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Abstract: The primary goal of a mobile robot is to reach the desired goal by traversing an optimized path defined 

according to some criteria such as time, distance, and safety of the robot from any obstacles that may be in its way. 

Therefore, the backbone of autonomous mobile robots (AMRs) is path planning and avoiding obstacles. Many 

algorithms for path planning and obstacle avoidance have been presented by many researchers and each of these 

algorithms has several benefits and drawbacks. This paper focuses on comparing the performance of several 

metaheuristic algorithms that result in a more efficient, smoother, and shorter path for the mobile robot to reach the 

target in a complex environment. These algorithms include particle swarm optimization (PSO), chaotic particle swarm 

optimization (CPSO), modified chaotic particle swarm optimization (MCPSO), and firefly algorithm (FA). On the 

other hand, the paper proposes a hybrid algorithm by combining the FA and the MCPSO, namely the (HFAMCPSO). 

To demonstrate the effectiveness of the proposed algorithm in terms of the optimum cost function and obtaining the 

shortest path length, the optimal solution is compared to those of other path planning algorithms. Moreover, inverse 

dynamic and kinematic modeling are utilized to obtain the best torque and the best velocity actions for the wheels of 

the autonomous mobile robot. The proposed hybrid (FAMCPSO) algorithm provides enhancement on the path length 

equals (43.3%) and (25.5%) compared to the radial cell decomposition (RCD) and the A* algorithm, respectively. 

Moreover, the enhancement on the path length equals (2.3%) and (22.7%) compared to the firefly algorithm (FA) and 

the genetic algorithm (GA), respectively. All methods are simulated in an environment with static obstacles using the 

2018b MATLAB package. 

Keywords: Autonomous mobile robot, Obstacle avoidance, Path planning, Firefly algorithm, Chaotic particle swarm 

optimization. 

 

 

1. Introduction 

Path planning or path finding problems are well-

known in mobile robots, and they play a crucial role 

in autonomous mobile robot navigation. In this 

regard, navigation, which is defined as the process or 

activity of planning and directing a route or path, is a 

task that an autonomous robot must perform 

successfully to safely move from one location to 

another without being lost or colliding with other 

objects. Hence, path planning is one of the most 

important techniques for mobile robot autonomy. In 

particular, path planning's major goal is to create an 

ideal and viable path for a mobile robot to follow in 

order to get to the target places as rapidly as possible, 

utilizing optimal trajectories [1-3].       

Recently, many algorithms have been developed 

to tackle the problems of mobile robot path planning 

[4] including A* algorithms [5], D* algorithms [6], 

fuzzy logic (FL) [7], genetic algorithms (GAs) [8], 

particle swarm optimization (PSO) [9], ant colony 

algorithms (ACOs) [10], artificial potential fields 

[11], probabilistic road map (PRM), bug algorithms, 

and others [4]. Each of these algorithms has 

advantages and limitations in different environments. 

In particular, these algorithms attempt to find the 

shortest path length and the total time consumed 

while avoiding any collisions with obstacles [2, 12]. 

For instance, the authors in [13] suggested designing 

the smooth path of mobile robots by developing a 

new technique that integrates parametric cubic Bezier 

curve (PCBC) and particle swarm optimization with 

adaptive delayed velocity (PSO-ADV) algorithms. 

This path can achieve an equal curvature at the 

segment joints, allowing it to establish a continuous 
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curvature across the smooth path. However, the 

drawbacks are that the degree of the Bezier curve 

depends on the number of control points. In addition, 

the Bezier curve lacks local control and changing the 

position of one control point affects the entire curve. 

In [14], a route planning method and a control 

approach were suggested for the mobile robot system 

using a hybrid swarm optimization algorithm and the 

convolutional neural network trajectory tracking 

(CNNTT) for controller design. This hybrid 

algorithm (the chaotic particle swarm optimization 

(CPSO) algorithm and the A* algorithm) determined 

the shortest route with the best cost function. 

Nevertheless, the problem was not solved, the A* 

algorithm has simpler calculations and can solve 

problems quickly, but it is unable to recalculate if a 

problem occurs along the path.  

To ensure the best path and to enhance the final 

path, the researchers in [15] created an intelligent 

hybrid optimization approach called quarter orbits 

particle swarm optimization (QOPSO). This 

approach is a combination of two algorithms: the 

quarter orbits (QO) algorithm and the particle swarm 

optimization (PSO) algorithm. The quarter orbits 

algorithm, on the other hand, can discover a collision-

free path, but there are no assurances that it will find 

the best path since it moves the mobile robot from one 

orbit to another, which consumes more power and 

results in an unsmooth path. 

For the cluttered and the corridor environments, 

the authors in [16] proposed a new approach to cell 

decomposition, named the radial cell decomposition 

(RCD) algorithm, which may create shorter pathways 

with a slightly faster processing time compared to the 

vertical cell decomposition (VCD) algorithm. Based 

on a collection of arches drawn from the center point, 

the RCD algorithm splits the environment into a set 

of free cells. However, the drawback of these 

algorithms is that they use a grid or vertical-line cells 

with a long distance between cells based on the 

obstacles in the environment. 

