
Received: July 16, 2022. Revised: August 8, 2022. 691

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

A New Round Robin Algorithm for Task Scheduling in Real-time System

Nermeen Ghazy1* Afaf Abdelkader1 Mervat S. Zaki1 Kamal A. ElDahshan2

1Department of Mathematics, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt

2Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypt

* Corresponding author’s Email: nermeena207@gmail.com

Abstract: The modern human life is strongly reliant on real-time systems. The operating system is one of the most

significant real-time systems. To meet the demands of the future, operating systems must be upgraded. Nowadays, a

lot of systems are used; like mobile applications and internet of things. Task scheduling is so important in the

operating system to enhance the performance in these systems. Round Robin algorithm has been widely used in task

scheduling. In this paper, a Median Mean Round Robin (MMRR) algorithm is proposed to significantly enhance the

performance of the Round Robin algorithm. The proposed algorithm finds an optimal dynamic time quantum

└(median+ mean)/2)┘ and generated for each cluster depending on the remaining burst time of the processes. The

performance has been enhanced in terms of waiting time, turnaround time and context switching. The experimental

results show that the proposed algorithm outperforms ADRR, HYRR, EDRR and MARR algorithms.

Keywords: Task scheduling, CPU scheduling, Operating system, Round robin, Dynamic time quantum, MMRR.

1. Introduction

Real-Time Operating System (RTOS) is a

reactive operating system that must respond to

stimuli from a process it is attempting to regulate in

real-time [1]. A reactive system that must meet time

limitations is known as a real-time system [2]. A

real-time system must be able to process

information from the process in a timely manner

without compromising process control[1]. The most

important constraint to meet is time constraints. The

validity of a real-time system is determined not only

by the results of the treatment, but also by the

temporal aspect. The real-time systems can be

classified into three types [3]:

A. A real-time strict system: is one that is

subject to strict time constraints, that is, one in

which even the smallest time error can have fatal

human and economic consequences. Most avionics,

car, and other applications are strict real-time.

B. Real-time flexible system: a system that is

subject to flexible time constraints and can accept a

number of timing faults.

C. A real-time mixed system: is one in which

time restrictions are both strict and flexible.

A real-time task is made up of a set of

instructions that can be executed in order on one or

more processors while keeping time limitations in

mind. A real-time task can be:

A. Periodic: its instances (versions) are repeated

indefinitely, and the duration between two

consecutive activations of instances is constant

(referred to as period).

B. Sporadic: its instances (versions) are repeated

indefinitely, with a minimum time interval between

them.

C. Aperiodic: no relationship exists between

subsequent instances.

Scheduling is the most critical part of an

operating system; it enables processes access to the

system resources. Many requirements, such as fast

computing, multitasking (running many processes at

the same time), and multiplexing (transmitting

numerous flows at the same time) [4]. It is too

necessary to use of scheduling algorithms. When

there are several runnable processes, scheduling is a

fundamental function that chooses which one to run.

Received: July 16, 2022. Revised: August 8, 2022. 692

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

Some examples of scheduling algorithms like First

Come First Served (FCFS), Shortest Job First (SJF),

Round Robin (RR), and Priority Based Scheduling

[5]. Except for Round Robin scheduling, the most of

these algorithms are considered ineffective in real-

time operating systems due to their poor

performance. A number of assumptions are taken

into account while scheduling CPUs, including the

following:

A. A job pool is a collection of processes that

are waiting for CPU time.

B. Each process is self-contained and competes

for resources.

C. The scheduler's process is to distribute the

CPU's limited resources across the many processes

in a way that optimizes specific performance metrics.

The scheduler which is at the heart of the kernel,

is responsible for determining which process should

be run. An operating system can be classified into

three sorts of schedulers in this context [6]: long-

term which is load a process in the memory [7],

mid-term or medium-term which is reduces memory

consumption [7], and short-term which is select

ready process to run on CPU [7]. Round Robin(RR)

is a widely used scheduling algorithm that gives

each process equal priority [8]. For the execution of

the process, Round Robin uses a small unit of time

called Time Quantum or Time Slice (TQ) [9]. If the

CPU burst of a process exceeds 1-time quantum, the

process is pre-empted and returned to the ready

queue. A new process is added to the tail of the

circular queue if it arrives. However, on a time-

sharing operating system and real-time systems, RR

performs better [10]. Round Robin algorithms have

been tested using real-time operating systems,

namely RTOS, and it has been discovered that these

systems will work well since they are correctly

configured to handle the scheduling process in real-

time [11]. It uses a fixed time slice. All previous

works based on Round Robin edit the time slice

method. However, different approaches reveal

distinct limitations [12]. When the time slice is too

large, the processes in the ready queue become

starved [13]. In the other side, the context switching

time is high when TQ is small. RR improves

response time and makes efficient use of shared

resources. Due to the usage of static time quantum,

processes with varying CPU bursts have longer

waiting time, undesired overhead, and longer

turnaround time. Using a dynamic time quantum

with RR, it is automatically adapt to tasks in the

queue. Although the current algorithms using a

dynamic time quantum do not use several

parameters in the selection of the quantum, which

have an impact on the scheduling process and the

system performances [14].

