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Abstract: Finding faults in software modules is an emerging issue in software reliability systems, and the assessment 

of the fault is performed by software fault prediction systems (SFPS). The identification process of fault-prone software 

modules is one of the prioritized aspects before initiating the testing process of the same modules. The SFPS helps 

improve software quality within the specified time and cost values. Early fault prediction in SFPS for the different 

software components showed significant results concerning the cost and time parameters. According to the state-of-

the-art SFPS, ensemble-based classifiers were performed best and most cost-effective compared to other classifier 

methods. Recently, a random ensemble forest with adaptive synthetic sampling (E-RF-ADASYN) has been developed, 

is tested on a sample of PROMISE datasets, and shown the cost-effective classifier results. In the logistic regression 

to software quality models, and the other knowledge of account for prior probability and costs of misclassification. 

Probabilities and costs of misclassification in a logistic regression-based classification algorithm for software quality 

modeling. The decision tree algorithm is an ensemble learning approach for prediction. The algorithm works based on 

developing several decision trees and later decides the output class based on the most popular one. The proposed work 

focuses on developing an alternative sampling method called ensemble-random forest with multi-distinguished-

features sampling (E-RF-MDFS), for obtaining the best sample illustration for representing the entire dataset. Bat-

induced butterfly optimization (BBO) has been used for the feature extraction process. The experiments are conducted 

on 8 datasets of the PROMISE database. The proposed E-RF-MDFS has improved performance than E-RF-ADASYN 

in fault detection accuracy, real positive rate, and Pearson’s correlation coefficient. On comparing the performance of 

E-RF-based classifiers, the performance of the proposed MDFS is the best, with an FDA of 99.3 % (Xalan v2.6) than 

the ADASYN classifier. 

Keywords: Software reliability, Software faults, Software fault predictions systems, Ensemble classifiers, Sampling. 

 

 

1. Introduction  

Bugs are inevitable in contemporary software 

design due to their complex nature. When 

implemented software projects with faults, they can 

have unanticipated repercussions, resulting in large 

losses for businesses or putting people’s lives in 

danger [1]. Currently, more than 80 % of the expense 

of software systems development and testing is spent 

on fault correction. 

A new strategy that utilizes edition-related defect 

characteristics to pinpoint variant defects combined 

with the data extraction technique has been proposed 

to fill this gap [2]. In [3], it has been proposed to use 

stacked denoising autoencoders, a well-known 

machine learning paradigm, to generate deep 

representations from standard software 

measurements. Software practitioners can use these 

data to determine which application programs 

are prone to be erroneous quickly, the number of 

faults that could be present in a segment, and other 

software defect-related information before 

performing software testing. 

Though several classification methods have been 

employed for outlier detection, researchers in [4] 

recommended that appropriate criteria, like 

computational effectiveness and easiness, be 

measured while choosing classification techniques 
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for likelihood models. They discovered that fault 

prediction approaches often perform equally. 

Furthermore, there is often a class imbalance with 

defect data, with non-faulty modules outnumbering 

defective modules. As a result, most classifiers treat 

the supplementary samples (i.e., the faulty 

components) as the main class (i.e., the non-faulty 

components). 

Latest research has attempted to apply deep 

learning algorithms to fault prediction [7], and these 

methods are promising in finding flaws since 

reinforced learning has produced decent outcomes in 

further domains (e.g., digital image processing [5], 

voice identification [6]). Nevertheless, various issues 

may restrict deep learning models in software defect 

prediction projects. Deep learning models, for 

example, require large volumes of information to 

validate the algorithm, yet many software systems 

currently lack sufficient faulty data. Furthermore, it 

has been well established that the accuracy of such 

fault estimation techniques is highly dependent on the 

exact scaling of model parameters [8], and deep 

neural networks often include a substantial 

percentage of model parameters that are difficult to 

identify. Furthermore, the topology of deep learning 

models has decoupled from biological systems, 

making it difficult to detect and comprehend. 

An essential factor for successful software 

development is good software fault identification. As 

a result, the programmer will make the module easier 

because it cannot be detected by an individual 

customer who can find problems in client programs 

[9]. Outlier distortion, skewed datasets, and 

unbalanced datasets that yield high dimensional 

features are concerns with software dataset quality. 

As a result, the authors of [10] suggested an effective 

feature selection technique for variable selection 

relevant to a subgroup from an entire dataset and 

removing extraneous characteristics. As a result, the 

model's dimensionality is decreased, and the 

suggested technique’s reliability, which employs the 

cuckoo search algorithm, is fully realized. 

The main contributions of this paper are: 

 

1. To obtain multi-distinguished feature sampling 

(MDFS) for the best sample illustration in software 

fault detection. 

2. To assess software reliability with optimized costs 

using ensemble random forest classifiers (E-RF). 

3. Employ bat-induced butterfly optimization (BBO) 

for the feature extraction process. 

4. To improve results, PROMISE – a large-scale 

dataset for detecting flaws in software components. 

