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Abstract: This paper discusses the best path planning algorithm for an autonomous mobile robot in an unknown 

environment with irregular static and dynamic obstacles and a static and dynamic target based on the improved COOT 

(ICOOT) optimization algorithm. The ICOOT overcomes the drawbacks of unstable searches in the conventional 

COOT. The path planning problem is solved by finding the collision-free path between multi-objective shortest path 

and smoothness. The ICOOT tries to imitate the real world by adding the mobile robot's actual size and the kinematic 

model with specifications for mobile robots. In order to evaluate the proposed algorithm, thirteen benchmark test 

functions are used to make a comparison with 30, 100, and 500 dimensions. To test the efficiency of the proposed 

technique, results are compared with five swarm optimization algorithms. The standard deviation results show that the 

proposed algorithm gets the best results in 84% of the thirteen test functions for 30 dimensions and 92% for 100 and 

500 dimensions. Also, in four complex maps (10×10) m, the mean results show that this method is very useful for 

robot paths from the start to the target, and the mean distance for ten runs is 13.3797 m for map 1, 13.5164 m for map 

2, and 11.9312 m for map 3, and 16.3937 m for map 4. It showed how well it could move quickly and easily around 

both fixed and moving obstacles. 

Keywords: Robot path planning, Multi-objectives, COOT optimization algorithm, Shortest distance, Path smoothness, 

Obstacle detection, Obstacle avoidance. 

 

 

1. Introduction 

Autonomous mobile robot (AMR) navigation is 

used in an enormous range of applications, including 

mining, search and rescue, military, agricultural, 

healthcare, and entertainment [1]. Three key concerns 

must be addressed when dealing with robot 

navigation (RN) issues: safety, accuracy, and 

efficiency. Finding a collision-free path and 

following the precise addressed path are the safety 

and accuracy concerns. Efficiency means that the 

algorithm doesn't let robots stop and turn over and 

over again. This wastes time and energy. RN 

problems can be classified into localization, path 

planning, cognitive mapping, and motion control. 

Among these problems, it can be said that path 

planning is the most important point in the RN. The 

goal of path planning is to find the best and most 

direct path that is free of collisions from a start 

position to a target in a given environment. Generally, 

there are several ways for a robot to reach a target, 

but the best path is chosen based on a set of criteria 

[2]. 

In the 1960s, the field of robot path planning 

(RPP) was started, and numerous methodologies such 

as cell decomposition [3], roadmap approaches [4], 
and potential fields [5] have been proposed. The main 

disadvantages of the above algorithms are their 

inefficiency (the cost of computation is considerable) 

and inaccuracy (a significant risk of becoming 

trapped in relative minima). Different heuristic 

methods, such as the use of neural networks, genetics, 

and nature-inspired algorithms, can be used to 

overcome the limitations of these algorithms [6].  
Depending on the environment where the robot is 

situated, RPP may be classified into two categories: 

static (environment with fixed obstacles) and 



Received:  May 28, 2022.     Revised: July 17, 2022.                                                                                                        549 

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022           DOI: 10.22266/ijies2022.1031.48 

 

dynamic (the environment has moving obstacles). 

Each of these two categories could be divided further 

into subgroups, global path planning (GPP), where 

the entire information of fixed and moving obstacles 

can be known ahead of time; Thus, the GPP can be 

prepared before the robot begins to move (offline), 

and there is a local path planning (LPP). Here, it is 

not possible to get information about the environment 

in advance. So, there are sensors (online) that collect 

information about what is around the mobile robot as 

it moves through the world [7]. 

Some of the related works are described below. 

In [8] it was proposed to improve the traditional ACO 

to avoid being trapped in local minimums or the 

slower convergence during the process of path 

planning. In [9], a new strategy based on adaptive 

particle swarm optimization (APSO) is described for 

solving the problem of mobile RPP. The APSO 

algorithm is more intelligent than the traditional PSO 

algorithm and is commonly utilized to solve real-time 

problems. It is hoped that a new strategy will help the 

robot avoid obstacles and get to its goal faster. In the 

work [10], a group of mobile robots presents a unique 

odor source localization approach based on the 

cuckoo search algorithm. It employs a robot that 

identifies the highest gas concentration among all 

robots in order to send other robots to look for odor 

sources upwind. The robots can use this method to 

get away from both local high concentration and eddy 

locations. The research [11] develops a new 

algorithm based on the bacterial foraging 

optimization (BFO) technique. It uses particles that 

are spread out in a circle around the robot to figure 

out a way to get to the target and avoid the obstacles 

in its way. The goal of the paper [12] is to plan a path 

for mobile robots that avoids obstacles based on the 

artificial immune algorithm (AIA) based on the 

principle of immunity. Simulated results show that 

the mobile robot can avoid obstacles, escape traps, 

and reach its goal by using AIA. The goal of this 

study is to use the artificial immune algorithm (AIA) 

created from the immune principle to plan an 

obstacle-avoiding path for mobile robots. Simulated 

results show that the mobile robot can avoid obstacles, 

escape traps, and reach its goal by using AIA. A novel 

multi-objective method for optimal mobile robot path 

planning based on the Whale optimization algorithm 

(WOA) has been proposed [13]. In WOA, the 

distance and smoothness of the robot's path planning 

issues are transformed into minimization ones. In 

each iteration, the robot chooses the best whale and 

moves toward it in order. GA has been widely applied 

to path optimization problems [14]. The new 

proposed crossover operator avoids premature 

convergence and makes possible paths that have 

better fitness values than their parents. A fuzzy logic 

controller [15] has been implemented in I robot create 

(a mobile robot) by interfacing with the arduino uno. 

When the robot moves, fuzzy rules are used to control 

how fast the robot moves on its left and right wheels. 

The hybrid multi-objective bare-bones particle 

swarm optimization with differential evolution [16] 

is used to plan better routes for mobile robots. A new 

Pareto domination with collision constraints has been 

developed to select the personal best position of a 

particle. Simulation results confirm the effectiveness 

of this algorithm. An improved chicken swarm 

optimization algorithm (ICSO) [17] is proposed and 

applied in RPP. The numerical results show that the 

ICSO For unconstrained optimization, the algorithm 

has better accuracy and stability and has a stronger 

search capability in RPP. An optimal path planning 

algorithm based on the firefly algorithm with self-

adaptive population size is proposed in [18]. The 

feasible solution and the infeasible solution are 

distinguished by population size. In terms of stability, 

convergence speed, and running time, the proposed 

algorithm is better than the fixed population size 

firefly algorithm. The Morphin algorithm [19] was 

introduced in order to avoid moving obstacles in real 

time. Simulation results indicate that the proposed 

method performs well in planning an initial static 

optimal path. [20] The authors offer a dynamic 

window technique based on the improved ant colony 

(IACO-DWA) method for designing an adaptive 

distance induction factor and combining the 

maximum and minimum ant systems. Simulated 

results show that the strategy improves the global 

path optimization performance while also avoiding 

local dynamic obstacles, which is what it does. [21] 

This paper presents an improvement to the actual 

output trajectory tracking performance of a mobile 

robot based on a convolutional neural network 

controller with off-line and on-line tuning back-

propagation algorithms. The task of the proposed 

feedback (CNNTT) controller is to obtain precisely 

and quickly the robust left and right wheel velocity, 

which are used to control the position and orientation 

of the mobile robot system. These algorithms are 

simulated by MATLAB in a fixed obstacle 

environment to show the effectiveness of the hybrid 

swarm optimization algorithm. The work [22] aims at 

developing a path planning method that provides the 

shortest path with collision avoidance. The generated 

hybrid method is called the quarter orbits particle 

swarm optimization (QOPSO) algorithm. It 

combines two algorithms to get a more efficient, 

smoother, and shorter path for the mobile robot. [23] 

The collision avoidance method is based on velocity  
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Figure. 1 The Euclidean distance between two points 

 

control with respect to several moving objects in the 

vicinity of a wheeled mobile robot. Collision 

avoidance is achieved by considering static robots, 

other mobile robots, and moving objects with 

nonlinear trajectories.  

The mobile robot was treated as a basic particle 

in the experiments stated above, which is one of their 

flaws. While some of these algorithms focused on 

minimizing the length of the path while avoiding 

static obstacles, other studies concentrated on 

minimizing the length of the path while avoiding 

dynamic obstacles without taking the smoothness of 

the path into account. The grid-based methods 

utilized in some of the aforementioned research are 

also simple to implement, but they come with a 

number of drawbacks, such as an imperfect 

representation of the obstacle that reserves the entire 

cell even if the obstacle only fills a small portion of 

the cell. Space is wasted as a result, and surroundings 

that are dynamic have less flexibility. The following 

is a list of the major contributions made by this 

research project: 

(1) The main drawback in the conventional COOT 

algorithm is the absence of the parameter of 

transfer from exploitation and exploration. This 

results in unstable searches (stagnation in the 

local optimum) and the squandering of more time. 

So, the ICOOT algorithm was proposed to 

overcome this drawback. 

(2) Combinations of multi-objective proposed in this 

paper (shortest path and smoothness), are 

generated and selected using this algorithm. Also, 

thirteen benchmark test functions were used to 

compare the new algorithm to the old one. 

(3) The proposed ICOOT algorithm is integrated 

with a local search strategy that transforms 

infeasible solutions into viable ones in an 

unknown environment with irregular static 

obstacles and a static and dynamic target. 