The authors demonstrated how to find the shortest 

feasible (collision-free) path using an approach based 

on the firefly algorithm (FA) [17, 18]. They also 

compared their approach to two well-known swarm 

optimization algorithms: the genetic algorithm (GA) 

and the particle swarm algorithm with inertia weight 

(PSO-w). Because the PSO-w and the GA are likely 

to be locked in local optima, the test demonstrates 

that the FA outperforms the PSO-w and the GA in 

terms of success rate within the acceptable length. On 

the other hand, the increment rate of the FA and the 

GA is so low, that the average length of the optimum 

path found using the PSO-w is less than that found 

using the FA and the GA. While in another work [19], 

the authors proposed a hybrid firefly algorithm 

(HFA) by combining both the FA and the differential 

evolution (DE). The hybridization effectively 

increased the diversity of solutions and helped to 

avoid the stagnation problem. A modified version of 

the FA in a 3D sphere environment was studied in 

[20]. In [21], the defects of the traditional GA, such 

as the slow convergence speed and the tendency to 

fall into local optimum, were improved using a multi-

objective genetic algorithm. This algorithm improved 

the initial path and generated a multi-objective fitness 

function based on three indicators, including path 

length, path security, and path energy consumption, 

to further ensure the quality of the planned path. The 

authors of [11, 22] created a hybridized algorithm 

that includes a fast marching method hybridized with 

regression search (FMMHRS) methodology and a 

hybrid method combining the particle swarm 

optimization (PSO) algorithm with the potential field 

method (APF) in both static and dynamic obstacles’ 

environments.  

These algorithms can generate collision-free 

pathways from the beginning to the end. However, 

the disadvantage of these methods is that the optimal 

path provided by these algorithms is still somewhat 

long. The fast marching method (FMM) and 

FMMHRS algorithms, on the other hand, attempt to 

create a straight line between intermediate locations 

and the destination point before attempting to 

establish the position and grant specific permissions 

around obstacles, resulting in collision-free robot 

navigation. The APF approach, which used the 

attractive potential field function to select the optimal 

path, and the PSO algorithm were utilized to optimize 

the created path to overcome the limitation of 

becoming trapped at local minima. 

Therefore, in this work, we propose a solution to 

solve the problem of mobile robot path planning by 

proposing a hybrid algorithm, namely the 

HFAMCPSO, and comparing the results with those 

of the original intelligent algorithms (the CPSO and 

the FA) and those of other researchers who use 

different path planning algorithms in a static 

environment. The hybrid algorithms generate a 

shorter path and an improved distance cost function 

that may be used in a static environment. 

The rest of this paper is organized as follows: section 

(2) describes the wheeled mobile robot model. 

Section (3) explains the original intelligent 

algorithms and the suggested hybrid path planning 

algorithm. While section (4) demonstrates the 

numerical results and analysis of the MATLAB 

simulation in a static environment, and finally the 

conclusions of the paper are discussed in section (5). 
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Figure. 1 Nonholonomic mobile robot model [23] 

2. Wheeled mobile robot modelling  

In general, the wheeled mobile robot platform is 

shown in Fig. 1. This platform consists of left and 

right wheels that are placed on a parabolic shaft, and 

two multi-directional wheels installed in the front or 

back for stabilization. The nonlinear dynamic 

response of the robot motion and the steering are 

determined by the two independent actuators of 

analog direct current (DC) motors that provide 

suitable torques to the right and the left wheels of the 

mobile robot [23].   

The global reference frame is [Xaxis, Yaxis], while 

the position vector of the local reference frame of the 

mobile robot is defined as given in Eq. (1): 

 

  Q = [x, y, θ] T                          (1) 

 

where (x, y) specifies the position coordinates at the 

midpoint pc that denotes the place where the right and 

the left wheels meet in the middle, and it is the center 

mass of the wheeled mobile robot. r denotes the 

radius of the left and the right wheels, while θ acts as 

the orientation of the motion based on pure rolling 

and non-slipping non-holonomic constraints for the 

mobile robot, as given in Eq. (2) [23]: 

 

−ẋ(sin θ) + ẏ(cos θ) = 0                     (2) 

 

where ẋ  is the velocity in the Xaxis and ẏ  is the 

velocity in the Yaxis. As a result, the three kinematic 

equations for nonholonomic wheels mobile robots 

can be represented as in Eqs. (3), (4), and (5) [24, 25]: 

 

    x(t) = 0.5 ×  [vr(t) + vl(t)]  ×  cos θ (t) ×  TS + 

x(t − 1)          (3) 

 

    y(t) = 0.5 ×  [vr(t) + vl(t)]  × sin θ (t) ×  TS + 

  y(t − 1)       (4) 

 

   θ(t) =
1

L
 ×  [vl(t) − vr(t)] ×  TS + θ(t − 1)    (5) 

 

where vr(t) and vl(t) are the right and the left wheels' 

velocities of the platform, respectively. The distance 

between the driving wheels of the platform is taken 

as L and the sampling time of the numerical 

calculation is denoted by Ts. 

3. Path planning intelligent algorithms 

If we want to move a mobile robot to reach the 

desired destination, the first challenge that will 

encounter the work is finding the ideal or the closed-

to-optimal desired way by avoiding the obstacles to 

reach the destination with acceptable accuracy. 

Hence, it is critical to have the ability to avoid 

obstacles.  

The robot must be reliable to accomplish its job 

without risking itself or others, with the requirement 

of keeping the path as short as possible. Thus, we will 

need the most basic environmental data, as well as 

modeling the building's layout to determine the 

position of the goal point. In addition, we will need 

to determine the minimum distance from the starting 

position to the goal position using the Euclidean 

plane that can be achieved by the following distance 

cost function:  

 

    𝐷𝑖𝑠𝑡𝑓𝑢𝑛√ (𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2        (6) 

 

where 𝐷𝑖𝑠𝑡fun is the distance between two points, x𝑖 

and y𝑖 are x and y coordinates of the current 

waypoints, and x𝑖-1 and y𝑖-1 are x and y coordinates of 

feasible waypoints in the next iteration. 

Several algorithms have been presented in the past 

few years to devise an optimal path and avoid 

collisions with obstacles [4, 14]. In the section below, 

we explain several intelligent algorithms, including 

the modified chaotic particle swarm optimization 

(MCPSO) algorithm, the firefly algorithm (FA), and 

the proposed hybrid algorithm. 

3.1 Modified chaotic particle swarm optimization 

algorithm (MCPSO) 

In general, the PSO is a calculation technology 

like other evolutionary algorithms. It is based on a 

multi-point research technology that mimics the 

social behavior of animals through individual 

interaction and competition.  