 

The remaining part of the paper is structured as 

follows: Section 2 concisely reviews various 

concepts of fault detection in software modules using 

deep learning methods. Section 3 proposes a multi-

distinguished feature for the best sample illustration 

to assess software reliability with optimized costs. 

Related results and discussions have been depicted in 

section 4. Section 5 describes the conclusion and 

scope for further research in E-RF-MDFS. 

2. Related research on software fault 

detection 

A standard software fault detection technique 

uses a predictor (also known as a classifier in 

machine learning) learned with evaluation metrics 

and error data (acquired from past releases or 

comparable projects) to forecast faults in future 

projects. To forecast defects, many categorization 

methods have been used. Xu [11] investigated the 

effectiveness of 35 initiatives from the PROMISE 

database and 15 missions based on the NASA 

database in an econometric investigation. A novel 

approach to predicting software faults has been 

suggested that considers segmentation and class 

mismatch concerns. Seven deep learning models 

were employed to estimate software reliability on 

four free and open-source applications [12]. The 

program has been reviewed using various criteria, 

including C & K, Henderson & Sellers, McCabe, and 

others. Random forest and bagging offer decent 

results, but Naive Bayes is the least preferred 

classification method. 

The SFP has lately received a lot of interest for 

combining methodologies (ensemble techniques and 

adaptive predictor determination). Several 

classification models might provide complementary 

information on the sample to be categorized; hence 

ensemble merging techniques make use of this. They 

capitalize on each learner’s abilities while avoiding 

their flaws, improving categorization accuracy. The 

authors in [13] investigated the application of 

ensemble algorithms for fault prediction. The 

findings showed that ensemble approaches 

considerably increased generalization ability and 

boosted the resilience of the software defect 

forecasting model. 

The adaptive classifier selection techniques vary 

from ensemble methods. The optimal classifier is 

selected, or the values of classifiers are set during the 

training phase before categorizing the assessment 

sample in evolutionary algorithms. The decision of a 

classifier or the learners’ ratings are determined 

during the identification or analysis stage and are 

reliant on the assessment sample’s variable 

classification methods. Mousavi [14] looked at using 
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a variable classifier selection technique for software 

failure detection. The author described a vibrant 

ensemble classification algorithm in which a 

subgroup of selected classifiers is dynamically 

picked for each testing case. For seven NASA 

datasets, the approach’s examination revealed that it 

outperformed the other six examined multiple 

classifier systems in terms of total efficiency. Authors 

of a related paper suggested a strategy for adaptive 

classifier selection for cross-project defect 

identification. In the case of cross-project bug 

prediction, the extensive experiments of the strategy 

revealed that it outperformed the other strategies. 

Turabieh [16] created a layered recurrent neural 

network-based iterated feature selection method (L-

RNN). When L-RNN, which conducted 

categorization, was introduced to the system, it 

improved its performance and addressed the software 

defect estimation problem. Nevertheless, to enhance 

the capacity of defect prediction based on specified 

criteria, the created approach required a computer 

model. Tumar. [17] used the ADASYN technique to 

produce an improved binary moth flame optimization 

(BMFO). The created BMFO conducted wrap feature 

extraction, whereas ADASYN improved the original 

database and solved the unbalanced dataset problem. 

However, the created feature extraction approach for 

selecting crucial features improved classifier 

effectiveness and improved the accuracy of SFPS. 

The following were the issues with the existing 

models: These models need additional SFP 

techniques with embedded classifiers, which resulted 

in optimization concerns and overfitting. The system 

had class imbalance difficulties, which reduced the 

reliability of automatic fault categorization and 

prevented the program from exploring many defects. 

The suggested ensemble classifier solves the 

difficulties that existed in the previous approaches in 

the current study effort, which predicts the inherent 

errors in the program. Balaram [18] employed an 

intelligent strategy to forecast SFP by integrating 

ADASYN with E-RF to build the butterfly 

optimization algorithm (BOA) for identifying 

important characteristics. The BOA eliminates the 

problem of overfitting, while ADASYN addresses 

the issue of data imbalance for supplementary classes, 

resulting in a consistent data deformation mechanism. 

The main drawback of the method proposed in 

[18] is that Adaptative synthetic sampling delivers 

random data samples, and it cannot find the sample 

based on distinguishing features. Therefore, it 

sometimes fails to present the best sample illustration 

for large datasets. So, the proposed sampling 

technique, say, MDFS, initially finds the 

distinguished software data objects and then finds the  
 

 
Figure. 1 Overall framework for the proposed E-RF-

MDFS in SFDS 

 

samples near to derived distinguished data objects. 

Thus, it produces the best samples compared to the 

adaptive synthetic sampling method. 

By integrating many weak learners into one 

strong classifier, ensemble learning (EL), a 

methodology, tries to increase predictive accuracy. 

The predictive accuracy could be affected during soft 

fault detection [5].  

3. Proposed E-RF with multi-distinguished-

features sampling (E-RF-MDFS) 

framework 

This paper uses a technique to solve the SFP issue 

by combining the Ensemble classifier with MDFS. 

For feature extraction (FE) in SFP, the schematic 

diagram has been used with the bat-inspired butterfly 

optimization algorithm (BBO). 