(4) 80 sensors to detect obstacles. The sensors are 

positioned in all the mobile robot's surroundings, 

and when they are found, an algorithm is 

activated that increases or decreases the speed of 

the robot to avoid them. 

(5) Also taken into consideration are the mobile 

robot's actual size and the kinematic model with 

specifications for robots (taking turtlebot3 burger 

as an assumption).  

This paper is organized as follows: section 2 

represents the problem formulation. Section 3 

discusses the COOT optimization technique, and 

section 4 describes our proposed improved COOT 

algorithm, while section 5 shows the simulation 

result and discussion. Finally, the conclusion of this 

paper is represented in section 6. 

2. Problem formulation 

Assume a mobile robot is moving from a starting 

position to a goal in an environment that has both 

dynamic and fixed obstacles. RPP can be thought of 

as an optimization problem in which the goal is to 

find the best path according to some objectives. 

These objectives are the safest, shortest, and 

smoothest. 

2.1 Shortest distance 

The first objective is to figure out the shortest 

distance between the robot's starting point and its 

goal. The Euclidian distance f1 (x,y) is the objective 

function for minimizing the distance between the 

present position of the coot and the goal point, 

formulated as [24]: 

 

𝑓1(𝑥, 𝑦) = ∑ √(∆𝑥)2 + (∆𝑦)2             (1)

𝑛−1

𝑗=1

 

 

Where n represents the number of via points 

(trajectory change occurred) which represent a 

project parameter of this case and: 

 

∆𝑥 =  𝑥(𝑗 + 1) − 𝑥(𝑗)                              (2) 

 

∆𝑦 = 𝑦(𝑗 + 1) − 𝑦(𝑗)                              (3) 
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Figure. 2 Path smoothness 

 

Figure. 3 Weighted sum selections for MOO 

2.2 Path smoothness 

To enhance the smoothness of the robot's path, 

minimizing the angles between the straight lines 

connecting the goal in relation to the current position 

and the next suggested position in relation to the 

current position, as shown in Fig. 2. would be a 

second objective function (Eqs. (4) and (5)) that the 

algorithm should satisfy in addition to the first 

objective, which is minimizing the distance in Eq. (1). 

 

𝑓2(𝑥, 𝑦) = ∑∆𝜃𝑗

𝑛

𝑗=1

                                  (4) 

∆𝜃𝑗 = 𝑡𝑎𝑛−1 (
∆𝑦

∆𝑥
) − 𝑡𝑎𝑛−1 (

𝑦(𝑔𝑜𝑎𝑙) − 𝑦(𝑗)

𝑥(𝑔𝑜𝑎𝑙) − 𝑥(𝑗)
) (5) 

 

Where, 𝑗 = 1,2,… 𝑛 − 1 

2.3 Multi-objective approach 

Multiple objective optimization (MOO) is used 

when an optimization issue has more than one 

objective function and the goal is to identify one or 

more optimal solutions. The weighted sum method is 

a common way to deal with multiple objective 

optimization. It uses the weighted sum to combine all 

of the many objective functions into a single scalar or 

composite objective function, which is easier to 

understand [25]. 

 

𝑓(𝑥, 𝑦) =  ∑ 𝑊𝑚 𝑓𝑚 (𝑥, 𝑦)

𝑀

𝑚=1 

 

= 𝑊1 𝑓1 (𝑥, 𝑦) + 𝑊2 𝑓2(𝑥, 𝑦)               (6) 

 

The importance of defining the weighting 

coefficient, W = (W1, W2, ..., Wm), is that the strong 

solution is determined by W. These weights have 

obviously been beneficial and satisfying [26]. 

∑ 𝑊𝑚 = 1𝑀
𝑚=1  , Wm ∈ [0,1]. 

2.4 Obstacles movement 

In this paper, in the case of the dynamic obstacle 

that moves from one location to another at each time 

step, the velocity is (𝑣𝑜𝑏𝑠) and direction (𝜃𝑜𝑏𝑠) of the 

dynamic obstacles are assumed to be random 

according to the following equations: 

 

𝜒𝑜𝑏s = 𝜒𝑜𝑏𝑠 + 𝑣𝑜𝑏𝑠 × 𝑐𝑜𝑠 𝜃𝑜𝑏𝑠             (7) 

 

𝑦𝑜𝑏s = 𝑦𝑜𝑏𝑠 + 𝑣𝑜𝑏𝑠 × 𝑠𝑖𝑛 𝜃𝑜𝑏𝑠               (8) 

 

Where, 

 

𝜃𝑜𝑏𝑠 =  360 × 𝑟𝑎𝑛𝑑(0,1)                 (9) 

  

𝑣𝑜𝑏𝑠 = 𝑟𝑎𝑛𝑑(0,1)                      (10) 

3. COOT optimization technique 

New swarm-based algorithm, COOT [27] , is 

discussed in this paper.  The COOT algorithm was 

invented by Naruei and Keynia in 2021 as a swarm-

based algorithm inspired by collective movements 

(irregular and regular movements on the water's 

surface). A few coots in front of the group, which is 

regarded as a group leader, steer the entire group  
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(a)                                                           (b)                                                          (c ) 

Figure. 4: (a) Random movement, (b) Chain movement, and (c) Choose a leader by coot 

 

toward the destination (food). Coots make four 

distinct movements on the water's surface, which are 

as follows [27]: 

1. Random movement. 

2. Chain movement. 

3. Adjusting the position based on the leaders 

of the group. 

4. Led by their leaders, they lead the group 

towards the optimal location. 

 

The population is calculated randomly using Eq. 

(11). 

 

𝐶𝑃(𝑗) = 𝑟𝑎𝑛𝑑(1, 𝑑) × (𝑢 − 𝑙) + 𝑙      (11) 

 

Where 𝐶𝑃(𝑗)  denotes the COOT position at 

instant j, 𝑑  denotes the search space dimension 

(number of optimization variables), and 𝑙  and 𝑢 

denote the lower and upper search space limits. Then 

the four movement phases are defined as:  

(1) Phase of random movement: 

In this phase, the random position (Q) is 

determined using Eq. (12), to look through the many 

regions of the search space 

 

𝑄 = 𝑟𝑎𝑛𝑑(1, 𝑑) × (𝑢 − 𝑙) + 𝑙              (12) 

 

The COOT's new positions must escape local 

optimal solutions. Thus, Eq. (13) can calculate the 

new COOT positions as follows: 

 

𝐶𝑃(𝑗) = 𝐶𝑃(𝑗) + 𝐴 × 𝑅2 × (𝑄 − 𝐶𝑃(𝑗))      (13) 

 

Where R2 is a random variable in ∈ [0, 1], A is 

defined by Eq. (14) as follows: 

 

𝐴 = 1 − 𝐿 × (
1

 Iter 
)                        (14) 

 

𝐿  shows the current iteration, and the maximum 

number of iterations is shown in 𝐼𝑡𝑒𝑟. 

(2) Chain movement phase: 

This phase is represented mathematically by 

using Eq. (15). 

 

𝐶𝑃(𝑗) = 0.5 × (𝐶𝑃 (𝑗 − 1) + 𝐶𝑃(𝑗)       (15) 

 

(3) Phase of Adjusting the position based on the 

group leader’s: 

In this movement, Eq. (16) is used to adjust the 

position. 

 

𝐾 = 1 + (𝑗 𝑀𝑂𝐷 𝑁𝐿)                   (16) 

 

Where j is a number that is represented by an 

index of all the coots, NL shows the leader's number, 

and K is a number that indicates the number of the 

leader. The position of the next coot is calculated 

based on the leader number k as follows: 

 

𝐶𝑃(𝑗) = 𝐿𝑃(𝐾) + 2 × 𝑅1 × 𝑐𝑜𝑠  (2𝑅𝜋) × 

                (𝐿𝑃(𝐾) − 𝐶𝑃(𝑗))     (17)  

 

Where LP represents the leader position. 

(4) phase of leading the group towards the optimal area: 

Eq. (18) is used to change the leader's position. 

 

𝐿𝑃(𝑗)

= {

𝐵 × 𝑅3 × 𝑐𝑜𝑠(2𝑅𝜋)
× (𝑔Best − LP (𝑗)) + 𝑔𝐵𝑒𝑠𝑡    𝑅4 ≺ 0.5

𝐵 × 𝑅3 × 𝑐𝑜𝑠(2𝑅𝜋)
× (𝑔𝐵𝑒𝑠𝑡 − LP (𝑗)) − 𝑔𝐵𝑒𝑠𝑡    𝑅4 ≻ 0.5

}    (18) 

 

Where gBest represent, the best place is found, 

R3, R4, and R are all random numbers. R3 and R4 

∈[0, 1], R ∈ [- 1, 1], and B is defined in Eq. (19): 

 



Received:  May 28, 2022.     Revised: July 17, 2022.                                                                                                        553 

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022           DOI: 10.22266/ijies2022.1031.48 

 

𝐵 = 2 − 𝐿 × (
1

 Iter 
)                     (19) 

 

Pseudocode that shows how the COOT algorithm 

works is shown in [27]. 

