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Abstract: The goal of the navigation process is to find the optimal path for the mobile robot and control its motion on 

that path without any oscillation. This work aims to find the optimal paths for multi-mobile robots working in the same 

static environment. To achieve this goal, the proposed quarter orbits particle swarm optimization (QOPSO) algorithm, 

which is an enhancement of the cell decomposition algorithm, will be used. The main advantage of using the QOPSO 

algorithm is to generate the shortest path and avoid collision with static obstacles. Moreover, to direct the motion of 

the three mobile robots on the desired predefined paths, a proposed inverse differential kinematic neural network 

trajectory tracking (IDKNNTT) controller based on a modified Elman recurrent neural network (MERNN) will be 

used. This proposed controller is used to control the nonlinear kinematics mobile robots’ system to smoothly and 

quickly generate the left and right wheels’ velocities of the multi mobile robots, which are used to control the 

orientation and position of each mobile robot. Furthermore, using the proposed controller minimizes the tracking error 

in the X-axis and the Y-axis positions, approximately zeroes the orientation error, and provides no oscillation in the 

responses. In particular, the controller guarantees that all the mobile robots will follow their desired paths quickly and 

correctly. Finally, we validate the numerical simulation results of the proposed control strategy by comparing them to 

those of other types of controllers in terms of the maximum error enhancement in the X-position and the Y-position. 

Particularly, when the proposed controller was compared to the convolutional neural network trajectory tracking 

(CNNTT) controller, the comparison results show that the proposed controller improves the tracking error rate on the 

X-axis by 75.5 % and enhances the tracking error rate on the Y-axis by 21.2 %. In addition, the proposed controller 

was compared to the MIMO-PID-MENN controller, and the comparison results show that the proposed controller 

improves the tracking error rate on the X-axis by 33.3 % and on the Y-axis by 40.6 %. 

Keywords: Quarter orbits particle swarm optimization algorithm, Path planning, Inverse differential kinematic 

controller, Modified Elman recurrent neural network, Mobile robot model, Trajectory tracking. 

 

 

1. Introduction 

There are numerous applications for mobile 

robots in various areas of our lives, including robotics, 

medicine, virtual reality, bioinformatics, and search 

and rescue operations [1]. The design and building of 

mobile robot systems that work autonomously in 

complex, dynamic, and uncertain situations have 

remained a difficulty throughout the previous decade. 

Such systems must be able to accomplish many jobs, 

which necessitates the integration of a range of 

knowledge-intensive information processes at 

various levels of abstraction to provide real-time 

execution, robustness, adaptability, and scalability 

[2]. Mobile robots are now being developed to be 

used in multi-robot systems, in which numerous 

mobile robots are linked to one another. The systems 

may provide increased efficiency, dependability, and 

flexibility in various applications [3]. Multi-robot 

teams can be used in a variety of situations, including 

salvaging in hazardous situations and emergencies, 

product transit, environmental monitoring, 

exploration of an unknown environment and so on [4]. 

However, this research focuses on its use in 

exploration. When compared to a single robot, 

multiple robot systems are widely known for their 

synchronization process and improved geographical 

distribution capability. This coordination tackles the 
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issue of how teams of autonomous mobile robots can 

share the same workspace while avoiding 

interference, colliding with static obstacles, and/or 

reaching group motion goals [5]. A mobile robot is a 

robot that can travel from one location to another by 

employing several wheels. The robot requires a 

control system to alter the movements of each wheel 

so that it can reach the required position. While 

numerous trajectory tracking control methods can be 

used to monitor the mobile robot, the key goal is to 

operate the system inexpensively and effectively 

without losing the controller’s robustness and 

reliability. In this context, many approaches have 

been presented to handle path-tracking issues and 

ensure that mobile robots follow the predetermined 

path without slipping. Particularly, the majority of 

articles used a nonlinear back-stepping technique to 

solve the problem of mobile robot motion control and 

stability of a non-holonomic dynamic model of a 

mobile robot [6]. However, the limitation is that the 

control parameters of the back-stepping controller are 

fixed and not updated by an on-line optimization 

method. In 1998, Fierro and Lewis [7] used a multi-

layer feedforward neural network to construct a 

neural network-based model that combined the 

torque controller with the back-stepping tracking 

technique, allowing the neural network to learn the 

dynamics of the mobile robot online. Nonetheless, 

the drawback of the back-stepping controller is that 

the control gains are selected by a try-and-error 

method and the utilized learning algorithms are 

extremely complicated and computationally 

expensive [7]. In addition, although the authors in [8] 

presented a back-stepping control methodology, the 

design procedure and the resulting controller 

structure are extremely complicated and used off-line 

tuning control parameters. Furthermore, a wheeled 

mobile robot was equipped with a feedforward neural 

controller and a feedback kinematics controller to 

track various types of desired trajectories in [9] but 

the problem of the error propagation mechanism is 

still considerable and was not eliminated because the 

parameters of the feedback controller are fixed. On 

the other hand, the researchers in [10] reviewed the 

path tracking control method based on model 

predictive control (MPC) and found that the existing 

MPC-based path tracking control methods can be 

divided into four types: linear model predictive 

control (LMPC), linear error model predictive control 

(LEMPC), nonlinear model predictive control 

(NMPC), and nonlinear error model predictive 

control (NEMPC). By comparing the four types, it 

was found that the real-time performance of LMPC 

and LEMPC is good, but the problem of (LMPC) is 

that it is less robust to reference paths and there are 

small positioning errors. In this regard, the NMPC 

performs well when the reference velocity is high and 

the radius of the reference path is small. It is also 

robust to positioning errors. However, the real-time 

performance of the NMPC is slightly worse. 

