
Received: June 2, 2022. Revised: July 13, 2022. 494

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.43

Software Fault Detection using Multi-Distinguished-Features Sampling with

Ensemble Random Forest Classifier

A. Balaram1* S. Vasundra1

1Department of Computer Science and Engineering,

JNTUA University, Anantapuramu, Andhra Pradesh, India
* Corresponding author’s Email: balaram.balaram@gmail.com

Abstract: Finding faults in software modules is an emerging issue in software reliability systems, and the assessment

of the fault is performed by software fault prediction systems (SFPS). The identification process of fault-prone software

modules is one of the prioritized aspects before initiating the testing process of the same modules. The SFPS helps

improve software quality within the specified time and cost values. Early fault prediction in SFPS for the different

software components showed significant results concerning the cost and time parameters. According to the state-of-

the-art SFPS, ensemble-based classifiers were performed best and most cost-effective compared to other classifier

methods. Recently, a random ensemble forest with adaptive synthetic sampling (E-RF-ADASYN) has been developed,

is tested on a sample of PROMISE datasets, and shown the cost-effective classifier results. In the logistic regression

to software quality models, and the other knowledge of account for prior probability and costs of misclassification.

Probabilities and costs of misclassification in a logistic regression-based classification algorithm for software quality

modeling. The decision tree algorithm is an ensemble learning approach for prediction. The algorithm works based on

developing several decision trees and later decides the output class based on the most popular one. The proposed work

focuses on developing an alternative sampling method called ensemble-random forest with multi-distinguished-

features sampling (E-RF-MDFS), for obtaining the best sample illustration for representing the entire dataset. Bat-

induced butterfly optimization (BBO) has been used for the feature extraction process. The experiments are conducted

on 8 datasets of the PROMISE database. The proposed E-RF-MDFS has improved performance than E-RF-ADASYN

in fault detection accuracy, real positive rate, and Pearson’s correlation coefficient. On comparing the performance of

E-RF-based classifiers, the performance of the proposed MDFS is the best, with an FDA of 99.3 % (Xalan v2.6) than

the ADASYN classifier.

Keywords: Software reliability, Software faults, Software fault predictions systems, Ensemble classifiers, Sampling.

1. Introduction

Bugs are inevitable in contemporary software

design due to their complex nature. When

implemented software projects with faults, they can

have unanticipated repercussions, resulting in large

losses for businesses or putting people’s lives in

danger [1]. Currently, more than 80 % of the expense

of software systems development and testing is spent

on fault correction.

A new strategy that utilizes edition-related defect

characteristics to pinpoint variant defects combined

with the data extraction technique has been proposed

to fill this gap [2]. In [3], it has been proposed to use

stacked denoising autoencoders, a well-known

machine learning paradigm, to generate deep

representations from standard software

measurements. Software practitioners can use these

data to determine which application programs

are prone to be erroneous quickly, the number of

faults that could be present in a segment, and other

software defect-related information before

performing software testing.

Though several classification methods have been

employed for outlier detection, researchers in [4]

recommended that appropriate criteria, like

computational effectiveness and easiness, be

measured while choosing classification techniques

Received: April 1, 2021. Revised: May 5, 2021. 495

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.43

for likelihood models. They discovered that fault

prediction approaches often perform equally.

Furthermore, there is often a class imbalance with

defect data, with non-faulty modules outnumbering

defective modules. As a result, most classifiers treat

the supplementary samples (i.e., the faulty

components) as the main class (i.e., the non-faulty

components).

Latest research has attempted to apply deep

learning algorithms to fault prediction [7], and these

methods are promising in finding flaws since

reinforced learning has produced decent outcomes in

further domains (e.g., digital image processing [5],

voice identification [6]). Nevertheless, various issues

may restrict deep learning models in software defect

prediction projects. Deep learning models, for

example, require large volumes of information to

validate the algorithm, yet many software systems

currently lack sufficient faulty data. Furthermore, it

has been well established that the accuracy of such

fault estimation techniques is highly dependent on the

exact scaling of model parameters [8], and deep

neural networks often include a substantial

percentage of model parameters that are difficult to

identify. Furthermore, the topology of deep learning

models has decoupled from biological systems,

making it difficult to detect and comprehend.

An essential factor for successful software

development is good software fault identification. As

a result, the programmer will make the module easier

because it cannot be detected by an individual

customer who can find problems in client programs

[9]. Outlier distortion, skewed datasets, and

unbalanced datasets that yield high dimensional

features are concerns with software dataset quality.

As a result, the authors of [10] suggested an effective

feature selection technique for variable selection

relevant to a subgroup from an entire dataset and

removing extraneous characteristics. As a result, the

model's dimensionality is decreased, and the

suggested technique’s reliability, which employs the

cuckoo search algorithm, is fully realized.

The main contributions of this paper are:

1. To obtain multi-distinguished feature sampling

(MDFS) for the best sample illustration in software

fault detection.

2. To assess software reliability with optimized costs

using ensemble random forest classifiers (E-RF).

3. Employ bat-induced butterfly optimization (BBO)

for the feature extraction process.

4. To improve results, PROMISE – a large-scale

dataset for detecting flaws in software components.

The remaining part of the paper is structured as

follows: Section 2 concisely reviews various

concepts of fault detection in software modules using

deep learning methods. Section 3 proposes a multi-

distinguished feature for the best sample illustration

to assess software reliability with optimized costs.

Related results and discussions have been depicted in

section 4. Section 5 describes the conclusion and

scope for further research in E-RF-MDFS.