4. Proposed improved COOT algorithm 

A The details of the improved COOT (ICOOT) 

algorithm are presented in the following: 

1. To keep the local optimum from becoming 

stagnant and further wasting time, individuals in 

the swarm must be led by the best in the entire 

swarm. It will be used to make the random 

movement equation in the proposed ICOOT: 

 

𝐶𝑃(𝑗) = 𝐶𝑃(𝑗) + 𝐴 × 𝑅2 × 

(𝑄 + 𝑔𝐵𝑒𝑠𝑡 − 𝐶𝑃(𝑗))               (20) 

 
2. The main drawback in the conventional COOT 

algorithm is the absence of the parameter of 

transfer from exploitation and exploration. This 

ends in unstable searches (stagnation in the local 

optimum) and the squandering of more time. To 

overcome this drawback, a new parameter called 

"acceleration" (acc) is utilized. According to 

Hugh Trenchard [28], the transition from 

disordered to synchronized states appears to be 

induced by two main factors: the first one is 

acceleration between individual coots within the 

flock, which brings accelerating coots closer to 

slower moving coots, causing slower moving 

coots to adjust their orientation to align with 

accelerating coots. The second thing that happens 

is that coots in leadership positions or on the 

periphery of the group speed up. This causes a 

widening gap between coots, which forces others 

to change their orientations and speeds to follow. 

In this paper, the acceleration depends on density, 

meaning that as a low-density group they can 

swim faster by alternating leading positions than 

when swimming in higher densities. According 

to Fig. 5, density can be defined as 

 

𝐷(𝑗) =
𝑁

 𝜋𝑟2 
                                                              (21) 

 

Where 𝑁  is the number of coots and 𝜋𝑟2  the total 

area occupied by all birds. 

To find the radius (r), first find the center coot 

position (CCP) of the swarm: 

 

 

 

 

 𝐶𝐶𝑃(𝑥, 𝑦) = 
𝐹𝐶𝑃(𝑥, 𝑦)

𝐿𝐶𝑃 (𝑥, 𝑦)
                  (22) 

= (
|𝑚𝑎𝑥(𝑥)|−|𝑚𝑖𝑛(𝑥)|

2
,
|𝑚𝑎𝑥(𝑦)|−|𝑚𝑖𝑛(𝑦)|

2
 )     

 

Where FCP is the first coot in the swarm and LCP is 

the last coot in the swarm. So, the radius (r) can be 

found as: 

 

𝑟 = 𝑚𝑎𝑥  (𝐶𝐶𝑃(𝑥), 𝐶𝐶𝑃(𝑦)) + 1         (23) 

 

Now, "acceleration" (acc) can be found according to 

the previous rule: 

 

𝑎𝑐𝑐(𝑗) = |(1 − 𝐷) + (1 −
1

|𝑎|
) − 𝑟𝑎𝑛𝑑 (0,2)|     

(24) 
 

Where α is the number of free points with integer 

coordinates that lie inside the circle. 

 

𝛼 = 𝛽1 ∗ 𝛽2−  𝜂               (25) 

 

Where β1  reprsent number of integer coordinates 

inside circle, it can be found by using the following 

equation: 

 

𝛽1 =  √|𝑥𝑝 − 𝑥𝑐|
2
+ |𝑦𝑝 − 𝑦𝑐|

2
< 𝑟     (26) 

 

Where, (𝑥𝑐 , 𝑦𝑐)  represents the center of the circle 

and  (𝑥𝑝, 𝑦𝑝) whether the point is inside the circle or 

not,  𝑥𝑝 = min(𝑥): 1:max(𝑥)  and 𝑦𝑝 =

 min(𝑦): 1:max(𝑦) 

and β2 is the minimum difference between two coots 

in the swarm, 

 

 𝛽3 = 𝑆𝑜𝑟𝑡(𝐶𝑂𝑂𝑇𝑃𝑂𝑆(:,1)))              (27) 

 

 𝛽4 = 𝑆𝑜𝑟𝑡(𝐶𝑂𝑂𝑇𝑃𝑂𝑆(:,2))               (28) 

 

𝛽2 

= √(𝛽3(2) − 𝛽3(1))
2
+ (𝛽4(2) − 𝛽4(1))

2
 (29) 

 

and η = number of coordinates accoupied by the coot 

So, according to the above, the following are new 

movement phases: 

(1) Phase of random movement: 

 

CP(𝑗) = CP(𝑗) + 𝐴 × 𝑎𝑐𝑐(𝑗) × 𝑅2  
× (𝑔𝑏𝑒𝑠𝑡 + 𝑄 − CP(𝑗))     (30) 

 



Received:  May 28, 2022.     Revised: July 17, 2022.                                                                                                        554 

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022           DOI: 10.22266/ijies2022.1031.48 

 

 

Figure. 5 14 coots, density = 
14

 𝜋𝑟2 
 

 
(2) Phase of adjusting the position based on the 

group leader’s: 

 

𝐶𝑃(𝑗) = 𝐿𝑃(𝑘) + 2 × 𝑎𝑐𝑐(𝑗) × 𝑅1 × 

𝑐𝑜𝑠  (2𝑅𝜋) × (𝐿𝑃(𝑘) − 𝐶𝑃(𝑗))      (31) 

 

(3) Phase of leading the group towards the optimal 

area: 

𝐿𝑃(𝑗) = 

 {

2 × 𝑎𝑐𝑐(𝑗)  × 𝐵 × 𝑅3 × 𝑐𝑜𝑠(2𝑅𝜋)

× (𝑔Best − LP (𝑗)) + 𝑔𝐵𝑒𝑠𝑡    𝑅4 ≺ 0.5

2 × 𝑎𝑐𝑐(𝑖)  × 𝐵 × 𝑅3 × 𝑐𝑜𝑠(2𝑅𝜋)
× (𝑔𝐵𝑒𝑠𝑡 − LP (𝑗)) − 𝑔𝐵𝑒𝑠𝑡    𝑅4 ≻ 0.5

} (32) 

4.1 Proposed a local search strategy 

The proposed local search (LS) is a local search 

strategy that transforms infeasible solutions into 

viable ones. The solution is considered infeasible in 

two cases: first, if the next selected point by the 

ICOOT algorithm is within the obstacle region (Fig.  

6, case (1)). The second, if it is outside the obstacle  

but a line connects this point with the previous point, 

or the consequent point is passing through the 

obstacle (Fig. 6 case (2)). According to the following 

suggested criteria, these two cases are solved by 

trying to evict the possible solutions from the 

obstacle's occupied area. 

In case 1, the suggested next position lies inside 

the obstacle: There is a way to get out of this situation 

by checking if the next suggested position in the path 

is occupied or not. If a place is already occupied, the 

algorithm looks for the next best unoccupied position. 

Case 2, the line between two points passes 

through the obstacle: This issue can be fixed by 

finding the equation of a straight n-point line between 

the current point and the next suggested point. Then, 

if any n-points are occupied and the line is vertical 

(difference between y axis n-points > difference x n-

point), the algorithm goes horizontally left and right, 

then finds the nearest unoccupied point (x (i+1), y 

(i+1)) to (x (i), y (i)) and vice versa, if the line passes 

through the obstacle is horizontal. 

4.2 Obstacle detection and avoidance (ODA) 

A description of the sensor is needed since the 

robot is working in an unknown environment. 

Obstacle detection sensing (ODS) is the name of a 

proposed method for finding obstacles and avoiding 

them, and it's what we're going to talk about now. 

(1) The procedure for detecting obstacles 

The robot map is imported into the MTALAB 

workspace and a binary map of occupancy is 

constructed. The occupancy map is simply a 2D 

matrix. Every pixel on the map is labeled with either 

binary 0 (non-occupied) or binary 1 (occupied by 

static and/or dynamic obstacles). ODS is performed 

by encircling the mobile robot with eighty virtual 

sensors (VS). The VS is placed in four layers. The 

first layer has eight VS, and each sensor has a specific 

angle range of 30. The second one is sixteen VS, and 

each sensor has a specific angle range of 22.5◦. The 

third layer, including twenty-four VS, and each 

sensor, covers an angle range of 14.4. The last layer, 

thirty-two VS, and each sensor, covers an angle range 

of 11.25◦. These VS positions are pointed at each 

iteration according to the robot's current position 

(RCP), as shown in Fig. 7.  
(2) Obstacle avoidance algorithm 

At each iteration, the occupancy map provides 

information about the existence of obstacles 

(occupied (binary 1) or unoccupied (binary 0)). The 

algorithm finds the best unoccupied position 

according to objectives among eighty possible 

positions that are randomly arranged around RCP 

(gBest). Each of these eighty positions with RCP is 

updated at each iteration by the ICOOT algorithm.  

So, the robot has more options to increase speed 

or slow down to avoid obstacles. So, the proposed 

robot path planning algorithm is illustrated in this 

simple pseudocode. 