The flowchart of the overall architecture is 

depicted in Fig. 1. The input data is got from the 

PROMISE dataset, and all the required features have 

been extracted using the BBO algorithm from the 

input dataset. The MDFS executes the sampling 

process by finding samples near distinguished data 

objects. For the assessment of the findings produced 

for the SFP model, several learners, including 

multiple linear regression (MLR), k-Nearest 

neighbor (KNN), and support vector machine (SVM), 
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have been assessed with ensemble classification 

methods. When the classifier reviews the fault 

estimate, the suggested MDFS technique comes to an 

end. For 12 iterations, the E-RF examines findings 

until the optimum values are attained. If the criteria 

are satisfied and the optimum value is found, stop 

evaluating; otherwise, resume the feature extraction 

procedure. 

3.1 Input dataset for SFPS 

An online database called PROMISE is 

frequently utilized to test the effectiveness of the 

proposed technique for fault detection. These 

samples have been collected using tera-PROMISE. 

Multiple open-source Java projects are included in 

the PROMISE dataset. The database comes from 

PROMISE Home, much like the NASA dataset. 

Scripts, feedback for a class, mean McCabe, mean 

process overhead, dependency among object classes, 

and other parameters are used in PROMISE. All 

projects in the PROMISE project employ the same 

amount of features. The data utilized in this research 

comes from the PROMISE dataset and includes 

Xalan v2.6, Ant v1.7, Camel v1.6, Jedit v4.0, Log4j 

v1.0, Lucene v2.4, Poi v3.0, and Tomcat v6.0. 

3.2 Extraction of features using bat-induced 

butterfly optimization (BBO) 

Feature extraction (FE) is an initial treating phase 

used to increase the quality of a product. It’s a 

collection of algorithms to identify the best subset of 

attributes in the original database that properly 

matches the raw data. Determining the smallest 

reduction and assessing the selected attributes are the 

two key steps of the FE process. The essential task is 

to determine if the beat FE about the qualities of the 

original data still exists. As a result, FS is regarded as 

a search unit representing a subset of the attribute at 

each random search location. A bat-inspired butterfly 

optimization (BBO) was utilized to choose the best 

feature and eliminate unnecessary data. 

In this BBO, each bat is identified using a single 

frequency Ω and pitch of the sound µ, instead of 

varying frequencies and pitch values. The location 

and speed of the Bat at a particular instant of times 

are given as 

 

𝑢𝑖(𝑡) = 𝑢𝑖(𝑡 − 1) − [𝑠𝑖(𝑡) + 𝑠𝑖(∗)] × Ω     (1) 

 

𝑠𝑖(𝑡) = 𝑠𝑖(𝑡 − 1) − 𝑢𝑖(𝑡)             (2) 

The location of each bat has been defined by 

𝑢𝑖(𝑡), speed 𝑠𝑖(𝑡), and beat rate 𝑝𝑖(𝑡). 𝑢𝑖(𝑡 − 1)is 

the previous location of the bat. 𝑠𝑖(∗)is the universal 

best speed. 𝑠𝑖(𝑡 − 1) isthespeed at the previous 

instant of time. Frequency Ω is kept constant for all 

the bats, and its value is 0.6. 

The main change is the addition of an 

evolutionary algorithm to boost population diversity 

in hopes of improving detection accuracy and 

hastening convergence to the optimum solution. 

Once a response is chosen from among the existing 

best options for the search algorithm, a new solution 

for every bat is created locally utilizing non – the 

linear model given as 

 

𝑢𝑜𝑙𝑑 = 𝑢𝑛𝑒𝑤 − 𝛽µ𝑡 ,   𝑓𝑜𝑟𝛽 > 𝑝            (3) 

 

𝑢𝑛𝑒𝑤is the new location of the bat. 𝑢𝑜𝑙𝑑is the past 

location.  

𝛽  is an arbitrary number whose value lies 

between 0 and 1 and is greater than the beat rate, i.e., 

𝛽 > 𝑝. µ𝑡is the mean speed at which the bats traverse 

at time t.  

When 𝛽 ≤ 𝑝, a mutation operator is introduced to 

improve the species and its offsprings based on 

butterfly optimization by considering the smell, the 

butterflies use chemoreceptors to perceive and sense 

the aroma of flowers. By shifting their postures, the 

aroma assists the butterfly in finding the best 

optimum mating partner, dependent on the intensity. 