2. Related research on software fault

detection

A standard software fault detection technique

uses a predictor (also known as a classifier in

machine learning) learned with evaluation metrics

and error data (acquired from past releases or

comparable projects) to forecast faults in future

projects. To forecast defects, many categorization

methods have been used. Xu [11] investigated the

effectiveness of 35 initiatives from the PROMISE

database and 15 missions based on the NASA

database in an econometric investigation. A novel

approach to predicting software faults has been

suggested that considers segmentation and class

mismatch concerns. Seven deep learning models

were employed to estimate software reliability on

four free and open-source applications [12]. The

program has been reviewed using various criteria,

including C & K, Henderson & Sellers, McCabe, and

others. Random forest and bagging offer decent

results, but Naive Bayes is the least preferred

classification method.

The SFP has lately received a lot of interest for

combining methodologies (ensemble techniques and

adaptive predictor determination). Several

classification models might provide complementary

information on the sample to be categorized; hence

ensemble merging techniques make use of this. They

capitalize on each learner’s abilities while avoiding

their flaws, improving categorization accuracy. The

authors in [13] investigated the application of

ensemble algorithms for fault prediction. The

findings showed that ensemble approaches

considerably increased generalization ability and

boosted the resilience of the software defect

forecasting model.

The adaptive classifier selection techniques vary

from ensemble methods. The optimal classifier is

selected, or the values of classifiers are set during the

training phase before categorizing the assessment

sample in evolutionary algorithms. The decision of a

classifier or the learners’ ratings are determined

during the identification or analysis stage and are

reliant on the assessment sample’s variable

classification methods. Mousavi [14] looked at using

Received: April 1, 2021. Revised: May 5, 2021. 496

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.43

a variable classifier selection technique for software

failure detection. The author described a vibrant

ensemble classification algorithm in which a

subgroup of selected classifiers is dynamically

picked for each testing case. For seven NASA

datasets, the approach’s examination revealed that it

outperformed the other six examined multiple

classifier systems in terms of total efficiency. Authors

of a related paper suggested a strategy for adaptive

classifier selection for cross-project defect

identification. In the case of cross-project bug

prediction, the extensive experiments of the strategy

revealed that it outperformed the other strategies.

Turabieh [16] created a layered recurrent neural

network-based iterated feature selection method (L-

RNN). When L-RNN, which conducted

categorization, was introduced to the system, it

improved its performance and addressed the software

defect estimation problem. Nevertheless, to enhance

the capacity of defect prediction based on specified

criteria, the created approach required a computer

model. Tumar. [17] used the ADASYN technique to

produce an improved binary moth flame optimization

(BMFO). The created BMFO conducted wrap feature

extraction, whereas ADASYN improved the original

database and solved the unbalanced dataset problem.

However, the created feature extraction approach for

selecting crucial features improved classifier

effectiveness and improved the accuracy of SFPS.

The following were the issues with the existing

models: These models need additional SFP

techniques with embedded classifiers, which resulted

in optimization concerns and overfitting. The system

had class imbalance difficulties, which reduced the

reliability of automatic fault categorization and

prevented the program from exploring many defects.

The suggested ensemble classifier solves the

difficulties that existed in the previous approaches in

the current study effort, which predicts the inherent

errors in the program. Balaram [18] employed an

intelligent strategy to forecast SFP by integrating

ADASYN with E-RF to build the butterfly

optimization algorithm (BOA) for identifying

important characteristics. The BOA eliminates the

problem of overfitting, while ADASYN addresses

the issue of data imbalance for supplementary classes,

resulting in a consistent data deformation mechanism.

The main drawback of the method proposed in

[18] is that Adaptative synthetic sampling delivers

random data samples, and it cannot find the sample

based on distinguishing features. Therefore, it

sometimes fails to present the best sample illustration

for large datasets. So, the proposed sampling

technique, say, MDFS, initially finds the

distinguished software data objects and then finds the

Figure. 1 Overall framework for the proposed E-RF-

MDFS in SFDS

samples near to derived distinguished data objects.

Thus, it produces the best samples compared to the

adaptive synthetic sampling method.

By integrating many weak learners into one

strong classifier, ensemble learning (EL), a

methodology, tries to increase predictive accuracy.

The predictive accuracy could be affected during soft

fault detection [5].

3. Proposed E-RF with multi-distinguished-

features sampling (E-RF-MDFS)

framework

This paper uses a technique to solve the SFP issue

by combining the Ensemble classifier with MDFS.

For feature extraction (FE) in SFP, the schematic

diagram has been used with the bat-inspired butterfly

optimization algorithm (BBO).

The flowchart of the overall architecture is

depicted in Fig. 1. The input data is got from the

PROMISE dataset, and all the required features have

been extracted using the BBO algorithm from the

input dataset. The MDFS executes the sampling

process by finding samples near distinguished data

objects. For the assessment of the findings produced

for the SFP model, several learners, including

multiple linear regression (MLR), k-Nearest

neighbor (KNN), and support vector machine (SVM),

Received: April 1, 2021. Revised: May 5, 2021. 497

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.43

have been assessed with ensemble classification

methods. When the classifier reviews the fault

estimate, the suggested MDFS technique comes to an

end. For 12 iterations, the E-RF examines findings

until the optimum values are attained. If the criteria

are satisfied and the optimum value is found, stop

evaluating; otherwise, resume the feature extraction

procedure.

3.1 Input dataset for SFPS

An online database called PROMISE is

frequently utilized to test the effectiveness of the

proposed technique for fault detection. These

samples have been collected using tera-PROMISE.

Multiple open-source Java projects are included in

the PROMISE dataset. The database comes from

PROMISE Home, much like the NASA dataset.