4.3 Kinematic model 

Kinematic modeling of the robot is needed to 

figure out where the robot will go next and how to get 

around obstacles. The robot is depicted as a 

horizontally traveling, rigid body on wheels. The 

robot chassis moves in a 2D plane defined by the 

coordinates [x, y]. To make the model easier to 

understand, things like wheel axels and steering  
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Figure. 6 Infeasible path type 

 

 
Figure. 7 Obstacle detection 

 

 

wheel joints are left out [29]. 
The relationship between the plane global reference 

frame GRF and the robot local refence frame LFR is 

shown in Fig. 9. The axes Xl-Yl define the GRF at 

the origin O: {Xl,Yl The robot's reference point is 

chosen as point P on the robot chassis. x, y, and the 

angle between the GFR, the LFR and θ, establish the 

position of reference point P in the global frame. The 

position of the robot can be described as a vector: 

 

 

Figure. 8 Robot possible positions 
 

𝜉𝐼 = [
𝑥
𝑦
𝜃
]                                (33) 

 

The attitude associated with the GFR is denoted 

by the subscript "I." The mapping is determined by 

the robot's present position, and the orthogonal 

rotation matrix is used to explain it: 

 

𝑅(𝜃) = [
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 0

− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0
0 0 1

]          (34) 

 

The motion of the robot is mapped from the 

reference frame [XI, YI] to a motion term in the LRF 

[XR, YI] using the matrix of Equation [4]. The 

velocity vector �̇�𝐼 is used to express this mapping  

 

�̇�𝐼 = [
�̇�
�̇�

�̇�

]                             (35) 

 

Initiliaze: first population of coots 

Initiliaze: start position, target position, error Threshold, 

number of leaders 

Set: number of coots and random selection of leaders 

Calculate: the fitness of coots and leaders 

find the best coot or leaders as the global optimum 

(gbest)  

While gbest = target postion || error>error Threshold 

Start: Obstacle Detection and Avoidance (ODA) 

algorithm 

Update the best postion (gbest)   

Start: a local search strategy 

Mobile robot moves to new position (gbest) 

iter=iter+1 

end while 
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Figure. 9 GRF [XI, YI] and the LRF [XR, YR] 

 

 
Figure. 10 Differential mobile robot moving in its GRF 

 

The relationship between the motions in the two 

frames is thus expressed as: 

 

�̇�𝑅 = 𝑅(𝜃)�̇�𝐼                           (36) 

 
Taking turtlebot3 burger as an assumption, turtlebot3 

burger has two wheels, each of which is r in diameter. 

At a distance of l from each wheel, the reference point 

P is centered. Therefore, given r, 1, 𝜃  and each 

wheel's rotational speed �̇�1  and �̇�2 . the robot's 

overall speed can be estimated using the forward 

kinematic model in the GFR as:  

 

�̇�𝐼 = [
�̇�
�̇�

�̇�

] = 𝑓(𝑙, 𝑟, 𝜃, �̇�1, 𝜙2̇)            (37) 

 

The final differential-drive robot's kinematic model is 

given by:  

 

�̇�𝐼 = 𝑅(𝜃)−1

[
 
 
 
 

𝑟�̇�1

2

𝑟�̇�2

2
0

𝑟�̇�1

2𝑙

−𝑟�̇�2

2𝑙 ]
 
 
 
 

             (38) 

 

Where 𝑅(𝜃)−1 is calculated as: 

 

𝑅(𝜃)−1 = [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0

0 0 1

]       (39) 

5. Results and discussion 

5.1 Proposed algorithm performance on 

benchmark test functions 

The ICOOT algorithm is assessed in 13 criterion 

functions (30, 100, and 500 dimensions) in this 

section. These are standard functions that a lot of 

researchers have utilized [30]. These tests are used by 

ICOOT in comparison to the outcomes of the swarm 

algorithms. Table 1 show these standard functions, 

where Range denotes the boundary of the function's 

search space, and f-min denotes the optimal value. 

The first seven functions are unimodal and the last six 

are multimodal.  

The ICOOT algorithm is compared with five 

swarm optimization algorithms: the first is particle 

swarm optimization (PSO); the second is another 

well-known algorithm called salp swarm algorithm 

(SSA); and the fitness dependent optimizer (FDO). 

They are also compared with the conventional COOT 

optimization algorithm and the enhanced version of 

COOT to validate its results. The search agents are 30 

in number, the maximum number of iterations is 500. 

Firstly implemented the algorithm on 13 test 

functions with 30 dimensions. The proposed ICOOT 

algorithm achieves the best results in all test functions, 

as shown in Table 2 (F1-F7). As evidenced by this, 

the ICOOT algorithm has successfully exploited the 

search space. Algorithm exploration is measured 

using multimodal functions. There are several local 

optimums in these functions, and the algorithm 

should avoid them. Table 2 shows the statistical 

results of the algorithms on these functions (F8-F13). 

The new ICOOT algorithm also performs better 

results in 4c out of 6 test functions.  

The proposed algorithm was then applied to the 

same 13 test functions from the first round of testing, 

each with 100 dimensions. Table 3 displays the 

outcomes of this application. The outcomes 

demonstrate that the suggested algorithm is stable in 

most test functions and does not suffer from the 

growth of the problem size. At this point, the 

proposed algorithm outperformed all the compared 

algorithms in all 5 multimodal test functions and 5 

unimodal test functions (F9, F10, F11, F12, and F13). 

In the final step using 13 test functions with 500 

dimensions. Table 6 displays the experiment's  
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Table 1. Benchmark test functions 

Function Range fMIN 

𝑓1(𝑥) = ∑  

𝑛

𝑖=1

𝑥𝑖
2 [-100, 100] 0 

𝑓2(𝑥) = ∑  

𝑛

𝑖=1

|𝑥𝑖| + ∏  

𝑛

𝑖=1

|𝑥𝑖| [-10, 10] 0 

𝑓3(𝑥) = ∑  

𝑛

𝑖=1

(∑  

𝑖

𝑗−1

𝑥𝑗)

2

 [-100, 100] 0 

𝑓4(𝑥) = 𝑚𝑎𝑥{|𝑥𝑖|, 1 ⩽ 𝑖 ⩽ 𝑛} [-100, 100] 0 

𝑓5(𝑥) = ∑  

𝑛−1

𝑖=1

[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑙 − 1)2] [-30, 30] 0 

𝑓6(𝑥) = ∑  

𝑛

𝑖=1

([𝑥𝑖 + 0.5])2 [-100, 100] 0 

𝑓7(𝑥) = 𝑚𝑎𝑥{|𝑥𝑖|, 1 ⩽ 𝑖 ⩽ 𝑛} [-1.28, 1.128] 0 

𝐹8(𝑥) = ∑  

𝑛

𝑖=1

− 𝑥𝑖 𝑠𝑖𝑛 (√|𝑥𝑖|) [-500, 500] 0 

𝐹9(𝑥) = ∑  

𝑛

𝑖=1

[𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10] [-5.12, 5.12] 0 

𝐹10(𝑥) = −20 𝑐𝑥𝑝 (−0.2√
1

𝑛
∑  

𝑛

𝑖−1

𝑥𝑖
2) − 𝑐𝑥𝑝 (

1

𝑛
∑  

𝑛

𝑖−1

𝑐𝑜𝑠(2𝜋𝑥𝑖)) + 20 + 𝑐 [-32, 32] 0 

𝐹11(𝑥) =
1

4000
∑  

𝑛

𝑖−1

𝑥𝑖
2 − ∏  

𝑛

𝑖=1

𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
) + 1 [-600, 600] 0 

𝐹12(𝑥) =
𝜋

𝑛
{10 𝑠𝑖𝑛(𝜋𝑦1) + ∑  

𝑛−1

𝑖−1

(𝑦𝑖 − 1)2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2}

+∑  

𝑛

𝑖−1

𝑢(𝑥𝑖 , 10,100,4) + ∑  

𝑛

𝑖=1

𝑢(𝑥𝑖 , 10,100,4)𝑦𝑖 = 1 +
𝑥𝑖 + 1

4

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 > 𝑎
0 −𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 < −𝑎
}

 

 

[-50, 50] 0 

𝐹13(𝑥) = 0.1 {𝑠𝑖𝑛2(3𝜋𝑥1) + ∑  

𝑛

𝑖=1

(𝑥𝑖 − 1)2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)]

+(𝑥11 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} + ∑  

𝑛

𝑖=1

𝑢(𝑥𝑖 , 5,100,4)

 [-50, 50] 0 

outcomes. With the exception of function 8, the 

COOT algorithm has outperformed all other 

algorithms. The outcomes demonstrate that the 

suggested algorithm is stable with increasing 

dimensions, while other algorithms have performed 

terribly. The outcomes in Tables 2 to 4 demonstrate 

how scalable the suggested algorithm is. 

5.2 RPP in a complex static environment 

The efficiency of the suggested for the mobile 

robot, a path planning algorithm has been developed 

and is shown in this case study when the robot is in a 

static obstacle environment. The static environment  
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Table 2. The Benchmark Test Functions were run over 1000 times with 30 dimensions. 

