
Received: May 28, 2022. Revised: July 17, 2022. 548

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

Robot Path Planning in Unknown Environments with Multi-Objectives Using an

Improved COOT Optimization Algorithm

Jaafar Ahmed Abdulsaheb1,2* Dheyaa Jasim Kadhim1

1 Department of Electrical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq

2 Department of Electronics and Communication, College of Engineering, Uruk University, Baghdad, Iraq
* Corresponding author’s Email: jaafer@uruk.edu.iq

Abstract: This paper discusses the best path planning algorithm for an autonomous mobile robot in an unknown

environment with irregular static and dynamic obstacles and a static and dynamic target based on the improved COOT

(ICOOT) optimization algorithm. The ICOOT overcomes the drawbacks of unstable searches in the conventional

COOT. The path planning problem is solved by finding the collision-free path between multi-objective shortest path

and smoothness. The ICOOT tries to imitate the real world by adding the mobile robot's actual size and the kinematic

model with specifications for mobile robots. In order to evaluate the proposed algorithm, thirteen benchmark test

functions are used to make a comparison with 30, 100, and 500 dimensions. To test the efficiency of the proposed

technique, results are compared with five swarm optimization algorithms. The standard deviation results show that the

proposed algorithm gets the best results in 84% of the thirteen test functions for 30 dimensions and 92% for 100 and

500 dimensions. Also, in four complex maps (10×10) m, the mean results show that this method is very useful for

robot paths from the start to the target, and the mean distance for ten runs is 13.3797 m for map 1, 13.5164 m for map

2, and 11.9312 m for map 3, and 16.3937 m for map 4. It showed how well it could move quickly and easily around

both fixed and moving obstacles.

Keywords: Robot path planning, Multi-objectives, COOT optimization algorithm, Shortest distance, Path smoothness,

Obstacle detection, Obstacle avoidance.

1. Introduction

Autonomous mobile robot (AMR) navigation is

used in an enormous range of applications, including

mining, search and rescue, military, agricultural,

healthcare, and entertainment [1]. Three key concerns

must be addressed when dealing with robot

navigation (RN) issues: safety, accuracy, and

efficiency. Finding a collision-free path and

following the precise addressed path are the safety

and accuracy concerns. Efficiency means that the

algorithm doesn't let robots stop and turn over and

over again. This wastes time and energy. RN

problems can be classified into localization, path

planning, cognitive mapping, and motion control.

Among these problems, it can be said that path

planning is the most important point in the RN. The

goal of path planning is to find the best and most

direct path that is free of collisions from a start

position to a target in a given environment. Generally,

there are several ways for a robot to reach a target,

but the best path is chosen based on a set of criteria

[2].

In the 1960s, the field of robot path planning

(RPP) was started, and numerous methodologies such

as cell decomposition [3], roadmap approaches [4],
and potential fields [5] have been proposed. The main

disadvantages of the above algorithms are their

inefficiency (the cost of computation is considerable)

and inaccuracy (a significant risk of becoming

trapped in relative minima). Different heuristic

methods, such as the use of neural networks, genetics,

and nature-inspired algorithms, can be used to

overcome the limitations of these algorithms [6].
Depending on the environment where the robot is

situated, RPP may be classified into two categories:

static (environment with fixed obstacles) and

Received: May 28, 2022. Revised: July 17, 2022. 549

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

dynamic (the environment has moving obstacles).

Each of these two categories could be divided further

into subgroups, global path planning (GPP), where

the entire information of fixed and moving obstacles

can be known ahead of time; Thus, the GPP can be

prepared before the robot begins to move (offline),

and there is a local path planning (LPP). Here, it is

not possible to get information about the environment

in advance. So, there are sensors (online) that collect

information about what is around the mobile robot as

it moves through the world [7].

Some of the related works are described below.

In [8] it was proposed to improve the traditional ACO

to avoid being trapped in local minimums or the

slower convergence during the process of path

planning. In [9], a new strategy based on adaptive

particle swarm optimization (APSO) is described for

solving the problem of mobile RPP. The APSO

algorithm is more intelligent than the traditional PSO

algorithm and is commonly utilized to solve real-time

problems. It is hoped that a new strategy will help the

robot avoid obstacles and get to its goal faster. In the

work [10], a group of mobile robots presents a unique

odor source localization approach based on the

cuckoo search algorithm. It employs a robot that

identifies the highest gas concentration among all

robots in order to send other robots to look for odor

sources upwind. The robots can use this method to

get away from both local high concentration and eddy

locations. The research [11] develops a new

algorithm based on the bacterial foraging

optimization (BFO) technique. It uses particles that

are spread out in a circle around the robot to figure

out a way to get to the target and avoid the obstacles

in its way. The goal of the paper [12] is to plan a path

for mobile robots that avoids obstacles based on the

artificial immune algorithm (AIA) based on the

principle of immunity. Simulated results show that

the mobile robot can avoid obstacles, escape traps,

and reach its goal by using AIA. The goal of this

study is to use the artificial immune algorithm (AIA)

created from the immune principle to plan an

obstacle-avoiding path for mobile robots. Simulated

results show that the mobile robot can avoid obstacles,

escape traps, and reach its goal by using AIA. A novel

multi-objective method for optimal mobile robot path

planning based on the Whale optimization algorithm

(WOA) has been proposed [13]. In WOA, the

distance and smoothness of the robot's path planning

issues are transformed into minimization ones. In

each iteration, the robot chooses the best whale and

moves toward it in order. GA has been widely applied

to path optimization problems [14]. The new

proposed crossover operator avoids premature

convergence and makes possible paths that have

better fitness values than their parents. A fuzzy logic

controller [15] has been implemented in I robot create

(a mobile robot) by interfacing with the arduino uno.

When the robot moves, fuzzy rules are used to control

how fast the robot moves on its left and right wheels.

The hybrid multi-objective bare-bones particle

swarm optimization with differential evolution [16]

is used to plan better routes for mobile robots. A new

Pareto domination with collision constraints has been

developed to select the personal best position of a

particle. Simulation results confirm the effectiveness

of this algorithm. An improved chicken swarm

optimization algorithm (ICSO) [17] is proposed and

applied in RPP. The numerical results show that the

ICSO For unconstrained optimization, the algorithm

has better accuracy and stability and has a stronger

search capability in RPP. An optimal path planning

algorithm based on the firefly algorithm with self-

adaptive population size is proposed in [18]. The

feasible solution and the infeasible solution are

distinguished by population size. In terms of stability,

convergence speed, and running time, the proposed

algorithm is better than the fixed population size

firefly algorithm. The Morphin algorithm [19] was

introduced in order to avoid moving obstacles in real

time. Simulation results indicate that the proposed

method performs well in planning an initial static

optimal path. [20] The authors offer a dynamic

window technique based on the improved ant colony

(IACO-DWA) method for designing an adaptive

distance induction factor and combining the

maximum and minimum ant systems. Simulated

results show that the strategy improves the global

path optimization performance while also avoiding

local dynamic obstacles, which is what it does. [21]

This paper presents an improvement to the actual

output trajectory tracking performance of a mobile

robot based on a convolutional neural network

controller with off-line and on-line tuning back-

propagation algorithms. The task of the proposed

feedback (CNNTT) controller is to obtain precisely

and quickly the robust left and right wheel velocity,

which are used to control the position and orientation

of the mobile robot system. These algorithms are

simulated by MATLAB in a fixed obstacle

environment to show the effectiveness of the hybrid

swarm optimization algorithm. The work [22] aims at

developing a path planning method that provides the

shortest path with collision avoidance. The generated

hybrid method is called the quarter orbits particle

swarm optimization (QOPSO) algorithm. It

combines two algorithms to get a more efficient,

smoother, and shorter path for the mobile robot. [23]

The collision avoidance method is based on velocity

Received: May 28, 2022. Revised: July 17, 2022. 550

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

Figure. 1 The Euclidean distance between two points

control with respect to several moving objects in the

vicinity of a wheeled mobile robot. Collision

avoidance is achieved by considering static robots,

other mobile robots, and moving objects with

nonlinear trajectories.

The mobile robot was treated as a basic particle

in the experiments stated above, which is one of their

flaws. While some of these algorithms focused on

minimizing the length of the path while avoiding

static obstacles, other studies concentrated on

minimizing the length of the path while avoiding

dynamic obstacles without taking the smoothness of

the path into account. The grid-based methods

utilized in some of the aforementioned research are

also simple to implement, but they come with a

number of drawbacks, such as an imperfect

representation of the obstacle that reserves the entire

cell even if the obstacle only fills a small portion of

the cell. Space is wasted as a result, and surroundings

that are dynamic have less flexibility. The following

is a list of the major contributions made by this

research project:

(1) The main drawback in the conventional COOT

algorithm is the absence of the parameter of

transfer from exploitation and exploration. This

results in unstable searches (stagnation in the

local optimum) and the squandering of more time.

So, the ICOOT algorithm was proposed to

overcome this drawback.

(2) Combinations of multi-objective proposed in this

paper (shortest path and smoothness), are

generated and selected using this algorithm. Also,

thirteen benchmark test functions were used to

compare the new algorithm to the old one.

(3) The proposed ICOOT algorithm is integrated

with a local search strategy that transforms

infeasible solutions into viable ones in an

unknown environment with irregular static

obstacles and a static and dynamic target.

(4) 80 sensors to detect obstacles. The sensors are

positioned in all the mobile robot's surroundings,

and when they are found, an algorithm is

activated that increases or decreases the speed of

the robot to avoid them.

(5) Also taken into consideration are the mobile

robot's actual size and the kinematic model with

specifications for robots (taking turtlebot3 burger

as an assumption).

This paper is organized as follows: section 2

represents the problem formulation. Section 3

discusses the COOT optimization technique, and

section 4 describes our proposed improved COOT

algorithm, while section 5 shows the simulation

result and discussion. Finally, the conclusion of this

paper is represented in section 6.

2. Problem formulation

Assume a mobile robot is moving from a starting

position to a goal in an environment that has both

dynamic and fixed obstacles. RPP can be thought of

as an optimization problem in which the goal is to

find the best path according to some objectives.