Scripts, feedback for a class, mean McCabe, mean

process overhead, dependency among object classes,

and other parameters are used in PROMISE. All

projects in the PROMISE project employ the same

amount of features. The data utilized in this research

comes from the PROMISE dataset and includes

Xalan v2.6, Ant v1.7, Camel v1.6, Jedit v4.0, Log4j

v1.0, Lucene v2.4, Poi v3.0, and Tomcat v6.0.

3.2 Extraction of features using bat-induced

butterfly optimization (BBO)

Feature extraction (FE) is an initial treating phase

used to increase the quality of a product. It’s a

collection of algorithms to identify the best subset of

attributes in the original database that properly

matches the raw data. Determining the smallest

reduction and assessing the selected attributes are the

two key steps of the FE process. The essential task is

to determine if the beat FE about the qualities of the

original data still exists. As a result, FS is regarded as

a search unit representing a subset of the attribute at

each random search location. A bat-inspired butterfly

optimization (BBO) was utilized to choose the best

feature and eliminate unnecessary data.

In this BBO, each bat is identified using a single

frequency Ω and pitch of the sound µ, instead of

varying frequencies and pitch values. The location

and speed of the Bat at a particular instant of times

are given as

𝑢𝑖(𝑡) = 𝑢𝑖(𝑡 − 1) − [𝑠𝑖(𝑡) + 𝑠𝑖(∗)] × Ω (1)

𝑠𝑖(𝑡) = 𝑠𝑖(𝑡 − 1) − 𝑢𝑖(𝑡) (2)

The location of each bat has been defined by

𝑢𝑖(𝑡), speed 𝑠𝑖(𝑡), and beat rate 𝑝𝑖(𝑡). 𝑢𝑖(𝑡 − 1)is

the previous location of the bat. 𝑠𝑖(∗)is the universal

best speed. 𝑠𝑖(𝑡 − 1) isthespeed at the previous

instant of time. Frequency Ω is kept constant for all

the bats, and its value is 0.6.

The main change is the addition of an

evolutionary algorithm to boost population diversity

in hopes of improving detection accuracy and

hastening convergence to the optimum solution.

Once a response is chosen from among the existing

best options for the search algorithm, a new solution

for every bat is created locally utilizing non – the

linear model given as

𝑢𝑜𝑙𝑑 = 𝑢𝑛𝑒𝑤 − 𝛽µ𝑡 , 𝑓𝑜𝑟𝛽 > 𝑝 (3)

𝑢𝑛𝑒𝑤is the new location of the bat. 𝑢𝑜𝑙𝑑is the past

location.

𝛽 is an arbitrary number whose value lies

between 0 and 1 and is greater than the beat rate, i.e.,

𝛽 > 𝑝. µ𝑡is the mean speed at which the bats traverse

at time t.

When 𝛽 ≤ 𝑝, a mutation operator is introduced to

improve the species and its offsprings based on

butterfly optimization by considering the smell, the

butterflies use chemoreceptors to perceive and sense

the aroma of flowers. By shifting their postures, the

aroma assists the butterfly in finding the best

optimum mating partner, dependent on the intensity.

The scent will be directed by evolutionary algorithms,

which are butterflies responsible for determining the

motions of certain other butterflies in the searching

region. The butterfly will feel the blossom based on

the strength of the aroma by randomly exploring itself

and finding a new place, a procedure provided by

local discovery. If the butterfly does not detect the

aroma, it will approach the butterfly for breeding

purposes. So, the new location is defined as

𝑢𝑛𝑒𝑤 = 𝑢𝑝1(𝑡) + 𝑆[𝑢𝑝2(𝑡) − 𝑢𝑝3(𝑡) − 𝑢𝑝4(𝑡)] ×

[√
𝑧−1

𝑟+1
− 𝛼1] (4)

The new position is updated by considering the

mutation factor 𝑆 is defined by the smell of flowers

in the butterfly optimization. 𝑢𝑝1(𝑡) ,

𝑢𝑝2(𝑡), 𝑢𝑝3(𝑡)𝑎𝑛𝑑𝑢𝑝4(𝑡) are uniformly distributed

in random locationsin [√
𝑧−1

𝑟+1
− 𝛼1] space with a

minimum value of 1 and a maximum of 𝑁 . The

methodology of BBO is given in Algorithm 1.

As a result, bat-induced butterfly optimization

Algorithm 1. Bat-induced butterfly

optimization algorithm

Start

Received: April 1, 2021. Revised: May 5, 2021. 498

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.43

Step 1: Parameter Initialization

 Fix the value of 𝑡 = 0, 𝑡ℎ𝑒 total number of

butterflies and bats denoted as 𝑁, the pitch of bats

µ.

 Each Bat is identified by using a single

frequency Ω.

 Initial speed 𝑠𝑖(1) , and initial beat

rate𝑝𝑖(1). Butterfly mutation factor is 𝑆

Step 2:fori=1:N,

 Choose random values for 𝑝1 ≠ 𝑝2 ≠
𝑝3 ≠ 𝑝4 ≠ 𝑖
Step 3:If𝛽 > 𝑝 , Calculate the current location and

speed of the Bat using bat optimization as

𝑢𝑖(𝑡) = 𝑢𝑖(𝑡 − 1) − [𝑠𝑖(𝑡) + 𝑠𝑖(∗)] × Ω

𝑠𝑖(𝑡) = 𝑠𝑖(𝑡 − 1) − 𝑢𝑖(𝑡)

 The new location is given by

𝑢𝑛𝑒𝑤 = 𝑢𝑜𝑙𝑑 + 𝛽µ𝑡

Else If 𝛽 ≤ 𝑝, calculate the current location using

Butterfly optimization

𝑢𝑛𝑒𝑤 = 𝑢𝑝1(𝑡) + 𝑆[𝑢𝑝2(𝑡) − 𝑢𝑝3(𝑡) − 𝑢𝑝4(𝑡)]

 Else increment i

 End if

 End for

Step 4: Based on the updated location, calculate the

capability of the offspring.

