized counterparts 

which were 100% for 𝐿 = 1 and 82.657% for 𝐿 =
𝑇 − 1. More interestingly, the sensitivity ratios ∆𝜎2 

derived from the non-optimized and the optimized 

SSA-LSTM algorithms can differ by an order of 

magnitude. The sensitivity ratios ∆𝜎2 of the 

optimized SSA-LSTM algorithms were ranging 

from 1.444%% for 𝐿 = 24 to 2.067% for 𝐿 = 𝑇/2 

as compared to those of the non-optimized 

counterparts which were 100% for 𝐿 = 1 and 

50.893% for 𝐿 = 𝑇 − 1. 

6. Conclusion 

In this paper, we studied the performance and 

robustness in RUL estimation by using the turbofan 

engines datasets [26] of the optimized and non-

optimized SSA-LSTM algorithms of [13]. The 

effects of the window length optimization to the 

performance and robustness of the SSA-LSTM 

algorithms under the variation of the number of cells 

and the numbers of hidden layers of the LSTM 

structures were investigated.   
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For the optimized SSA-LSTM algorithms, their 

window lengths 𝐿 were derived from one of the 

optimized window lengths proposed in [13, 21, 28, 

29]. The optimized window lengths for RUL 

estimation of the turbofan engines datasets [26] for 

[13, 21, 28, 29] were 𝐿 = 24, 𝐿 = 𝑇/2, 𝐿 = 𝑇/4 

and 𝐿 = 𝑙𝑜𝑔 (𝑇)𝑐 respectively. For a non window-

length optimized SSA algorithm, the window length 

𝐿 can be any number from 1 to 𝑇 − 1 where 𝐿 = 1 

and 𝐿 = 𝑇 − 1 were chosen in this paper. The 

choice of 𝐿 = 1 was coincided with the method of 

selecting the prototype which offers the lowest RUL 

estimation error [13] and 𝐿 = 𝑇 − 1 was the largest 

window length that can be chosen.  

By using the RMSE ratio ∆𝐸 and the sensitivity 

ratio ∆𝜎2, the performance and the robustness of the 

SSA-LSTM algorithms can be quantified. It was 

shown that the values of ∆𝐸 and ∆𝜎2 of the 

optimized SSA-LSTM algorithms were much lower 

than the non-optimized counterparts. In fact, the 

values of ∆𝜎2 derived from the non-optimized and 

the optimized SSA-LSTM algorithms can differ by 

an order of magnitude.  In terms of the RMSE ratio, 

it is then confirmed that the optimized SSA-LSTM 

algorithms using the optimized window lengths of 

[13], [21], [28] or [29] can perform much better than 

their non-optimized window length counterparts. 

Likewise, in terms of the sensitivity ratios, the 

optimized SSA-LSTM algorithms exhibit their 

robustness to the perturbation caused by the 

variation is the numbers of cells of both unstacked 

and stacked LSTM structures. To summarize, the 

SSA-LSTM algorithm can better perform and is 

more robust by using any of the window length 

optimization method chosen from [13], [214 [28] or 

[29] than those without any optimization. Among all 

the algorithms being evaluated, the 𝐿 = 24 

optimized SSA-LSTM algorithm of [13] provided 

the best performance in terms of both the RMSE 

ratio and the sensitivity ratio and hence confirming 

its best performance and robustness for RUL 

estimation.  

Conflicts of Interest 

The authors declare no conflict of interest.  

Author Contributions 

The software, formal analysis and synthetic, 

testing, investigation, evaluation system, resources 

management, data curation, writing—original draft 

preparation and editing visualization have been done 

by 1st author. The paper conceptualization, 

methodology, writing—review, editing, validation 

content, supervision and project administration have 

been done by 2nd author. 

References 

[1] T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, 

R. P. Francisco, J. P. Basto, and S. G. S. Alcala, 

“A systematic literature review of machine 

learning methods applied to predictive 

maintenance”, Computers & Industrial 

Engineering, Vol. 137, p. 106024, 2019. 