These objectives are the safest, shortest, and

smoothest.

2.1 Shortest distance

The first objective is to figure out the shortest

distance between the robot's starting point and its

goal. The Euclidian distance f1 (x,y) is the objective

function for minimizing the distance between the

present position of the coot and the goal point,

formulated as [24]:

𝑓1(𝑥, 𝑦) = ∑ √(∆𝑥)2 + (∆𝑦)2 (1)

𝑛−1

𝑗=1

Where n represents the number of via points

(trajectory change occurred) which represent a

project parameter of this case and:

∆𝑥 = 𝑥(𝑗 + 1) − 𝑥(𝑗) (2)

∆𝑦 = 𝑦(𝑗 + 1) − 𝑦(𝑗) (3)

Received: May 28, 2022. Revised: July 17, 2022. 551

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

Figure. 2 Path smoothness

Figure. 3 Weighted sum selections for MOO

2.2 Path smoothness

To enhance the smoothness of the robot's path,

minimizing the angles between the straight lines

connecting the goal in relation to the current position

and the next suggested position in relation to the

current position, as shown in Fig. 2. would be a

second objective function (Eqs. (4) and (5)) that the

algorithm should satisfy in addition to the first

objective, which is minimizing the distance in Eq. (1).

𝑓2(𝑥, 𝑦) = ∑∆𝜃𝑗

𝑛

𝑗=1

 (4)

∆𝜃𝑗 = 𝑡𝑎𝑛−1 (
∆𝑦

∆𝑥
) − 𝑡𝑎𝑛−1 (

𝑦(𝑔𝑜𝑎𝑙) − 𝑦(𝑗)

𝑥(𝑔𝑜𝑎𝑙) − 𝑥(𝑗)
) (5)

Where, 𝑗 = 1,2,… 𝑛 − 1

2.3 Multi-objective approach

Multiple objective optimization (MOO) is used

when an optimization issue has more than one

objective function and the goal is to identify one or

more optimal solutions. The weighted sum method is

a common way to deal with multiple objective

optimization. It uses the weighted sum to combine all

of the many objective functions into a single scalar or

composite objective function, which is easier to

understand [25].

𝑓(𝑥, 𝑦) = ∑ 𝑊𝑚 𝑓𝑚 (𝑥, 𝑦)

𝑀

𝑚=1

= 𝑊1 𝑓1 (𝑥, 𝑦) + 𝑊2 𝑓2(𝑥, 𝑦) (6)

The importance of defining the weighting

coefficient, W = (W1, W2, ..., Wm), is that the strong

solution is determined by W. These weights have

obviously been beneficial and satisfying [26].

∑ 𝑊𝑚 = 1𝑀
𝑚=1 , Wm ∈ [0,1].

2.4 Obstacles movement

In this paper, in the case of the dynamic obstacle

that moves from one location to another at each time

step, the velocity is (𝑣𝑜𝑏𝑠) and direction (𝜃𝑜𝑏𝑠) of the

dynamic obstacles are assumed to be random

according to the following equations:

𝜒𝑜𝑏s = 𝜒𝑜𝑏𝑠 + 𝑣𝑜𝑏𝑠 × 𝑐𝑜𝑠 𝜃𝑜𝑏𝑠 (7)

𝑦𝑜𝑏s = 𝑦𝑜𝑏𝑠 + 𝑣𝑜𝑏𝑠 × 𝑠𝑖𝑛 𝜃𝑜𝑏𝑠 (8)

Where,

𝜃𝑜𝑏𝑠 = 360 × 𝑟𝑎𝑛𝑑(0,1) (9)

𝑣𝑜𝑏𝑠 = 𝑟𝑎𝑛𝑑(0,1) (10)

3. COOT optimization technique

New swarm-based algorithm, COOT [27] , is

discussed in this paper. The COOT algorithm was

invented by Naruei and Keynia in 2021 as a swarm-

based algorithm inspired by collective movements

(irregular and regular movements on the water's

surface). A few coots in front of the group, which is

regarded as a group leader, steer the entire group

Received: May 28, 2022. Revised: July 17, 2022. 552

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

(a) (b) (c)

Figure. 4: (a) Random movement, (b) Chain movement, and (c) Choose a leader by coot

toward the destination (food). Coots make four

distinct movements on the water's surface, which are

as follows [27]:

1. Random movement.

2. Chain movement.

3. Adjusting the position based on the leaders

of the group.

4. Led by their leaders, they lead the group

towards the optimal location.

The population is calculated randomly using Eq.

(11).

𝐶𝑃(𝑗) = 𝑟𝑎𝑛𝑑(1, 𝑑) × (𝑢 − 𝑙) + 𝑙 (11)

Where 𝐶𝑃(𝑗) denotes the COOT position at

instant j, 𝑑 denotes the search space dimension

(number of optimization variables), and 𝑙 and 𝑢

denote the lower and upper search space limits. Then

the four movement phases are defined as:

(1) Phase of random movement:

In this phase, the random position (Q) is

determined using Eq. (12), to look through the many

regions of the search space

𝑄 = 𝑟𝑎𝑛𝑑(1, 𝑑) × (𝑢 − 𝑙) + 𝑙 (12)

The COOT's new positions must escape local

optimal solutions. Thus, Eq. (13) can calculate the

new COOT positions as follows:

𝐶𝑃(𝑗) = 𝐶𝑃(𝑗) + 𝐴 × 𝑅2 × (𝑄 − 𝐶𝑃(𝑗)) (13)

Where R2 is a random variable in ∈ [0, 1], A is

defined by Eq. (14) as follows:

𝐴 = 1 − 𝐿 × (
1

 Iter
) (14)

𝐿 shows the current iteration, and the maximum

number of iterations is shown in 𝐼𝑡𝑒𝑟.

(2) Chain movement phase:

This phase is represented mathematically by

using Eq. (15).

𝐶𝑃(𝑗) = 0.5 × (𝐶𝑃 (𝑗 − 1) + 𝐶𝑃(𝑗) (15)

(3) Phase of Adjusting the position based on the

group leader’s:

In this movement, Eq. (16) is used to adjust the

position.

𝐾 = 1 + (𝑗 𝑀𝑂𝐷 𝑁𝐿) (16)

Where j is a number that is represented by an

index of all the coots, NL shows the leader's number,

and K is a number that indicates the number of the

leader. The position of the next coot is calculated

based on the leader number k as follows:

𝐶𝑃(𝑗) = 𝐿𝑃(𝐾) + 2 × 𝑅1 × 𝑐𝑜𝑠 (2𝑅𝜋) ×

 (𝐿𝑃(𝐾) − 𝐶𝑃(𝑗)) (17)

Where LP represents the leader position.

(4) phase of leading the group towards the optimal area:

Eq. (18) is used to change the leader's position.

𝐿𝑃(𝑗)

= {

𝐵 × 𝑅3 × 𝑐𝑜𝑠(2𝑅𝜋)
× (𝑔Best − LP (𝑗)) + 𝑔𝐵𝑒𝑠𝑡 𝑅4 ≺ 0.5

𝐵 × 𝑅3 × 𝑐𝑜𝑠(2𝑅𝜋)
× (𝑔𝐵𝑒𝑠𝑡 − LP (𝑗)) − 𝑔𝐵𝑒𝑠𝑡 𝑅4 ≻ 0.5

} (18)

Where gBest represent, the best place is found,

R3, R4, and R are all random numbers. R3 and R4

∈[0, 1], R ∈ [- 1, 1], and B is defined in Eq. (19):

Received: May 28, 2022. Revised: July 17, 2022. 553

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

𝐵 = 2 − 𝐿 × (
1

 Iter
) (19)

Pseudocode that shows how the COOT algorithm

works is shown in [27].

4. Proposed improved COOT algorithm

A The details of the improved COOT (ICOOT)

algorithm are presented in the following:

1. To keep the local optimum from becoming

stagnant and further wasting time, individuals in

the swarm must be led by the best in the entire

swarm. It will be used to make the random

movement equation in the proposed ICOOT:

𝐶𝑃(𝑗) = 𝐶𝑃(𝑗) + 𝐴 × 𝑅2 ×

(𝑄 + 𝑔𝐵𝑒𝑠𝑡 − 𝐶𝑃(𝑗)) (20)

2. The main drawback in the conventional COOT

algorithm is the absence of the parameter of

transfer from exploitation and exploration. This

ends in unstable searches (stagnation in the local

optimum) and the squandering of more time. To

overcome this drawback, a new parameter called

"acceleration" (acc) is utilized. According to

Hugh Trenchard [28], the transition from

disordered to synchronized states appears to be

induced by two main factors: the first one is

acceleration between individual coots within the

flock, which brings accelerating coots closer to

slower moving coots, causing slower moving

coots to adjust their orientation to align with

accelerating coots. The second thing that happens

is that coots in leadership positions or on the

periphery of the group speed up. This causes a

widening gap between coots, which forces others

to change their orientations and speeds to follow.

In this paper, the acceleration depends on density,

meaning that as a low-density group they can

swim faster by alternating leading positions than

when swimming in higher densities. According

to Fig. 5, density can be defined as

𝐷(𝑗) =
𝑁

 𝜋𝑟2
 (21)

Where 𝑁 is the number of coots and 𝜋𝑟2 the total

area occupied by all birds.

To find the radius (r), first find the center coot

position (CCP) of the swarm:

 𝐶𝐶𝑃(𝑥, 𝑦) =
𝐹𝐶𝑃(𝑥, 𝑦)

𝐿𝐶𝑃 (𝑥, 𝑦)
 (22)

= (
|𝑚𝑎𝑥(𝑥)|−|𝑚𝑖𝑛(𝑥)|

2
,
|𝑚𝑎𝑥(𝑦)|−|𝑚𝑖𝑛(𝑦)|

2
)

Where FCP is the first coot in the swarm and LCP is

the last coot in the swarm. So, the radius (r) can be

found as:

𝑟 = 𝑚𝑎𝑥 (𝐶𝐶𝑃(𝑥), 𝐶𝐶𝑃(𝑦)) + 1 (23)

Now, "acceleration" (acc) can be found according to

the previous rule:

𝑎𝑐𝑐(𝑗) = |(1 − 𝐷) + (1 −
1

|𝑎|
) − 𝑟𝑎𝑛𝑑 (0,2)|

(24)

Where α is the number of free points with integer

coordinates that lie inside the circle.