In this algorithm, the search is initialized with a 

population of candidate solutions that are called 

particles. These particles have a memory and can 

save a portion of their prior state. The particle's 

mobility is governed by two randomly weighted 

factors: individuality and sociality.  

X axis 

Y axis 
X robot Y robot 
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The definition of individuality is "the tendency to 

return to the particle's best past situation", while 

sociality is defined as "the tendency to move towards 

the neighborhood’s best previous situation".  

In the PSO algorithm, each particle has its own 

position (which represents a point in the search space) 

and velocity (which represents the ratio of position 

change) in successive iterations [14, 26, 27].  

The PSO algorithm has some drawbacks such as 

the tendency to fall into local extreme values and they 

cannot obtain the global best solution [25, 27]. To 

overcome the limitations of the PSO, several research 

works have been conducted. One of these research 

works considered the chaotic searching by changing 

the inertia weight with the iterative process, which 

effectively improves the global search ability of the 

algorithm, and it is included into the PSO to induce 

more randomness in the search, increase global 

searching capability, and prevent a slide into the 

premature convergence to local minima. The 

algorithm combined the PSO and the chaotic map 

technique and it was called the chaotic particle swarm 

optimization (CPSO) algorithm, which effectively 

blends the chaotic searching behavior with 

population based evolutionary searching abilities [14, 

25, 26, 28]. Furthermore, the parameter w is the 

inertia weight factor, which is utilized to improve the 

search stability. The velocities of the particles are 

decreased using w to allow them to converge more 

accurately and efficiently.  

A greater value of w is utilized to promote global 

swarm exploration, whereas a smaller value of w is 

recommended to promote local exploration. 

A typical linearly decreasing inertia weight technique 

may be employed to create a balance between local 

and global exploration. The chaotic model is adopted 

in Eqs. (7), (8) and (9). 

 

Ziter+1 = µ ×  Ziter(1 − Z𝑜)           (7) 

 

where µ is the control parameter and when µ= 4 the 

system enters into a chaotic state [15]. 

 

W = WMX −
(WMX− WMN )

Tmax
 ×  iter          (8) 

 

Wnew = W ×  Ziter+1             (9) 

 

where Z0 is the initial value of deterministic; WMN and 

WMX are the minimum and the maximum inertia 

weights, respectively, Tmax is the maximum iterations' 

number, and iter is the present iteration. 

On the other hand, in the PSO algorithm, the 

acceleration coefficient (C) is an essential parameter. 

Whether or not it has an appropriate value is strongly 

tied to the algorithm's optimal optimization [28]. The 

parameters C1 and C2 are the learning factors, which 

represent the weight of each particle to the statistical 

acceleration in the item of the extreme position. 

Based on this fact, in this article, we proposed to 

improve the optimal performance of the PSO 

algorithm with the chaotic searching by dynamically 

changing the acceleration coefficient with the 

iterative process and we obtained better optimal 

performance compared with the chaotic state in the 

inertia weight after applying the chaotic equations 

adopted in this article, as shown in Eqs. (10), (11), 

and (12):   

 

C = CMX −
(CMX− CMN )

Tmax
 ×  iter            (10) 

 

C1new = 𝐶 ×  Ziter+1                   (11) 

 

   C2new   =     C1new                  (12) 

 

where CMN and CMX are the minimum and the 

maximum acceleration values, respectively. 

The new update equations for velocity and position 

are described in Eqs. (13) and (14) below:   

 

[V(i, j)]p
iter+1 = 

[

W × V(i, j) + C1new  × r1 

× (Pbest(i, j) − xy(i, j))

+C2new  ×  r2  × (Gbest(i, j) − xy(i, j))

]

p

iter

 (13) 

 

[xy(i, j)]p
iter+1= [xy(i, j)]p

iter +  [V(i, j)]p
iter+1   (14) 

 

Where Pbest is the best fitness values for particle pth; 

Gbest is the best fitness values for the whole swarm; 

the proposed values of r1 and r2 are 0.9,   [xy(i, j)]p
iter 

and [V(i, j)]p
iter of the p particle represent the position 

and velocity at the iterth iteration, respectively, and 

(i,j) denotes the coordinates' values in Xaxis and Yaxis 

[14, 15].  

Fig. 2 represents the pseudo code of the proposed 

MCPSO algorithm. 

3.2 Firefly algorithm (FA) 

Nature-inspired optimization algorithms have 

recently gained popularity. The firefly algorithm 

(FA) is a kind of stochastic, nature-inspired, 

metaheuristic algorithm that tries to simulate the 

attraction behavior of fireflies and lighting patterns 

[29]. Because of qualities such as high error tolerance, 

automated segmentation of the population into 

subgroups, and non-sensitivity to first values, this  
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Figure. 2 The pseudo code of the proposed MCPSO 

algorithm 

 

Figure. 3 The pseudocode of the FA algorithm 

 

method is extensively used for solving optimization 

and engineering problems, and it can produce good 

results [30]. For simplicity, this algorithm is based on 

the following three characteristics: Fireflies are 

unisex so that any individual will be attracted to 

others regardless of their gender; their attractiveness 

is proportionate to their brightness, so when there are 

two lighting fireflies, the less brilliant one will 

migrate towards the brighter one; and the brightness 

of a firefly is associated or determined by the 

objective function [31, 32]. The standard FA consists 

of two important characteristics; the first one is the 

formulation of light intensity change Ȋ that will be 

computed using Eq. (15), while the second one is the 

attractiveness β, which is calculated using Eq. (16) 

[31, 33]. 

 

Ȋ = Ȋo  ×  e−γѓ2
                          (15) 

 

        β = βo  × e−γѓ2
                      (16)  

where βo is the attractiveness at ѓ = 0, Ȋo denotes the 

original light intensity, γ is the fixed light absorption 

coefficient, and ѓ is the distance between two fireflies. 