Step 5: Select the best offspring

End

(BBO) has been achieved as shown in Algorithm 1

by employing bat optimization for an arbitrary value

greater than the beat rate (𝛽 > 𝑝). Suppose the 𝛽

value is less than or equal to the beat rate, which

indicates that the bat has lost its frequency

importance and the sense of smell of the butterfly is

dominant in this case. So, butterfly optimization has

been carried outfor 𝛽 ≤ 𝑝. Finally, best offsprings

are calculated based on the updated location values.

3.3 Proposed multi-distinguished features

sampling (MFDS)

The data samples delivered by adaptive synthetic

sampling are random. It is impossible to locate the

sample using distinguishing characteristics. As a

result, with huge datasets, it occasionally fails to give

the optimal example illustration.

Let the large dataset used for SFPS is denoted as

𝐷. The number of classifiers used for fundamental

classification is given as 𝑁. Samples near

distinguished data objects (DDO) are identified using

two parameters: 𝐷𝑚𝑎𝑖𝑛is the subset of main data

objects in the dataset and 𝐷𝑠𝑢𝑝𝑝𝑙 is the subset of

supplementary data objects in the dataset. Now, the

samples near DDO are called an up-sampled subset

of the main (𝐷𝑢𝑝
𝑚𝑎𝑖𝑛) and supplementary data

(𝐷𝑢𝑝
𝑠𝑢𝑝𝑝𝑙

) objects are calculated as

𝐷𝑢𝑝
𝑚𝑎𝑖𝑛 = 𝐷𝐷𝑂[𝐷𝑚𝑎𝑖𝑛, α ± 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑎𝑖𝑛] (5)

𝐷𝑢𝑝
𝑠𝑢𝑝𝑝𝑙

= 𝐷𝐷𝑂[𝐷𝑠𝑢𝑝𝑝𝑙 , µ ± 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑢𝑝𝑝𝑙] (6)

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑎𝑖𝑛 and 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑢𝑝𝑝𝑙 are the original

main and supplementary subset before the process of

sampling. ∝= 𝑛/𝑁, where 𝑛 is any classifier and 𝑁

denotes the overall amount of classifiers. µis the ratio

of variation of DDO before and after the upsampling

process and is expressed as

µ = [
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑎𝑖𝑛

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑢𝑝𝑝𝑙
⁄]±∝ (7)

Hence to locate all the samples with distinguished

features, the proposed MFDS method combines both

upsampled subsets of the main (𝐷𝑢𝑝
𝑚𝑎𝑖𝑛) and

supplementary data (𝐷𝑢𝑝
𝑠𝑢𝑝𝑝𝑙

) objects.

𝐷𝑑𝑑𝑜
𝑡𝑜𝑡𝑎𝑙 = {𝐷𝐷𝑂[𝐷𝑚𝑎𝑖𝑛, ∝ ±𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑎𝑖𝑛]} +

{𝐷𝐷𝑂[𝐷𝑠𝑢𝑝𝑝𝑙, µ ± 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑢𝑝𝑝𝑙]} (8)

Algorithm 2: Proposed Multi-Distinguished

Features Sampling (MFDS)

Start

Inputs: Let the large dataset used for SFPS is

denoted as 𝐷. The number of classifiers used for

fundamental classification is given as 𝑁.
𝐷𝑚𝑎𝑖𝑛the subset of main data objects in the dataset

and 𝐷𝑠𝑢𝑝𝑝𝑙 is the subset of supplementary data

objects in the dataset.

for n=1,2,…..,N compute

Step 1:∝= 𝑛/𝑁

Step 2:Upsample subset of main data objects as

𝐷𝑢𝑝
𝑚𝑎𝑖𝑛 = 𝐷𝐷𝑂[𝐷𝑚𝑎𝑖𝑛, ∝ ±𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑎𝑖𝑛]

Step 3:Upsample subset of supplementary data

objects with the upsampling rate of µ =

[
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑚𝑎𝑖𝑛

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑢𝑝𝑝𝑙
⁄]±∝

𝐷𝑢𝑝
𝑠𝑢𝑝𝑝𝑙

= 𝐷𝐷𝑂[𝐷𝑠𝑢𝑝𝑝𝑙,µ ± 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑢𝑝𝑝𝑙]

Step 4: To locate all samples in a large dataset,

combine upsampled subsets of both main and

supplementary data, 𝐷𝑑𝑑𝑜
𝑡𝑜𝑡𝑎𝑙 = {𝐷𝑢𝑝

𝑚𝑎𝑖𝑛 ∪ 𝐷𝑢𝑝
𝑠𝑢𝑝𝑝𝑙

}.

Step 5: Now, train the classifier n using 𝐷𝑑𝑑𝑜
𝑡𝑜𝑡𝑎𝑙 to

predict software faults accurately.

End

Received: April 1, 2021. Revised: May 5, 2021. 499

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.43

Figure. 2 Method of obtaining Dddo

total in the proposed

MDFS framework

In simple terms, MFDS locates all the samples in

a large dataset by combining upsampled subsets of

both main and supplementary data, 𝐷𝑑𝑑𝑜
𝑡𝑜𝑡𝑎𝑙 =

{𝐷𝑢𝑝
𝑚𝑎𝑖𝑛 ∪ 𝐷𝑢𝑝

𝑠𝑢𝑝𝑝𝑙
} and is given in Algorithm 2.