Moreover, in [11] explained a cognition path 

planning algorithm based on the particle swarm 

optimization (PSO) algorithm that generated an 

optimal path with free navigation and designed 

traditional PID controller based on modified Elman 

neural network MIMO-PID-MENN with PSO 

control gain algorithm for a motion the non-

holonomic wheeled mobile robot. The limitation of 

the MIMO-PID-MENN was the minimum size of the 

neural network with the minimum learning set of the 

desired path, which led to generating a tracking error 

for the mobile robot during following the reference 

path. 

Specifically, this work’s problem definition is 

separated into two parts: the initial part of our task 

will be to develop an optimal or near-optimal desired 

path with the achievement of the two requirements; 

the shortest path with collision avoidance for three 

mobile robots working in the same environment. The 

second part of our work is to create a motion 

controller for each mobile robot trajectory tracking to 

guarantee that the mobile robots move on the 

predefined path without any slipping and with 

minimum position and orientation tracking errors. 

The goal of this study is to solve the problem 

statement by i) using the proposed hybrid method 

called quarter orbits particle swarm optimization 

(QOPSO) to generate an optimal or near-optimal 

smooth desired path for each mobile robot with the 

shortest path and collision avoidance with the static 

obstacle or with other mobile robots working in the 

same environment, ii) generating a smooth and best 

values of two-wheel velocities’ control actions 

performed by numerical simulation using the 

suggested inverse differential kinematic neural 

network trajectory tracking (DIKNNTT) controller 

based on the modified Elman recurrent neural 

network control technique. 

This paper is organized as follows: Section 2 

presents the non-holonomic wheeled mobile robot 

system. Section 3 discusses the proposed 

methodology, and section 4 describes the simulation 

result, while section 5 shows the conclusion. 

2. Non-holonomic wheeled mobile robot 

model  

Drive systems can be classified based on how the 

robot moves into the holonomic and non-holonomic 

drives [12]. Holonomic drive and non-holonomic  
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Figure. 1 A non-holonomic wheeled mobile robot 

 
Table.1 The equations’ parameters 

Parameter Definition 

𝑉𝑒𝑙𝑙𝑒𝑓𝑡  The left wheel velocity 

𝑉𝑒𝑙𝑟𝑖𝑔ℎ𝑡  The right wheel velocity 

𝑙 The distance between the two wheels 

𝑇 
The sampling time of the mathematical 

calculation 

 

drive are terms used to describe the relationship 

between a robot's controlled degree of freedom and 

its overall degrees of freedom [13]. In particular, the 

degree of freedom that can be controlled is specified. 

A robot with a holonomic drive has controllable 

degrees of freedom equal to its total degrees of 

freedom. On the other hand, a non-holonomic drive 

occurs when the robot’s controlled degrees of 

freedom are less than its total degrees of freedom. Fig. 

1 demonstrates a non-holonomic wheeled mobile 

robot system. It contains two driving wheels 

positioned within the same axis and one caster wheel 

at the front or at the back of the platform and this 

wheel is used for the stability of the mobile robot [14]. 

For mobility and platform steering, the wheeled 

robot’s right and left wheels are controlled by two 

independent analog direct current (DC) motors. The 

center mass of the mobile robot is located at the point 

(𝑚𝑝), and the two drive wheels are linked to the axis 

center [10].  

The mobile robot model is a multi-input multi-

output system. It has two input states (left and right 

wheels’ velocities), and three output states based on 

its position in the global coordinate frame [O, X-axis, 

and Y-axis]. The pose surface is 𝑋𝑚𝑝  and 𝑌𝑚𝑝  

representing the coordinates of the point 𝑚𝑝 . The 

kinematics equation of the mobile robot platform has 

a highly nonlinear state time-variant output, and it 

also has an under-actuated model. As a result, these 

three generalized coordinates can be used to define 

the mobile robot’s configuration. More specifically, 

the computer simulation equations are as follows 

[15]: 

 

𝑋𝑚𝑝(𝑗) = [
1

2
(𝑉𝑙𝑒𝑓𝑡 + 𝑉𝑟𝑖𝑔ℎ𝑡) × 𝑐𝑜𝑠(𝜃(𝑗)) × 𝑇] 

+𝑋𝑚𝑝(𝑗 − 1)      (1) 

 

𝑌𝑚𝑝 (𝑗) = [
1

2
(𝑉𝑙𝑒𝑓𝑡 + 𝑉𝑟𝑖𝑔ℎ𝑡) × 𝑠𝑖𝑛(𝜃(𝑗)) × 𝑇] 

+𝑌𝑚𝑝(𝑗 − 1)       (2) 

 

𝜃(𝑗) = [
1

𝑙
(𝑉𝑒𝑙𝑙𝑒𝑓𝑡 + 𝑉𝑒𝑙𝑟𝑖𝑔ℎ𝑡)𝑇] + 𝜃(𝑗 − 1)      (3) 

3. Methodology of path planning and control 

strategy design 

The proposed methodology of this work consists 

of two steps. The first step is the path planning of the 

multi-mobile robot system based on a hybrid method 

called the quarter orbits particle swarm optimization 

algorithm (QOPSO) to find the best desired path from 

the starting point to the target point, while the second 

step is the motion control for the same multi-mobile 

robot system based on the inverse differential 

kinematic trajectory tracking controller in order to 

follow the desired path. 