The main contribution of this paper is to

improve the present Round Robin algorithm by

enhancing the time quantum in real time for

candidate processes without compromising its

fairness. A new algorithm for changing time

quantum in a progressive manner at various states of

the ready queue is proposed. A mathematical model

has been created to prove that the proposed

algorithm outperforms the traditional Round Robin

algorithm in terms of several performance metrics

such as average waiting time, turnaround time and

number of context switches. The proposed improved

version of Round Robin algorithm outperforms the

traditional Round Robin algorithm, according to the

experimental results. This proposed algorithm solves

the problem by using a progressive time quantum,

which is modified repeatedly based on the

remaining burst time of currently executing

processes. Furthermore, the processes are sorted in

ascending order of their burst time, and then the

proposed algorithm is applied to each process to

improve turnaround time, waiting time, and context

switch. In comparison to the other RR techniques

discussed in this work, the drawbacks of the

discussed algorithms like ADRR [15], HYRR [16],

EDRR [17] and MARR [18] are that they give a

large average waiting time, average turnaround time

and number of context switches. The contribution of

this work is to: 1- Minimizes average waiting time

and average turnaround time. 2- Reduce the number

of context switches. The rest of the paper is

organized as follows. In Section 2, scheduling

criteria is reviewed. Section 3 focuses on some

literature review. In Section 4, the proposed

algorithm is presented in detail. Section 5 discusses

the experimental results. In Section 6, result analysis

is explained. The paper is concluded and described

future work in Section 7.

2. Scheduling criteria

Each scheduling method has its own set of

characteristics that aid in determining which

scheduling algorithm will be more effective in the

current problem [19].

2.1 CPU utilization

Best scheduling methods are those in which the

CPU does not has a minimum idle time. Processing

on the CPU must be occupied. Hard real-time CPU

utilization is 89.9%, whereas soft real-time CPU

utilization is 60% [20].CPU utilization time is the

Received: July 16, 2022. Revised: August 8, 2022. 693

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

percentage of time T spent by the CPU in the

execution of processes.

2.2 Throughput

It is the number of processes that have been

executed in a given amount of time. The CPU will

provide good throughput if it is constantly busy.

2.3 Turnaround time

The total time it takes for the process to execute,

from the time of arrival until the time of completion

is called turnaround time [21] and calculated as in

Eq. (1):

TATi = Tcti – Tati (1)

The average turnaround time (ATT) is calculated

as in Eq.(2):

ATT =
∑ 𝑇𝐴𝑇𝑖

𝑛
𝑖=0

𝑛
 (2)

Where TATi is the turnaround time of the

processes, Tcti is the completion time of the

processes; Tati is the arrival time of the processes, n

is the number of the processes and ATTi is the

average turnaround time for the processes.

2.4 Response time

It is the period between the arrival of a process

and the time at which it receives its first response

(allocated to the CPU) [21].

2.5 Waiting time

It is the total time the process spent in ready

queue [22]. It is calculated as in Eq. (3).

WTi = Ttati– Tbti (3)

The average waiting time (AWT) is calculated

as in Eq. (4):

AWT =
∑ 𝑊𝑇𝑖

𝑛
𝑖=0

𝑛
 (4)

Where WTi is the waiting time of the processes,

Tbti is the burst time of the processes and AWT is

the average waiting time for the processes.

2.6 Context switching

It is the process of shifting the CPU from one

process to another. Switching time should be kept to

a minimum because it wastes time during the

process' execution [23].

Main objectives of a good scheduling algorithm are:

• Maximize CPU utilization.

• Maximize throughput.

• Minimize turnaround time.

• Minimize response time.

• Minimize waiting time.

• Minimize the number of context switching.

3. Literature review

For allocation processes, many CPU scheduling

algorithms have been implemented. Taking the best

features of each algorithm and combining them to

create the ideal algorithm for a given situation.