Fun. Fit. 
PSO [31] 

30 Dim 

SSA[32] 

30 Dim 

FDO [33] 

30 Dim 

mCOOT [34] 

30 Dim 

COOT[27] 
30 Dim 

ICOOT 

30 Dim 

F1 

min 

max 

avg 

std 

7.5124 × 10-08 

4.0190 × 10-05 

2.2965 × 10-06 

7.2554 × 10-06 

1.6368 × 10-08 

6.6116 × 10-07 

1.3651 × 10-07 

1.5491 × 10-07 

3.2270 × 10+03 

1.0719 × 10+04 

6.3139 × 10+03 

1.8230 × 10+03 

6.1833 × 10-56 

5.4187 × 10-11 

5.4838 × 10-12 

1.7135 × 10-13 

9.8206 × 10-58 

8.6061 × 10-08 

8.7095 × 10-11 

2.7215 × 10-09 

3.4334 × 10-52 

1.7486 × 10-15 

1.7507 × 10-18 

5.5295 × 10-17 

F2 

min 

max 

avg 

std 

9.0072 × 10-05 

8.6400 × 10-03 

1.4400 × 10-03 

1.9200 × 10-03 

1.0536 × 10-01 

3.1663 × 10+00 

1.3328 × 10+00 

9.3288 × 10-01 

2.6008 × 10+01 

4.9082 × 10+01 

3.3957 × 10+01 

5.7193 × 10+00 

1.8702 × 10-28 

5.3945 × 10-07 

2.4047 × 10-09 

2.9066 × 10-08 

2.9703 × 10-30 

8.5677 × 10-05 

3.8193 × 10-07 

4.6164 × 10-06 

3.1098 × 10-28 

3.3093 × 10-10 

6.9326 × 10-13 

1.4448 × 10-11 

F3 

min 

max 

avg 

std 

2.4899 × 10+01 

3.6510 × 10+02 

1.2401 × 10+02 

8.1552 × 10+01 

1.9521 × 10+02 

2.8737 × 10+03 

1.2921 × 10+03 

7.2173 × 10+02 

7.1684 × 10+03 

2.9706 × 10+04 

1.9184 × 10+04 

6.0544 × 10+03 

3.1046 × 10-55 

9.1290 × 10-08 

1.0900 × 10-12 

2.9175 × 10-13 

4.9308 × 10-57 

1.4499 × 10-07 

1.7311 × 10-10 

4.6336 × 10-09 

4.4776 × 10-53 

1.0897 × 10-18 

1.7000 × 10-21 

3.7661 × 10-20 

F4 

min 

max 

avg 

std 

8.7640 × 10-01 

4.9311 × 10+00 

2.0211 × 10+00 

8.7088 × 10-01 

3.5141 × 10+00 

1.7169 × 10+01 

9.5648 × 10+00 

3.1342 × 10+00 

2.4018 × 10+01 

3.9262 × 10+01 

3.2439 × 10+01 

3.7864 × 10+00 

1.0303 × 10-29 

3.7716 × 10-07 

3.9409 × 10-08 

1.1930 × 10-06 

1.6363 × 10-34 

5.9902 × 10-04 

6.2591 × 10-07 

1.8948 × 10-05 

1.3285 × 10-27 

9.9811 × 10-09 

2.3503 × 10-11 

4.0821 × 10-10 

F5 

min 

max 

avg 

std 

1.2929 × 10+01 

8.4144 × 10+01 

3.0213 × 10+01 

1.9874 × 10+01 

2.0042 × 10+01 

1.2065 × 10+03 

2.0168 × 10+02 

2.7394 × 10+02 

2.0875 × 10+02 

9.4832 × 10+06 

4.9340 × 10+06 

1.8511 × 10+06 

1.6882 × 10+01 

1.0561 × 10+02 

2.8439 × 10+01 

4.5214 × 10+01 

2.6813 × 10+01 

1.6774 × 10+03 

4.5168 × 10+01 

7.1811 × 10+01 

2.6941 × 10+01 

2.8691 × 10+01 

2.7950 × 10+01 

3.0230 × 10-01 

F6 

min 

max 

avg 

std 

3.1085 × 10-08 

7.8797 × 10-06 

1.2411 × 10-06 

1.9515 × 10-06 

2.2926 × 10-08 

6.5254 × 10-07 

1.6204 × 10-07 

1.5808 × 10-07 

2.9047 × 10+03 

1.1198 × 10+04 

6.0501 × 10+03 

1.7282 × 10+03 

7.6815 × 10-03 

7.9100 × 10-01 

9.1800 × 10-02 

7.5430 × 10-02 

1.2200 × 10-02 

1.2563 × 10+00 

1.4580 × 10-01 

1.1980 × 10-01 

1.0500 × 10-02 

2.0190 × 10-01 

5.0200 × 10-02 

2.3500 × 10-02 

F7 

min 

max 

avg 

std 

8.1600 × 10-03 

4.4880 × 10-02 

2.0240 × 10-02 

8.2400 × 10-03 

4.9200 × 10-02 

3.9160 × 10-01 

1.3672 × 10-01 

7.2800 × 10-02 

1.0362 × 10+00 

6.5583 × 10+00 

2.7259 × 10+00 

1.2317 × 10+00 

3.3827 × 10-05 

2.6759 × 10-02 

3.2111 × 10-03 

2.9074 × 10-03 

5.3725 × 10-05 

4.2500 × 10-02 

5.1000 × 10-03 

4.3000 × 10-03 

8.4180 × 10-06 

1.6300 × 10-02 

3.0000 × 10-03 

2.8000 × 10-03 

F8 

min 

 

max 

 

avg 

 

std 

-6.3116× 10+03 

-3.8802 × 

10+03 

-5.2250 × 

10+03 

6.4182 × 10+02 

-7.1509 × 

10+03 

-4.8477 × 

10+03 

-5.9466 × 

10+03 

6.1953 × 10+02 

-3.2318 × 

10+03 

-1.7393 × 

10+03 

-2.2258 × 

10+03 

3.2376 × 10+02 

-7.6720 × 

10+03 

-3.1031 × 

10+03 

-4.6161 × 

10+03 

5.7506 × 10+02 

-1.2185 × 

10+04 

-4.9284 × 

10+03 

-7.3315 × 

10+03 

9.1334 × 10+02 

-1.0322 × 

10+04 

-3.1085 × 

10+03 

-6.5649 × 

10+03 

1.1677 × 10+03 

F9 

min 

max 

avg 

std 

7.6413 × 10+01 

7.6413 × 10+01 

3.8604 × 10+01 

1.2983 × 10+01 

2.3083 × 10+01 

7.9597 × 10+01 

4.7476 × 10+01 

1.4882 × 10+01 

1.2846 × 10+02 

1.8942 × 10+02 

1.6083 × 10+02 

1.5238 × 10+01 

0.0000 × 10+00 

2.1669 × 10-07 

2.1742 × 10-10 

6.8523 × 10-11 

0.0000 × 10+00 

3.4416 × 10-06 

3.4531 × 10-09 

1.0883 × 10-07 

0.0000 × 10+00 

6.2528 × 10-13 

1.0573 × 10-14 

5.3272 × 10-14 

F10 

min 

max 

avg 

std 

3.6847 × 10-05 

2.2509 × 10+00 

1.0174 × 10+00 

6.5720 × 10-01 

1.3170 × 10+00 

3.5064 × 10+00 

2.0904 × 10+00 

5.0912 × 10-01 

8.1832 × 10+00 

1.1314 × 10+01 

1.0321 × 10+01 

7.7416 × 10-01 

5.5922 × 10-16 

1.5663 × 10-06 

4.6520 × 10-09 

6.8711 × 10-07 

8.8818 × 10-16 

2.4877 × 10-05 

7.3884 × 10-08 

1.0913 × 10-06 

8.8818 × 10-16 

1.5657 × 10-09 

1.7670 × 10-12 

4.9677 × 10-11 

F11 

min 

max 

avg 

std 

3.0870 × 10-08 

5.6720 × 10-02 

1.1840 × 10-02 

1.3360 × 10-02 

7.1483 × 10-04 

3.6400 × 10-02 

1.3520 × 10-02 

9.3600 × 10-03 

2.7147 × 10+01 

8.6144 × 10+01 

5.5598 × 10+01 

1.5810 × 10+01 

0.0000 × 10+00 

2.7690 × 10-08 

2.7697 × 10-11 

8.7563 × 10-09 

0.0000 × 10+00 

4.3979 × 10-07 

4.3990 × 10-10 

1.3907 × 10-08 

0.0000 × 10+00 

7.9714 × 10-14 

1.5266 × 10-16 

2.5573 × 10-15 

F12 

min 

max 

avg 

std 

2.4686 × 10-09 

7.4704 × 10-01 

1.4120 × 10-01 

1.9880 × 10-01 

2.2231 × 10+00 

8.9368 × 10+00 

4.8889 × 10+00 

1.9097 × 10+00 

5.4161 × 10+04 

8.2632 × 10+06 

2.8270 × 10+06 

1.9333 × 10+06 

3.3693 × 10-04 

2.8676 × 10+00 

1.2630 × 10-02 

3.0222 × 10-01 

5.3513 × 10-04 

4.5544 × 10+00 

2.0060 × 10-01 

4.8000 × 10-01 

4.6113 × 10-04 

1.6140 × 10-01 

6.7000 × 10-03 

8.0000 × 10-03 

F13 

min 

max 

avg 

std 

2.7983 × 10-07 

4.9800 × 10-01 

2.7680 × 10-02 

9.1360 × 10-02 

7.2400 × 10-02 

3.4803 × 10+01 

1.3999 × 10+01 

1.1228 × 10+01 

3.2630 × 10+06 

2.2232 × 10+07 

1.0170 × 10+07 

5.3626 × 10+06 

1.3411 × 10-02 

2.6296 × 10+00 

2.8705 × 10-01 

2.9593 × 10-02 

2.1300 × 10-02 

4.1765 × 10+00 

4.5590 × 10-01 

4.7000 × 10-01 

5.4400 × 10-02 

2.9690 × 10+00 

1.7224 × 10+00 

1.1820 × 10+00 
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Table 3. The Benchmark Test Functions were run over 1000 times with 100 dimensions 

Fun. Fit. 
PSO [31] 

100 Dim 

SSA[32] 

100 Dim 

FDO [33] 

100 Dim 

mCOOT [34] 