The scent will be directed by evolutionary algorithms, 

which are butterflies responsible for determining the 

motions of certain other butterflies in the searching 

region. The butterfly will feel the blossom based on 

the strength of the aroma by randomly exploring itself 

and finding a new place, a procedure provided by 

local discovery. If the butterfly does not detect the 

aroma, it will approach the butterfly for breeding 

purposes. So, the new location is defined as 

 

𝑢𝑛𝑒𝑤 = 𝑢𝑝1(𝑡) + 𝑆[𝑢𝑝2(𝑡) − 𝑢𝑝3(𝑡) − 𝑢𝑝4(𝑡)] × 

[√
𝑧−1

𝑟+1
− 𝛼1] (4) 

 

The new position is updated by considering the 

mutation factor 𝑆 is defined by the smell of flowers 

in the butterfly optimization. 𝑢𝑝1(𝑡) , 

𝑢𝑝2(𝑡), 𝑢𝑝3(𝑡)𝑎𝑛𝑑𝑢𝑝4(𝑡)  are uniformly distributed 

in random locationsin [√
𝑧−1

𝑟+1
− 𝛼1]  space with a 

minimum value of 1 and a maximum of 𝑁 . The 

methodology of BBO is given in Algorithm 1. 

As a result, bat-induced butterfly optimization 
 

Algorithm 1. Bat-induced butterfly 

optimization algorithm 

Start 
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Step 1: Parameter Initialization 

             Fix the value of 𝑡 = 0, 𝑡ℎ𝑒 total number of 

butterflies and bats denoted as 𝑁, the pitch of bats 

µ. 

     Each Bat is identified by using a single 

frequency Ω.  

               Initial speed 𝑠𝑖(1) , and initial beat 

rate𝑝𝑖(1). Butterfly mutation factor is 𝑆 

Step 2:fori=1:N,  

             Choose random values for 𝑝1 ≠ 𝑝2 ≠
𝑝3 ≠ 𝑝4 ≠ 𝑖 
Step 3:If𝛽 > 𝑝 , Calculate the current location and 

speed of the Bat using bat optimization as 

𝑢𝑖(𝑡) = 𝑢𝑖(𝑡 − 1) − [𝑠𝑖(𝑡) + 𝑠𝑖(∗)] × Ω 

𝑠𝑖(𝑡) = 𝑠𝑖(𝑡 − 1) − 𝑢𝑖(𝑡) 

             The new location is given by  

𝑢𝑛𝑒𝑤 = 𝑢𝑜𝑙𝑑 + 𝛽µ𝑡 

Else If 𝛽 ≤ 𝑝, calculate the current location using 

Butterfly optimization 

𝑢𝑛𝑒𝑤 = 𝑢𝑝1(𝑡) + 𝑆[𝑢𝑝2(𝑡) − 𝑢𝑝3(𝑡) − 𝑢𝑝4(𝑡)] 

             Else increment i 

             End if 

             End for 

Step 4: Based on the updated location, calculate the 

capability of the offspring. 

Step 5: Select the best offspring 

End 

 

(BBO) has been achieved as shown in Algorithm 1 

by employing bat optimization for an arbitrary value 

greater than the beat rate (𝛽 > 𝑝). Suppose the 𝛽 

value is less than or equal to the beat rate, which 

indicates that the bat has lost its frequency 

importance and the sense of smell of the butterfly is 

dominant in this case. So, butterfly optimization has 

been carried outfor 𝛽 ≤ 𝑝. Finally, best offsprings 

are calculated based on the updated location values. 

3.3 Proposed multi-distinguished features 

sampling (MFDS) 

The data samples delivered by adaptive synthetic 

sampling are random. It is impossible to locate the 

sample using distinguishing characteristics. As a 

result, with huge datasets, it occasionally fails to give 

the optimal example illustration.  

Let the large dataset used for SFPS is denoted as 

𝐷. The number of classifiers used for fundamental 

classification is given as 𝑁.  Samples near 

distinguished data objects (DDO) are identified using 

two parameters: 𝐷𝑚𝑎𝑖𝑛is the subset of main data 

objects in the dataset and 𝐷𝑠𝑢𝑝𝑝𝑙  is the subset of 

supplementary data objects in the dataset. Now, the 

samples near DDO are called an up-sampled subset 

of the main ( 𝐷𝑢𝑝
𝑚𝑎𝑖𝑛)  and supplementary data 

(𝐷𝑢𝑝
𝑠𝑢𝑝𝑝𝑙

) objects are calculated as 

 

𝐷𝑢𝑝
𝑚𝑎𝑖𝑛 = 𝐷𝐷𝑂[𝐷𝑚𝑎𝑖𝑛, α ± 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑎𝑖𝑛]   (5) 

 

𝐷𝑢𝑝
𝑠𝑢𝑝𝑝𝑙

= 𝐷𝐷𝑂[𝐷𝑠𝑢𝑝𝑝𝑙 , µ ± 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑢𝑝𝑝𝑙]   (6) 

 

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑎𝑖𝑛 and 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑢𝑝𝑝𝑙 are the original 

main and supplementary subset before the process of 

sampling. ∝= 𝑛/𝑁, where 𝑛 is any classifier and 𝑁 

denotes the overall amount of classifiers. µis the ratio 

of variation of DDO before and after the upsampling 

process and is expressed as 

 

µ = [
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑎𝑖𝑛

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑢𝑝𝑝𝑙
⁄ ]±∝ (7) 

 

Hence to locate all the samples with distinguished 

features, the proposed MFDS method combines both 

upsampled subsets of the main ( 𝐷𝑢𝑝
𝑚𝑎𝑖𝑛)  and 

supplementary data (𝐷𝑢𝑝
𝑠𝑢𝑝𝑝𝑙

) objects. 