The light intensity varies with the distance ѓ between 

two fireflies. The Cartesian distance between any two 

fireflies at ( 𝑥𝑖 , 𝑦𝑖 ) and ( 𝑥𝑗 , 𝑦𝑗 ), respectively, is 

expressed as shown in Eq. (17) [17, 18]: 

 

   ѓ(i, j) = √(xi − xj)
2  −  (y𝑖 − yj)

2          (17) 

 

Thus, the movement of a firefly is attracted to another 

brighter one, and the new position of the firefly is 

given by the following update formula shown in Eq. 

(18) [20, 30, 31, 34]: 

 

xyi+1
iter = xyi

iter + β(xyi
iter − xyj

iter) + α × £  (18) 

 

where α represents the randomization parameter [0 to 

1], £ represents a vector of random variables (rand – 

0.5), and xyi
iter is the ith coordinate element of a firefly 

in the iterth iteration. In addition, the first part of Eq. 

(18) represents the firefly's current position, and the 

second portion represents attraction. Fig. 3 represents 

the pseudo code of the FA algorithm. 

3.3 The proposed hybrid optimization algorithm 

By merging the strengths of the two algorithms, 

the hybridization between the firefly and the 

modified chaotic particle swarm optimization 

(HFAMPSO) was proposed. Due to the velocity 

parameter's fast convergence, the CPSO method is 

quite successful and conducts fast searching. Due to 

oscillations in local searches, the algorithm 

occasionally fails to get the best results. The FA, on 

the other hand, lacks the ability to maintain a personal 

best position and lacks a velocity characteristic. As a 

result, regardless of their past best placements, they 

will move.  

Consequently, fireflies can choose the most 

appropriate solution based on the local search space 

conditions. On the other hand, to improve the firefly 

algorithm's convergence and prevent it from falling 

into the local minimum, MCPSO features are merged 

with the FA algorithm to create a hybrid optimization 

method called the (HFAMCPSO). Based on this, the 

Step 1: The maximum number of iterations Tmax. 

Step 2: Initialize particle p. 

Step3: For each particle p, calculate the fitness function 

based on Eq. (6), and check if the fitness value is better 

than the previous better fitness value 𝑃𝑏𝑒𝑠𝑡, then set the 

current value as the new 𝑃𝑏𝑒𝑠𝑡   

Step 4: for each p: 

- Find p with the best fitness in particle 

neighbourhood Gbest. 

- Apply the modified CPSO algorithm using Eqs. (7, 

9, 10, 11 and 12). 

- Depending on the velocity of Eq. (13), calculate 

particle velocity V(i,j). 

- Depending on the position of Eq. (14), update the 

particle position xy(i,j). 

- Apply the new position. 

Step 5: Repeat Step 3 until reaching Tmax, and find the 

best global path for the mobile robot. 

. 

Step 1: Initialize the algorithm parameters. 

Step 2: Generate an initial population of the fireflies. 

Step3: For each firefly, calculate the fitness function 

value. Eq. (6) is the respective maximum fluorescence 

fireflies’ brightness. 

Step 4: Calculate the distance ѓ between xi and xj 

using Eq. (17). 

Step 5: Calculate the attractive β that varies with 

distance ѓ by Eq. (16). 

Step 6: Evaluate new solutions and update light 

intensity via Eq. (18).  

Step 7: Repeat Step 3 until reaching Tmax. and find the 

best global path for the mobile robot. 
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suggested hybrid combination between the FA and 

the PSO will find a better solution for firefly's local 

search capabilities and the PSO algorithm's global 

search capabilities [30, 32]. 

The ideas of personal best and global best are 

introduced into the FA in the proposed algorithm. All 

the procedures in the FA remain the same, except for 

the firefly movement, which has been modified to 

include the concepts of personal and global best [35]. 

As a result, the FA algorithm's adjusted position 

vector can be represented as shown in Eqs. (19) and 

(20): 

 

Dpxy = √(𝑃𝑏𝑒𝑠𝑡(𝑖,𝑖𝑡𝑒𝑟) − 𝑥𝑦(𝑖,𝑖𝑡𝑒𝑟)  )
2
       (19) 

 

Dgxy = √(Gbest(i,iter) − xy(i,iter) )
2

            (20) 

 

where Dpxy is the distance between the best local 

fitness values for the ith particle’s position in the iterth 

iteration, and Dgxy is the distance between the best 

global fitness values for all particles and the ith 

particle’s position in the iterth iteration. 

The new position's xi
(iter+1) and yi

(iter+1) values of 

the particles are calculated according to Eq. (21) 

denoting coordinates' values in x and y axes, 

respectively. 

 

xyi iter+1 = W × xyi iter + C1new × e−Dpxy
2

 (Pbest,i 

    – xyi iter) + C2new × e−Dgxy
2

 (Gbest,i – xyi
iter) + 𝛼×£ 

 (21) 

 

The flowchart of the proposed hybrid algorithm is 
illustrated in Fig. 4. While Table 1 shows all the 

parameters that will be used in the simulation results. 

4. Numerical results and analysis 

Path planning is an essential technology for 

tackling the autonomous navigation of mobile robots, 

and the main goal is to plan a collision-free optimal 

path from the present position to the destination. 

Therefore, the efficiency of the suggested hybrid 

algorithms was investigated in this paper using the 

MATLAB software (2018b) in an environment with 

fixed obstacles with a limited size of a map forming 

[600×800] cm for both x and y directions, as shown 

in Fig. 5. 

In Fig. 5, the black grids represent obstacles and 

the white grids represent the area where the robot can 

move. A route planning algorithm is responsible for 

finding this collision-free path, and several  

 

 
Figure. 4 The flowchart of the HFAMCPSO algorithm 

 

Initialize Map Borders with Static Obstacles. 