100 Dim 

COOT[27] 
100 Dim 

ICOOT 

100 Dim 

F1 

min 

max 

avg 

std 

5.5722 × 10+01 

3.3461 × 10+02 

1.3911 × 10+02 

6.1808 × 10+01 

7.5314 × 10+02 

1.7282 × 10+03 

1.1375 × 10+03 

2.6206 × 10+02 

3.0089 × 10+04 

5.3646 × 10+04 

3.8606 × 10+04 

5.5506 × 10+03 

5.5845 × 10-61 

9.8587 × 10-07 

1.0579 × 10-12 

3.1250 × 10-13 

8.8695 × 10-65 

1.5658 × 10-06 

1.6802 × 10-09 

4.9632 × 10-08 

1.4110 × 10-55 

2.0706 × 10-16 

2.2919 × 10-19 

6.5694 × 10-18 

F2 

min 

max 

avg 

std 

5.1531 × 10+00 

1.6889 × 10+01 

8.2088 × 10+00 

2.6060 × 10+00 

2.8970 × 10+01 

5.1411 × 10+01 

3.7718 × 10+01 

5.3453 × 10+00 

1.6734 × 10+02 

8.0480 × 10+10 

4.5337 × 10+09 

1.6450 × 10+10 

1.4755 × 10-29 

1.5741 × 10-03 

1.7271 × 10-06 

4.9920 × 10-06 

2.3435 × 10-27 

2.5000 × 10-02 

2.7431 × 10-05 

7.9285 × 10-04 

1.4304 × 10-26 

1.5027 × 10-09 

3.2607 × 10-12 

6.3071 × 10-11 

F3 

min 

max 

avg 

std 

1.2368 × 10+04 

3.6283 × 10+04 

2.3336 × 10+04 

6.2766 × 10+03 

1.2150 × 10+04 

7.5970 × 10+04 

3.8695 × 10+04 

1.6246 × 10+04 

9.3800 × 10+04 

3.4903 × 10+05 

2.4800 × 10+05 

6.3892 × 10+04 

1.8742 × 10-58 

6.0307 × 10-11 

6.2011 × 10-12 

1.9073 × 10-12 

2.9766 × 10-60 

9.5782 × 10-08 

9.8488 × 10-11 

3.0293 × 10-09 

4.3552 × 10-52 

2.4988 × 10-15 

2.5536 × 10-18 

7.9026 × 10-17 

F4 

min 

max 

avg 

std 

1.5223 × 10+01 

2.6774 × 10+01 

1.9118 × 10+01 

2.4487 × 10+00 

1.5098 × 10+01 

2.7810 × 10+01 

2.1805 × 10+01 

2.9840 × 10+00 

4.7058 × 10+01 

5.7889 × 10+01 

5.3201 × 10+01 

2.7074 × 10+00 

1.0224 × 10-27 

2.9039 × 10-02 

2.9129 × 10-05 

9.1926 × 10-03 

1.6238 × 10-31 

4.6120 × 10-01 

4.6264 × 10-04 

1.4600 × 10-02 

1.0332 × 10-26 

1.4662 × 10-06 

1.5419 × 10-09 

4.6417 × 10-08 

F5 

min 

max 

avg 

std 

3.4309 × 10+03 

3.6166 × 10+04 

1.0002 × 10+04 

8.1664 × 10+03 

4.6377 × 10+04 

5.9739 × 10+05 

1.5718 × 10+05 

1.1650 × 10+05 

1.6928 × 10+07 

9.7808 × 10+07 

4.3122 × 10+07 

1.9834 × 10+07 

6.1635 × 10+01 

5.0185 × 10+04 

2.0153 × 10+01 

4.4796 × 10+01 

9.7891 × 10+01 

7.9705 × 10+03 

3.2007 × 10+02 

7.1146 × 10+02 

9.7556 × 10+01 

9.8444 × 10+01 

9.8256 × 10+01 

1.1180 × 10-01 

F6 

min 

max 

avg 

std 

4.3837 × 10+01 

5.4170 × 10+02 

1.6494 × 10+02 

1.1005 × 10+02 

7.4813 × 10+02 

1.9870 × 10+03 

1.1957 × 10+03 

3.2285 × 10+02 

2.5374 × 10+04 

5.3297 × 10+04 

3.8327 × 10+04 

7.4018 × 10+03 

2.5079 × 10+00 

1.1917 × 10+02 

8.9365 × 10+00 

1.2831 × 10+01 

3.9831 × 10+00 

1.8927 × 10+02 

1.4193 × 10+01 

2.0378 × 10+01 

3.3907 × 10+00 

7.9542 × 10+00 

5.2465 × 10+00 

7.7500 × 10-01 

F7 

min 

max 

avg 

std 

2.5064 × 10-01 

9.6000 × 10-01 

4.0472 × 10-01 

1.5560 × 10-01 

1.0387 × 10+00 

4.0376 × 10+00 

2.2578 × 10+00 

6.8144 × 10-01 

3.0427 × 10+01 

1.5444 × 10+02 

6.3160 × 10+01 

2.7332 × 10+01 

7.5310 × 10-05 

5.6981 × 10-02 

3.8407 × 10-03 

4.5963 × 10-03 

1.1961 × 10-04 

9.0500 × 10-02 

6.1000 × 10-03 

7.3000 × 10-03 

4.4664 × 10-06 

2.5500 × 10-02 

3.4000 × 10-03 

3.2000 × 10-03 

F8 

min 

 

max 

 

avg 

 

std 

-1.8386 × 

10+04 

-1.2145 × 

10+04 

-1.5563 × 

10+04 

1.5734 × 10+03 

-2.0976 × 

10+04 

-1.4594 × 

10+04 

-1.7487 × 

10+04 

1.4071 × 10+03 

-5.9428 × 

10+03 

-3.4410 × 

10+03 

-4.4265 × 

10+03 

6.0086 × 10+02 

-1.8028 × 

10+04 

-6.8919 × 

10+03 

-1.1925 × 

10+04 

1.9219 × 10+03 

-2.8632 × 

10+04 

-1.0946 × 

10+04 

-1.8939 × 

10+04 

3.0524 × 10+03 

-2.2321 × 

10+04 

-6.0861 × 

10+03 

-1.3756 × 

10+04 

2.7817 × 10+03 

F9 

min 

max 

avg 

std 

1.1416 × 10+02 

2.2095 × 10+02 

1.5189 × 10+02 

2.6688 × 10+01 

1.3990 × 10+02 

2.9538 × 10+02 

1.9779 × 10+02 

3.3480 × 10+01 

5.8660 × 10+02 

7.5527 × 10+02 

6.8793 × 10+02 

3.6026 × 10+01 

0.0000 × 10+00 

5.3363 × 10-08 

5.8313 × 10-11 

1.6940 × 10-09 

0.0000 × 10+00 

8.4753 × 10-07 

9.2614 × 10-10 

2.6905 × 10-08 

0.0000 × 10+00 

3.5243 × 10-12 

3.2855 × 10-14 

1.9214 × 10-13 

F10 

min 

max 

avg 

std 

3.2842 × 10+00 

5.6556 × 10+00 

4.3490 × 10+00 

6.1408 × 10-01 

6.2140 × 10+00 

9.5208 × 10+00 

8.1384 × 10+00 

7.9216 × 10-01 

1.1792 × 10+01 

1.4675 × 10+01 

1.2970 × 10+01 

5.9008 × 10-01 

5.5922 × 10-16 

1.1134 × 10-06 

2.3612 × 10-09 

4.2042 × 10-07 

8.8818 × 10-16 

1.7683 × 10-05 

3.7501 × 10-08 

6.6772 × 10-07 

8.8818 × 10-16 

5.5582 × 10-08 

5.8108 × 10-11 

1.7592 × 10-09 

F11 

min 

max 

avg 

std 

1.2383 × 10+00 

7.9671 × 10+00 

2.3921 × 10+00 

1.2688 × 10+00 

6.2030 × 10+00 

1.7892 × 10+01 

1.1797 × 10+01 

3.3246 × 10+00 

2.4270 × 10+02 

4.7155 × 10+02 

3.5998 × 10+02 

5.4707 × 10+01 

0.0000 × 10+00 

2.0802 × 10-08 

2.4523 × 10-11 

6.6659 × 10-10 

0.0000 × 10+00 

3.3038 × 10-08 

3.8949 × 10-11 

1.0587 × 10-09 

0.0000 × 10+00 

9.8601 × 10-11 

1.0061 × 10-13 

3.1186 × 10-12 

F12 

min 

max 

avg 

std 

3.1538 × 10+00 

1.8358 × 10+01 

6.9790 × 10+00 

2.7466 × 10+00 

1.3594 × 10+01 

4.3185 × 10+01 

2.9772 × 10+01 

8.0168 × 10+00 

7.0627 × 10+06 

6.2160 × 10+07 

2.7158 × 10+07 

1.1500 × 10+07 

3.0348 × 10-02 

4.4974 × 10+00 

2.2736 × 10-01 

3.9881 × 10-01 

4.8200 × 10-02 

7.1429 × 10+00 

3.6110 × 10-01 

6.3340 × 10-01 

5.0800 × 10-02 

2.2810 × 10-01 

1.0950 × 10-01 

2.3400 × 10-02 

F13 

min 

max 

avg 

std 

5.6178 × 10+01 

1.6312 × 10+03 

1.5526 × 10+02 

2.8248 × 10+02 

1.6066 × 10+02 

1.4339 × 10+04 

3.2519 × 10+03 

4.3759 × 10+03 

4.2209 × 10+07 

1.7979 × 10+08 

1.0042 × 10+08 

3.9026 × 10+07 

3.1910 × 10+00 

4.1616 × 10+01 

7.7912 × 10+00 

4.0171 × 10+00 

5.0681 × 10+00 

6.6096 × 10+01 

1.2374 × 10+01 

6.3801 × 10+00 

6.8748 × 10+00 

9.9422 × 10+00 

9.9090 × 10+00 

1.1620 × 10-01 
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Table 4. The Benchmark Test Functions were run over 1000 times with 500 dimensions 