3.1 Path planning methodology 

The path planning algorithm is required to move 

the mobile robot from the starting point to the target 

point taking many objectives into consideration. This 

work covers two aspects of the path planning 

problem: the first one is avoiding collisions with 

obstacles or with other mobile robots, and the second 

one is determining the shortest path for a mobile 

robot to achieve its destination in a complex 

environment. To solve these two problems, a hybrid 

method called the quarter orbits particle swarm 

optimization (QOPSO) algorithm [16] will be used, 

and this algorithm was developed by combining the 

quarter orbits algorithm with the particle swarm 

optimization method. 

3.1.1. Quarter orbits algorithm 

The quarter orbits techniques are derived from the 

cell decomposition algorithm, with certain 

modifications to the path search procedure and the 

cell form. The quarter orbits method divides the 

robot’s static environment into quarter orbits cells, 

and the navigation process is represented in Fig. 2. 

The cell decomposition method is improved by the  
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Figure. 2 The quarter orbits algorithm flowchart [16] 

quarter orbits algorithm. By driving the robot toward 

the goal using quarter orbits cells instead of grid cells 

and vertical lines cells, it decreases the path length 

required to reach the objective. When a collision-free 

path is available, this procedure creates the path. 

Using this strategy, however, does not guarantee that 

the shortest distance path will be found [16].  

3.1.2. Particle swarm optimization algorithm 

Kennedy and Eberhart introduced the PSO in 

1995 as an evolutionary computation technique based 

on the behaviour of swarming animals such as birds 

and fish [17]. Specifically, the PSO tries to mimic the 

behaviour of a social animal, but it does not require a 

group leader to accomplish its mission. When a flock 

of birds is on the hunt for food, they don't need 

leaders; instead, they just follow one of the 

individuals which is the closest to the meal. As a 

result of effective communication with the other 

particles, the flock of birds achieves its targeted goal. 

The pseudocode of the PSO algorithm is represented 

in Fig. 3, and the update functions of the velocity and 

position vectors at the Nth iteration [18] can be 

represented in Eqs. (4) and (5) whose parameters are 

represented in Table 2. 

 
Table 2. The parameters’ definition of PSO 

Parameter Definition 

𝑉𝑗(𝑁) jth particle’s velocity at iteration N 

𝑋𝑗(𝑁) jth position vectors at iteration N 

𝑃𝑗𝑏𝑒𝑠𝑡(𝑁) The best fitness values for the jth particle 

𝐺𝑏𝑒𝑠𝑡(𝑁) 
The best global fitness value for the 

whole swarm 

𝑤 Inertia weight of the velocity (0.751) 

𝑐1 and 𝑐2 
The acceleration coefficients (1.75, 

1.75) 

𝑟1 and 𝑟2 
Random numbers with a uniform 

distribution of the range [0, 1]. 

 

 

Figure. 3 The pseudocode of the PSO method 

Step 1: Determine the maximum number of iterations. 

Step 2: Initialize each particle. 

Step 3: For each particle, check the fitness value, if it 

is greater than the best fitness value (𝑃𝑗𝑏𝑒𝑠𝑡), then set 

the current value as (new 𝑃𝑗𝑏𝑒𝑠𝑡) 

Step 4: For each particle: 

- Find the particle in the particle 

neighbourhood with the best global fitness 

(𝐺𝑏𝑒𝑠𝑡). 

- Calculate the particle’s velocity 𝑉𝑗(𝑁) , 

according to Equation (4). 

- Apply the new value of the velocity. 

- Calculate the new particle position 

𝑋𝑗(𝑁), according to Equation (5). 

- Apply the new value of the position. 

Step 5: Repeat starting from Step 3 until reaching the 

maximum number of iterations. 
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Figure. 4 The main structure of the multi-mobile robots control strategy 

 

𝑉𝑗(𝑁 + 1) = 𝑤𝑉𝑗(𝑁) + 𝑐1𝑟1 (𝑃𝑗𝑏𝑒𝑠𝑡(𝑁) − 𝑋𝑗(𝑁)) 

+𝑐2𝑟2 (𝐺𝑏𝑒𝑠𝑡(𝑁) − 𝑋𝑗(𝑁))        (4) 

 

 𝑋𝑗(𝑁 + 1) = 𝑋𝑗(𝑁) + 𝑉𝑗(𝑁 + 1)                        (5) 

 

While the PSO algorithm can solve path planning 

problems effectively and produce a smooth path, it 

can quickly fall into local optima in many 

optimization problems. Furthermore, in a complex 

environment, this algorithm cannot guarantee to 

provide the best solution. 