Identify the Start Position (x𝒔, ys), and the Target 

Position (x𝒕, y𝒕).  Initialize MCPSO Parameters (W, 

CMX, CMN, β, and μ). 

Initialize FA Parameters (γ, βo and α). 

If current 

particles 

cost <= 

Pbest cost? 

𝒊 = 𝒊 + 𝟏 

Calculate the Current Cost Function for 

each Particle based to Eq. (6) 

Start 

Let Tmax = Number of Maximum Iterations,  

Pop= Maximum Number of Particles. 

 iter= the Current Iteration, 𝒊= The Current Particle. 

Initialize Particle (pop) with Random Positions and 

Velocity=0, Initialize Global Best=inf. 

i=1 

If 𝒊 <= 

Pop 

Pbest cost = current cost 

iter=1 

iter = iter+1 

Ye

s  

Yes  

No 

N

o   
Set Gbest cost function = minimum (for all Pbest cost 

function). 

Calculate the distance between 𝑷𝒃𝒆𝒔𝒕, G𝒃𝒆𝒔𝒕 and xi, y𝒊 

according to Eq. (19), (20), respectively. 

Movement of particle according to Eq. (21) 

If 𝒊ter<= 

Tmax 

Find the best global path from star to 

goal and plot the best cost function 
End  

Yes  

No 
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Table 1. The definitions of all parameters 

Parameter    Definition  

vr and vl The right and the left wheels' velocities 

L The distance between driving wheels 

Ts The sampling time 

Z0 The initial value of deterministic 

µ The control parameter 

 WMN Minimum inertia weight 

WMX Maximum inertia weight 

 Tmax The maximum iterations' number 

iter The present iteration. 

CMN Minimum acceleration values 

CMX Maximum acceleration values  

Pbest Best fitness values for particle pth 

Gbest Best fitness values for the whole swarm 

𝑟1 and r2 Random numbers with a uniform 

distribution of the range [0, 1]. 

βo The attractiveness at ѓ = 0 

Io  The original light intensity 

γ Fixed light absorption coefficient 

 ѓ The distance between two fireflies 

α  A randomization parameter [0 to 1] 

£ A vector of random variables (rand – 

0.5) 

 

 
Figure. 5 The proposed environment with static obstacles 

 

techniques including (PSO, CPSO, MCPSO, FA, and 

the hybrid algorithms) are utilized and compared to 

find the shortest distance, taking into consideration 

that a safe distance must be maintained between the 

robot and the obstacles. The acquisition of the robot's 

current location, destination, and obstacle positions is 

the first step in the program coding. In addition, all 

the cases were executed several times with various 

iterations’ numbers ranging from 50 to 100 and 

particles' number ranging from 25 to 50. The 

computer hardware specifications include Intel Core 

i7-10750H with 16.0 GB of RAM, and CPU of  

 

Table 2. The best values of the parameters of the MCPSO 

and the FA algorithms 

Type of Algorithm     Parameter     Value 

 

 

MCPSO 

Z0 0.3 

µ 4 

 WMN 0.4 

WMX 0.7 

CMN 1 

CMX 2 

 

           FA 

βo 2 

γ 1 

α 0.5 

 

2.60GHz. The proposed values of the parameters in 

each algorithm are presented in Table 2. 

Case A 

In this case, the initial position of the mobile robot 

is [75, 750] cm (yellow square), while the target 

position is [470, 300] cm (yellow star). When 

applying the algorithms several times with a 

maximum iterations number equals 100 iterations, 

the best distance based on the hybrid FAMCPSO 

algorithm (green path) is 737.399 cm at iteration 50, 

while the best distance when applying the MCPSO 

algorithm (red path) is 738.507 cm at iteration 58. 

The minimum distance based on the CPSO algorithm 

(blue path) is 739.168 cm at iteration 60, the 

minimum distance based on PSO algorithm (black 

path) is 750.834 cm at iteration 73, and finally, the 

minimum distance based on the FA algorithm (cyan 

path) is 743.555 cm at iteration 65. All the best cost 

functions and the best paths of the different 

algorithms are shown in Fig. 6 (a) and (b). 

As a result, when compared to the original 

algorithms, the path generated by the proposed hybrid 

algorithm was smooth, and it was the shortest path 

from the starting point to the goal. This result was 

achieved based on merging the strengths of the two 

algorithms; the faster convergence ability of the PSO 

algorithm, while in the FA, the most appropriate 

solution is chosen based on the local search space 

conditions. All the results for the comparison of case 

A are summarized in Table 3. 

The equation of the reference path for the optimal 

path of the hybrid FAMCPSO is represented in Eq. 

(22): 

 

 𝑦𝑟  (𝑥𝑟) =  −4.8791 × 10−13 𝑥𝑟
6 + 5.6773 ×

 10−10 𝑥𝑟
5 – 2.4954 × 10−7 𝑥𝑟

4 + 4.886 ×
10−5 𝑥𝑟

3 − 0.0053179𝑥𝑟
2 + 0.14714𝑥𝑟 + 

753.15     (22) 
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(a)

 
(b) 

Figure. 6 The result for case A: (a) the shortest path and 

(b) the best distance cost function 

 
Table 3. Comparison of the shortest paths 

Algorithm Types 
Best Path 

Length 

Best No. of 

Iterations 

PSO 750.834 73 

CPSO 739.168 60 

MCPSO 738.507 58 

FA 743.555 65 

HFAMCPSO 737.399 50 

 

To generate the best torque actions of the right and 

the left wheels, and to follow the reference path 

equations, the inverse dynamic model of the 

nonlinear wheeled mobile robot is used based on Eqs. 

(23) to (30) [15]. 