Fun. Fit. 
PSO [31] 

500 Dim 

SSA[32] 

500 Dim 

FDO [33] 

500 Dim 

mCOOT [34] 

500 Dim 

COOT[27] 
500 Dim 

ICOOT 

500 Dim 

F1 

min 

max 

avg 

std 

2.9446 × 10+04 

5.5507 × 10+04 

4.0022 × 10+04 

5.3768 × 10+03 

6.3491 × 10+04 

8.5472 × 10+04 

7.5171 × 10+04 

5.1430 × 10+03 

2.4682 × 10+05 

3.8145 × 10+05 

3.0623 × 10+05 

3.3204 × 10+04 

2.8224 × 10-56 

1.2338 × 10-09 

1.2963 × 10-11 

3.9063 × 10-10 

4.4826 × 10-60 

1.9595 × 10-06 

2.0589 × 10-09 

6.2042 × 10-08 

3.3503 × 10-58 

9.9796 × 10-16 

1.2798 × 10-18 

3.2092 × 10-17 

F2 

min 

max 

avg 

std 

2.5901 × 10+02 

7.9103 × 10+02 

3.1255 × 10+02 

1.2921 × 10+02 

3.8414 × 10+02 

4.5681 × 10+02 

4.2923 × 10+02 

1.6948 × 10+01 

1.1302 × 10+43 

1.3960 × 10+82 

8.7456 × 10+80 

3.4895 × 10+81 

2.1855 × 10-32 

3.1481 × 10-04 

4.2550 × 10-07 

1.0141 × 10-06 

3.4711 × 10-34 

5.0000 × 10-03 

6.7579 × 10-06 

1.6106 × 10-04 

1.5704 × 10-27 

1.5360 × 10-08 

2.9204 × 10-11 

6.0164 × 10-10 

F3 

min 

max 

avg 

std 

4.4210 × 10+05 

8.4808 × 10+05 

6.6498 × 10+05 

1.0566 × 10+05 

3.9886 × 10+05 

2.7517 × 10+06 

1.0046 × 10+06 

5.6095 × 10+05 

3.1061 × 10+06 

9.0120 × 10+06 

5.5883 × 10+06 

1.5414 × 10+06 

7.1450 × 10-54 

5.6437 × 10-01 

5.6415 × 10-03 

1.7847 × 10-01 

1.1348 × 10-56 

8.9635 × 10+01 

8.9600 × 10-02 

2.8345 × 10+00 

6.0385 × 10-52 

1.1620 × 10-14 

2.4494 × 10-17 

5.0743 × 10-16 

F4 

min 

max 

avg 

std 

3.3074 × 10+01 

4.6635 × 10+01 

3.7789 × 10+01 

2.9033 × 10+00 

2.7379 × 10+01 

3.9255 × 10+01 

3.9255 × 10+01 

2.7189 × 10+00 

6.7901 × 10+01 

7.3807 × 10+01 

7.1660 × 10+01 

1.6585 × 10+00 

2.7104 × 10-31 

7.2407 × 10-03 

7.5952 × 10-06 

2.2971 × 10-05 

4.3048 × 10-32 

1.1500 × 10-02 

1.2063 × 10-05 

3.6483 × 10-04 

3.9154 × 10-29 

2.4044 × 10-09 

3.3610 × 10-12 

7.9552 × 10-11 

F5 

min 

max 

avg 

std 

1.0208 × 10+07 

2.6888 × 10+07 

1.5187 × 10+07 

4.3703 × 10+06 

2.2798 × 10+07 

3.7563 × 10+07 

3.0294 × 10+07 

3.8318 × 10+06 

3.4090 × 10+08 

1.0330 × 10+09 

6.3648 × 10+08 

1.7839 × 10+08 

3.1353 × 10+02 

1.0941 × 10+04 

2.6719 × 10+03 

9.4507 × 10+03 

4.9795 × 10+02 

1.7377 × 10+05 

4.2436 × 10+03 

1.5010 × 10+04 

4.9764 × 10+02 

4.9830 × 10+02 

4.9799 × 10+02 

1.1600 × 10-01 

F6 

min 

max 

avg 

std 

3.0738 × 10+04 

6.2133 × 10+04 

4.1158 × 10+04 

6.9138 × 10+03 

6.5766 × 10+04 

8.6824 × 10+04 

7.5923 × 10+04 

4.7918 × 10+03 

2.3929 × 10+05 

3.8058 × 10+05 

3.0010 × 10+05 

3.6375 × 10+04 

5.5376 × 10+01 

2.2568 × 10+03 

1.3763 × 10+01 

2.4408 × 10+02 

8.7949 × 10+01 

3.5844 × 10+03 

2.1858 × 10+02 

3.8765 × 10+02 

8.3821 × 10+01 

1.0018 × 10+02 

9.2041 × 10+01 

2.8448 × 10+00 

F7 

min 

max 

avg 

std 

7.3681 × 10+01 

1.5434 × 10+02 

1.0843 × 10+02 

1.9512 × 10+01 

1.6387 × 10+02 

2.8490 × 10+02 

2.2242 × 10+02 

2.8015 × 10+01 

2.0082 × 10+03 

8.2848 × 10+03 

4.6495 × 10+03 

1.7100 × 10+03 

2.6109 × 10-05 

1.8448 × 10-01 

4.8481 × 10-03 

9.2556 × 10-03 

4.1468 × 10-05 

2.9300 × 10-01 

7.7000 × 10-03 

1.4700 × 10-02 

1.7397 × 10-05 

3.4800 × 10-02 

3.5000 × 10-03 

3.4000 × 10-03 

F8 

min 

 

max 

 

avg 

 

std 

-7.0866 × 

10+04 

-4.4052 × 

10+04 

-5.7190 × 

10+04 

5.6096 × 10+03 

-5.6095 × 

10+04 

-3.6572 × 

10+04 

-4.8169 × 

10+04 

4.1384 × 10+03 

-1.2157 × 

10+04 

-7.0314 × 

10+03 

-9.5400 × 

10+03 

1.0932 × 10+03 

-4.6130 × 

10+04 

-1.5068 × 

10+04 

-3.0905 × 

10+04 

5.8077 × 10+03 

-7.3266 × 

10+04 

-2.3932 × 

10+04 

-4.9085 × 

10+04 

9.2240 × 10+03 

-5.3359 × 

10+04 

-1.3337 × 

10+04 

-3.2469 × 

10+04 

6.5859 × 10+03 

F9 

min 

max 

avg 

std 

1.8818 × 10+03 

2.5033 × 10+03 

2.0918 × 10+03 

1.3734 × 10+02 

2.3410 × 10+03 

2.6965 × 10+03 

2.5250 × 10+03 

8.9432 × 10+01 

3.9219 × 

10+03 

4.2545 × 

10+03 

4.0872 × 

10+03 

8.9560 × 

10+01 

0.0000 × 10+00 

4.3286 × 10-05 

4.3624 × 10-08 

1.3689 × 10-06 

0.0000 × 10+00 

6.8749 × 10-05 

6.9285 × 10-08 

2.1741 × 10-06 

0.0000 × 10+00 

1.6553 × 10-10 

7.8489 × 10-13 

7.8184 × 10-12 

F10 

min 

max 

avg 

std 

9.2688 × 10+00 

1.1663 × 10+01 

1.0089 × 10+01 

5.7592 × 10-01 

1.1018 × 10+01 

1.1761 × 10+01 

1.1386 × 10+01 

1.8048 × 10-01 

1.4307 × 10+01 

1.5081 × 10+01 

1.4758 × 10+01 

1.8176 × 10-01 

5.5922 × 10-16 

1.3045 × 10-07 

3.5928 × 10-08 

6.0487 × 10-08 

8.8818 × 10-16 

2.0718 × 10-04 

5.7062 × 10-07 

9.6068 × 10-06 

8.8818 × 10-16 

2.4513 × 10-08 

4.2899 × 10-11 

9.5612 × 10-10 

F11 

min 

max 

avg 

std 

2.7295 × 10+02 

3.9745 × 10+02 

3.4624 × 10+02 

3.6390 × 10+01 

5.7293 × 10+02 

8.2312 × 10+02 

6.8206 × 10+02 

5.1201 × 10+01 

2.3689 × 10+03 

3.2686 × 10+03 

2.7928 × 10+03 

2.3477 × 10+02 

0.0000 × 10+00 

2.5808 × 10-06 

2.7199 × 10-09 

8.1688 × 10-07 

0.0000 × 10+00 

4.0989 × 10-05 

4.3199 × 10-08 

1.2974 × 10-06 

0.0000 × 10+00 

5.4512 × 10-13 

7.7083 × 10-16 

1.7813 × 10-14 

F12 

min 

max 

avg 

std 

2.1103 × 10+05 

4.7669 × 10+06 

1.6715 × 10+06 

1.1747 × 10+06 

3.4673 × 10+05 

2.6073 × 10+06 

1.0661 × 10+06 

5.0250 × 10+05 

1.4846 × 10+08 

1.8748 × 10+09 

1.0715 × 10+09 

4.9917 × 10+08 

2.7043 × 10-01 

4.1987 × 10+00 

5.1371 × 10-01 

4.7814 × 10-01 

4.2950 × 10-01 

6.6686 × 10+00 

8.1590 × 10-01 

7.5940 × 10-01 

4.3820 × 10-01 

6.4950 × 10-01 

5.4710 × 10-01 

3.3100 × 10-02 

F13 
min 

max 

8.5888 × 10+06 

4.3985 × 10+07 

1.7332 × 10+07 

4.0517 × 10+07 

1.0189 × 10+09 

3.9916 × 10+09 

3.1417 × 10+01 

2.4258 × 10+03 

4.9898 × 10+01 

3.8527 × 10+02 

4.9428 × 10+01 

4.9935 × 10+01 
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avg 

std 

2.2029 × 10+07 

7.9839 × 10+06 

2.6786 × 10+07 

5.5066 × 10+06 

2.0358 × 10+09 

7.6943 × 10+08 

4.4490 × 10+01 

2.1011 × 10+01 

7.0660 × 10+01 

3.3371 × 10+01 

4.9890 × 10+01 

3.2400 × 10-02 

 