[2] F. Ahmadzadeh and J. Lundberg, “Remaining 

useful life estimation: review”, International 

Journal of System Assurance Engineering and 

Management, Vol. 5, No. 4, pp. 461-474, 2013. 

[3] J. Carroll, S. Koukoura, A. McDonald, A. 

Charalambous, S. Weiss, and S. McArthur, 

“Wind turbine gearbox failure and remaining 

useful life prediction using machine learning 

techniques”, Wind Energy, Vol. 22, No. 3, pp. 

360-375, 2019. 

[4] S. Seluck, “Predictive maintenance, its 

implementation and latest trends”, In: Proc. of 

the Institution of Mechanical Engineers, Part 

B: Journal of Engineering Manufacture, Vol. 9, 

pp. 1670-1679, 2017. 

[5] Y. Wanga, Y. Zhaoa, and S. Addepalli, 

“Remaining Useful Life Prediction using Deep 

Learning Approaches: A Review”, In: Proc. of 

8th International Conf. on Through-Life 

Engineering Service – TESConf. 2019, pp. 81-

88, 2019. 

[6] S. Hochreiter and J. Schmidhuber, “Long short-

term memory”, Neural Computation, Vol. 9, 

No. 8, pp. 1735-1780, 1997. 

[7] J. T. Connor, R. D. Martin, and L. E. Atlas, 

“Recurrent Neural Networks and Robust Time 

Series Prediction”, IEEE Transactions on 

Neural Networks, Vol. 5, No. 2, pp. 240-254, 

1994. 

[8] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of 

recurrent neural networks: LSTM cells and 

network structures”, Neural Computation, Vol. 

31, No. 7, pp. 1235-1270, 2019. 

[9] Y. Cheng, J. Wu, H. Zhu, S. W. Or, and X. 

Shao, “Remaining Useful Life Prognosis Based 

on Ensemble Long Short-Term Memory Neural 

Network”, IEEE Transactions on 

Instrumentation and Measurement, Vol. 70, pp. 

1-12, 2020. 

[10] B. Chinomona, C. Chung, L. K. Chang, W. C. 

Su, and M. C. Tsai, “Long Short-Term Memory 

Approach to Estimate Battery Remaining 

Useful Life Using Partial Data”, IEEE Access, 

Vol. 8, pp. 165419-165431, 2020. 



Received:  May 11, 2022.     Revised: June 29, 2022.                                                                                                       377 

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022           DOI: 10.22266/ijies2022.1031.32 

 

[11] J. Zhang, P. Wang, R. Yan, and R. X. Gao, 

“Long short-term memory for machine 

remaining life prediction”, Journal of 

Manufacturing Systems, Vol. 48, pp. 78-86, 

2018. 

[12] Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu, 

“Remaining Useful Life Estimation of 

Engineered Systems using vanilla LSTM 

Neural Networks”, Neurocomputing, Vol. 275, 

pp. 167-179, 2018. 

[13] P. Intachai and P. Yuvapoositanon, “A 

Prototype Similarity-based System for 

Remaining Useful Life Estimation for Future 

Industry by Singular Spectrum Analysis-Long 

Short Term Memory Neural Networks 

Algorithm”, Journal of Mobile Multimedia, Vol. 

16, No. 1-2, pp. 181-202, 2020. 

[14] P. Yuvapoositanon and P. Intachai, “A Singular 

Spectrum Analysis-based Synthetic Dataset 

Generation Method for Remaining Useful Life 

Estimation of Turbo Fan Engines”, 

International Journal of Intelligent Engineering 

and Systems, Vol. 14, No. 4, pp. 359-372, 2021, 

doi: 10.22266/ijies2021.0831.32. 