 

VLin(t) =  √(ẋr(t))2 + (ẏr(t))2           (23) 

 

Wang (t) =  
ÿr(t) × ẋr(t)− ẍr(t) ×ẏr(t)

xr
2+  yr

2         (24) 

 

 

 
Figure. 7 The linear velocities of the right and the left 

wheels 

 

 
Figure. 8 The linear and the angular velocities of the 

platform 

 

AccLin(t) =
VLin  (t)− VLin  (t−1)

Ts
             (25) 

 

Accang (t) =
Wang (t)− Wang (t−1)

Ts
          (26) 

 

 F(t) =  AccLin(t)  × M                 (27) 

 

 τa(t) =  Accang (t) × I                 (28) 

 

τ𝑅(𝑡) =  
r×F(t)+(2×

r

L
)×τa(t)

2
              (29) 

 

τL(t) =  
r×F(t)−(2×

r

L
)×τa(t)

2
              (30) 

 

where τL(t) is the torque on the left wheel, τ𝑅(t) is 

the torque on the right wheel, M=1.130 kg is the 

mobile robot mass, I=0.36 kg. m2 is the inertia of the  
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Figure. 9 The linear force and the angular torque of the 

platform 

 

 
 

Figure. 10 The right and the left wheels torque control 

actions 

 

mobile robot, 𝐹(t) denotes the linear total force, 

τa(t) represents the total angular torque, AccLin(t) is 

the linear acceleration, Accang (t)  is the angular 

acceleration, VLin  is the linear velocity, Wang  is the 

angular velocity, and Ts is the sampling time.  

The parameters of the mobile robot platform are 

used with the following values: r = 0.035m and L= 

0.25m with a sampling time equals 0.2 sec. 

Based on Eqs. (23) to (30), Fig. 7 represents the 

smooth velocity of the right and the left wheels of the 

mobile robot, while Fig. 8 represents the linear and 

the angular velocities of the platform to follow the 

desired path. Fig. 9 shows the linear force and the 

angular torque of the mobile robot platform. Finally, 

Fig. 10 represents the right and the left wheels torque 

actions that were generated from the inverse dynamic 

model. 

 

 
(a) 

 
(b) 

Figure. 11 Results of the hybrid FAMCPSO based on 

map [11]: (a) the shortest path and (b) the best distance 

cost function 

 

A comparative study was conducted with a 

previous research work that used different path 

planning algorithms with varied static environments 

(simple, cluttered and corridors) containing diverse 

obstacle forms to verify that the proposed hybrid 

method, namely the (FAMCPSO), delivers the 

shortest way. Firstly, the hybrid FAMCPSO was 

tested using a simple environment with a workspace 

of [500×500] cm, that was used in [11, 15, and 22] 

using the artificial potential field (APF) method 

combined with the particle swarm optimization 

(PSO) with a three-point smoothing method, the 

hybrid quarter orbits particle swarm optimization 

(QOPSO) algorithm, the fast-marching method 

(FMM), and the fast marching method hybridized 

with the regression search (FMMHRS) methodology. 

When the same environment was used with the 

hybrid FAMCPSO algorithm, the results of the 

simulation process produce a path length of 660.918 

cm, as shown in Fig. 11 (a) and (b). The simulation 

results indicate that the hybrid FAMCPSO algorithm  
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Table 4. Comparison of the shortest path with the 

literature [11, 15, 22] 

Algorithm Types 
Best Path 

Length 

APF+PSO [11] 819. 87 cm 

APF+ PSO+3-point [11] 753.26 cm 

The hybrid QOPSO algorithm [15] 663.856 cm 

FMM [22] 676.08 cm 

FMMHRS [22] 664.26 cm 

The Proposed hybrid FAMCPSO 660.918 cm 

 

 
(a) 

 
(b) 

Figure. 12 Results of the hybrid FAMCPSO based on 

map [15]: (a) the shortest path and (b) the best distance 

cost function 

 

Table 5. Comparison of the shortest path with the 

literature [15] 

Algorithm Types 
Best Path 

Length 

No. of 

Iterations 

QO [15] 659.420 cm - 

PSO [15] 757.1048 cm 20 

hybrid QOPSO [15] 657.1271 cm 12 

The Proposed hybrid 642.5958 cm 11 

 
(a) 

 
(b) 

Figure. 13 Results of the hybrid FAMCPSO based on 

map [16]: (a) the shortest path and (b) the best distance 

cost function 

 

can successfully generate the shortest path compared 

with the APF approach [11] that used the attractive 

potential field function to select the optimal path. The 

PSO algorithm was utilized to optimize the created 

path to overcome the limitation of becoming trapped 

at local minima. Therefore, the best path generated by 

these algorithms is still a long one. Moreover, it 

generates the shortest path compared to the QOPSO 

algorithm [15]. The QO [15] algorithm can discover 

a collision-free path, but there are no assurances that 

it will find the best path since it moves the mobile 

robot from one orbit to another, which consumes 

more power and results in an unsmooth path. The 

FMM and FMMHRS algorithms [22] attempt to 

create a straight line between intermediate locations 

and the destination point before attempting to 

establish the position and grant specific permissions 

around obstacles, resulting in collision-free robot 

navigation, but the optimal path provided by these  
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(a) 

 
(b) 

Figure. 14 Results of the hybrid FAMCPSO based on 

map [16]: (a) the shortest path and (b) the best distance 

cost function 

 

algorithms is still somewhat long.  

The results of the comparison study are 

demonstrated in Table 4. 

In addition, the hybrid method was compared 

with the hybrid Quarter Orbits Particle Swarm 

Optimization (QOPSO) algorithm in the same 

congested environment utilized in [15] with a 

workspace of [700×700] cm. The simulation process 

using the hybrid FAMCPSO algorithm shown in Fig. 

12 (a) and (b) produces a path length equals 642.59 

cm with an iteration number equals 11. 

Table 5 shows the outcomes of the comparison 

study. 