In [24], the author proposed a modified genetic

algorithm in cloud computing to identify the best

servers to deploy these VMs and the best VMs to

use for completing tasks that have been received.

The chromosome of GAS is represented by this

proposed algorithm using a matrix structure that

integrates the ids of jobs, VMs, and servers. The

algorithm achieved better performance in terms of

makespan, scheduling length, throughput, resource

utilization, energy consumption, and imbalance

degree. In [25], an optimization model based on a

Multi-Objective Improved Cuckoo Search

Algorithm (MOICS) has been proposed in order to

optimize task scheduling issues in a cloud

environment as automatically allocating work to

cloud nodes. This algorithm decreased both the

processing time for the jobs and the overall cost0.

Computational resources that can be used efficiently

on cloud nodes are distributed using the proposed

methodology. The proposed algorithm minimizes

both makespan and cost. In [26], the author

proposed a study that suggests task scheduling,

resource mapping, data centre (DC) clustering, and

virtual machine (VM) clustering to address the

resource utilization and load imbalance that

consumes larger waiting time of users. The region-

based fuzzy probabilistic C-means clustering (R-

FPCM) algorithm is initially used to cluster the DCs.

Data dependencies, million instructions per second

(MIPS), latency, storage, bandwidth, and VM counts

are collected before performing a DC clustering

operation. The VMs are clustered using multi-

objective density-based spatial clustering based on

estimated capacity and bandwidth depending on DC

clustering. The Markov chain is used to predict

future load and balance in accordance with it. To

monitor the VM resources and map them according

to the user's task requirements, an intermediate

Received: July 16, 2022. Revised: August 8, 2022. 694

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

broker is used. The broker satisfies the service level

agreement (SLA) for each user before using a quick

1 to N resource mapping technique to map resources.

The next step is an entropy-based monotonic

scheduling algorithm that lists user tasks in the order

specified by the task's size, type, deadline, and

arrival time. Entropy computation that is performed

dynamically makes it possible to optimize

scheduling based on the state of the system. The

system gave better results in terms of execution time,

latency, resource utilization, and response time. In

[27], In the cloud environment, a Hybrid Max-Min

Genetic Algorithm (HMMGA) is offered for task

scheduling and load balancing. Every Virtual

Machine (VM) has its load initially measured; if the

load is high, HMMGA is used to balance the load.

The tasks are migrated from the over-loaded VMs to

the under-loaded VMs by HMMGA, which chooses

the optimal VMs to assign them to. In the cloud

environment, HMMGA considerably reduces the

performance imbalance caused by workload

imbalance. In [28], the author proposed the Cuckoo

Crow Search Algorithm (CCSA), an effective

hybridized scheduling algorithm had been presented

for improvising the task scheduling process. It

mimics the parasitic behaviour of the cuckoo and the

crow bird's habit of gathering food. The crow bird is

always observing its neighbours in an effort to find a

better food source than the one it has at the moment.

At some situations the crow even goes a step further

and snatches its neighbour’s food. The CCSA was

created to be used in the cloud environment for

finding an appropriate VM to execute the task

scheduling process and was inspired by these traits

of these birds. The proposed CCSA reduced

makespan and cost.

In [29], the author proposed a modified Round

Robin algorithm named average max Round Robin.

In this algorithm, processes are scheduled for

execution from the ready queue (RQ), implying that

they have already been added to the ready queue.

All processes in the ready queue have zero arrival

time. The processes are sorted in an ascending order

and the time quantum is calculated for the processes

equal to (average + maximum burst time)/2.
Processes are executed in iteration, and as the first

iteration is completed, some processes are executed

and then they deleted from the ready queue. The

same process will be carried out until there are no

more processes in the ready queue to run. Then the

average waiting time and turnaround time are

calculated. In [30], a new median Round Robin

algorithm has been proposed named modified

median Round Robin algorithm (MMRRA). The

authors use a dynamic TQ calculated by taking the

square root of median and highest burst time of the

process. This algorithm includes an essential

condition. If any process completes its first cycle of

time quantum and the remaining burst time of this

process is greater than 20% of its total burst time,

then those processes will go for the second cycle of

the processing; otherwise, the CPU will complete

the processes. In [16], an improvement is applied to

the Round Robin algorithm named an efficient

customized Round Robin algorithm (EDRR) by

choosing a dynamic time quantum that would let a

process to complete if the remaining execution time

was less than or equal to 0.2th of the total execution

time. The maximum burst time is founded from the

available processes in the ready queue. The time

quantum is then calculated as a percentage of this

time which is a 0.8th fraction of the maximal burst

time. The scheduler now allocates the CPU to all

processes in the ready queue that have a burst time

smaller than the time quantum, while the bigger

ones are held in reserve. The time quantum is set to

maximal burst time once all of the smaller processes

have completed their execution. This algorithm

improves the system's performance by reducing on

average turnaround and waiting times.