 

𝐷𝑑𝑑𝑜
𝑡𝑜𝑡𝑎𝑙 = {𝐷𝐷𝑂[𝐷𝑚𝑎𝑖𝑛, ∝ ±𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑎𝑖𝑛]} + 

{𝐷𝐷𝑂[𝐷𝑠𝑢𝑝𝑝𝑙, µ ± 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑢𝑝𝑝𝑙]} (8) 

 

 

Algorithm 2: Proposed Multi-Distinguished 

Features Sampling (MFDS) 

Start 

Inputs: Let the large dataset used for SFPS is 

denoted as 𝐷. The number of classifiers used for 

fundamental classification is given as 𝑁. 
𝐷𝑚𝑎𝑖𝑛the subset of main data objects in the dataset 

and 𝐷𝑠𝑢𝑝𝑝𝑙  is the subset of supplementary data 

objects in the dataset. 

for n=1,2,…..,N compute 

Step 1:∝= 𝑛/𝑁 

Step 2:Upsample subset of main data objects as 

𝐷𝑢𝑝
𝑚𝑎𝑖𝑛 = 𝐷𝐷𝑂[𝐷𝑚𝑎𝑖𝑛, ∝ ±𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑎𝑖𝑛] 

Step 3:Upsample subset of supplementary data 

objects with the upsampling rate of µ =

[
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑎𝑖𝑛

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑢𝑝𝑝𝑙
⁄ ]±∝ 

𝐷𝑢𝑝
𝑠𝑢𝑝𝑝𝑙

= 𝐷𝐷𝑂[𝐷𝑠𝑢𝑝𝑝𝑙,µ ± 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑢𝑝𝑝𝑙] 

Step 4: To locate all samples in a large dataset, 

combine upsampled subsets of both main and 

supplementary data, 𝐷𝑑𝑑𝑜
𝑡𝑜𝑡𝑎𝑙 = {𝐷𝑢𝑝

𝑚𝑎𝑖𝑛 ∪ 𝐷𝑢𝑝
𝑠𝑢𝑝𝑝𝑙

}. 

Step 5: Now, train the classifier n using 𝐷𝑑𝑑𝑜
𝑡𝑜𝑡𝑎𝑙 to 

predict software faults accurately. 

End 
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Figure. 2 Method of obtaining Dddo

total in the proposed 

MDFS framework 

 

In simple terms, MFDS locates all the samples in 

a large dataset by combining upsampled subsets of 

both main and supplementary data, 𝐷𝑑𝑑𝑜
𝑡𝑜𝑡𝑎𝑙 =

{𝐷𝑢𝑝
𝑚𝑎𝑖𝑛 ∪ 𝐷𝑢𝑝

𝑠𝑢𝑝𝑝𝑙
} and is given in Algorithm 2. 

As a result, the suggested sampling approach, 

such as MDFS, first discovers differentiated software 

data objects and then finds samples near 

distinguished data items. MDFS uses incomplete data 

interpolation methods to build innovative 

supplementary data samples.  

Fig. 2 depicts the method of obtaining 𝐷𝑑𝑑𝑜
𝑡𝑜𝑡𝑎𝑙 

employing the proposed MDFS framework. The 

strategies generate upsampled supplementary class 

samples by inducing some arbitrary absence over the 

main class samples and estimating the deficient 

scores using incomplete data matching approaches. 

These unique matching-based upsampling techniques 

are then used in E-RF schemes, such as enhancing 

and reducing algorithms, to provide a variety of new 

ensemble-based strategies. 

Fig. 3 shows infeature extraction is a sort of 

dimensionality reduction in which a large number of 

pixels in an image are efficiently represented to 

effectively capture interesting areas of the image. 

Built-in testing and other fault detection mechanisms 

often note the time the issue occurred and either 

activate alerts for manual intervention or start 

automated recovery. Dip-slip defects move in the 

direction of the dip plane and are classified as either 

normal or reverse depending on where they move. 

Strike-slip faults are horizontally moving faults that 

are classed as either right-lateral or left-lateral. Fault 

locators are used to locate defects in communication 

and control cables so that they can be repaired 

quickly. Cable fault locators are essential for 

reducing downtime and making maintenance easier.  
 

 
Figure. 3 Software fault detection using in the decision 

tree 

 

A decision tree is a form of probability tree that 

allows users to decide on a given procedure. A 

decision tree is a form of supervised machine learning 

that categorizes or predicts outcomes based on the 

answers to prior queries. The model is supervised 

learning, which means it is trained and evaluated on 

a set of data containing the intended categorization. 