[15] Y. Zhang, R. Xiong, and H. He, “Long short-

term memory recurrent neural network for 

remaining useful life prediction of lithium-ion 

batteries”, IEEE Transactions on Vehicular 

Technology, Vol. 67, No. 7, pp. 5695-5705, 

2018. 

[16] S. Xiang, Y. Qin, C. Zhu, Y. Wang, and H. 

Chen, “Long short-term memory neural 

network with weight amplification and its 

application into gear remaining useful life 

prediction”, Engineering Applications of 

Artificial Intelligence, Vol. 91, p. 103587, 2020. 

[17] A. Z. Hinchi and M. Tkiouat, “Rolling element 

bearing remaining useful life estimation based 

on a convolutional long-short-term memory 

network”, Procedia Computer Science, Vol. 

127, pp. 123-132, 2018. 

[18] D. Meyer, F. Leisch, and K. Hornik, “The 

support vector machine under test”, 

Neurocomputing, Vol. 55, No. 1-2, pp. 169-186, 

2003. 

[19] J. Liu, Q. Li, W. Chen, Y. Yan, Y. Qiu, and T. 

Cao, “Remaining useful life prediction of 

pemfc based on long short-term memory 

recurrent neural networks”, International 

Journal of Hydrogen Energy, Vol. 44, No. 11, 

pp. 5470-5480, 2019. 

[20] R. H. Nielsen, “Theory of the backpropagation 

neural network”, Neural Networks for 

Perception, pp. 65-93, 1992. 

[21] N. Golyandina and A. Zhigljavsky, “Basic 

SSA”, Singular Spectrum Analysis for Time 

Series, Springer Science and Business Media, 

Ch. 2, pp. 11-90, 2013. 

[22] N. Golyandina and A. Korobeynikov, “Basic 

singular spectrum analysis and forecasting with 

r”, Computational Statistics & Data Analysis, 

Vol. 71, pp. 934-954, 2014. 

[23] H. Hassani and R. Mahmoudvand, 

“Applications of Singular Spectrum Analysis”, 

Singular Spectrum Analysis: Using R, Springer 

Business and Economics, Ch. 3, pp. 87-102, 

2018. 

[24] Y. Zhang, P. Hutchinson, N. A. J. Lieven, and J. 

N. Yanez, “Remaining Useful Life Estimation 

Using Long Short-term Memory Neural 

Networks and Deep Fusion”, IEEE Access, Vol. 

8, pp. 19033-19045, 2020. 

[25] A. Graves, A. Mohamed, and G. Hinton, 

“Speech recognition with deep recurrent neural 

networks”, In: Proc. of 2013 IEEE 

International Conf. on Acoustics, Speech and 

Signal Processing, pp. 6645-6649, 2013. 

[26] NASA, “Prognostics Center of Excellence Data 

Repository”, Turbofan Engine Degradation 

Simulation Data Set, Accessed on: Apr. 7, 2022. 

[Online]. Available: https://ti.arc.nasa.gov/tech/ 

dash/groups/pcoe/prognostic-data-repository/. 

[27] V. Klema and A. Laub, “The singular value 

decomposition: Its computation and some 

applications”, IEEE Transactions on Automatic 

Control, Vol. 25, No. 2, pp. 164-176, 1980. 

[28] J. B. Elsner and A. A. Tsonis, “Foundations of 

SSA”, Singular Spectrum Analysis: a New Tool 

in Time Series Analysis, Springer Science and 

Business Media, Ch. 4, pp. 39-50, 2013. 

[29] M. A. R. Khan and D. Poskitt, “Window length 

selection and signal-noise separation and 

reconstruction in singular spectrum analysis”, 

Monash Econometrics and Business Statistics 

Working Papers, Vol. 23, No. 11, pp. 2011-23, 

2011. 

[30] N. K. Manaswi, “RNN and LSTM”, Deep 

Learning with Applications Using Python, Ch. 

9, pp. 115-126, 2018. 