In [1], an improved Round Robin scheduler is

developed named priority based Round Robin

(PBRR) CPU scheduling algorithm. With a small

enhancement, it is close to RR. It takes priority into

account based on task management. Each process is

assigned a priority index, and then the processes are

sorted according to priority index in the ready queue.

The first process in the ready queue is selected by

this algorithm and the CPU is allocated for a time

interval of time quantum. The allocated processes

for a time interval that they have been executed are

placed at the end of the ready queue. When

processes have finished execution, they removed

from the ready queue and the average of waiting

time, turnaround time and response time are

calculated. In [15], a modified Round Robin

scheduler is developed named a novel amended

dynamic Round Robin Scheduling algorithm

(ADRR). The authors used dynamic time quantum

to modify the traditional RR algorithm. The TQ,
which is a critical element of RR's performance, is

set to the value of the lowest CPU burst time. The

authors set a TQ threshold of 20 and then check a

condition: if TQ is less than the threshold (20), the

condition is true, and TQ is set to 20. This condition

is checked to ensure that the Value of TQ does not

become too little small, resulting in an increased

number of context switches. TQ is re-adjusted after

each cycle. All processes are sorted in the ready

queue in an increasing order based on the CPU burst

Received: July 16, 2022. Revised: August 8, 2022. 695

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

time. They are assigned to the CPU for a time

interval. If a process's remaining CPU burst time

exceeds half of the TQ, it will be pre-empted. Pre-

empted processes are reinserted in an ascending

order into the ready queue. The same principle

applies until all of the processes are finished. In [17],

the authors performed an innovative scheduling

algorithm to reduce the average of waiting time,

turnaround time, response time and number of

context switches. It is called a hybrid Round Robin

scheduling mechanism (HYRR) for process

management. The mean of burst time and the

minimum of burst time are used to calculate time

quantum dynamically. Enhanced time quantum

(ETQ) is calculated in phase 1 using the mean and

lowest burst time. Following the calculation, the

process with the shortest burst time and which is not

currently being run in the CPU is assigned high

priority and allocated for 1 Enhanced quantum time

in the CPU. Phase-1 is performed until each process

gets a single CPU allocation. Phase 2 places ready

queue processes in ascending order based on their

remaining burst time. Following the arrangement,

the first process in the ready queue is given 1

quantum time in the CPU. If the current executing

process's burst time in the CPU is less than or equal

to 1ETQ, then the current process is reallocated in

the CPU. The second phase is performed until the

ready queue is empty. In [22], the authors proposed

a multi-programmed operating system’s Round

Robin algorithm. The authors enhanced the value of

time quantum by partition the ready queue into three

sub queues: highest, medium, and lowest priority.

To assign the value of time quantum to one of these

sub-queues, it depends on a threshold value. This

algorithm uses a separated time quantum for every

sub-queue. All processes in each sub-queue should

be finished execution respectively. This algorithm

has been reduced drastically the results in metrics of

average waiting time and turnaround time. In [18],

the authors developed a new Round Robin algorithm

by using a dynamic time quantum. They use the

average and median of the burst time for each

process (MARR). This algorithm enhances the

average waiting time and turnaround time.

All of the improvements to Round Robin CPU

scheduling described above are have some issues.

The processes that enter the system may have a

varying burst time, which means that their CPU

execution time can vary. If all of the processes are

sent to the CPU for execution in an increasing order,

it will help to improve the turnaround time and

waiting time. The RR algorithm operates on a fixed

time quantum (TQ). The Round Robin algorithm has

two possible outcomes: quantum time is either high

or low. If the time quantum is large, the round-robin

algorithm will run on a first-come-first-serve

(FCFS) basis, and if the time quantum is extremely

low, the algorithm will fail and produce a large

number of context switches. So this paper proposes

an optimal time quantum which is dynamic that

solves this problem which enhances the performance

of the system by: maximizing CPU utilization,

minimizing waiting time and turnaround time and

reducing number of context switches [31].

4. Proposed algorithm (median mean round

robin algorithm)

This approach of RR scheduling algorithm

solves the drawbacks of the Round Robin algorithm.