 

𝐼 =
𝐻

4
(

𝑅2+2𝑅𝑟+3𝑟2

𝑅2+𝑅𝑟+𝑟2 ) + 𝜋𝑟2 (ℎ −
ℎ1

3
) √

𝑏2

𝑎2+2𝑎𝑏
+  

 
1

2
𝛿2 + 𝛿    (8) 

 

As shown in Eq. (8) is an 𝜋𝑟2 (ℎ −
ℎ1

3
) 

mathematical function for decision trees and the 

control for √
𝑏2

𝑎2+2𝑎𝑏
 quickly decision making for the 

fault and 
1

2
𝛿2 detection in learning for the machine 

learning development process of the 
𝐻

4
(

𝑅2+2𝑅𝑟+3𝑟2

𝑅2+𝑅𝑟+𝑟2 )software the locator as in Eq. (9), 

 

𝐽 = ∫ 𝑐𝑜𝑠(𝑝𝑥 + 𝐸) + 2 𝑠𝑖𝑛
𝑝ℎ

2
∗ 𝑐𝑜𝑠 [𝑝𝑥 + 𝐸 +

(𝑝ℎ+𝜋)

2
] + (

ℎ

1+ℎ𝑥+𝑥2)      (9)      

 

As shown in Eq. (9) where is a 𝑐𝑜𝑠(𝑝𝑥 + 𝐸) 

trigonometric function in a feature extraction in 

𝑐𝑜𝑠 [𝑝𝑥 + 𝐸 +
(𝑝ℎ+𝜋)

2
] data and fault locator process 

in the decision trees (
ℎ

1+ℎ𝑥+𝑥2) can be reduced by the 

fault classifiers in Eq. (10) as  
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Figure. 4 Software fault detection using multi-

distinguished-features sampling in logistic regression 

 

𝐾 = ℎ2𝑢2 (𝑢 +
𝑑2𝑢

𝑑𝜃2) ∫ sin 𝜃
𝑢(𝑢−1)

2
∆2𝑦𝜃  

+
𝑢(𝑢−1)(𝑢−2)

6
∆3𝑦𝜃    (10)  

 

As shown in Eq. (10) process of the (𝑢 +
𝑑2𝑢

𝑑𝜃2) 

detection in the communication and 
𝑢(𝑢−1)(𝑢−2)

6
∆3𝑦𝜃  

reduced the fault and control to detecting and making 

for ∫ sin 𝜃
𝑢(𝑢−1)

2
∆2𝑦𝜃  decision tree and software 

quality to development ℎ2𝑢2  using and 

developingthe decision tree in fault detection.  

Fig. 4 shows the method of modeling the 

likelihood of a discrete result given an input variable 

logistic regression. A probabilistic labeling method 

selects the labeled positive instances from the entire 

collection of a true positive. The term is used to 

describe data that has not been tagged with labels 

describing features, qualities, or categories. The 

majority of machine learning algorithms rely on 

unlabeled datasets. Enhanced features relate to the 

extra program features made available to the client 

via the enhanced features configuration form. 

Program capability that is supplied to the client by the 

enhanced features set-up form is called “Enhanced 

Features”. It is a basic extension of binary logistic 

regression that enables more than different 

classifications of the dependent or outcome variable 

to be included in the model. Statistically significant 

effectiveness between a licensed product and an 

active patient group in comparison to a placebo group 

is defined as “Positive Data” in clinical research. 

Data that do not allow us to reject our null hypothesis 

are referred to be negative. Because the null 

hypothesis cannot be proven, such data are frequently 

difficult to publish. Every scientist currently working 

on a project has a vast file cabinet full of research data. 

 

𝐺 = (𝑥2 + 𝑄𝑅) ±
𝑄𝑅(𝑄+𝑅)

𝑄2+𝑅2−𝑌2 + 2𝑃𝑄 − (
𝑄+𝑅

2𝑃
)   (11) 

 

As shown in Eq. (11) denotes (𝑥2 + 𝑄𝑅) for 

multi-feature extractionand (
𝑄+𝑅

2𝑃
)  the logistic 

regression can be 
𝑄𝑅(𝑄+𝑅)

𝑄2+𝑅2−𝑌2  identify the most 

important of the features in 2𝑃𝑄 modified the 

regression in Eq. (12) can be, 

 

𝐻 =
1

2
𝛿2 + 𝛿√1 +

𝛿2

4
∑

𝜕𝑦

𝜕𝑥
𝑦𝑟 − (

𝑛

1
) 𝑦1 + (

𝑛

2
) ∆𝑦1 +  

(
𝑛

3
) ∆2𝑦1    (12) 

 

As shown in Eq. (12) says √1 +
𝛿2

4
∑

𝜕𝑦

𝜕𝑥
𝑦𝑟  the 

mathematical function for the effective algorithm for 

the (
𝑛

1
) 𝑦1 currently working on a software system in 

(
𝑛

3
) ∆2𝑦1 dataset process of variable logistic function 

in 
1

2
𝛿2 dependent on the outcome for Eq. (13), 

 

𝐸 = ∬
𝜕𝑦

𝜕𝑥

∆2

𝐸
+ (

∆2𝑢𝑥

𝐸𝑢𝑥
) 𝑚2𝑔2 + 𝑚2 𝑣4

𝑟2 √
𝜋

2
𝑝2 +  

2𝑝2 cos 𝛼 + 𝑝2   (13) 

 

As shown in Eq. (13) denote  ∬
𝜕𝑦

𝜕𝑥

∆2

𝐸
 the 

mathematical function for enhancing feature 

2𝑝2 cos 𝛼 in trigonometric function for positive data 

in 𝑚2 𝑣4

𝑟2 √
𝜋

2
𝑝2  unlabeled the data (

∆2𝑢𝑥

𝐸𝑢𝑥
) 𝑚2𝑔2 

modified the logistic regression 𝑝2  in the multi-

logistic regression for feature datasets can be 

negative and positive data can be labeled.  