Table 5. The performance in the environment with irregular shaped obstacles (Case 1) 

 

is made up of four irregular static obstacles (Map 1) 

and seven irregular static obstacles (Map 2) of 

different sizes. The starting position was (0, 0), and 

the goal position was (10, 10). The proposed ICOOT 

algorithm was used in static environments with the 

following settings: The number of coots is 80, the 

number of leaders is 2, and the minimum acceptance 

error is 0.2 m (error is defined as 

norm(robotCurrentPose (1:2)-GoalPosition(:)).where 

robotCurrentPose = [robotInitialLocation 

initialOrientation] and initialOrientation = 0, desired 

linear velocity for robot = 0.5 m/sec, robot wheel 

radius = 0.034 m, and Max Angular Velocity = Linear 

Velocity / Wheel Radius. The optimized function is 

given by Eq. (4) 

(1) Case 1: The target is static 

In this case, the mean distance for Map 1 is 

13.3797m and the error is 8.0739 × 10-04 m and the 

elapsed time is 42.6245 sec; the mean distance for 

Map 2 is 13.5164 m and the mean error is 1.0000 × 

10-03 m and the elapsed time is 45.0302 sec as shown 

in Fig. 11 and in Table 5. 

The first map contains four irregularly shaped 

obstacles, while the second map contains seven 

irregularly shaped obstacles. The green dashed line 

represents the path that the robot took and avoided 

collision, while the robot is shown at the goal position 

in red. Later, the target will be fixed in the first and 

second maps, while the target will be moving in the 

third map, and the fourth map will contain ten 

obstacles moving at a variable speed. 

Ten runs were made for each map, and the 

distance, the error distance from the target, and the 

time taken were measured. 

 

(2) Case 2: The goal is dynamic 

In this case, the goal is a dynamic that moves 

from one location to another at each successive time 

step interval. The velocity and direction of the 

dynamic goal are assumed to be random. The settings 

are the same as in case 1. As shown in Fig. 12 (a) and 

in Table 6, the mean distance for Map 3 is 11.9312m, 

the error is 9.9992 × 10-04 m, and the elapsed time is 

42.5964 sec. 

(3) RPP in a dynamic environment 

The proposed algorithm was put to the test in a 

dynamic environment with ten dynamic obstacles. 

The settings are the same as in static environment. 

The velocity ( 𝑣𝑜𝑏𝑠 ) and direction ( 𝜃𝑜𝑏𝑠 ) of the 

dynamic obstacles are assumed to be random 

according to Eqs. (5) and (6). As shown in Fig. 12 (b) 

and in Table 6, the mean distance for Map 4 is 

16.3937 m, the error is 9.5249 × 10-04 m, and the 

elapsed time is 49.1190 sec. 

6. Conclusions 

This paper came up with the ICOOT swarm 

optimization algorithm, and thirteen benchmark test 

functions are used to compare the proposed method 

to the standard algorithm. Also, using an ICOOT 

local search is an integrated strategy for the detection 

and avoidance of obstacles. Take into consideration 

the mobile robot's actual size and the kinematic 

model with specifications for robots. Algorithms 

were tested in both dynamic and static environments 

with various scenarios. They tried to minimize a 

multi-objective measure of path length and 

smoothness in these environments. According to 

simulation results, it shows that the ICOOT generates 

the best path for avoiding static and dynamic  

 

Run 

Map 1 Map 2 

Distance (m) Error (m) 
Elapsed 

time (sec) 
Distance (m) Error (m) 

Elapsed time 

(sec) 

1 13.2793 9.8505 × 10-04 40.2606 14.1892 6.8188 × 10-04 39.3076 

2 13.1348 1.2000 × 10-03 37.185 13.0472 9.5682 × 10-04 47.4014 

3 13.1557 5.5994 × 10-04 39.1394 13.2252 1.3000 × 10-03 43.6256 

4 12.9956 1.0000 × 10-03 45.0583 13.4820 9.9570 × 10-04 56.9447 

5 13.1023 6.6753 × 10-04 49.6354 13.4929 6.8757 × 10-04 48.1613 

6 13.6819 9.8490 × 10-04 39.7836 13.5341 8.6734 × 10-04 38.1024 

7 13.1572 5.3466 × 10-04 36.9746 13.4909 1.4000 × 10-03 43.6487 

8 14.0919 7.3766 × 10-04 47.2728 13.3086 5.1325 × 10-04 37.7038 

9 13.8775 7.4151 × 10-04 37.4747 13.2252 1.3000 × 10-03 37.9535 

10 13.3207 6.6267 × 10-04 53.4604 14.1691 1.3000 × 10-03 57.4533 

Mean 13.3797 8.0739 × 10-04 42.6245 13.5164 1.0000 × 10-03 45.0302 
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(a)                                                                    (b) 

Figure. 11: (a) Map 1 and (b) Map2 

 

Table 6. Cases 2 and 3's performance. 

 

 
(a)                                                                         (b) 

Figure. 12: (a) Map 3 and (b) Map4 

 
obstacles in an unknown complex environment with 

irregular static obstacles and according to the 

objective that is needed by the mobile robot to reach 

the goal position. The proposed method is compared 

to five swarm optimization strategies. The proposed 

algorithm gave the results were better than 84% in 30 

dimensions. While it was 92% in 100 and 500 

dimensions, it means the suggested algorithm is 

stable in most test functions and does not suffer from 

the growth of the problem size. The mean results 

show that this method is highly useful for robot paths 

from the start to the destination. The average mean 

Run 

Map 3 Map 4 

Distance (m) Error (m) 
Elapsed time 

(sec) 
Distance (m) Error (m) 

Elapsed 

time (sec) 

1 14.0403 5.2472 × 10-04 61.402138 16.0096 1.1000 × 10-03 52.886948 

2 10.9095 6.6049 × 10-04 33.968483 15.5510 1.1000 × 10-03 50.835557 

3 11.5419 1.4000 × 10-03 48.351470 17.6560 6.8392 × 10-04 45.930273 

4 10.9759 1.2000 × 10-03 55.319431 16.6860 1.1000 × 10-03 52.768155 

5 11.4489 9.8912 × 10-04 46.056632 15.4849 7.5757 × 10-04 47.944359 

6 11.7831 5.8099 × 10-04 35.623026 16.3143 7.2201 × 10-04 44.913749 

7 11.9819 1.4000 × 10-03 35.306464 17.6049 6.6138 × 10-04 48.154225 

8 11.7622 8.4387 × 10-04 35.703954 16.4441 1.0000 × 10-03 51.582104 

9 12.1407 1.2000 × 10-03 36.017066 15.9843 1.0000 × 10-03 44.880337 

10 12.7279 1.2000 × 10-03 38.215630 16.2018 1.4000 × 10-03 51.294447 

Mean 11.9312 9.9992 × 10-04 42.5964 16.3937 9.5249 × 10-04 49.1190 
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distance for four complex arenas with 100m distance 

and three scenarios (fixed obstacle, fixed target, fixed 

obstacle, dynamic target, and dynamic obstacle and 

fixed target) is 13.8052. 

The Matlab 2021a programming language is used 

to write the simulation code and run it on a computer 

with an Intel (R) Core (TM) i7-9750HF CPU @ 

2.60GHz and 16.0 GB of RAM. It will be interesting 

to think about how the proposed ICOOT algorithm-

based path planning will work on real mobile robots 

in future work. 
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Table 7. A list of notations used in this paper's proposed 

algorithm equations 

Symbol Meaning 

𝑣𝑜𝑏𝑠 Obstacle velocity 

𝜃𝑜𝑏𝑠 Obstacle direction 

𝑟𝑎𝑛𝑑(0,1) A random number between 0 and 1. 

𝐶𝑃   COOT position 

𝑑 search space dimension 
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𝑙 and 𝑢 lower and upper search space limits 

Q random position 

𝐿 current iteration 

𝐼𝑡𝑒𝑟 The maximum number of iterations 

NL leader's number 

LP Number of leaders 

gBest The best place to be found 

𝑁 The number of coots 

𝐷(𝑗) Density 

CCP COOT center position 

FCP The first coot in the swarm 

LCP The last coot in the swarm 

acc Acceleration 

α 
The number of free points inside the 

circle with integer coordinates. 

𝛽1 
represent the number of integer 

coordinates contained within the circle 

𝛽2 
The minimum difference between two 

coots in the swarm 

η 
The number of coordinates 

accompanied by the coot 

 