Thirdly, the proposed hybrid FAMCPSO was 

compared with the vertical cell decomposition 

(VCD) algorithm and the radial cell decomposition 

(RCD) algorithm that were suggested in [16], using 

different static environments including two cluttered 

environments with a workspace of [11×8] m, where  

 

 
(a) 

 
(b) 

Figure. 15 Results of the hybrid FAMCPSO based on 

map [16]: (a) the shortest path and (b) the best distance 

cost function 

 

the starting position is at (0, 0) and the end position 

is at (10, 7.5). Moreover, the comparison was also 

conducted in the corridor environment with a 

workspace of [10×10] m, where the starting position 

is at (0, 0) and the goal is at (6.9, 5.7) and (8.9, 7.8). 

The results of the simulation process with the first 

cluttered environment using the hybrid FAMCPSO 

algorithm are shown in Fig. 13 (a) and (b), which 

produces a path of length equals 12.534 m. While the 

results of the simulation process with the second 

environment using the proposed hybrid algorithm are 

shown in Fig. 14 (a) and (b), producing a path of 

length equals 14.103m. The simulation result with a 

corridor environment produced a path length of 

9.677m and 12.558m to two different goals, as shown 

in Fig. 15 (a) and (b) and Fig. 16 (a) and (b). The 

simulation results in all the cases indicate that the 

hybrid algorithm can successfully generate the 

shortest path compared to both the VCD and the RCD 

in all environments [16] because these algorithms use  
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(a) 

 
(b) 

Figure. 16 Results of the hybrid FAMCPSO based on 

map [16]: (a) the shortest path and (b) the best distance 

cost function 

 
Table 6. Comparison of the shortest path with the 

literature [16] 

Environment 

no. 
Algorithm Types 

Best Path 

Length 

Cluttered 

Environment 1 

[16] 

VCD [16] 17.88 m 

RCD [16] 16.66 m 

The Proposed hybrid 12.534 m 

Cluttered 

Environment 2 

[16] 

VCD [16] 19.55 m 

RCD [16] 15.88 m 

The Proposed hybrid 14.103 m 

Corridor 

environment 1 

[16] 

A* algorithm [16] 12.62 m 

RCD algorithm [16] 17.44 m 

The Proposed hybrid 9.677 m 

Corridor 

environment 2 

[16] 

A* algorithm [16] 16.87 m 

RCD algorithm [16] 25.36 m 

The Proposed hybrid 12.558 m 

 

(a) 

(b) 

Figure. 17 Results of the hybrid FAMCPSO based on 

map [17]: (a) the shortest path and (b) the best distance 

cost function 
 

a grid or vertical-line cells with a long distance 

between the cells based on the obstacles in the 

environment. 

Table 6 The result of the comparison between the 

algorithms. 

Finally, the hybrid FAMCPSO was compared with 

the GA, the PSO-W, and the FA that was developed 

in [17], using an environment with a workspace of 

[16×16] m, where the starting and ending positions 

are at (5,5) and (15,15), respectively.  

The results of the simulation process using the 

hybrid FAMCPSO algorithm are shown in Fig. 17 (a) 

and (b) and Fig 18 (a) and (b), producing a path of 

length equals 17.03m and 14.73 m for map (a) and 

map (b), respectively. The results indicate that the 

hybrid FAMCPSO algorithm can successfully 

generate the shortest path compared to that of the GA, 

the PSO-W, and the FA [17], because the PSO-w and 

the GA are likely to be locked in local optima. The  
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(a) 

(b) 

Figure. 18 Results of the hybrid FAMCPSO based on 

map [17]: (a) the shortest path and (b) the best distance 

cost function 

 
Table 7. Comparison of the shortest path with the 

literature [17] 

Environment 

no. 
Algorithm Types 

Best Path 

Length 

 

Map (a) 

[17] 

GA [17] 17.3 

PSO-W [17] 17.13 

FA [17] 17.44 

The Proposed hybrid 17.03 

 

Map (b) 

[17] 

GA [17] 19.07 

PSO-W [17] 17.85 

FA [17] 17.96 

The Proposed hybrid 14.73 

 

test also demonstrates that the FA beats the PSO-w 

and the GA in terms of the success rate within the 

acceptable length. On the other hand, the increment 

rate of the FA and the GA are so low, that the average  

 

 

 
(a) 

 
(b) 

(c) 

Figure. 19 The result for case B: (a) the shortest path for 

the two mobile robots, (b) the best distance cost function 

for mobile robot 1 and (c) the best distance cost function 

for mobile robot 2 

 

length of the optimum path found using the PSO-w is 

less than that found using the FA and the GA. Table 

7 shows the results of the comparison study. 
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Table 8. Comparison of the shortest paths 

Mobile 

no. 

Algorithm 

Types 

Best Path 

Length 

No. of 

Iterations 

 

 

Mobile 

robot 1 

PSO 
447.961 

cm 
40 

CPSO 
445.944 

cm 
37 

MCPSO 
445.119 

cm 
29 

FA 
450.245 

cm 
60 

FAMCPSO 
444.037 

cm 
20 

 

 

Mobile 

robot 2 

PSO 
422.167 

cm 
20 

CPSO 421.137cm 18 

MCPSO 
420.944 

cm 
16 

FA 
421.447 

cm 
23 

FAMCPSO 
420.617 

cm 
13 

 

 
Figure. 20 The right and the left wheels’ linear velocities 

for the two mobile robots 

 

 
Figure. 21 The linear and the angular velocities for the 

two mobile robots 

Case B 

In this case, we tested the proposed algorithms 

with two mobile robots with different initial points at 

(135,370) cm and (580,250) cm (yellow square) and 

one goal point at (450,650) cm (yellow star). All cost 

functions and paths for case B are summarized in  

Table 8 and Fig. 19 (a), (b) and (c). 