3.4 Ensemble-random forest classifier for cost-

effectiveness 

Ensembles of classifications are very effective in 

improving predicted precision and breaking down 

more complicated issues into smaller glitches. A 

collaborative method, also known as multiple 

classifiers, is a classification scheme with 

independent components that are merged and given a 

class label for new occurrences. Many ways have 

been proposed to meet this condition, and a suitable 

combination of varied classifiers is necessary. For 

results evaluation, the collaborative classifiers 

employed are KNN and DT. The finest among all of 
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these classification methods is identified. When the 

best optimal values have been identified, they are put 

into the RF classifier for fault detection. 

The RF is a classification scheme that enhances 

forecast precision by using an ensemble of classifiers. 

The RF technique, also known as random choice 

forest, is a collaborative learning model for 

categorization, prediction, and other problems. At 

training time, it creates a cluster of decision trees and 

produces a subclass that is the average forecast of 

individual trees. The number of forest trees and the 

resulting precision has a direct proportional 

connection in RF. A distinct tree is built using a 

unique bootstrap sample of raw data. Following the 

formation of the forest, each item known as a tree is 

categorized for judgment purposes. The selection of 

the tree is made for every derived object that signifies 

a point, and the forest chooses the class that has 

gotten the most points for the entities. 

When utilizing the RF, the generalization fault is 

guaranteed to be mostly determined by the tree power 

that ensures tree coherence. The components u and v 

are polled in the RF model using the maximum 

pointing strategy, which classifies the defects and is 

given in Eq. (9). 

 

𝐶[𝑢, 𝑣] = {∑ 𝑃[𝑝𝑛(𝑢) =𝑛=𝑇
𝑛=1 𝑝𝑛(𝑣)]}. 𝑇       (14) 

 

Where 𝑛 is any random tree in the forest.𝑇is the 

total number of trees in the forest.𝑃[. ]denotes the 

pointer function whose value is either 1 or 0, 

depending on the event’s occurrence. 𝑝𝑛points to a 

tree in the forest.  

As a result, RF assigns an essential score to the 

characteristics, which will be changeable and used to 

choose the most significant ones. Terminate the 

procedure when the classifier has been evaluated; 

else, proceed with the feature extraction procedure if 

the classifier assessment is not done. 

4. Results and discussion for the proposed E-

RF-MDFS 

The simulations in Python have been carried out 

to assess the performance of the recommended E-RF-

MDFS. The “PROMISE” the dataset has been used 

as an input for the simulator. The simulator was 

running on the system Intel Core i5, 8 GB RAM, and 

500 GB of storage. All projects in the PROMISE 

database employ the same amount of features[19]. 

The data utilized in this research comes from the 

PROMISE dataset and includes Xalan v2.6, Ant v1.7, 

Camel v1.6, Jedit v4.0, Log4j v1.0, Lucene v2.4, Poi 

v3.0, and Tomcat v6.0. 

The following parameters have been considered 

for simulation:  

Fault detection accuracy (FDA). 

It is the proportion of the number of faulty 

observations detected to the total number of faults in 

the software. 

Real positive rate (RPR) 

It is a metric for the number of actual positives 

that have been appropriately detected.  

 

𝑅𝑃𝑅 =
𝑅𝑃

𝐼𝑁+𝑅𝑃
              (15) 

 

Measurements that forecast actual positives are 

real positives (RP), whereas measurements that are 

wrongly represented as negatives are referred to as 

incorrect negatives (IN). 

Pearson’s correlation coefficient (PCC). 

The final criteria are PCC, which ranks fault 

detection methods based on their FDA approval. PCC 

has a value range of -1 to +1. The method with a value 

of -1 is irreconcilable; zero represents resemblance to 

arbitrary prediction, while one represents an optimal 

strategy. A nearer score to +1 indicates that the actual 

and test values have a strong link. 

Current studies use K-Nearest neighbor (K-NN), 

decision tree (DT), and E-RF-ADASYN to enhance 

a database’s software reliability with high 

dimensional features and an unbalanced dataset[20]. 

These existing methods have been compared with the 

proposed E-RF-MDFS. 

The PCC score is used to rank all classifiers and 

is shown in Table 1. Values between -0.20 and -0.60 

suggest poor classifiers, which have a poor 

relationship with reality. With a rank of 4, DT is 

considered a poor classifier with a PCC of -0.53. 

Because of the acquired PCC value, K-NN has been 

deemed compatible in this context. E-RF-MDFS has 

been ranked top with a score of 0.82 because it was 

closest to +1 compared to E-RF-ADASYN. Among 

all the classifiers, E-RF-ADASYN was rated as the 

second most compatible method, with a score of 0.72. 