As a result, the suggested sampling approach,

such as MDFS, first discovers differentiated software

data objects and then finds samples near

distinguished data items. MDFS uses incomplete data

interpolation methods to build innovative

supplementary data samples.

Fig. 2 depicts the method of obtaining 𝐷𝑑𝑑𝑜
𝑡𝑜𝑡𝑎𝑙

employing the proposed MDFS framework. The

strategies generate upsampled supplementary class

samples by inducing some arbitrary absence over the

main class samples and estimating the deficient

scores using incomplete data matching approaches.

These unique matching-based upsampling techniques

are then used in E-RF schemes, such as enhancing

and reducing algorithms, to provide a variety of new

ensemble-based strategies.

Fig. 3 shows infeature extraction is a sort of

dimensionality reduction in which a large number of

pixels in an image are efficiently represented to

effectively capture interesting areas of the image.

Built-in testing and other fault detection mechanisms

often note the time the issue occurred and either

activate alerts for manual intervention or start

automated recovery. Dip-slip defects move in the

direction of the dip plane and are classified as either

normal or reverse depending on where they move.

Strike-slip faults are horizontally moving faults that

are classed as either right-lateral or left-lateral. Fault

locators are used to locate defects in communication

and control cables so that they can be repaired

quickly. Cable fault locators are essential for

reducing downtime and making maintenance easier.

Figure. 3 Software fault detection using in the decision

tree

A decision tree is a form of probability tree that

allows users to decide on a given procedure. A

decision tree is a form of supervised machine learning

that categorizes or predicts outcomes based on the

answers to prior queries. The model is supervised

learning, which means it is trained and evaluated on

a set of data containing the intended categorization.

𝐼 =
𝐻

4
(

𝑅2+2𝑅𝑟+3𝑟2

𝑅2+𝑅𝑟+𝑟2) + 𝜋𝑟2 (ℎ −
ℎ1

3
) √

𝑏2

𝑎2+2𝑎𝑏
+

1

2
𝛿2 + 𝛿 (8)

As shown in Eq. (8) is an 𝜋𝑟2 (ℎ −
ℎ1

3
)

mathematical function for decision trees and the

control for √
𝑏2

𝑎2+2𝑎𝑏
 quickly decision making for the

fault and
1

2
𝛿2 detection in learning for the machine

learning development process of the
𝐻

4
(

𝑅2+2𝑅𝑟+3𝑟2

𝑅2+𝑅𝑟+𝑟2)software the locator as in Eq. (9),

𝐽 = ∫ 𝑐𝑜𝑠(𝑝𝑥 + 𝐸) + 2 𝑠𝑖𝑛
𝑝ℎ

2
∗ 𝑐𝑜𝑠 [𝑝𝑥 + 𝐸 +

(𝑝ℎ+𝜋)

2
] + (

ℎ

1+ℎ𝑥+𝑥2) (9)

As shown in Eq. (9) where is a 𝑐𝑜𝑠(𝑝𝑥 + 𝐸)

trigonometric function in a feature extraction in

𝑐𝑜𝑠 [𝑝𝑥 + 𝐸 +
(𝑝ℎ+𝜋)

2
] data and fault locator process

in the decision trees (
ℎ

1+ℎ𝑥+𝑥2) can be reduced by the

fault classifiers in Eq. (10) as

Received: April 1, 2021. Revised: May 5, 2021. 500

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.43

Figure. 4 Software fault detection using multi-

distinguished-features sampling in logistic regression

𝐾 = ℎ2𝑢2 (𝑢 +
𝑑2𝑢

𝑑𝜃2) ∫ sin 𝜃
𝑢(𝑢−1)

2
∆2𝑦𝜃

+
𝑢(𝑢−1)(𝑢−2)

6
∆3𝑦𝜃 (10)

As shown in Eq. (10) process of the (𝑢 +
𝑑2𝑢

𝑑𝜃2)

detection in the communication and
𝑢(𝑢−1)(𝑢−2)

6
∆3𝑦𝜃

reduced the fault and control to detecting and making

for ∫ sin 𝜃
𝑢(𝑢−1)

2
∆2𝑦𝜃 decision tree and software

quality to development ℎ2𝑢2 using and

developingthe decision tree in fault detection.

Fig. 4 shows the method of modeling the

likelihood of a discrete result given an input variable

logistic regression. A probabilistic labeling method

selects the labeled positive instances from the entire

collection of a true positive. The term is used to

describe data that has not been tagged with labels

describing features, qualities, or categories. The

majority of machine learning algorithms rely on

unlabeled datasets. Enhanced features relate to the

extra program features made available to the client

via the enhanced features configuration form.

Program capability that is supplied to the client by the

enhanced features set-up form is called “Enhanced

Features”. It is a basic extension of binary logistic

regression that enables more than different

classifications of the dependent or outcome variable

to be included in the model. Statistically significant

effectiveness between a licensed product and an

active patient group in comparison to a placebo group

is defined as “Positive Data” in clinical research.

Data that do not allow us to reject our null hypothesis

are referred to be negative. Because the null

hypothesis cannot be proven, such data are frequently

difficult to publish. Every scientist currently working

on a project has a vast file cabinet full of research data.