After executing the program several times, the 

result for the first mobile robot is obtained as the 

minimum distance based on the hybrid FAMCPSO 

algorithm, which is equal to 444.0371 cm at iteration 

20, while the distance for the MCPSO algorithm is 

obtained as 445.1197 cm at iteration 29. The distance 

for the CPSO algorithm is found as 445.9442 cm at 

iteration 37, the distance for the PSO algorithm is 

equal to 447.9613 cm at iteration 40, and finally, the 

minimum distance for the FA is equal to 450.245 cm 

at iteration 60.  

On the other hand, the result for the second robot 

is obtained as the minimum distance based on the 

proposed hybrid FAMCPSO algorithms, which is 

equal to 420.6174 cm at iteration 13, while the 

distance that was generated from the MCPSO 

algorithm is equal to 420.944 cm at iteration 16 and 

the distance obtained by the CPSO algorithm is equal 

to 421.1377cm at iteration 18.  

The distance obtained from the PSO algorithm is 

422.1673 cm at iteration 20. Finally, the minimum 

distance for the FA was 421.4473 cm at iteration 23. 

As a result, the distance generated from the two 

mobile robots using the suggested hybrid algorithm 

was smooth and the shortest way from the initial 

position to the target position when we compared 

with the original algorithms. 

The equations of the reference path for the 

optimal path of the hybrid FAMCPSO for mobile 

robots 1 and 2 are represented in Eqs. (31) and (32), 

respectively. 

 

Yr(xr) = −1.113 × 10−7 xr
4  + 0.00015035 × 

 xr
3 − 0.074488 ×  xr

2  + 16.517 × xr – 837.45 

 (31) 

 

  Yr(xr) = 0.0016411 ×  xr
2– 4.7627 × 

xr +  2461.7        (32) 

 

Finally, utilizing Eqs. (23) to (30), Fig. 20 represents 

the smooth velocity response of the right and the left 

wheels for the two mobile robots. While Fig. 21 

demonstrates the linear and the angular velocities of 

platform 1 and platform 2. Fig. 22 shows the linear 

force and the angular torque of the mobile robot 

platform for the two robots. Finally, Fig. 23 

represents the right and the left wheels’ torque control 

actions for mobile robot 1 and mobile robot 2. 
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Figure. 22 The linear force and the angular torque for the 

two mobile robots 

 

 
Figure. 23 The right and left wheels’ torques for the two 

mobile robots 

5. Conclusions 

The mobile robot path-planning algorithm is a 

crucial part of the robotics area that focuses on 

finding the smoothest and the shortest path of the 

mobile robot in the global environment and this 

algorithm has been proposed in this paper. A meta-

heuristic algorithm is proposed for solving the path 

planning problem for the mobile robot, and it is used 

to find the best way in the environment with obstacles. 

This algorithm combined the MCPSO with the FA 

algorithms. From the simulation results of MATLAB, 

we can find that the suggested hybrid algorithm can 

find the most optimum path for the mobile robot 

compared to those of the original algorithms under 

the same conditions of obstacles in the environment.  

On the other hand, the hybrid algorithm was 

compared with the artificial potential field (APF) 

method combined with the particle swarm 

optimization (PSO) with a three-point smoothing 

method [11] and the fast-marching method 

hybridized with regression search (FMMHRS) 

methodology [22]. The comparison results showed 

that the hybrid algorithm provides enhancement on 

the path length of 12.25% compared to the 

APF+PSO+3-point algorithm and 0.5% compared to 

the FMMHRS algorithm. 

On the other hand, when comparing the hybrid 

algorithm with the quarter orbits particle swarm 

optimization (QOPS) algorithm [15], the hybrid 

algorithm provides an enhancement on the path 

length of 2.2% compared to the QOPS algorithm. 

In addition, the hybrid algorithm was compared 

with the radial cell decomposition (RCD) [16], the 

vertical cell decomposition (VCD) [16], and the A* 

algorithm [16] using four different (cluttered and 

corridor) environments. The comparison results of 

the first cluttered environment showed that the hybrid 

algorithm provides enhancement on the path length 

of 24.7%, up to 29.8% compared to the RCD and 

VCD algorithms, respectively. Moreover, the 

comparison results of the second cluttered 

environment showed that the hybrid algorithm 

provides enhancement on the path length equals 

11.1% and 27.8% compared to the RCD and VCD 

algorithms, respectively. While the first corridor 

environment comparison results showed that the 

hybrid algorithm improves the path length by 44.5% 

and 23.3% when compared to the RCD and A* 

algorithms, respectively. Finally, the other corridor 

environment enhancement on the path length equals 

43.3% and 25.5% compared to the RCD and the A* 

algorithm, respectively.  

Finally, the hybrid algorithm provides a smooth 

path with the shortest distance compared to those of 

the genetic algorithm (GA) [17], the particle swarm 

with inertia weight (PSO-w) algorithm [17], and the 

firefly algorithm (FA) [17] in two different maps. In 

the first map, when comparing the hybrid algorithm 

with the GA algorithm, the hybrid algorithm 

provided an enhancement on the path length equals 

to 1.5% compared to the GA algorithm, while the 

proposed hybrid algorithm enhancement on the path 

length equals 0.5% compared to the PSO-w 

algorithm and 2.3% compared to the FA algorithm. 

While in the second map, when comparing the hybrid 

algorithm with the GA algorithm, the hybrid 

algorithm provided an enhancement on the path 

length equals 22.7% compared to the GA algorithm, 

while the proposed hybrid algorithm enhancement on 

the path length equals 17.4% compared to the PSO-

w algorithm and 17.9% compared to the FA 

algorithm. 

A comparison of the mobile robot path length 

with other research works revealed that the proposed 



Received:  June 6, 2022.     Revised: June 27, 2022.                                                                                                         324 

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022           DOI: 10.22266/ijies2022.1031.28 

 

hybrid method provided the shortest path with 

collision avoidance. 

We recommend that the suggested hybrid algorithm 

be adjusted to work in a dynamic environment in the 

future. 
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