𝛼 = 𝛽1 ∗ 𝛽2− 𝜂 (25)

Where β1 reprsent number of integer coordinates

inside circle, it can be found by using the following

equation:

𝛽1 = √|𝑥𝑝 − 𝑥𝑐|
2
+ |𝑦𝑝 − 𝑦𝑐|

2
< 𝑟 (26)

Where, (𝑥𝑐 , 𝑦𝑐) represents the center of the circle

and (𝑥𝑝, 𝑦𝑝) whether the point is inside the circle or

not, 𝑥𝑝 = min(𝑥): 1:max(𝑥) and 𝑦𝑝 =

 min(𝑦): 1:max(𝑦)

and β2 is the minimum difference between two coots

in the swarm,

 𝛽3 = 𝑆𝑜𝑟𝑡(𝐶𝑂𝑂𝑇𝑃𝑂𝑆(:,1))) (27)

 𝛽4 = 𝑆𝑜𝑟𝑡(𝐶𝑂𝑂𝑇𝑃𝑂𝑆(:,2)) (28)

𝛽2

= √(𝛽3(2) − 𝛽3(1))
2
+ (𝛽4(2) − 𝛽4(1))

2
 (29)

and η = number of coordinates accoupied by the coot

So, according to the above, the following are new

movement phases:

(1) Phase of random movement:

CP(𝑗) = CP(𝑗) + 𝐴 × 𝑎𝑐𝑐(𝑗) × 𝑅2
× (𝑔𝑏𝑒𝑠𝑡 + 𝑄 − CP(𝑗)) (30)

Received: May 28, 2022. Revised: July 17, 2022. 554

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

Figure. 5 14 coots, density =
14

 𝜋𝑟2

(2) Phase of adjusting the position based on the

group leader’s:

𝐶𝑃(𝑗) = 𝐿𝑃(𝑘) + 2 × 𝑎𝑐𝑐(𝑗) × 𝑅1 ×

𝑐𝑜𝑠 (2𝑅𝜋) × (𝐿𝑃(𝑘) − 𝐶𝑃(𝑗)) (31)

(3) Phase of leading the group towards the optimal

area:

𝐿𝑃(𝑗) =

 {

2 × 𝑎𝑐𝑐(𝑗) × 𝐵 × 𝑅3 × 𝑐𝑜𝑠(2𝑅𝜋)

× (𝑔Best − LP (𝑗)) + 𝑔𝐵𝑒𝑠𝑡 𝑅4 ≺ 0.5

2 × 𝑎𝑐𝑐(𝑖) × 𝐵 × 𝑅3 × 𝑐𝑜𝑠(2𝑅𝜋)
× (𝑔𝐵𝑒𝑠𝑡 − LP (𝑗)) − 𝑔𝐵𝑒𝑠𝑡 𝑅4 ≻ 0.5

} (32)

4.1 Proposed a local search strategy

The proposed local search (LS) is a local search

strategy that transforms infeasible solutions into

viable ones. The solution is considered infeasible in

two cases: first, if the next selected point by the

ICOOT algorithm is within the obstacle region (Fig.

6, case (1)). The second, if it is outside the obstacle

but a line connects this point with the previous point,

or the consequent point is passing through the

obstacle (Fig. 6 case (2)). According to the following

suggested criteria, these two cases are solved by

trying to evict the possible solutions from the

obstacle's occupied area.

In case 1, the suggested next position lies inside

the obstacle: There is a way to get out of this situation

by checking if the next suggested position in the path

is occupied or not. If a place is already occupied, the

algorithm looks for the next best unoccupied position.

Case 2, the line between two points passes

through the obstacle: This issue can be fixed by

finding the equation of a straight n-point line between

the current point and the next suggested point. Then,

if any n-points are occupied and the line is vertical

(difference between y axis n-points > difference x n-

point), the algorithm goes horizontally left and right,

then finds the nearest unoccupied point (x (i+1), y

(i+1)) to (x (i), y (i)) and vice versa, if the line passes

through the obstacle is horizontal.

4.2 Obstacle detection and avoidance (ODA)

A description of the sensor is needed since the

robot is working in an unknown environment.

Obstacle detection sensing (ODS) is the name of a

proposed method for finding obstacles and avoiding

them, and it's what we're going to talk about now.

(1) The procedure for detecting obstacles

The robot map is imported into the MTALAB

workspace and a binary map of occupancy is

constructed. The occupancy map is simply a 2D

matrix. Every pixel on the map is labeled with either

binary 0 (non-occupied) or binary 1 (occupied by

static and/or dynamic obstacles). ODS is performed

by encircling the mobile robot with eighty virtual

sensors (VS). The VS is placed in four layers. The

first layer has eight VS, and each sensor has a specific

angle range of 30. The second one is sixteen VS, and

each sensor has a specific angle range of 22.5◦. The

third layer, including twenty-four VS, and each

sensor, covers an angle range of 14.4. The last layer,

thirty-two VS, and each sensor, covers an angle range

of 11.25◦. These VS positions are pointed at each

iteration according to the robot's current position

(RCP), as shown in Fig. 7.
(2) Obstacle avoidance algorithm

At each iteration, the occupancy map provides

information about the existence of obstacles

(occupied (binary 1) or unoccupied (binary 0)). The

algorithm finds the best unoccupied position

according to objectives among eighty possible

positions that are randomly arranged around RCP

(gBest). Each of these eighty positions with RCP is

updated at each iteration by the ICOOT algorithm.

So, the robot has more options to increase speed

or slow down to avoid obstacles. So, the proposed

robot path planning algorithm is illustrated in this

simple pseudocode.

4.3 Kinematic model

Kinematic modeling of the robot is needed to

figure out where the robot will go next and how to get

around obstacles. The robot is depicted as a

horizontally traveling, rigid body on wheels. The

robot chassis moves in a 2D plane defined by the

coordinates [x, y]. To make the model easier to

understand, things like wheel axels and steering

Received: May 28, 2022. Revised: July 17, 2022. 555

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

Figure. 6 Infeasible path type

Figure. 7 Obstacle detection

wheel joints are left out [29].
The relationship between the plane global reference

frame GRF and the robot local refence frame LFR is

shown in Fig. 9. The axes Xl-Yl define the GRF at

the origin O: {Xl,Yl The robot's reference point is

chosen as point P on the robot chassis. x, y, and the

angle between the GFR, the LFR and θ, establish the

position of reference point P in the global frame. The

position of the robot can be described as a vector:

Figure. 8 Robot possible positions

𝜉𝐼 = [
𝑥
𝑦
𝜃
] (33)

The attitude associated with the GFR is denoted

by the subscript "I." The mapping is determined by

the robot's present position, and the orthogonal

rotation matrix is used to explain it:

𝑅(𝜃) = [
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 0

− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0
0 0 1

] (34)

The motion of the robot is mapped from the

reference frame [XI, YI] to a motion term in the LRF

[XR, YI] using the matrix of Equation [4]. The

velocity vector �̇�𝐼 is used to express this mapping

�̇�𝐼 = [
�̇�
�̇�

�̇�

] (35)

Initiliaze: first population of coots

Initiliaze: start position, target position, error Threshold,

number of leaders

Set: number of coots and random selection of leaders

Calculate: the fitness of coots and leaders

find the best coot or leaders as the global optimum

(gbest)

While gbest = target postion || error>error Threshold

Start: Obstacle Detection and Avoidance (ODA)

algorithm

Update the best postion (gbest)

Start: a local search strategy

Mobile robot moves to new position (gbest)

iter=iter+1

end while

Received: May 28, 2022. Revised: July 17, 2022. 556

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

Figure. 9 GRF [XI, YI] and the LRF [XR, YR]

Figure. 10 Differential mobile robot moving in its GRF

The relationship between the motions in the two

frames is thus expressed as:

�̇�𝑅 = 𝑅(𝜃)�̇�𝐼 (36)

Taking turtlebot3 burger as an assumption, turtlebot3

burger has two wheels, each of which is r in diameter.

At a distance of l from each wheel, the reference point

P is centered. Therefore, given r, 1, 𝜃 and each

wheel's rotational speed �̇�1 and �̇�2 . the robot's

overall speed can be estimated using the forward

kinematic model in the GFR as:

�̇�𝐼 = [
�̇�
�̇�

�̇�

] = 𝑓(𝑙, 𝑟, 𝜃, �̇�1, 𝜙2̇) (37)

The final differential-drive robot's kinematic model is

given by:

�̇�𝐼 = 𝑅(𝜃)−1

[

𝑟�̇�1

2

𝑟�̇�2

2
0

𝑟�̇�1

2𝑙

−𝑟�̇�2

2𝑙]

 (38)

Where 𝑅(𝜃)−1 is calculated as:

𝑅(𝜃)−1 = [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0

0 0 1

] (39)

5. Results and discussion

5.1 Proposed algorithm performance on

benchmark test functions

The ICOOT algorithm is assessed in 13 criterion

functions (30, 100, and 500 dimensions) in this

section. These are standard functions that a lot of

researchers have utilized [30]. These tests are used by

ICOOT in comparison to the outcomes of the swarm

algorithms. Table 1 show these standard functions,

where Range denotes the boundary of the function's

search space, and f-min denotes the optimal value.

The first seven functions are unimodal and the last six

are multimodal.

The ICOOT algorithm is compared with five

swarm optimization algorithms: the first is particle

swarm optimization (PSO); the second is another

well-known algorithm called salp swarm algorithm

(SSA); and the fitness dependent optimizer (FDO).

They are also compared with the conventional COOT

optimization algorithm and the enhanced version of

COOT to validate its results. The search agents are 30

in number, the maximum number of iterations is 500.

Firstly implemented the algorithm on 13 test

functions with 30 dimensions. The proposed ICOOT

algorithm achieves the best results in all test functions,

as shown in Table 2 (F1-F7). As evidenced by this,

the ICOOT algorithm has successfully exploited the

search space. Algorithm exploration is measured

using multimodal functions. There are several local

optimums in these functions, and the algorithm

should avoid them. Table 2 shows the statistical

results of the algorithms on these functions (F8-F13).