𝐺 = (𝑥2 + 𝑄𝑅) ±
𝑄𝑅(𝑄+𝑅)

𝑄2+𝑅2−𝑌2 + 2𝑃𝑄 − (
𝑄+𝑅

2𝑃
) (11)

As shown in Eq. (11) denotes (𝑥2 + 𝑄𝑅) for

multi-feature extractionand (
𝑄+𝑅

2𝑃
) the logistic

regression can be
𝑄𝑅(𝑄+𝑅)

𝑄2+𝑅2−𝑌2 identify the most

important of the features in 2𝑃𝑄 modified the

regression in Eq. (12) can be,

𝐻 =
1

2
𝛿2 + 𝛿√1 +

𝛿2

4
∑

𝜕𝑦

𝜕𝑥
𝑦𝑟 − (

𝑛

1
) 𝑦1 + (

𝑛

2
) ∆𝑦1 +

(
𝑛

3
) ∆2𝑦1 (12)

As shown in Eq. (12) says √1 +
𝛿2

4
∑

𝜕𝑦

𝜕𝑥
𝑦𝑟 the

mathematical function for the effective algorithm for

the (
𝑛

1
) 𝑦1 currently working on a software system in

(
𝑛

3
) ∆2𝑦1 dataset process of variable logistic function

in
1

2
𝛿2 dependent on the outcome for Eq. (13),

𝐸 = ∬
𝜕𝑦

𝜕𝑥

∆2

𝐸
+ (

∆2𝑢𝑥

𝐸𝑢𝑥
) 𝑚2𝑔2 + 𝑚2 𝑣4

𝑟2 √
𝜋

2
𝑝2 +

2𝑝2 cos 𝛼 + 𝑝2 (13)

As shown in Eq. (13) denote ∬
𝜕𝑦

𝜕𝑥

∆2

𝐸
 the

mathematical function for enhancing feature

2𝑝2 cos 𝛼 in trigonometric function for positive data

in 𝑚2 𝑣4

𝑟2 √
𝜋

2
𝑝2 unlabeled the data (

∆2𝑢𝑥

𝐸𝑢𝑥
) 𝑚2𝑔2

modified the logistic regression 𝑝2 in the multi-

logistic regression for feature datasets can be

negative and positive data can be labeled.

3.4 Ensemble-random forest classifier for cost-

effectiveness

Ensembles of classifications are very effective in

improving predicted precision and breaking down

more complicated issues into smaller glitches. A

collaborative method, also known as multiple

classifiers, is a classification scheme with

independent components that are merged and given a

class label for new occurrences. Many ways have

been proposed to meet this condition, and a suitable

combination of varied classifiers is necessary. For

results evaluation, the collaborative classifiers

employed are KNN and DT. The finest among all of

Received: April 1, 2021. Revised: May 5, 2021. 501

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.43

these classification methods is identified. When the

best optimal values have been identified, they are put

into the RF classifier for fault detection.

The RF is a classification scheme that enhances

forecast precision by using an ensemble of classifiers.

The RF technique, also known as random choice

forest, is a collaborative learning model for

categorization, prediction, and other problems. At

training time, it creates a cluster of decision trees and

produces a subclass that is the average forecast of

individual trees. The number of forest trees and the

resulting precision has a direct proportional

connection in RF. A distinct tree is built using a

unique bootstrap sample of raw data. Following the

formation of the forest, each item known as a tree is

categorized for judgment purposes. The selection of

the tree is made for every derived object that signifies

a point, and the forest chooses the class that has

gotten the most points for the entities.

When utilizing the RF, the generalization fault is

guaranteed to be mostly determined by the tree power

that ensures tree coherence. The components u and v

are polled in the RF model using the maximum

pointing strategy, which classifies the defects and is

given in Eq. (9).

𝐶[𝑢, 𝑣] = {∑ 𝑃[𝑝𝑛(𝑢) =𝑛=𝑇
𝑛=1 𝑝𝑛(𝑣)]}. 𝑇 (14)

Where 𝑛 is any random tree in the forest.𝑇is the

total number of trees in the forest.𝑃[.]denotes the

pointer function whose value is either 1 or 0,

depending on the event’s occurrence. 𝑝𝑛points to a

tree in the forest.

As a result, RF assigns an essential score to the

characteristics, which will be changeable and used to

choose the most significant ones. Terminate the

procedure when the classifier has been evaluated;

else, proceed with the feature extraction procedure if

the classifier assessment is not done.

4. Results and discussion for the proposed E-

RF-MDFS

The simulations in Python have been carried out

to assess the performance of the recommended E-RF-

MDFS. The “PROMISE” the dataset has been used

as an input for the simulator. The simulator was

running on the system Intel Core i5, 8 GB RAM, and

500 GB of storage. All projects in the PROMISE

database employ the same amount of features[19].

The data utilized in this research comes from the

PROMISE dataset and includes Xalan v2.6, Ant v1.7,

Camel v1.6, Jedit v4.0, Log4j v1.0, Lucene v2.4, Poi

v3.0, and Tomcat v6.0.

The following parameters have been considered

for simulation:

Fault detection accuracy (FDA).

It is the proportion of the number of faulty

observations detected to the total number of faults in

the software.

Real positive rate (RPR)

It is a metric for the number of actual positives

that have been appropriately detected.

𝑅𝑃𝑅 =
𝑅𝑃

𝐼𝑁+𝑅𝑃
 (15)

Measurements that forecast actual positives are

real positives (RP), whereas measurements that are

wrongly represented as negatives are referred to as

incorrect negatives (IN).

Pearson’s correlation coefficient (PCC).

The final criteria are PCC, which ranks fault

detection methods based on their FDA approval. PCC

has a value range of -1 to +1. The method with a value

of -1 is irreconcilable; zero represents resemblance to

arbitrary prediction, while one represents an optimal

strategy. A nearer score to +1 indicates that the actual

and test values have a strong link.