In processes with small execution time, the Round

Robin algorithm is not efficient because it provides

a large number of context switches. Therefore, the

waiting time and response time of process increase

and hence the throughput of the system is decrease.

In this proposed algorithm, we have implemented

RR algorithm while taking the mean and the median

of burst time of the processes into account. If all of

the processes arrive in the ready queue at the same

time, they are arranged in an ascending order based

on their burst time. Then the time quantum is

calculated dynamically by using the median and the

mean as in Eq. (5).

𝑇𝑄 = └(
(𝑚𝑒𝑑𝑖𝑎𝑛+𝑚𝑒𝑎𝑛)

2
)┘ (5)

Where TQ is the time quantum of processes,

median is median of burst time of all processes as in

Eqs. (6) and (7) and mean is the summation of all

processes divided by the number of all processes as

in Eq. (8).

𝑀𝑒𝑑(𝐵𝑇𝑖)= 𝐵𝑇𝑖 [
𝑛+1

2
] if n is odd (6)

𝑀𝑒𝑑(𝐵𝑇𝑖) = [𝐵𝑇𝑖(
𝑛

2
)] + [𝐵𝑇𝑖 (

𝑛

2
) + 1] /2

if n is even (7)

𝑚𝑒𝑎𝑛 =
∑ 𝐵𝑇𝑖𝑛

𝑖=1

𝑛
 (8)

Where 𝐵𝑇𝑖 is the burst time of the process, n is

the number of all processes. After calculation, the

first process in the ready queue is allocated in the

CPU. If the remaining CPU’s burst time of the

currently running process is less than half of the

time quantum, the CPU is reallocated again to the

currently running process for the remaining CPU

burst time. Otherwise, the process will be terminated

Received: July 16, 2022. Revised: August 8, 2022. 696

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

to the tail of the ready queue. After allocation, if all

processes are completed its execution and the ready

queue is empty, then the average of waiting time and

turnaround time is calculated. The problem of

higher average waiting time, turnaround time and

the large number of context switches are solved.

Hence, the proposed algorithm enhances the

performance of the system. The flowchart of the

proposed algorithm is described as follow in Fig. 1.

Median Mean Round Robin algorithm:

1. Assign processes to the ready queue.

2. Arrange all the processes in an ascending order

 according to their burst time

3. TQ ←└ (median + mean) / 2┘

4. While (ready queue! =NULL)

5. If (remaining burst time < 0.5 * TQ)

6. Allocate CPU again to the current

 running process for the remaining burst

 time.

 Else

7. Put the remaining of the current process

 at the end of the ready queue.

8. Go to step 4

9. End while

10. Calculate average waiting time, average

 turnaround time and the number of context

 switches (NOS).

5. Experimental results

In this section, we described the results of the

proposed algorithm to prove the effectiveness of it.

We choose cases utilised in the majority of these

algorithms, with the same number of processes,

burst time, and arrival time, to demonstrate the

effectiveness of our technique and to ensure a fair

comparison between the proposed algorithm and the

current algorithms. P1, P2, P3, P4, and P5 are the

five processes that have been considered.

5.1 Case 1: process are in random

The processes are arriving at zero time with

random burst time 42, 101, 135, 68 and 170

respectively. Table 1 shows the burst time of

processes with zero arrival time. Fig. 2 to 7 show the

Gantt charts for the algorithms; RR [8], ADRR [15],

HYRR [17], EDRR [16], MARR [18] and the

proposed algorithm (MMRR).

Figure. 1 Flowchart of the MMRR algorithm

5.1.1. RR

The processes are entered in the ready queue in

their order; P1=42, P2=101, P3=135, P4=68 and

P5=170. Let TQ= 40.

Table 1. Processes are coming in random order

Process Burst time

P1 42

P2 101

P3 135

P4 68

P5 170

P1 P2 P3 P4 P5 P1 P2 P3 P4

0 40 80 120 160 200 202 242 282 310

P5 P2 P3 P5 P3 P5 P5

310 350 371 411 451 466 506 516

Figure. 2 Gantt chart for RR algorithm (case 1)

Received: July 16, 2022. Revised: August 8, 2022. 697

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

AWT= 269.8ms

ATT = 373ms

P1 P4 P2 P3 P5 P4 P2 P3 P5 P2

0 42 84 126 168 210 236 262 288 314 347

 TQ=42 TQ=26

P3 P5 P3 P5 P5

 347 380 413 447 481 516

 TQ=33 TQ=34 TQ=35

Figure. 3 Gantt chart for ADRR algorithm (case 1)