The new ICOOT algorithm also performs better

results in 4c out of 6 test functions.

The proposed algorithm was then applied to the

same 13 test functions from the first round of testing,

each with 100 dimensions. Table 3 displays the

outcomes of this application. The outcomes

demonstrate that the suggested algorithm is stable in

most test functions and does not suffer from the

growth of the problem size. At this point, the

proposed algorithm outperformed all the compared

algorithms in all 5 multimodal test functions and 5

unimodal test functions (F9, F10, F11, F12, and F13).

In the final step using 13 test functions with 500

dimensions. Table 6 displays the experiment's

Received: May 28, 2022. Revised: July 17, 2022. 557

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

Table 1. Benchmark test functions

Function Range fMIN

𝑓1(𝑥) = ∑  

𝑛

𝑖=1

𝑥𝑖
2 [-100, 100] 0

𝑓2(𝑥) = ∑  

𝑛

𝑖=1

|𝑥𝑖| + ∏  

𝑛

𝑖=1

|𝑥𝑖| [-10, 10] 0

𝑓3(𝑥) = ∑  

𝑛

𝑖=1

(∑  

𝑖

𝑗−1

𝑥𝑗)

2

 [-100, 100] 0

𝑓4(𝑥) = 𝑚𝑎𝑥{|𝑥𝑖|, 1 ⩽ 𝑖 ⩽ 𝑛} [-100, 100] 0

𝑓5(𝑥) = ∑  

𝑛−1

𝑖=1

[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑙 − 1)2] [-30, 30] 0

𝑓6(𝑥) = ∑  

𝑛

𝑖=1

([𝑥𝑖 + 0.5])2 [-100, 100] 0

𝑓7(𝑥) = 𝑚𝑎𝑥{|𝑥𝑖|, 1 ⩽ 𝑖 ⩽ 𝑛} [-1.28, 1.128] 0

𝐹8(𝑥) = ∑  

𝑛

𝑖=1

− 𝑥𝑖 𝑠𝑖𝑛 (√|𝑥𝑖|) [-500, 500] 0

𝐹9(𝑥) = ∑  

𝑛

𝑖=1

[𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10] [-5.12, 5.12] 0

𝐹10(𝑥) = −20 𝑐𝑥𝑝 (−0.2√
1

𝑛
∑  

𝑛

𝑖−1

𝑥𝑖
2) − 𝑐𝑥𝑝 (

1

𝑛
∑  

𝑛

𝑖−1

𝑐𝑜𝑠(2𝜋𝑥𝑖)) + 20 + 𝑐 [-32, 32] 0

𝐹11(𝑥) =
1

4000
∑  

𝑛

𝑖−1

𝑥𝑖
2 − ∏  

𝑛

𝑖=1

𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
) + 1 [-600, 600] 0

𝐹12(𝑥) =
𝜋

𝑛
{10 𝑠𝑖𝑛(𝜋𝑦1) + ∑  

𝑛−1

𝑖−1

(𝑦𝑖 − 1)2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2}

+∑  

𝑛

𝑖−1

𝑢(𝑥𝑖 , 10,100,4) + ∑  

𝑛

𝑖=1

𝑢(𝑥𝑖 , 10,100,4)𝑦𝑖 = 1 +
𝑥𝑖 + 1

4

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 > 𝑎
0 −𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 < −𝑎
}

[-50, 50] 0

𝐹13(𝑥) = 0.1 {𝑠𝑖𝑛2(3𝜋𝑥1) + ∑  

𝑛

𝑖=1

(𝑥𝑖 − 1)2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)]

+(𝑥11 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} + ∑  

𝑛

𝑖=1

𝑢(𝑥𝑖 , 5,100,4)

 [-50, 50] 0

outcomes. With the exception of function 8, the

COOT algorithm has outperformed all other

algorithms. The outcomes demonstrate that the

suggested algorithm is stable with increasing

dimensions, while other algorithms have performed

terribly. The outcomes in Tables 2 to 4 demonstrate

how scalable the suggested algorithm is.

5.2 RPP in a complex static environment

The efficiency of the suggested for the mobile

robot, a path planning algorithm has been developed

and is shown in this case study when the robot is in a

static obstacle environment. The static environment

Received: May 28, 2022. Revised: July 17, 2022. 558

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

Table 2. The Benchmark Test Functions were run over 1000 times with 30 dimensions.

Fun. Fit.
PSO [31]

30 Dim

SSA[32]

30 Dim

FDO [33]

30 Dim

mCOOT [34]