3.1.3. Hybrid quarter orbits particle swarm 

optimization (QOPSO) algorithm 

To generate the shortest path with collision 

avoidance, this hybrid algorithm combines the 

advantages of both the quarter orbits and the PSO 

algorithms [16]. By driving the mobile robot toward 

the target and moving it from orbit to orbit with 

obstacle avoidance until it reaches the destination, the 

quarter orbits method ensures that a path from the 

start point to the target point is found. The PSO 

method will next be used to produce the smoothest 

and shortest path using the boundaries of the 

generated path [16]. 

3.2 Control strategy design 

Because the mobile robot platform has time-

variant output states, a highly nonlinear kinematics 

model, and an under-actuated system, the proposed 

control strategy in this work is to solve the problem 

of designing a motion controller of trajectory tracking 

for a multi-mobile robots system. As a result, the 

suggested controller can generate the optimal left and 

right wheels’ velocities precisely and fast to track the 

desired routes equations with a minimal tracking 

position error and without oscillation. 

The main structure of the trajectory tracking 

control strategy for multi-mobile robots is shown in 

Fig. 4.  

The proposed trajectory-tracking controller for a 

mobile robot is learned using a neural network based 

on a modified Elman recurrent neural network 

(MERNN) structure. The MERNN is a partial neural 

network architecture first developed for speech 

processing [19]. 

In this regard, Elman neural networks (ENNs) are 

a special class of neural networks (NNs) that are 

made up of a large number of neuron cell models that 

follow specific rules. Specifically, the NN is a 

mathematical model that can process data 

concurrently, with an associative memory function, 

high level of fault tolerance, and ability to adapt [20]. 

The capabilities of the modified Elman neural 

network structure in the proposed controller give the 

new controller structure many powerful features such 

as high adaptation performance, fast learning, high 

order control performance (due to the context units, 

which remember the previous activations of the 

hidden units), no output oscillation, good dynamic 

characteristic, and strong robustness performance 

(due to the self-connection in the context units, which 

increase the order of the hidden units). The structure 

of the MERNN consists of four layers: 

 

  𝑿𝒓𝒆𝒇 𝟏,𝟐,𝟑 

 

Numerical Inverse 

Kinematics 
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• The input layer: It passes the data without 

transformation, so it acts as a buffer. 

• The hidden layer: It is an active layer that has 

non-linear activation functions. 

• The context layer: It has the same behaviour as 

that of the input layer without any activation 

function and it is used as memory for increasing 

the speed of learning. The calculated value of the 

context node is the same value of the hidden 

output node simply shifted via recurrent 

connections with a unit delay. The number of the 

context layer’s nodes is equal to the number of 

the hidden layer’s nodes. 

• The output layer: Each node of the output layer is 

described by a linear activation function. 

 

Fig. 5 shows the block diagram of the proposed 

controller for three mobile robots working in the 

same environment. The inputs to this controller are 

the feedback of the mobile robot’s left and right 

velocities𝑉𝑅𝑀𝑅(𝑘) and 𝑉𝐿𝑀𝑅(𝑘) of the three mobile 

robots with configuration errors  𝑒𝑥𝑀𝑅(𝑘)  and 

𝑒𝑦𝑀𝑅(𝑘). 

The 𝑒𝜃𝑀𝑅(𝑘) of the three mobile robots can be 

calculated using Eq. 6, as follows [2]: 

 

[

𝑒𝑥𝑀𝑅(𝑘)

𝑒𝑦𝑀𝑅(𝑘)

𝑒𝜃𝑀𝑅(𝑘)
] = 

[
   𝑐𝑜𝑠 𝜃𝑀𝑅 𝑠𝑖𝑛 𝜃𝑀𝑅 0
− 𝑠𝑖𝑛 𝜃𝑀𝑅 𝑐𝑜𝑠 𝜃𝑀𝑅 0

0 0 1

] [

𝑋𝑟𝑒𝑓 − 𝑋𝑚𝑜𝑑𝑒𝑙

𝑌𝑟𝑒𝑓 − 𝑌𝑚𝑜𝑑𝑒𝑙

𝜃𝑟𝑒𝑓 − 𝜃𝑚𝑜𝑑𝑒𝑙

]  (6) 

 

Where 𝑋𝑟𝑒𝑓 , 𝑌𝑟𝑒𝑓,  and 𝜃𝑟𝑒𝑓  are the reference 

position and orientation of the mobile robot. 

The first step is to calculate the weighted sum 

netj of the inputs as given in Eq. (7). 

 

𝑛𝑒𝑡𝑗 = ∑ 𝑈𝐻𝑖𝑗 × 𝐷𝑖
𝐼
𝑖=1 + ∑ 𝑈𝐶𝑗𝑧 × ℎ𝑧

𝑜𝑍
𝑧=1        (7) 

 

Where 𝑈𝐻𝑖𝑗  denotes the weight matrix of the 

hidden layer, 𝐷𝑖  denotes the inputs of the 

controller, 𝑈𝐶𝑗𝑧  denotes the weight matrix of the 

context layer, ℎ𝑧
𝑜 represents the output of the context 

layer, and I, Z, and J represent the number of nodes 

in the input layer, the context layer, and the hidden 

layer, respectively. 