Current studies use K-Nearest neighbor (K-NN),

decision tree (DT), and E-RF-ADASYN to enhance

a database’s software reliability with high

dimensional features and an unbalanced dataset[20].

These existing methods have been compared with the

proposed E-RF-MDFS.

The PCC score is used to rank all classifiers and

is shown in Table 1. Values between -0.20 and -0.60

suggest poor classifiers, which have a poor

relationship with reality. With a rank of 4, DT is

considered a poor classifier with a PCC of -0.53.

Because of the acquired PCC value, K-NN has been

deemed compatible in this context. E-RF-MDFS has

been ranked top with a score of 0.82 because it was

closest to +1 compared to E-RF-ADASYN. Among

all the classifiers, E-RF-ADASYN was rated as the

second most compatible method, with a score of 0.72.

Fig. 5 shows the RPR assessment of several

classification schemes with the proposed E-RF-

MDFS for SFPS. Various datasets in the large

PROMISE database have been considered for

analysis. Among the datasets, Poi v3.0 has the least

Table 1. Rank for various classifiers based on PCC

Techniques Pearson’s

Correlation

coefficient

Rank

DT -0.53 4

K-NN -0.72 3

E-RF-ADASYN 0.72 2

E-RF-MDFS 0.82 1

Received: April 1, 2021. Revised: May 5, 2021. 502

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.43

Figure. 5 RPR assessment of several classifiers with the

proposed E-RF-MDFS for SFPS

Figure. 6 Comparison of FDA among various classifiers

with the proposed E-RF-MDFS for SFPS

RPR, and Xalan v2.6 has the best RPR value

irrespective of the classifier being employed. Ant

v1.7, Camel v1.6, Jedit v4.0, Log4j v1.0, Lucene v2.4,

and Tomcat v6.0 have almost similar RPR values.

Among the various classifiers, DT and K-NN have

given poor RPR performance. The RPR of E-RF-

ADASYN has been improved than K-NN and DT

Figure. 7 Comparison of PCC values among various

classifiers with the proposed E-RF-MDFS

since it can overcome the problem of imbalanced

datasets. The proposed E-RF-MDFS gives the best

performance since it can accurately find both the

main and supplementary DDO, thereby providing the

best value of RPR.

Fig. 6 represents the FDA (%) assessment of

several classification schemes with the proposed E-

RF-MDFS for SFPS. Even here, 8 datasets have been

compared. It has been observed that Xalan v2.6 and

Camel v1.6 have a constant FDA of around 97.5 %

and 63 % for both DT and K-NN classifiers,

respectively. For other datasets, the performance of

K-NN is superior to DT. On comparing the

performance of E-RF-based classifiers, the

performance of the proposed MDFS is the best, with

an FDA of 99.3 % (Xalan v2.6) than the ADASYN

classifier.

A comparison of PCC values among various

classifiers with the proposed E-RF-MDFS has been

given in Fig. 7. The lines represent the algorithm’s

PCC score in the classification process. DT has been

ranked last among all classifiers, whereas E-RF-

MDFS remained top. DT is considered a poor

classifier with a PCC of -0.53. E-RF-MDFS has been

ranked top with a score of 0.82 because it was closest

to +1 compared to E-RF-ADASYN.

Fig. 8 depicts the comparison of E-RF with other

ensemble methods in terms of FDA and RPR for

SFPS. During the instability of DT, a little variation

in the layout of the effective decision tree resulted in

often erroneous findings. Similarly, the K-NN does

not learn or generate any discriminating function

throughout the training phase. Hence, DT and K-NN

methods gave poor performance in both FDA and

RPR. Utilizing a representative sample of data and

characteristics, the suggested E-RF decreases the

correlation between trees and provides the best value

of FDA and RPR.

Received: April 1, 2021. Revised: May 5, 2021. 503

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.43

Figure. 8 Comparison of E-RF with other ensemble

methods of FDA and RPR for SFPS

Figure. 9 Comparison graph between proposed E-RF, K-

NN, and DT

Fig.9 shows the comparison graph between the

proposed methodology and other methodologies. The

proposed E-RF performance is better than others. The

accuracy is calculated in terms of percentage. The E-

RF accuracy is 97 %. The performance of the

proposed E-RF-MDFS has improved for all the

performance metrics. It selects the most relevant

features through appropriate integration of bat and

butterfly optimization through the BBO feature

extraction algorithm. Also, MDFS first discovers

differentiated software data objects and then finds

samples near derived distinguished data items

through evaluation of 𝐷𝑑𝑑𝑜
𝑡𝑜𝑡𝑎𝑙.

5. Conclusion

The suggested research focuses on creating a new

sampling approach known as ensemble-random

forest with multi-distinguished-features sampling (E-

RF-MDFS) for finding the best sample illustration for

portraying the full dataset. The feature extraction

technique has been carried out using bat-induced

butterfly optimization (BBO). The tests are carried

out on 8 datasets from the PROMISE repository to

show that the suggested E-RF-MDFS is more

efficient than other established approaches such as

DT and K-NN.

The suggested technique has been evaluated

using fault detection accuracy, actual positive rate,

and Pearson’s correlation coefficient. The suggested

E-RF-MDFS achieves the greatest results because it

can properly locate the main and supplementary

DDO, resulting in the best RPR value. In addition, E-

RF-MDFS has been given the highest score of 0.82

since it was the closest to +1 compared to E-RF-

ADASYN. When assessing E-RF-based classifiers’

effectiveness, the suggested MDFS outperforms the

ADASYN classifier with an FDA of 99.3 percent

(Xalan v2.6).