30 Dim

COOT[27]
30 Dim

ICOOT

30 Dim

F1

min

max

avg

std

7.5124 × 10-08

4.0190 × 10-05

2.2965 × 10-06

7.2554 × 10-06

1.6368 × 10-08

6.6116 × 10-07

1.3651 × 10-07

1.5491 × 10-07

3.2270 × 10+03

1.0719 × 10+04

6.3139 × 10+03

1.8230 × 10+03

6.1833 × 10-56

5.4187 × 10-11

5.4838 × 10-12

1.7135 × 10-13

9.8206 × 10-58

8.6061 × 10-08

8.7095 × 10-11

2.7215 × 10-09

3.4334 × 10-52

1.7486 × 10-15

1.7507 × 10-18

5.5295 × 10-17

F2

min

max

avg

std

9.0072 × 10-05

8.6400 × 10-03

1.4400 × 10-03

1.9200 × 10-03

1.0536 × 10-01

3.1663 × 10+00

1.3328 × 10+00

9.3288 × 10-01

2.6008 × 10+01

4.9082 × 10+01

3.3957 × 10+01

5.7193 × 10+00

1.8702 × 10-28

5.3945 × 10-07

2.4047 × 10-09

2.9066 × 10-08

2.9703 × 10-30

8.5677 × 10-05

3.8193 × 10-07

4.6164 × 10-06

3.1098 × 10-28

3.3093 × 10-10

6.9326 × 10-13

1.4448 × 10-11

F3

min

max

avg

std

2.4899 × 10+01

3.6510 × 10+02

1.2401 × 10+02

8.1552 × 10+01

1.9521 × 10+02

2.8737 × 10+03

1.2921 × 10+03

7.2173 × 10+02

7.1684 × 10+03

2.9706 × 10+04

1.9184 × 10+04

6.0544 × 10+03

3.1046 × 10-55

9.1290 × 10-08

1.0900 × 10-12

2.9175 × 10-13

4.9308 × 10-57

1.4499 × 10-07

1.7311 × 10-10

4.6336 × 10-09

4.4776 × 10-53

1.0897 × 10-18

1.7000 × 10-21

3.7661 × 10-20

F4

min

max

avg

std

8.7640 × 10-01

4.9311 × 10+00

2.0211 × 10+00

8.7088 × 10-01

3.5141 × 10+00

1.7169 × 10+01

9.5648 × 10+00

3.1342 × 10+00

2.4018 × 10+01

3.9262 × 10+01

3.2439 × 10+01

3.7864 × 10+00

1.0303 × 10-29

3.7716 × 10-07

3.9409 × 10-08

1.1930 × 10-06

1.6363 × 10-34

5.9902 × 10-04

6.2591 × 10-07

1.8948 × 10-05

1.3285 × 10-27

9.9811 × 10-09

2.3503 × 10-11

4.0821 × 10-10

F5

min

max

avg

std

1.2929 × 10+01

8.4144 × 10+01

3.0213 × 10+01

1.9874 × 10+01

2.0042 × 10+01

1.2065 × 10+03

2.0168 × 10+02

2.7394 × 10+02

2.0875 × 10+02

9.4832 × 10+06

4.9340 × 10+06

1.8511 × 10+06

1.6882 × 10+01

1.0561 × 10+02

2.8439 × 10+01

4.5214 × 10+01

2.6813 × 10+01

1.6774 × 10+03

4.5168 × 10+01

7.1811 × 10+01

2.6941 × 10+01

2.8691 × 10+01

2.7950 × 10+01

3.0230 × 10-01

F6

min

max

avg

std

3.1085 × 10-08

7.8797 × 10-06

1.2411 × 10-06

1.9515 × 10-06

2.2926 × 10-08

6.5254 × 10-07

1.6204 × 10-07

1.5808 × 10-07

2.9047 × 10+03

1.1198 × 10+04

6.0501 × 10+03

1.7282 × 10+03

7.6815 × 10-03

7.9100 × 10-01

9.1800 × 10-02

7.5430 × 10-02

1.2200 × 10-02

1.2563 × 10+00

1.4580 × 10-01

1.1980 × 10-01

1.0500 × 10-02

2.0190 × 10-01

5.0200 × 10-02

2.3500 × 10-02

F7

min

max

avg

std

8.1600 × 10-03

4.4880 × 10-02

2.0240 × 10-02

8.2400 × 10-03

4.9200 × 10-02

3.9160 × 10-01

1.3672 × 10-01

7.2800 × 10-02

1.0362 × 10+00

6.5583 × 10+00

2.7259 × 10+00

1.2317 × 10+00

3.3827 × 10-05

2.6759 × 10-02

3.2111 × 10-03

2.9074 × 10-03

5.3725 × 10-05

4.2500 × 10-02

5.1000 × 10-03

4.3000 × 10-03

8.4180 × 10-06

1.6300 × 10-02

3.0000 × 10-03

2.8000 × 10-03

F8

min

max

avg

std

-6.3116× 10+03

-3.8802 ×

10+03

-5.2250 ×

10+03

6.4182 × 10+02

-7.1509 ×

10+03

-4.8477 ×

10+03

-5.9466 ×

10+03

6.1953 × 10+02

-3.2318 ×

10+03

-1.7393 ×

10+03

-2.2258 ×

10+03

3.2376 × 10+02

-7.6720 ×

10+03

-3.1031 ×

10+03

-4.6161 ×

10+03

5.7506 × 10+02

-1.2185 ×

10+04

-4.9284 ×

10+03

-7.3315 ×

10+03

9.1334 × 10+02

-1.0322 ×

10+04

-3.1085 ×

10+03

-6.5649 ×

10+03

1.1677 × 10+03

F9

min

max

avg

std

7.6413 × 10+01

7.6413 × 10+01

3.8604 × 10+01

1.2983 × 10+01

2.3083 × 10+01

7.9597 × 10+01

4.7476 × 10+01

1.4882 × 10+01

1.2846 × 10+02

1.8942 × 10+02

1.6083 × 10+02

1.5238 × 10+01

0.0000 × 10+00

2.1669 × 10-07

2.1742 × 10-10

6.8523 × 10-11

0.0000 × 10+00

3.4416 × 10-06

3.4531 × 10-09

1.0883 × 10-07

0.0000 × 10+00

6.2528 × 10-13

1.0573 × 10-14

5.3272 × 10-14

F10

min

max

avg

std

3.6847 × 10-05

2.2509 × 10+00

1.0174 × 10+00

6.5720 × 10-01

1.3170 × 10+00

3.5064 × 10+00

2.0904 × 10+00

5.0912 × 10-01

8.1832 × 10+00

1.1314 × 10+01

1.0321 × 10+01

7.7416 × 10-01

5.5922 × 10-16

1.5663 × 10-06

4.6520 × 10-09

6.8711 × 10-07

8.8818 × 10-16

2.4877 × 10-05

7.3884 × 10-08

1.0913 × 10-06

8.8818 × 10-16

1.5657 × 10-09

1.7670 × 10-12

4.9677 × 10-11

F11

min

max

avg

std

3.0870 × 10-08

5.6720 × 10-02

1.1840 × 10-02

1.3360 × 10-02

7.1483 × 10-04

3.6400 × 10-02

1.3520 × 10-02

9.3600 × 10-03

2.7147 × 10+01

8.6144 × 10+01

5.5598 × 10+01

1.5810 × 10+01

0.0000 × 10+00

2.7690 × 10-08

2.7697 × 10-11

8.7563 × 10-09

0.0000 × 10+00

4.3979 × 10-07

4.3990 × 10-10

1.3907 × 10-08

0.0000 × 10+00

7.9714 × 10-14

1.5266 × 10-16

2.5573 × 10-15

F12

min

max

avg

std

2.4686 × 10-09

7.4704 × 10-01

1.4120 × 10-01

1.9880 × 10-01

2.2231 × 10+00

8.9368 × 10+00

4.8889 × 10+00

1.9097 × 10+00

5.4161 × 10+04

8.2632 × 10+06

2.8270 × 10+06

1.9333 × 10+06

3.3693 × 10-04

2.8676 × 10+00

1.2630 × 10-02

3.0222 × 10-01

5.3513 × 10-04

4.5544 × 10+00

2.0060 × 10-01

4.8000 × 10-01

4.6113 × 10-04

1.6140 × 10-01

6.7000 × 10-03

8.0000 × 10-03

F13

min

max

avg

std

2.7983 × 10-07

4.9800 × 10-01

2.7680 × 10-02

9.1360 × 10-02

7.2400 × 10-02

3.4803 × 10+01

1.3999 × 10+01

1.1228 × 10+01

3.2630 × 10+06

2.2232 × 10+07

1.0170 × 10+07

5.3626 × 10+06

1.3411 × 10-02

2.6296 × 10+00

2.8705 × 10-01

2.9593 × 10-02

2.1300 × 10-02

4.1765 × 10+00

4.5590 × 10-01

4.7000 × 10-01

5.4400 × 10-02

2.9690 × 10+00

1.7224 × 10+00

1.1820 × 10+00

Received: May 28, 2022. Revised: July 17, 2022. 559

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

Table 3. The Benchmark Test Functions were run over 1000 times with 100 dimensions

Fun. Fit.
PSO [31]

100 Dim

SSA[32]

100 Dim

FDO [33]

100 Dim

mCOOT [34]