AWT= 214.4ms

ATT = 317.6ms

P1 P4 P2 P3 P5 P2 P3 P5 P5

 0 42 110 183 256 329 357 419 492 516

Figure. 4 Gantt chart for HYRR algorithm (case 1)

AWT= 185.6ms

ATT = 288.8ms

P1 P2 P3 P4 P5

 0 42 143 278 346 516

 TQ=136 TQ=170

Figure. 5 Gantt chart for EDRR algorithm (case 1)

AWT= 161.8ms

ATT = 265ms

5.1.2. ADRR

All the processes are sorted in the ready queue in

increasing order according to their burst time;

P1=42, P4=68, P2=101, P3=135 and P5=170. TQ is

calculated according to ADRR algorithm. The

calculated TQ is 42, 26, 33, 34 and 35.

5.1.3. Hybrid round robin (HYRR)

All the processes are sorted in the ready queue in

increasing order according to their burst time;

P1=42, P4=68, P2=101, P3=135 and P5=170. TQ is

calculated according to HYRR algorithm. The

calculated TQ is 73.

5.1.4. EDRR

Enter the processes in the ready queue in their

order; P1=42, P2=101, P3=135, P4=68 and P5=170.

TQ is calculated according to EDRR algorithm. The

calculated TQ is 136 and 170.

5.1.5. MARR

All the processes are sorted in the ready queue in

increasing order according to their burst time;

P1=42, P4=68, P2=101, P3=135 and P5=170. TQ is

P1 P4 P2 P3 P5 P3 P5 P5

0 42 110 211 314 417 449 499 516

 TQ=103 TQ=50 TQ=17

Figure. 6 Gantt chart for MARR algorithm (case 1)

AWT= 162.2ms

ATT = 265.4ms

P1 P4 P2 P3 P3 P5 P5

0 42 110 211 313 346 448 516

 TQ=102 TQ=68

Figure. 7 Gantt chart for median mean round robin

algorithm (case 1)

AWT= 141.8ms

ATT = 245ms

calculated according to MARR algorithm. The

calculated TQ is 102, 50 and 18.

5.1.6. Proposed algorithm (median mean round robin)

All the processes are sorted in the ready queue in

increasing order according to their burst time;

P1=42, P4=68, P2=101, P3=135 and P5=170. TQ is

calculated according to proposed algorithm. The

calculated TQ is 102 and 68.

The following Table 2 presents a comparative

study among the existing algorithms with respect to

TQ, AWT, ATT and number of context switches for

case 1.

Fig. 8 below shows the comparison of average

waiting time, average turnaround time and NOS for

the existing algorithms.

5.2 Case 2: The incoming burst time in an

increasing order

The processes are arriving at zero time with

increasing burst time 5, 45, 78, 90 and 120

Table 2. Comparative study of RR, ADRR, HYRR,

EDRR, MARR and MMRR algorithms (case 1)

Algorithm TQ
AWT

(ms)

ATT

(ms)
NOS

RR 40 269.8 373 14

ADRR 42,26,33,

34,35

214.4 317.6 13

HYRR 73 185.6 288.8 7

Received: July 16, 2022. Revised: August 8, 2022. 698

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

EDRR 136,170 161.8 265 4

MARR 103,50,1

7

162.4 265.6 6

proposed 49,50 141.8 245 4

Figure. 8 Comparative graph for the average waiting time,

turnaround time and the NOS (case 1)

Table 3. Processes are in increasing order

Process Burst time

P1 5

P2 45

P3 78

P4 90

P5 120

respectively are shown in Table 3. Fig. 9 to 14 show

the Gantt charts for the algorithms; RR[8],

ADRR[15], HYRR[17], EDRR[16], MARR[18] and

the proposed algorithm (MMRR).

5.2.1. RR

The processes are entered in the ready queue in their

order; P1=5, P2=45, P3=78, P4=90 and P5=120. Let

TQ=25.

5.2.2. ADRR

All the processes are sorted in the ready queue in

increasing order according to their burst time; P1=5,

P2=45, P3=78, P4=90 and P5=120. TQ is calculated

according to ADRR algorithm. The calculated TQ is

20, 25, 33 and 42.

5.2.3. HYRR

All the processes are sorted in the ready queue in

increasing order according to their burst time; P1=5,

P2=45, P3=78, P4=90 and P5=120. TQ is calculated

according to HYRR algorithm. The calculated TQ is

37.