Conflicts of interest

“The authors declare no conflict of interest.”

Author contributions

Conceptualization, A. Balaram and S.Vasundra;

methodology, A. Balaram; software, A. Balaram;

validation, A. Balaram and S. Vasundra; formal

analysis, A. Balaram; investigation, A. Balaram;

resources, A. Balaram and S. Vasundra; data curation,

A. Balaram; writing—original draft preparation, A.

Balaram; writing—review and editing, S. Vasundra;

visualization. A. Balaram; supervision, S. Vasundra;

References

[1] X. Sun, X. Peng, K. Zhang, Y. Liu, and Y. Cai,

“How security bugs are fixed and what can be

improved: an empirical study with Mozilla”,

Science China Information Sciences, Vol. 62,

No. 1, pp. 1-3, 2019.

[2] X. Sun, W. Zhou, B. Li, Z. Ni, and J. Lu, “Bug

localization for version issues with defect

patterns”, IEEE Access, Vol. 7, pp. 18811-18820,

2019.

[3] H. Tong, B. Liu, and S. Wang, “Software defect

prediction using stacked denoising autoencoders

and two-stageensemble learning”, Information

and Software Technology, Vol. 96, pp. 94-111,

2018.

Received: April 1, 2021. Revised: May 5, 2021. 504

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.43

[4] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep

learning-based software defect prediction”,

Neurocomputing, Vol. 385, pp. 100-110, 2020.

[5] S. Law, C. I. Seresinhe, Y. Shen, and M. G. Roig,

“Street-Frontage-Net: urban image

classification using deep convolutional neural

networks”, International Journal of

Geographical Information Science, Vol. 34, No.

4, pp. 681-707, 2020.

[6] D. Palaz, M. M. Doss, and R. Collobert, “End-

to-end acoustic modeling using convolutional

neural networks for HMM-based automatic

speech recognition”, Speech Communication,

Vol. 108, pp. 15-32, 2019.

[7] C. Manjula and L. Florence, “A deep neural

network-based hybrid approach for software

defect prediction using software metrics”,

Cluster Computing, Vol. 22, No. 4, pp. 9847-

9863, 2019.

[8] T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen,

“Improving defect prediction with deep forest”,

Information and Software Technology, Vol. 114,

pp. 204-216, 2019.

[9] D. Sharma and P. Chandra, “Linear regression

with factor analysis in fault prediction of

software”, Journal of Interdisciplinary

Mathematics, Vol. 23, No. 1, pp. 11-19, 2020.

[10] Y. Niu, Z. Tian, M. Zhang, X. Cai, and J. Li,

“The adaptive two-SVM multi-objective

cuckoo search algorithm for software defect

prediction”, International Journal of Computing

Scienceand Mathematics, Vol. 9, No. 6, pp. 547-

554, 2018.

[11] Z. Xu, J. Liu, X. Luo, Z. Yang, Y. Zhang, P.

Yuan, and T. Zhang, “Software defect prediction

based on kernel PCA and weighted

extremelearning machine”, Information and

Software Technology, Vol. 106, pp. 182-200,

2019.

[12] A. Kaur and I. Kaur, “An empirical evaluation

of classification algorithms for fault prediction

in open source projects”, Journal of King Saud

University-Computer and Information Sciences,

Vol. 30, No. 1, pp. 2-17, 2018.

[13] F. Yucalar, A. Ozcift, E. Borandag, and D.

Kilinc, “Multiple-classifiers in software quality

engineering: Combining predictors to improve

software fault prediction ability”, Engineering

Science and Technology, an International

Journal, Vol. 23, No. 4, pp. 938-950, 2020.

[14] R. Mousavi, M. Eftekhari, and F. Rahdari,

“Omni-ensemble learning (OEL): utilizing over-

bagging, static and dynamic ensemble selection

approaches for software defect prediction”,

International Journal on Artificial Intelligence

Tools, Vol. 27, No. 06, p. 1850024, 2018.

[15] F. Pecorelli, and D. D. Nucci, “Adaptive

selection of classifiers for bug prediction: A

large-scale empirical analysis of its

performances and a benchmark study”, Science

of Computer Programming, Vol. 205, p. 102611,

2021.

[16] H. Turabieh, M. Mafarja, and X. Li, “Iterated

feature selection algorithms with layered

recurrent neural networks for software fault

prediction”, Expert systems with applications,

Vol. 122, pp. 27-42, 2019.

[17] I. Tumar, Y. Hassouneh, H. Turabieh, and T.

Thaher, “Enhanced binary moth flame

optimization as a feature selection algorithm to

predict software fault prediction”, IEEE Access,

Vol. 8, pp. 8041-8055, 2020.

[18] A. Balaram and S. Vasundra, “Prediction of

software fault-prone classes using ensemble

random forest with adaptive synthetic sampling

algorithm”, Automated Software Engineering,

Vol. 29, No. 1, pp. 1-21, 2022.

[19] A. Mateen, S. Y. Nam, M. A. Haider, and A.

Hanan, “A Dynamic Decision Support System

for Selection of Cloud Storage Provider”, Appl.

Sci. Vol. 11, No. 23, p. 11296, 2021.

[20] O. Gültekin, E. Cinar, K. Özkan, and A. Yazıcı,

“Real-Time Fault Detection and Condition

Monitoring for Industrial Autonomous Transfer

Vehicles Utilizing Edge”, Artificial Intelligence

Sensors, Vol. 22, No. 9, 3208, 2022.