100 Dim

COOT[27]
100 Dim

ICOOT

100 Dim

F1

min

max

avg

std

5.5722 × 10+01

3.3461 × 10+02

1.3911 × 10+02

6.1808 × 10+01

7.5314 × 10+02

1.7282 × 10+03

1.1375 × 10+03

2.6206 × 10+02

3.0089 × 10+04

5.3646 × 10+04

3.8606 × 10+04

5.5506 × 10+03

5.5845 × 10-61

9.8587 × 10-07

1.0579 × 10-12

3.1250 × 10-13

8.8695 × 10-65

1.5658 × 10-06

1.6802 × 10-09

4.9632 × 10-08

1.4110 × 10-55

2.0706 × 10-16

2.2919 × 10-19

6.5694 × 10-18

F2

min

max

avg

std

5.1531 × 10+00

1.6889 × 10+01

8.2088 × 10+00

2.6060 × 10+00

2.8970 × 10+01

5.1411 × 10+01

3.7718 × 10+01

5.3453 × 10+00

1.6734 × 10+02

8.0480 × 10+10

4.5337 × 10+09

1.6450 × 10+10

1.4755 × 10-29

1.5741 × 10-03

1.7271 × 10-06

4.9920 × 10-06

2.3435 × 10-27

2.5000 × 10-02

2.7431 × 10-05

7.9285 × 10-04

1.4304 × 10-26

1.5027 × 10-09

3.2607 × 10-12

6.3071 × 10-11

F3

min

max

avg

std

1.2368 × 10+04

3.6283 × 10+04

2.3336 × 10+04

6.2766 × 10+03

1.2150 × 10+04

7.5970 × 10+04

3.8695 × 10+04

1.6246 × 10+04

9.3800 × 10+04

3.4903 × 10+05

2.4800 × 10+05

6.3892 × 10+04

1.8742 × 10-58

6.0307 × 10-11

6.2011 × 10-12

1.9073 × 10-12

2.9766 × 10-60

9.5782 × 10-08

9.8488 × 10-11

3.0293 × 10-09

4.3552 × 10-52

2.4988 × 10-15

2.5536 × 10-18

7.9026 × 10-17

F4

min

max

avg

std

1.5223 × 10+01

2.6774 × 10+01

1.9118 × 10+01

2.4487 × 10+00

1.5098 × 10+01

2.7810 × 10+01

2.1805 × 10+01

2.9840 × 10+00

4.7058 × 10+01

5.7889 × 10+01

5.3201 × 10+01

2.7074 × 10+00

1.0224 × 10-27

2.9039 × 10-02

2.9129 × 10-05

9.1926 × 10-03

1.6238 × 10-31

4.6120 × 10-01

4.6264 × 10-04

1.4600 × 10-02

1.0332 × 10-26

1.4662 × 10-06

1.5419 × 10-09

4.6417 × 10-08

F5

min

max

avg

std

3.4309 × 10+03

3.6166 × 10+04

1.0002 × 10+04

8.1664 × 10+03

4.6377 × 10+04

5.9739 × 10+05

1.5718 × 10+05

1.1650 × 10+05

1.6928 × 10+07

9.7808 × 10+07

4.3122 × 10+07

1.9834 × 10+07

6.1635 × 10+01

5.0185 × 10+04

2.0153 × 10+01

4.4796 × 10+01

9.7891 × 10+01

7.9705 × 10+03

3.2007 × 10+02

7.1146 × 10+02

9.7556 × 10+01

9.8444 × 10+01

9.8256 × 10+01

1.1180 × 10-01

F6

min

max

avg

std

4.3837 × 10+01

5.4170 × 10+02

1.6494 × 10+02

1.1005 × 10+02

7.4813 × 10+02

1.9870 × 10+03

1.1957 × 10+03

3.2285 × 10+02

2.5374 × 10+04

5.3297 × 10+04

3.8327 × 10+04

7.4018 × 10+03

2.5079 × 10+00

1.1917 × 10+02

8.9365 × 10+00

1.2831 × 10+01

3.9831 × 10+00

1.8927 × 10+02

1.4193 × 10+01

2.0378 × 10+01

3.3907 × 10+00

7.9542 × 10+00

5.2465 × 10+00

7.7500 × 10-01

F7

min

max

avg

std

2.5064 × 10-01

9.6000 × 10-01

4.0472 × 10-01

1.5560 × 10-01

1.0387 × 10+00

4.0376 × 10+00

2.2578 × 10+00

6.8144 × 10-01

3.0427 × 10+01

1.5444 × 10+02

6.3160 × 10+01

2.7332 × 10+01

7.5310 × 10-05

5.6981 × 10-02

3.8407 × 10-03

4.5963 × 10-03

1.1961 × 10-04

9.0500 × 10-02

6.1000 × 10-03

7.3000 × 10-03

4.4664 × 10-06

2.5500 × 10-02

3.4000 × 10-03

3.2000 × 10-03

F8

min

max

avg

std

-1.8386 ×

10+04

-1.2145 ×

10+04

-1.5563 ×

10+04

1.5734 × 10+03

-2.0976 ×

10+04

-1.4594 ×

10+04

-1.7487 ×

10+04

1.4071 × 10+03

-5.9428 ×

10+03

-3.4410 ×

10+03

-4.4265 ×

10+03

6.0086 × 10+02

-1.8028 ×

10+04

-6.8919 ×

10+03

-1.1925 ×

10+04

1.9219 × 10+03

-2.8632 ×

10+04

-1.0946 ×

10+04

-1.8939 ×

10+04

3.0524 × 10+03

-2.2321 ×

10+04

-6.0861 ×

10+03

-1.3756 ×

10+04

2.7817 × 10+03

F9

min

max

avg

std

1.1416 × 10+02

2.2095 × 10+02

1.5189 × 10+02

2.6688 × 10+01

1.3990 × 10+02

2.9538 × 10+02

1.9779 × 10+02

3.3480 × 10+01

5.8660 × 10+02

7.5527 × 10+02

6.8793 × 10+02

3.6026 × 10+01

0.0000 × 10+00

5.3363 × 10-08

5.8313 × 10-11

1.6940 × 10-09

0.0000 × 10+00

8.4753 × 10-07

9.2614 × 10-10

2.6905 × 10-08

0.0000 × 10+00

3.5243 × 10-12

3.2855 × 10-14

1.9214 × 10-13

F10

min

max

avg

std

3.2842 × 10+00

5.6556 × 10+00

4.3490 × 10+00

6.1408 × 10-01

6.2140 × 10+00

9.5208 × 10+00

8.1384 × 10+00

7.9216 × 10-01

1.1792 × 10+01

1.4675 × 10+01

1.2970 × 10+01

5.9008 × 10-01

5.5922 × 10-16

1.1134 × 10-06

2.3612 × 10-09

4.2042 × 10-07

8.8818 × 10-16

1.7683 × 10-05

3.7501 × 10-08

6.6772 × 10-07

8.8818 × 10-16

5.5582 × 10-08

5.8108 × 10-11

1.7592 × 10-09

F11

min

max

avg

std

1.2383 × 10+00

7.9671 × 10+00

2.3921 × 10+00

1.2688 × 10+00

6.2030 × 10+00

1.7892 × 10+01

1.1797 × 10+01

3.3246 × 10+00

2.4270 × 10+02

4.7155 × 10+02

3.5998 × 10+02

5.4707 × 10+01

0.0000 × 10+00

2.0802 × 10-08

2.4523 × 10-11

6.6659 × 10-10

0.0000 × 10+00

3.3038 × 10-08

3.8949 × 10-11

1.0587 × 10-09

0.0000 × 10+00

9.8601 × 10-11

1.0061 × 10-13

3.1186 × 10-12

F12

min

max

avg

std

3.1538 × 10+00

1.8358 × 10+01

6.9790 × 10+00

2.7466 × 10+00

1.3594 × 10+01

4.3185 × 10+01

2.9772 × 10+01

8.0168 × 10+00

7.0627 × 10+06

6.2160 × 10+07

2.7158 × 10+07

1.1500 × 10+07

3.0348 × 10-02

4.4974 × 10+00

2.2736 × 10-01

3.9881 × 10-01

4.8200 × 10-02

7.1429 × 10+00

3.6110 × 10-01

6.3340 × 10-01

5.0800 × 10-02

2.2810 × 10-01

1.0950 × 10-01

2.3400 × 10-02

F13

min

max

avg

std

5.6178 × 10+01

1.6312 × 10+03

1.5526 × 10+02

2.8248 × 10+02

1.6066 × 10+02

1.4339 × 10+04

3.2519 × 10+03

4.3759 × 10+03

4.2209 × 10+07

1.7979 × 10+08

1.0042 × 10+08

3.9026 × 10+07

3.1910 × 10+00

4.1616 × 10+01

7.7912 × 10+00

4.0171 × 10+00

5.0681 × 10+00

6.6096 × 10+01

1.2374 × 10+01

6.3801 × 10+00

6.8748 × 10+00

9.9422 × 10+00

9.9090 × 10+00

1.1620 × 10-01

Received: May 28, 2022. Revised: July 17, 2022. 560

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

Table 4. The Benchmark Test Functions were run over 1000 times with 500 dimensions

Fun. Fit.
PSO [31]

500 Dim

SSA[32]

500 Dim

FDO [33]

500 Dim

mCOOT [34]