The output of the context layer is given by the 

following Eq. (8):  

 

ℎ𝑧
𝑜(𝑘) = 𝛼ℎ𝑧

𝑜(𝑘 − 1) + 𝛽ℎ𝑗(𝑘 − 1)                   (8) 

 

Where 𝛼 represents the self-connection feedback 

gain, which is selected randomly between (0-1) and 

𝛽 represents the connection weight from the hidden 

unit to the context unit (0-1). 

In addition, Eq. (9) represents a sigmoid 

activation function that is used in the hidden nodes. 

Therefore, the output of the neuron 
jh of the hidden 

layer can be expressed as given in Eq. (10). 

 

𝐻(𝑛𝑒𝑡𝑗) =
2

1+𝑒
−𝑛𝑒𝑡𝑗

− 1      (9) 

 

ℎ𝑗 = 𝐻(𝑛𝑒𝑡𝑗)               (10) 
 

In the output layer, the fifteen linear neurons are 

used to calculate the weighted sum 𝑛𝑒𝑡𝑜𝑛  of their 

inputs, as expressed in Eq. (11). 

 

𝑛𝑒𝑡𝑜𝑛 = ∑ 𝑉𝑂𝑗𝑛 × ℎ𝑗
𝐽
𝑗=1                       (11) 

 

 
Figure. 5 The block diagram of the proposed neural 

network controller 
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Where 𝑉𝑂𝑗𝑛  denotes the weight matrix of the 

output layer. 

The six linear function neurons in the output layer 

are used to find the output of the proposed neural 

network controller representing the six velocities of 

six wheels of three mobile robots.  

To perform the off-line learning of the proposed 

neural network controller using the back propagation 

algorithm for adjusting the weights of the modified 

Elman recurrent neural network, the first stage is to 

divide the data set into two parts. The first part is 

called the learning set, which represents half of the 

data set, while the other half is the testing set. The 

cost function (mean square error) is chosen as the 

criterion for estimating the control model 

performance for each mobile robot, as shown in Eq. 

(12), which determines whether the neural network 

outputs (left and right wheels’ velocities) are 

modelled equal to the reference velocity or not.  

 

MSE=
1

M
∑ √(VL ref-VL model)2+(VR ref-VR model)2M

1  

(12) 

 

Where M is the total number of patterns in the 

learning set. 

Then the total cost function is proposed as in Eq. 

(13) for three mobile robots. This cost function 

updates the proposed neural network controller 

weights as well as expands the number of epochs. 

 

𝑀𝑆𝐸𝑇𝑜𝑡𝑎𝑙 = 𝑀𝑆𝐸𝑀𝑅1 + 𝑀𝑆𝐸𝑀𝑅2 + 𝑀𝑆𝐸𝑀𝑅3    (13) 

 

After training the proposed controller, it will be 

able to generate left and right wheels’ velocities for 

each mobile robot. The output of the proposed 

controller is the control action modelled velocities 

(right and left velocities) of the three mobile robots. 

To ensure that all the three mobile robots follow their 

desired paths correctly, a testing set will be used to 

show the difference between the reference velocities 

that can be calculated from the numerical inverse 

kinematic and the left and right wheels’ velocities for 

the mobile robot in order to prove that the neural 

network is excellently learned. 

4. Simulation result 

For an effective navigation process of the three 

mobile robots working on [700×700] cm workspace 

filled with static obstacles, as shown in Fig. (6), the 

first step is to generate the desired path that has the 

shortest distance and collision avoidance with the 

obstacles for each mobile robot. The second step is to 

generate the appropriate control action for each of the 

kinematic mobile robot models, which is an under- 

 

 
Figure. 6 The suggested workspace 

 

 
(a) 

 
(b) 

Figure. 7 The simulation result using the QOPS algorithm 

(a) path planning and (b) the best cost function 

 

actuated system with two inputs (left and right wheels’ 

velocities) and three states’ outputs (position (x and 

y), and orientation) with time-variant and highly 
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nonlinear behaviour.  

The MATLAB 2021a package with computer 

hardware specifications of Intel Core i5-1035G7 with 

8.00 GB of RAM and CPU of 1.20GHz were used. 

To satisfy the requirement of the path planning, a 

hybrid QOPSO algorithm was used [15]. The first 

mobile robot (MR1) was transferred from a source 

(50, 460) cm to the destination (590, 110) cm, the 

second mobile robot (MR2) was transferred from a 

source (90, 375) cm to the destination (372, 473) cm, 

and the third mobile robot (MR3) was transferred 

from a source (210, 610) cm to the destination (560, 

490) cm. The mobile robot platform used in this 

article has a wheels’ radius of 0.075 m, and the 

distance between the wheels is 0.2m, with a 0.1 

sampling time. 

The QOPSO algorithm was used to find the 

shortest distance path for each mobile robot in the 

suggested environment using a maximum of 50 

iterations, as shown in Fig. 7.  

The shortest path for each mobile robot as well as 

the number of iterations needed to find this solution 

are presented in Table 3. 