5.2.4. EDRR

The processes are entered in the ready queue in

their order; P1=5, P2=45, P3=78, P4=90 and

P5=120 according to TQ. TQ is calculated

according to EDRR algorithm. The calculated TQ is

96 and 120.

P1 P2 P3 P4 P5 P2 P3 P4 P5

 0 5 30 55 80 105 125 150 175 200

P3 P4 P5 P3 P4 P5 P5

 200 225 250 275 278 293 318 338

Figure. 9 Gantt chart for RR (case 2)

AWT= 140.2ms

ATT = 207.8ms

P1 P2 P3 P4 P5 P2 P3 P4

 0 5 25 45 65 85 110 135 160

 TQ=20 TQ=25

P5 P3 P4 P4 P5 P5

 160 185 218 251 263 296 338

 TQ=33 TQ=42

Figure. 10 Gantt chart for ADRR (case 2)

AWT= 119.2ms

ATT = 186.8ms

P1 P2 P3 P4 P5 P2 P3 P3 P4 P4

0 5 42 79 116 153 161 198 202 239 255

P5 P5 P5

 255 292 329 338

Figure. 11 Gantt chart for HYRR algorithm (case 2)

AWT= 124.6ms

ATT = 192.2ms

P1 P2 P3 P4 P5

 0 5 50 128 218 338

 TQ=96 TQ=120

Figure. 12 Gantt chart for EDRR algorithm (case 2)

AWT= 80.2ms

ATT = 147.8ms

5.2.5. MARR

All the processes are sorted in the ready queue in

increasing order according to their burst time; P1=5,

P2=45, P3=78, P4=90 and P5=120. TQ is calculated

according to MARR algorithm. The calculated TQ is

72, 21 and 27.

0

100

200

300

400

Ti
m

e
 (

m
s)

Algorithms

AWT

ATT

NOS

Received: July 16, 2022. Revised: August 8, 2022. 699

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

5.2.6. Proposed algorithm (median mean round robin)

All the processes are sorted in the ready queue in

increasing order according to their burst time; P1=5,

P2=45, P3=78, P4=90 and P5=120. Calculate the

time quantum according to MMRR algorithm. The

calculated time quantum is 72 and 48.

The following Table 4 presents a comparative

study among the existing algorithms with respect to

TQ, AWT, ATT and number of context switches for

case 2.

Fig.15 below shows the comparison of average

waiting time, average turnaround time and number

of context switches for the existing algorithms.

It is noticed that from the results, EDRR

algorithm gave the same results of the average

waiting time and turnaround time as the proposed

algorithm in the case of the processes coming in

increasing order because they are already arranged.

P1 P2 P3 P4 P5 P3 P4 P5 P5

0 5 50 123 196 269 274 291 311 338

 TQ=73 TQ=20 TQ=27

Figure. 13 Gantt chart for MARR algorithm (case 2)

AWT= 124ms

ATT = 191.6ms

P1 P2 P3 P3 P4 P4 P5 P5

 0 5 50 122 128 200 218 290 338

 TQ=72 TQ=48

Figure. 14 Gantt chart for median mean round robin

algorithm (case 2)

AWT= 80.2ms

ATT = 147.8ms

Table 4. Comparative study of RR, ADRR, HYRR,

EDRR, MARR and proposed algorithm (case 2)

Algorithm

TQ

AWT

(ms)

ATT

 (ms)

NOS

RR 25 140.2 207.8 14

ADRR 20,25,

33,42

119.2 186.8 11

HYRR 37 102.4 192.2 8

EDRR 96,120 80.2 147.8 4

MARR 73,20,

27

124 191.6 7

proposed 72,48 80.2 147.8 4

Figure. 15 Comparative graph for the average waiting

time, turnaround time and the NOS (case 2)

5.3 Case 3: Process are coming in decreasing

order

The processes are arriving at zero time with

decreasing burst time 140, 78, 62, 45 and 34

respectively are shown in Table 5.

Fig.16 to 21 show the Gantt charts for the

algorithms; RR [8], ADRR [15], HYRR [17], EDRR

[16], MARR [18] and the proposed

algorithm(MMRR).

5.3.1. RR

The processes are entered in the ready queue in

their order; P1=140, P2=78, P3=62, P4=45 and

P5=34. Let TQ= 30.

5.3.2. ADRR

All the processes are sorted in the ready queue in

increasing order according to their burst time;

P5=34, P4=45, P3=62, P2=78 and P1=140. TQ is

calculated according to ADRR algorithm. The

calculated TQ is 34, 28, 20 and 58.