Fig. 5 shows the RPR assessment of several 

classification schemes with the proposed E-RF-

MDFS for SFPS. Various datasets in the large 

PROMISE database have been considered for 

analysis. Among the datasets, Poi v3.0 has the least 
 

Table 1. Rank for various classifiers based on PCC 

Techniques Pearson’s 

Correlation 

coefficient 

Rank 

DT -0.53 4 

K-NN -0.72 3 

E-RF-ADASYN 0.72 2 

E-RF-MDFS 0.82 1 
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Figure. 5 RPR assessment of several classifiers with the 

proposed E-RF-MDFS for SFPS 

 

 
Figure. 6 Comparison of FDA among various classifiers 

with the proposed E-RF-MDFS for SFPS 

 

RPR, and Xalan v2.6 has the best RPR value 

irrespective of the classifier being employed. Ant 

v1.7, Camel v1.6, Jedit v4.0, Log4j v1.0, Lucene v2.4, 

and Tomcat v6.0 have almost similar RPR values. 

Among the various classifiers, DT and K-NN have 

given poor RPR performance. The RPR of E-RF-

ADASYN has been improved than K-NN and DT  
 

 
Figure. 7 Comparison of PCC values among various 

classifiers with the proposed E-RF-MDFS 

 

since it can overcome the problem of imbalanced 

datasets. The proposed E-RF-MDFS gives the best 

performance since it can accurately find both the 

main and supplementary DDO, thereby providing the 

best value of RPR. 

Fig. 6 represents the FDA (%) assessment of 

several classification schemes with the proposed E-

RF-MDFS for SFPS. Even here, 8 datasets have been 

compared. It has been observed that Xalan v2.6 and 

Camel v1.6 have a constant FDA of around 97.5 % 

and 63 % for both DT and K-NN classifiers, 

respectively. For other datasets, the performance of 

K-NN is superior to DT. On comparing the 

performance of E-RF-based classifiers, the 

performance of the proposed MDFS is the best, with 

an FDA of 99.3 % (Xalan v2.6) than the ADASYN 

classifier. 

A comparison of PCC values among various 

classifiers with the proposed E-RF-MDFS has been 

given in Fig. 7. The lines represent the algorithm’s 

PCC score in the classification process. DT has been 

ranked last among all classifiers, whereas E-RF-

MDFS remained top. DT is considered a poor 

classifier with a PCC of -0.53. E-RF-MDFS has been 

ranked top with a score of 0.82 because it was closest 

to +1 compared to E-RF-ADASYN. 

Fig. 8 depicts the comparison of E-RF with other 

ensemble methods in terms of FDA and RPR for 

SFPS. During the instability of DT, a little variation 

in the layout of the effective decision tree resulted in 

often erroneous findings. Similarly, the K-NN does 

not learn or generate any discriminating function 

throughout the training phase. Hence, DT and K-NN 

methods gave poor performance in both FDA and 

RPR. Utilizing a representative sample of data and 

characteristics, the suggested E-RF decreases the 

correlation between trees and provides the best value 

of FDA and RPR. 
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Figure. 8 Comparison of E-RF with other ensemble 

methods of FDA and RPR for SFPS 

 

 
Figure. 9 Comparison graph between proposed E-RF, K-

NN, and DT 

 

Fig.9 shows the comparison graph between the 

proposed methodology and other methodologies. The 

proposed E-RF performance is better than others. The 

accuracy is calculated in terms of percentage. The E-

RF accuracy is 97 %. The performance of the 

proposed E-RF-MDFS has improved for all the 

performance metrics. It selects the most relevant 

features through appropriate integration of bat and 

butterfly optimization through the BBO feature 

extraction algorithm. Also, MDFS first discovers 

differentiated software data objects and then finds 

samples near derived distinguished data items 

through evaluation of 𝐷𝑑𝑑𝑜
𝑡𝑜𝑡𝑎𝑙. 

5. Conclusion 

The suggested research focuses on creating a new 

sampling approach known as ensemble-random 

forest with multi-distinguished-features sampling (E-

RF-MDFS) for finding the best sample illustration for 

portraying the full dataset. The feature extraction 

technique has been carried out using bat-induced 

butterfly optimization (BBO). The tests are carried 

out on 8 datasets from the PROMISE repository to 

show that the suggested E-RF-MDFS is more 

efficient than other established approaches such as 

DT and K-NN. 

The suggested technique has been evaluated 

using fault detection accuracy, actual positive rate, 

and Pearson’s correlation coefficient. The suggested 

E-RF-MDFS achieves the greatest results because it 

can properly locate the main and supplementary 

DDO, resulting in the best RPR value. In addition, E-

RF-MDFS has been given the highest score of 0.82 

since it was the closest to +1 compared to E-RF-

ADASYN. When assessing E-RF-based classifiers’ 

effectiveness, the suggested MDFS outperforms the 

ADASYN classifier with an FDA of 99.3 percent 

(Xalan v2.6). 
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