The optimal reference paths for the three mobile 

robots after applying the QOPSO algorithm are 

represented in the reference paths of Eqs. (14), (15), 

and (16) in order to generate the learning and testing 

sets for the input 𝐷𝑖to the proposed neural network 

controller, as shown in Fig. 5. 

 

𝑦1(𝑥1) = 7.371𝑒 − 13𝑥1
6 − 1.448𝑒 − 9𝑥1

5 + 

1.087e − 6𝑥1
4 − 0.0003921𝑥1

3 + 0.07047𝑥1
2 − 

6.52𝑥1 + 676        (14) 

 

𝑦2(𝑥2) = −1.373𝑒 − 9𝑥2
5 + 1.283𝑒 − 6𝑥2

4 − 

0.0004499𝑥2
3 + 0.07397𝑥2

2 − 6.569𝑥2 + 621  (15) 

 

𝑦3(𝑥3) = 2.637𝑒 − 6𝑥3
3 − 0.00352𝑥3

2 + 

1.127𝑥3 + 497.6      (16) 

 

In order to train the proposed neural network 

controller shown in Fig. 5 and to behave as an inverse 

differential kinematic trajectory tracking controller 

for each mobile robot, Fig. (8) illustrates the response 

of the controller’s off-line learning performance 

index for the three mobile robots that have six wheels’ 

velocities depending on the learning data set “optimal 

 
Table 3. Three mobile robots’ path lengths and the 

iterations required 

Mobile robot Path length No. of  iterations 

MR1 656.99 cm 34 

MR2 443.86 cm 19 

MR3 371.36 cm 16 

 
Figure. 8 Performance index for the proposed controller 

in the learning process 

 

 
Figure. 9 The accuracy of the proposed controller in the 

learning process 

 

reference paths for the three mobile robots”, as in Eqs. 

(14), (15), and (16) as well as the numerical inverse 

kinematic” during 1000 epochs with a maximum size 

of the dataset (learning and testing sets) equals 530 

samples for (MR1), 282 samples for (MR2), and 350 

samples for (MR3). The mean square error reaches a 

small value of less than 0.0104 based on Eq. (13) 

without any learning problems, such as over-learning 

or overfitting. 

Fig. 9 shows the learning accuracy of the 

proposed neural network controller, which reaches 

over 98.975 percent at 1000 epochs.  

After 1000 epochs of the off-line back 

propagation algorithm, the proposed controller was 

able to generate left and right wheels’ velocities with 

the same reference velocity for the three mobile 

robots, as shown in Fig. (10) a, b, and c. 

Then, to verify that the proposed neural network 

controller does not encounter the over-learning  
 



Received:  June 13, 2022.     Revised: July 1, 2022.                                                                                                         408 

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022           DOI: 10.22266/ijies2022.1031.35 

 

 
(a) 

 
(b) 

 

(c) 

Figure. 10 The result of the learning process (a) wheels’ 

velocities for MR1, (b) wheels’ velocities for MR2, and 

(c) wheels’ velocities for MR3 

 

 
(a) 

 
(b) 

 
(c) 

Figure. 11 The result of the testing process (a) wheels’ 

velocities for MR1, (b) wheels’ velocities for MR2, and 

(c) wheels’ velocities for MR3 

 

problem, the testing set is applied to the proposed 

controller model to generate the left and right wheels’ 

velocities for the three mobile robots without the 
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over-learning problem, as shown in Fig. (11) a, b, and 

c. This result indicates that the proposed neural 

network controller has the capability to learn all the 

paths of the multi-mobile robot.   

These responses of the proposed controller 

outputs’ for the left and right wheels’ velocities have 

very small errors compared to the reference velocities, 

keeping in mind that the learning set has a rich input 

signal to excite all regions of the proposed controller 

model without encountering the over-learning 

problem. Hence, the proposed controller is prepared 

to track various types of desired paths for three 

mobile robots. To show the effectiveness of the 

proposed inverse differential neural network 

controller for trajectory tracking for each mobile 

robot, Fig. 12 demonstrates a 2D simulation of the 

desired paths based on Eqs. 14, 15, and 16 and the 

output of the three pose kinematics mobile robots 

model. The actual output of the three mobile robots is  

 

 
Figure. 12 The 2D simulation result of the actual paths 

and the desired paths for the three mobile robots 
 

 
Figure. 13 The tracking error for MR1 

 

fast and without any oscillation during 530 samples 

(MR1 uses all the numbers of the samples, MR2 uses 

only 282 samples, and MR3 uses 350 samples) for 

tracking the desired paths with minimum trajectory-

tracking errors in the X-position and the Y-position.  

In addition, the orientation errors of the three 

mobile robots are shown in Figs. 13, 14, and 15 that 

have very small error in each mobile robot. 

The small values of the tracking error in the X-

axis and the Y-axis with the orientation error for the 

three mobile robots are presented in Table 4. 