500 Dim

COOT[27]
500 Dim

ICOOT

500 Dim

F1

min

max

avg

std

2.9446 × 10+04

5.5507 × 10+04

4.0022 × 10+04

5.3768 × 10+03

6.3491 × 10+04

8.5472 × 10+04

7.5171 × 10+04

5.1430 × 10+03

2.4682 × 10+05

3.8145 × 10+05

3.0623 × 10+05

3.3204 × 10+04

2.8224 × 10-56

1.2338 × 10-09

1.2963 × 10-11

3.9063 × 10-10

4.4826 × 10-60

1.9595 × 10-06

2.0589 × 10-09

6.2042 × 10-08

3.3503 × 10-58

9.9796 × 10-16

1.2798 × 10-18

3.2092 × 10-17

F2

min

max

avg

std

2.5901 × 10+02

7.9103 × 10+02

3.1255 × 10+02

1.2921 × 10+02

3.8414 × 10+02

4.5681 × 10+02

4.2923 × 10+02

1.6948 × 10+01

1.1302 × 10+43

1.3960 × 10+82

8.7456 × 10+80

3.4895 × 10+81

2.1855 × 10-32

3.1481 × 10-04

4.2550 × 10-07

1.0141 × 10-06

3.4711 × 10-34

5.0000 × 10-03

6.7579 × 10-06

1.6106 × 10-04

1.5704 × 10-27

1.5360 × 10-08

2.9204 × 10-11

6.0164 × 10-10

F3

min

max

avg

std

4.4210 × 10+05

8.4808 × 10+05

6.6498 × 10+05

1.0566 × 10+05

3.9886 × 10+05

2.7517 × 10+06

1.0046 × 10+06

5.6095 × 10+05

3.1061 × 10+06

9.0120 × 10+06

5.5883 × 10+06

1.5414 × 10+06

7.1450 × 10-54

5.6437 × 10-01

5.6415 × 10-03

1.7847 × 10-01

1.1348 × 10-56

8.9635 × 10+01

8.9600 × 10-02

2.8345 × 10+00

6.0385 × 10-52

1.1620 × 10-14

2.4494 × 10-17

5.0743 × 10-16

F4

min

max

avg

std

3.3074 × 10+01

4.6635 × 10+01

3.7789 × 10+01

2.9033 × 10+00

2.7379 × 10+01

3.9255 × 10+01

3.9255 × 10+01

2.7189 × 10+00

6.7901 × 10+01

7.3807 × 10+01

7.1660 × 10+01

1.6585 × 10+00

2.7104 × 10-31

7.2407 × 10-03

7.5952 × 10-06

2.2971 × 10-05

4.3048 × 10-32

1.1500 × 10-02

1.2063 × 10-05

3.6483 × 10-04

3.9154 × 10-29

2.4044 × 10-09

3.3610 × 10-12

7.9552 × 10-11

F5

min

max

avg

std

1.0208 × 10+07

2.6888 × 10+07

1.5187 × 10+07

4.3703 × 10+06

2.2798 × 10+07

3.7563 × 10+07

3.0294 × 10+07

3.8318 × 10+06

3.4090 × 10+08

1.0330 × 10+09

6.3648 × 10+08

1.7839 × 10+08

3.1353 × 10+02

1.0941 × 10+04

2.6719 × 10+03

9.4507 × 10+03

4.9795 × 10+02

1.7377 × 10+05

4.2436 × 10+03

1.5010 × 10+04

4.9764 × 10+02

4.9830 × 10+02

4.9799 × 10+02

1.1600 × 10-01

F6

min

max

avg

std

3.0738 × 10+04

6.2133 × 10+04

4.1158 × 10+04

6.9138 × 10+03

6.5766 × 10+04

8.6824 × 10+04

7.5923 × 10+04

4.7918 × 10+03

2.3929 × 10+05

3.8058 × 10+05

3.0010 × 10+05

3.6375 × 10+04

5.5376 × 10+01

2.2568 × 10+03

1.3763 × 10+01

2.4408 × 10+02

8.7949 × 10+01

3.5844 × 10+03

2.1858 × 10+02

3.8765 × 10+02

8.3821 × 10+01

1.0018 × 10+02

9.2041 × 10+01

2.8448 × 10+00

F7

min

max

avg

std

7.3681 × 10+01

1.5434 × 10+02

1.0843 × 10+02

1.9512 × 10+01

1.6387 × 10+02

2.8490 × 10+02

2.2242 × 10+02

2.8015 × 10+01

2.0082 × 10+03

8.2848 × 10+03

4.6495 × 10+03

1.7100 × 10+03

2.6109 × 10-05

1.8448 × 10-01

4.8481 × 10-03

9.2556 × 10-03

4.1468 × 10-05

2.9300 × 10-01

7.7000 × 10-03

1.4700 × 10-02

1.7397 × 10-05

3.4800 × 10-02

3.5000 × 10-03

3.4000 × 10-03

F8

min

max

avg

std

-7.0866 ×

10+04

-4.4052 ×

10+04

-5.7190 ×

10+04

5.6096 × 10+03

-5.6095 ×

10+04

-3.6572 ×

10+04

-4.8169 ×

10+04

4.1384 × 10+03

-1.2157 ×

10+04

-7.0314 ×

10+03

-9.5400 ×

10+03

1.0932 × 10+03

-4.6130 ×

10+04

-1.5068 ×

10+04

-3.0905 ×

10+04

5.8077 × 10+03

-7.3266 ×

10+04

-2.3932 ×

10+04

-4.9085 ×

10+04

9.2240 × 10+03

-5.3359 ×

10+04

-1.3337 ×

10+04

-3.2469 ×

10+04

6.5859 × 10+03

F9

min

max

avg

std

1.8818 × 10+03

2.5033 × 10+03

2.0918 × 10+03

1.3734 × 10+02

2.3410 × 10+03

2.6965 × 10+03

2.5250 × 10+03

8.9432 × 10+01

3.9219 ×

10+03

4.2545 ×

10+03

4.0872 ×

10+03

8.9560 ×

10+01

0.0000 × 10+00

4.3286 × 10-05

4.3624 × 10-08

1.3689 × 10-06

0.0000 × 10+00

6.8749 × 10-05

6.9285 × 10-08

2.1741 × 10-06

0.0000 × 10+00

1.6553 × 10-10

7.8489 × 10-13

7.8184 × 10-12

F10

min

max

avg

std

9.2688 × 10+00

1.1663 × 10+01

1.0089 × 10+01

5.7592 × 10-01

1.1018 × 10+01

1.1761 × 10+01

1.1386 × 10+01

1.8048 × 10-01

1.4307 × 10+01

1.5081 × 10+01

1.4758 × 10+01

1.8176 × 10-01

5.5922 × 10-16

1.3045 × 10-07

3.5928 × 10-08

6.0487 × 10-08

8.8818 × 10-16

2.0718 × 10-04

5.7062 × 10-07

9.6068 × 10-06

8.8818 × 10-16

2.4513 × 10-08

4.2899 × 10-11

9.5612 × 10-10

F11

min

max

avg

std

2.7295 × 10+02

3.9745 × 10+02

3.4624 × 10+02

3.6390 × 10+01

5.7293 × 10+02

8.2312 × 10+02

6.8206 × 10+02

5.1201 × 10+01

2.3689 × 10+03

3.2686 × 10+03

2.7928 × 10+03

2.3477 × 10+02

0.0000 × 10+00

2.5808 × 10-06

2.7199 × 10-09

8.1688 × 10-07

0.0000 × 10+00

4.0989 × 10-05

4.3199 × 10-08

1.2974 × 10-06

0.0000 × 10+00

5.4512 × 10-13

7.7083 × 10-16

1.7813 × 10-14

F12

min

max

avg

std

2.1103 × 10+05

4.7669 × 10+06

1.6715 × 10+06

1.1747 × 10+06

3.4673 × 10+05

2.6073 × 10+06

1.0661 × 10+06

5.0250 × 10+05

1.4846 × 10+08

1.8748 × 10+09

1.0715 × 10+09

4.9917 × 10+08

2.7043 × 10-01

4.1987 × 10+00

5.1371 × 10-01

4.7814 × 10-01

4.2950 × 10-01

6.6686 × 10+00

8.1590 × 10-01

7.5940 × 10-01

4.3820 × 10-01

6.4950 × 10-01

5.4710 × 10-01

3.3100 × 10-02

F13
min

max

8.5888 × 10+06

4.3985 × 10+07

1.7332 × 10+07

4.0517 × 10+07

1.0189 × 10+09

3.9916 × 10+09

3.1417 × 10+01

2.4258 × 10+03

4.9898 × 10+01

3.8527 × 10+02

4.9428 × 10+01

4.9935 × 10+01

Received: May 28, 2022. Revised: July 17, 2022. 561

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

avg

std

2.2029 × 10+07

7.9839 × 10+06

2.6786 × 10+07

5.5066 × 10+06

2.0358 × 10+09

7.6943 × 10+08

4.4490 × 10+01

2.1011 × 10+01

7.0660 × 10+01

3.3371 × 10+01

4.9890 × 10+01

3.2400 × 10-02

Table 5. The performance in the environment with irregular shaped obstacles (Case 1)

is made up of four irregular static obstacles (Map 1)

and seven irregular static obstacles (Map 2) of

different sizes. The starting position was (0, 0), and

the goal position was (10, 10). The proposed ICOOT

algorithm was used in static environments with the

following settings: The number of coots is 80, the

number of leaders is 2, and the minimum acceptance

error is 0.2 m (error is defined as

norm(robotCurrentPose (1:2)-GoalPosition(:)).where

robotCurrentPose = [robotInitialLocation

initialOrientation] and initialOrientation = 0, desired

linear velocity for robot = 0.5 m/sec, robot wheel

radius = 0.034 m, and Max Angular Velocity = Linear

Velocity / Wheel Radius. The optimized function is

given by Eq. (4)

(1) Case 1: The target is static

In this case, the mean distance for Map 1 is

13.3797m and the error is 8.0739 × 10-04 m and the

elapsed time is 42.6245 sec; the mean distance for

Map 2 is 13.5164 m and the mean error is 1.0000 ×

10-03 m and the elapsed time is 45.0302 sec as shown

in Fig. 11 and in Table 5.

The first map contains four irregularly shaped

obstacles, while the second map contains seven

irregularly shaped obstacles. The green dashed line

represents the path that the robot took and avoided

collision, while the robot is shown at the goal position

in red. Later, the target will be fixed in the first and

second maps, while the target will be moving in the

third map, and the fourth map will contain ten

obstacles moving at a variable speed.

Ten runs were made for each map, and the

distance, the error distance from the target, and the

time taken were measured.

(2) Case 2: The goal is dynamic

In this case, the goal is a dynamic that moves

from one location to another at each successive time

step interval. The velocity and direction of the

dynamic goal are assumed to be random. The settings

are the same as in case 1. As shown in Fig. 12 (a) and

in Table 6, the mean distance for Map 3 is 11.9312m,

the error is 9.9992 × 10-04 m, and the elapsed time is

42.5964 sec.

(3) RPP in a dynamic environment

The proposed algorithm was put to the test in a

dynamic environment with ten dynamic obstacles.

The settings are the same as in static environment.

The velocity (𝑣𝑜𝑏𝑠) and direction (𝜃𝑜𝑏𝑠) of the

dynamic obstacles are assumed to be random

according to Eqs. (5) and (6). As shown in Fig. 12 (b)

and in Table 6, the mean distance for Map 4 is

16.3937 m, the error is 9.5249 × 10-04 m, and the

elapsed time is 49.1190 sec.

6. Conclusions

This paper came up with the ICOOT swarm

optimization algorithm, and thirteen benchmark test

functions are used to compare the proposed method

to the standard algorithm. Also, using an ICOOT

local search is an integrated strategy for the detection

and avoidance of obstacles. Take into consideration

the mobile robot's actual size and the kinematic

model with specifications for robots. Algorithms

were tested in both dynamic and static environments

with various scenarios. They tried to minimize a

multi-objective measure of path length and

smoothness in these environments. According to

simulation results, it shows that the ICOOT generates

the best path for avoiding static and dynamic

Run

Map 1 Map 2

Distance (m) Error (m)
Elapsed

time (sec)
Distance (m) Error (m)

Elapsed time

(sec)

1 13.2793 9.8505 × 10-04 40.2606 14.1892 6.8188 × 10-04 39.3076

2 13.1348 1.2000 × 10-03 37.185 13.0472 9.5682 × 10-04 47.4014

3 13.1557 5.5994 × 10-04 39.1394 13.2252 1.3000 × 10-03 43.6256

4 12.9956 1.0000 × 10-03 45.0583 13.4820 9.9570 × 10-04 56.9447

5 13.1023 6.6753 × 10-04 49.6354 13.4929 6.8757 × 10-04 48.1613

6 13.6819 9.8490 × 10-04 39.7836 13.5341 8.6734 × 10-04 38.1024

7 13.1572 5.3466 × 10-04 36.9746 13.4909 1.4000 × 10-03 43.6487

8 14.0919 7.3766 × 10-04 47.2728 13.3086 5.1325 × 10-04 37.7038

9 13.8775 7.4151 × 10-04 37.4747 13.2252 1.3000 × 10-03 37.9535

10 13.3207 6.6267 × 10-04 53.4604 14.1691 1.3000 × 10-03 57.4533

Mean 13.3797 8.0739 × 10-04 42.6245 13.5164 1.0000 × 10-03 45.0302

Received: May 28, 2022. Revised: July 17, 2022. 562

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

(a) (b)

Figure. 11: (a) Map 1 and (b) Map2

Table 6. Cases 2 and 3's performance.

(a) (b)

Figure. 12: (a) Map 3 and (b) Map4

obstacles in an unknown complex environment with

irregular static obstacles and according to the

objective that is needed by the mobile robot to reach

the goal position. The proposed method is compared

to five swarm optimization strategies. The proposed

algorithm gave the results were better than 84% in 30

dimensions. While it was 92% in 100 and 500

dimensions, it means the suggested algorithm is

stable in most test functions and does not suffer from

the growth of the problem size. The mean results

show that this method is highly useful for robot paths

from the start to the destination. The average mean

Run

Map 3 Map 4

Distance (m) Error (m)
Elapsed time

(sec)
Distance (m) Error (m)

Elapsed

time (sec)

1 14.0403 5.2472 × 10-04 61.402138 16.0096 1.1000 × 10-03 52.886948

2 10.9095 6.6049 × 10-04 33.968483 15.5510 1.1000 × 10-03 50.835557

3 11.5419 1.4000 × 10-03 48.351470 17.6560 6.8392 × 10-04 45.930273

4 10.9759 1.2000 × 10-03 55.319431 16.6860 1.1000 × 10-03 52.768155

5 11.4489 9.8912 × 10-04 46.056632 15.4849 7.5757 × 10-04 47.944359

6 11.7831 5.8099 × 10-04 35.623026 16.3143 7.2201 × 10-04 44.913749

7 11.9819 1.4000 × 10-03 35.306464 17.6049 6.6138 × 10-04 48.154225

8 11.7622 8.4387 × 10-04 35.703954 16.4441 1.0000 × 10-03 51.582104

9 12.1407 1.2000 × 10-03 36.017066 15.9843 1.0000 × 10-03 44.880337

10 12.7279 1.2000 × 10-03 38.215630 16.2018 1.4000 × 10-03 51.294447

Mean 11.9312 9.9992 × 10-04 42.5964 16.3937 9.5249 × 10-04 49.1190

Received: May 28, 2022. Revised: July 17, 2022. 563

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

distance for four complex arenas with 100m distance

and three scenarios (fixed obstacle, fixed target, fixed

obstacle, dynamic target, and dynamic obstacle and

fixed target) is 13.8052.

The Matlab 2021a programming language is used

to write the simulation code and run it on a computer

with an Intel (R) Core (TM) i7-9750HF CPU @

2.60GHz and 16.0 GB of RAM. It will be interesting

to think about how the proposed ICOOT algorithm-

based path planning will work on real mobile robots

in future work.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Jaafar Ahmed Abdulsaheb PhD candidate

contributed to methodology, classification model

proposed, software, and writing review and editing.

Dheyaa Jasim Kadhim contributed to supervising the

overall work and editing the paper.

References

[1] B. K. Patle, G. L. Babu, A. Pandey, D. R. K.

Parhi, and A. Jagadeesh, “A review: On path

planning strategies for navigation of mobile

robot”, Defence Technology, China Ordnance

Society, Vol. 15, No. 4. pp. 582–606, 2019, doi:

10.1016/j.dt.2019.04.011.

[2] P. A. M. Ehlert, “The use of Artificial

Intelligence in Autonomous Mobile Robots”,

Report on Research Project, Delft University of

Technology, Netherlands, 1999.

[3] J. M. Keil, “Decomposing a Polygon into

Simpler Components”, SIAM Journal on

Computing, Vol. 14, No. 4, pp. 799–817, 1985,

doi: 10.1137/0214056.

[4] C. Zhong, S. Liu, B. Zhang, Q. Lu, J. Wang, Q.