 

 
Figure. 14 The tracking error for MR2 

 

 
Figure. 15 The tracking error for MR3 

 
Table 4. The tracking error for the three mobile robots 

Mobile 

Robot 

Pose Error 

X-axis Y-axis Orientation 

MR1 1.72 cm 4.201 cm 0.028 rad 

MR2 3.6 cm 2 cm 0.093 rad 

MR3 2.3 cm 2 cm 0.034 rad 
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(a) 

 
(b) 

 
(c) 

Figure. 16 Linear velocity for the three mobile robots (a) 

Linear velocity for MR1, (b) Linear velocity for MR2, (c) 

Linear velocity for MR3 

 

The proposed controller’s output response is 

shown in Fig. 16, which shows the smooth and fast 

control actions’ responses of the three mobile robots’ 

left and right wheels’ linear velocities. These actions 

do not exceed 1 m/sec and do not have a saturation 

state. Therefore, they successfully led to tracking the 

desired paths for each mobile robot. 

To confirm the effectiveness of this proposed 

work in terms of trajectory tracking for the mobile 

robot, we compared the numerical simulation results 

of the proposed controller with those of other types 

of controllers based on the maximum enhancement in 

the tracking error of the mobile robot in the X-axis 

position and the Y-axis position. Firstly, the proposed 

methodology was compared with the research work 

in [22], which uses a convolutional neural network 

trajectory tracking (CNNTT) controller to control the 

nonlinear kinematics mobile robot system. This 

research produces a maximum error in the X-axis 

position equals 4 cm and it also produces a maximum 

error in the Y-axis position equals 2.5 cm. The 

researchers in [22] used a static environment with a 

[500 ×500] cm workspace. The optimal reference 

path for the mobile robot after applying the QOPSO 

algorithm is shown in Fig. 17 and is represented in 

the reference path of Eq. (17).  

 

𝑦(𝑥) = 0.001608 × 𝑥2 − 0.8315 × 𝑥 + 280.9 (17) 

 

Then we applied the generated reference path 

equation on the suggested controller represented in 

Fig. 4 by stopping the two other robots.  

The difference between the desired path and the 

actual path generated from the output of the 

kinematics mobile robot model is represented in Fig. 

18. The actual output of the mobile robot is fast and 

without any oscillation during 350 samples.  

Fig.19 represents the maximum improvement in 

error in the x-position, which is 0.98 cm and the 

maximum enhancement in error in the y-position, 

which is 1.97 cm.  

 

 
Figure. 17 The simulation result of the path planning 

based on the QOPSO algorithm 
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Figure. 18 The 2D simulation result of the actual path and 

the desired path 

 

 
(a) 

 
(b) 

Figure. 19 The tracking error for the mobile robot (a) 

Error in the X-axis, (b) Error in the Y-axis 

 

The simulation results in this case indicate that 

the proposed controller produces a smaller tracking  
 

Table 5. Comparison of simulation results 

Tracking 

error in 

axes 

Convolutional 

Neural 

Network 

Trajectory 

Tracking 

CNNTT  [22] 

The 

proposed 

controller  

The tracking 

error 

enhancement 

×(100%) 

The error 

in the X-

position  

4cm 0.98cm 

4 − 0.98

4
 

=75.5% 

The error 

in the Y-

position 

2.5cm 1.97 cm 

2.5 − 1.97

2.5
 

21.2% 

 

error compared to the convolutional neural network 

trajectory tracking (CNNTT) controller [22], as 

shown in Table 5. 

This superiority is achieved because the proposed 

inverse differential neural network controller consists 

of [15:15:15:6] nodes, including fifteen nodes for the 

input layer, fifteen nodes for the hidden layer with a 

nonlinear activation function, fifteen nodes for the 

context layer, and six nodes for the output layer with 

a linear activation function. Moreover, there are three 

different learning sets of the reference paths. On the 

other hand, the CNNTT controller consists of 

[5:11:2] nodes, including five nodes for the input 

layer, eleven nodes for the hidden layer, and two 

nodes for the output layer. In addition, the number of 

the learning sets in [22] equals 80 samples for one 

desired path. In particular, these datasets were used 

in the fully connected layer as only one vector (5×16, 

1). The goal was to reduce the search space in [22].  

Moreover, the authors used a backpropagation 

algorithm to train the neural network with a 

maximum number of epochs of 1000. These reasons 

may lead to learning impairment in the trajectory-

tracking controller due to increasing the tracking 

error in the x-axis and the y-axis of the mobile robot. 

On the other hand, in our work, we used three 

different learning sets, where the first path has 530 

samples, the second path has 282 samples, and the 

third path has 350 samples. This means that the goal 

is to increase the search space in this work in order to 

excite all regions of the proposed controller, which 

did not fall into the overlearning problem. 

The difference between the proposed controller 

and CNNTT [22] is in the number of data sets “search 

space” and the number of nodes in the neural network, 

offering the proposed neural network controller 

excellent learning to generate the best control action 

to track the desired path and reach the target point 

without oscillation and with a minimum tracking 

error rate on the X-axis and the Y-axis compared to 

the CNNTT controller. 

Secondly, we compared the proposed 
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methodology with the research work in [11] that uses 

the nonlinear MIMO-PID-MENN controller design 

for the wheeled mobile robot based on the modified 

Elman recurrent neural network. This research 

produces an error in the X-axis position equals 6 cm 

and an error equals 3.1 cm in the Y-axis position. This 

research uses a static environment with a [400×400] 

cm workspace. The optimal reference path for the 

mobile robot after applying the QOPSO algorithm is 

shown in Fig. 20 and is represented in the reference 

path of Eq. (18).  

 

𝑦(𝑥) = 2.153𝑒 − 10 × 𝑥5 − 2.067𝑒 − 7 × 

𝑥4 + 7.205𝑒 − 5 × 𝑥3 − 0.01232 × 𝑥2 + 

2.098 × 𝑥 + 5.381    (18) 

 

Then we applied the generated reference path 

equation on the suggested controller represented in 

Fig. 4 by stopping the two other robots. The  

 

 
Figure. 20 The simulation result of the path planning 

based on the QOPSO algorithm 

 

 
Figure. 21 The 2D simulation result of the actual path and 

the desired path 

 
(a) 

 
(b) 

Figure. 22 The tracking error for the mobile robot. (a) 

Error in the X-axis, (b) Error in the Y-axis 

 
Table 6. Comparison of simulation results 

Tracking 

error in 

axes 

Nonlinear 

MIMO-PID-

MENN 

controller[11] 

The 

proposed 

controller  

The tracking 

error 

enhancement 

(100%) 

The error 

in the X-

position  

6cm 4cm 

6 − 4

6
 

=33.3% 

The error 

in the Y-

position 

3.1cm 1.84 cm 

3.1 − 1.84

3.1
 

40.6% 

 

difference between the desired path and the actual 

path generated from the output of the kinematics 

mobile robot model is represented in Fig. 21. The 

actual output of the mobile robot is fast and without 

any oscillation during 400 samples. 

Fig. 22 shows the maximum enhancement in 

tracking error in the x-position, which is 4 cm, and 

the maximum improvement in tracking error in the y-

position, which is 1.84 cm for the mobile robot.  
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The simulation results in this case indicate that 

the proposed controller produces a smaller tracking 

error compared to the nonlinear MIMO-PID-MENN 

controller, which is based on the modified Elman 

recurrent neural network, as shown in Table 6.  

Again, this superiority is due to the fact that the 

proposed neural network controller consists of 

[15:15:15:6] nodes, while the nonlinear MIMO-PID-

MENN controller [11] consists of [3:3:1:2] nodes, 

three nodes for the input layer, three nodes for the 

hidden layer, one node for the context layer, and two 

nodes for the output layer. In addition, the number of 

the learning sets in [11] equals 400 samples for one 

desired path. 

The difference between the numbers of neurons 

in the neural network and the size of the data set for 

learning and testing gives the proposed controller the 

ability to generate the best velocity control action for 

the mobile robot to track the desired path and reach 

the target point without oscillation and with a 

minimum error rate on the X-axis and the Y-axis 

compared to the nonlinear MIMO-PID-MENN 

controller [11]. 

Finally, all the simulation results indicate that the 

suggested inverse differential kinematic neural 

network controller has the ability to generate the best 

velocity control action that makes the mobile robot 

track the desired path with minimum tracking errors 

in the X-axis position and the Y-axis position and 

successfully reach the target point without oscillation.  

5. Conclusions  

This paper proposed the design of a trajectory 

tracking neural network controller based on the 

modified Elman recurrent neural network for 

tracking the desired path equations of three mobile 

robots. These paths were generated using the hybrid 

quarter orbits particle swarm optimization (QOPSO) 

as a path-planning algorithm that provides the 

shortest path with collision avoidance for each 

mobile robot.  

In particular, this research focused on solving two 

problems of the navigation process. The first part was 

to create an optimal or near-optimal desired path that 

meets two requirements: the shortest path with 

collision avoidance for three mobile robots working 

in a static environment. This problem has been solved 

using the proposed QOPSO algorithm. The second 

problem of our work involves developing a motion 

controller for each mobile robot trajectory tracking to 

ensure that each mobile robots move along the 

predefined path with minimal slipping and minimal 

position and orientation errors for each mobile robot 

and this has been done using the proposed neural 

network controller, which minimizes the tracking 

errors in the X-axis position and the Y-axis position. 

In addition, the error is almost zero in the orientation. 

The proposed controller provides the ideal and 

smooth values of the left and right wheels’ velocities 

that were learned on each kinematics mobile robot 

platform model control action. Therefore, each 

mobile robot was excellent at tracking the desired 

path and successfully reaches the target point without 

oscillation. To ensure the effectiveness of the 

proposed controller, a comparison study has been 

conducted in terms of the maximum tracking errors 

in the X-position and the Y-position considering 

other researchers that use different types of 

controllers. Specifically, the proposed controller was 

compared with the convolutional neural network 

trajectory tracking controller [22]. The comparison 

results showed that the proposed controller improves 

the tracking error rate on the X-axis by 75.5 % and 

21.2 % on the Y-axis compared to the CNNTT 

controller. Moreover, the proposed controller was 

compared with the MIMO-PID-MENN controller 

and the comparison results showed that the proposed 

controller enhances the tracking error rate on the X-

axis by 33.3 % and by 40.6 % on the Y-axis compared 

to the MIMO-PID-MENN controller [11]. 

For future work, we suggest adjusting the 

proposed controller to work with multiple robots 

whose paths intersect with each other. In addition, we 

suggest that the experimental work of the path 

planning algorithm and the proposed control strategy 

for the mobile robot system be practically 

implemented. 
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