Wu, and F. Gao, “A Fast On-line Global Path

Planning Algorithm Based on Regionalized

Roadmap for Robot Navigation,” in IFAC-

PapersOnLine, Vol. 50, No. 1, pp. 319–324,

2017, doi: 10.1016/j.ifacol.2017.08.053.

[5] U. O. Rosas, O. Montiel, and R. Sepúlveda,

“Mobile robot path planning using membrane

evolutionary artificial potential field”, Applied

Soft Computing Journal, Vol. 77, pp. 236–251,

2019, doi: 10.1016/j.asoc.2019.01.036.

[6] T. T. Mac, C. Copot, D. T. Tran, and R. D.

Keyser, “Heuristic approaches in robot path

planning: A survey”, Robotics and Autonomous

Systems, Vol. 86, pp. 13–28, 2016, doi:

10.1016/j.robot.2016.08.001.

[7] H. Miao, “Robot Path Planning in Dynamic

Environments using Simulated Annealing Based

Approach”, Master Thesis, Queensland

University of Technology, Queensland, Australia,

March 2009.

[8] J. Ou and M. Wang, “Path planning for

omnidirectional wheeled mobile robot by

improved ant colony optimization”, In: Proc. of

Chinese Control Conf., CCC, IEEE Computer

Society, Guangzhou, China, pp. 2668–2673,

2019, doi: 10.23919/ChiCC.2019.8866228.

[9] H. S. Dewang, P. K. Mohanty, and S. Kundu, “A

Robust Path Planning for Mobile Robot Using

Smart Particle Swarm Optimization”, Procedia

Computer Science, 2018, Vol. 133, pp. 290–297,

doi: 10.1016/j.procs.2018.07.036.

[10] W. Wang, M. Cao, S. Ma, C. Ren, X. Zhu, and

H. Lu, “Multi-robot odor source search based on

Cuckoo search algorithm in ventilated indoor

environment”, In: Proc. of 12th World Congress

on Intelligent Control and Automation (WCICA),

Guilin, China, pp. 1496–1501, 2016, doi:

10.1109/WCICA.2016.7578817.

[11] M. A. Hossain and I. Ferdous, “Autonomous

robot path planning in dynamic environment

using a new optimization technique inspired by

bacterial foraging technique”, Robotics and

Autonomous Systems, Vol. 64, pp. 137–141,

2015, doi: 10.1016/j.robot.2014.07.002.

[12] P. K. Das, S. K. Pradhan, S. N. Patro, and B. K.

Balabantaray, “Artificial Immune System Based

Path Planning of Mobile Robot”, Studies in

Computational Intelligence, pp. 195–207, 2012,

doi: 10.1007/978-3-642-25507-6_17.

[13] T. K. Dao, T. S. Pan, and J. S. Pan, “A multi-

objective optimal mobile robot path planning

based on whale optimization algorithm”, In:

Proc. of IEEE 13th International Conference on

Signal Processing (ICSP), Chengdu, China, pp.

337–342, 2016, doi:

10.1109/ICSP.2016.7877851.

[14] C. Lamini, S. Benhlima, and A. Elbekri,

“Genetic algorithm based approach for

autonomous mobile robot path planning”,

Procedia Computer Science, Vol. 127, pp. 180–

189, 2018, doi: 10.1016/j.procs.2018.01.113.

[15] D. Davis and P. Supriya, “Implementation of

fuzzy-based robotic path planning”, Advances in

Intelligent Systems and Computing, Vol. 380, pp.

375–383, 2016, doi: 10.1007/978-81-322-2523-

2_36.

[16] J. H. Zhang, Y. Zhang, and Y. Zhou, “Path

planning of mobile robot based on hybrid multi-

objective bare bones particle swarm

optimization with differential evolution”, IEEE

Received: May 28, 2022. Revised: July 17, 2022. 564

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

Access, Vol. 6, pp. 44542–44555, 2018, doi:

10.1109/ACCESS.2018.2864188.

[17] X. Liang, D. Kou, and L. Wen, “An Improved

Chicken Swarm Optimization Algorithm and its

Application in Robot Path Planning”, IEEE

Access, Vol. 8, pp. 49543–49550, 2020, doi:

10.1109/ACCESS.2020.2974498.

[18] F. Li, X. Fan, and Z. Hou, “A firefly algorithm

with self-adaptive population size for global

path planning of mobile robot”, IEEE Access,

Vol. 8, pp. 168951–168964, 2020, doi:

10.1109/ACCESS.2020.3023999.

[19] Y. Quan, H. Ouyang, C. Zhang, S. Li, and L. Q.

Gao, “Mobile Robot Dynamic Path Planning

Based on Self-Adaptive Harmony Search

Algorithm and Morphin Algorithm”, IEEE

Access, Vol. 9, pp. 102758–102769, 2021, doi:

10.1109/ACCESS.2021.3098706.

[20] L. Shao, Q. Li, C. Li, and W. Sun, “Mobile

Robot Path Planning Based on Improved Ant

Colony Fusion Dynamic Window Approach”,

In: Proc. of IEEE International Conference on

Mechatronics and Automation (ICMA),

Takamatsu, Japan, pp. 1100–1105, 2021. doi:

10.1109/ICMA52036.2021.9512795.

[21] O. Wahhab and A. A. Araji, “Path Planning and

Control Strategy Design for Mobile Robot

Based on Hybrid Swarm Optimization

Algorithm”, International Journal of Intelligent

Engineering and Systems, Vol. 14, No. 3, pp.

565–579, 2021, doi:

10.22266/ijies2021.0630.48.

[22] Z. E. Kanoon, A. S. A. Araji, and M. N.

Abdullah, “Enhancement of Cell Decomposition

Path-Planning Algorithm for Autonomous

Mobile Robot Based on an Intelligent Hybrid

Optimization Method”, International Journal of

Intelligent Engineering and Systems, Vol. 15,

No. 3, pp. 161–175, 2022, doi:

10.22266/ijies2022.0630.14.

[23] M. Fuad, T. Agustinah, and D. Purwanto,

“Collision Avoidance of Multi Modal Moving

Objects for Mobile Robot Using Hybrid

Velocity Obstacles”, International Journal of

Intelligent Engineering and Systems, Vol. 13,

No. 3, pp. 407–421, 2020, doi:

10.22266/ijies2020.0630.37.

[24] D. Jasim, K. Omar, and A. Hamad, “Improving

IoT Applications Using a Proposed Routing

Protocol”, Journal of Engineering, Vol. 20, No.

11, pp. 50–62, Nov. 2014.

[25] N. Abbas and J. Abdulsaheb, “An Adaptive

Multi-Objective Particle Swarm Optimization

Algorithm for Multi-Robot Path Planning”,

Journal of Engineering, Vol. 22, No. 7, pp. 164–

181, 2016.

[26] W. A. Mahmoud and D. J. Kadhim, “A Proposal

Algorithm to Solve Delay Constraint Least Cost

Optimization Problem”, Journal of Engineering,

Vol. 19, No. 1, pp. 155–160, 2013.

[27] I. Naruei and F. Keynia, “A new optimization

method based on COOT bird natural life model”,

Expert Systems with Applications, Vol. 183,

2021, doi: 10.1016/j.eswa.2021.115352.

[28] H. Trenchard, “American coot collective on-

water dynamics”, Nonlinear Dynamics, Vol. 17,

No. 2, pp. 183–203, 2012, doi:

https://doi.org/10.48550/arXiv.1205.5929.

[29] R. Siegwart, I. R. Nourbakhsh and D.

Scaramuzza, “Introduction to Autonomous

Mobile Robots”, 2nd Edition, MIT Press,

London, 2011.

[30] S. Mirjalili, “SCA: A Sine Cosine Algorithm for

solving optimization problems”, Knowledge-

Based Systems, Vol. 96, pp. 120–133, 2016, doi:

10.1016/j.knosys.2015.12.022.

[31] R. Eberhart and J. Kennedy, “A new optimizer

using particle swarm theory”, In: MHS’95. Proc.

of the Sixth International Symposium on Micro

Machine and Human Science, Nagoya, Japan, pp.

39–43, 1995, doi: 10.1109/MHS.1995.494215.

[32] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S.

Saremi, H. Faris, and S. M. Mirjalili, “Salp

Swarm Algorithm: A bio-inspired optimizer for

engineering design problems”, Advances in

Engineering Software, Vol. 114, pp. 163–191,

2017, doi: 10.1016/j.advengsoft.2017.07.002.

[33] J. M. Abdullah and T. Ahmed, “Fitness

Dependent Optimizer: Inspired by the Bee

Swarming Reproductive Process”, IEEE Access,

Vol. 7, pp. 43473–43486, 2019, doi:

10.1109/ACCESS.2019.2907012.

[34] R. R. Mostafa, A. G. Hussien, M. A. Khan, S.

Kadry, and F. A. Hashim, “Enhanced COOT

optimization algorithm for Dimensionality

Reduction”, In: Proc. of Fifth International

Conference of Women in Data Science at Prince

Sultan University (WiDS PSU), Riyadh, Saudi

Arabia, pp. 43–48, 2022, doi: 10.1109/WiDS-

PSU54548.2022.00020.

Table 7. A list of notations used in this paper's proposed

algorithm equations

Symbol Meaning

𝑣𝑜𝑏𝑠 Obstacle velocity

𝜃𝑜𝑏𝑠 Obstacle direction

𝑟𝑎𝑛𝑑(0,1) A random number between 0 and 1.

𝐶𝑃 COOT position

𝑑 search space dimension

Received: May 28, 2022. Revised: July 17, 2022. 565

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.48

𝑙 and 𝑢 lower and upper search space limits

Q random position

𝐿 current iteration

𝐼𝑡𝑒𝑟 The maximum number of iterations

NL leader's number

LP Number of leaders

gBest The best place to be found

𝑁 The number of coots

𝐷(𝑗) Density

CCP COOT center position

FCP The first coot in the swarm

LCP The last coot in the swarm

acc Acceleration

α
The number of free points inside the

circle with integer coordinates.

𝛽1
represent the number of integer

coordinates contained within the circle

𝛽2
The minimum difference between two

coots in the swarm

η
The number of coordinates

accompanied by the coot