Table 5. Processes are in decreasing order

Process Burst time

P1 140

P2 78

P3 62

P4 45

P5 34

P1 P2 P3 P4 P5 P1 P2 P3 P4

0 30 60 90 120 150 180 210 240 255

P5 P1 P2 P3 P1 P1

 255 259 289 307 309 339 359

Figure. 16 Gantt chart for RR algorithm (case 3)

AWT= 226ms

ATT = 297.8ms

0

50

100

150

200

250

Ti
m

e
(m

s)

Algorithms

AWT

ATT

NOS

Received: July 16, 2022. Revised: August 8, 2022. 700

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

P5 P4 P4 P3 P2 P1 P3 P2 P1

0 34 68 79 113 147 181 209 237 265

 TQ=34 TQ=28

P2 P1 P1

 265 281 301 359

 TQ=20 TQ=58

Figure. 17 Gantt chart for ADRR algorithm (case 3)

AWT= 120.6ms

ATT = 192.4ms

P5 P4 P3 P2 P1 P3 P2 P1 P1

 0 34 79 132 185 238 247 272 325 359

Figure. 18 Gantt chart for HYRR algorithm (case 3)

AWT= 126.4ms

ATT = 198.2ms

P2 P3 P4 P5 P1

 0 78 140 185 219 359

 TQ=112 TQ=140

Figure. 19 Gantt chart for EDRR algorithm (case 3)

AWT= 124.4ms

ATT = 196.2ms

P5 P4 P3 P2 P1 P2 P1 P1

 0 34 79 141 208 275 286 328 359

 TQ=67 TQ=42 TQ=31

Figure. 20 Gantt chart for MARR algorithm (case 3)

AWT= 107.8ms

ATT = 179.6ms

P5 P4 P3 P2 P2 P1 P1

 0 34 79 141 207 219 285 359

 TQ=66 TQ=74

Figure. 21 Gantt chart for median mean round robin

algorithm (case 3)

AWT= 65.2ms

ATT = 121.2ms

5.3.3. HYRR

All the processes are sorted in the ready queue in

increasing order according to their burst time;

P5=34, P4=45, P3=62, P2=78 and P1=140. TQ is

calculated according to HYRR algorithm. The

calculated TQ is 53.

5.3.4. EDRR

The processes are entered in the ready queue in

their order according to time quantum; P1=140,

P2=78, P3=62, P4=45 and P5=34. TQ is calculated

according to EDRR algorithm. The calculated TQ is

112, 140.

5.3.5. MARR

All the processes are sorted in the ready queue in

increasing order according to their burst time;

P5=34, P4=45, P3=62, P2=78 and P1=140. TQ is

calculated according to MARR algorithm. The

calculated TQ is 66, 43 and 31.

5.3.6. Proposed algorithm (median mean round robin)

All the processes are sorted in the ready queue in

increasing order according to their burst time;

P5=34, P4=45, P3=62, P2=78 and P1=140. TQ is

calculated according to proposed algorithm. The

calculated TQ is 66, 74.

The following Table 6 presents a comparative

study among the existing algorithms with respect to

TQ, AWT, ATT and number of context switches for

case 3.

Fig. 22 below shows the comparison of average

waiting time, average turnaround time and number

of context switches for the existing algorithms.

6. Result analysis

Proposed algorithm (MMRR) is compared with

Amended Dynamic Round Robin (ADRR) [15],

Hybrid Round Robin (HYRR) [17], An efficient

Customized Round Robin (EDRR) [16] and Median

average Round Robin (MARR) [18]. All of these

algorithms are compared with Round Robin

algorithm [8] in order to evaluate their performance.

Proposed algorithm (MMRR), Round Robin, and

Table 6. Comparative study of RR, ADRR, HYRR,

EDRR, MARR and proposed algorithm (case 3)

Algorithm TQ
AWT

(ms)
ATT (ms) NOS

RR 30 226 297.8 13

ADRR 34, 28,

20, 58

120.6 192.4 9

HYRR 53 126.4 198.2 7

EDRR 112,

140

124.4 196.2 4

MARR 67, 42,

31

108 179.8 6

proposed 66,74 94.6 166.4 4

Received: July 16, 2022. Revised: August 8, 2022. 701

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

Figure. 22 Comparative graph for the average waiting

time, turnaround time and the NOS (case 3)

other algorithms are implemented in C ++ and

compared using the same random data set. The

comparison of these algorithms is based on average

waiting time and average turnaround time. Because

of the number of processes in the ready queue

determines average waiting and turnaround time, an

increase in time results to a rise in cost. The

experimental data used two different data sets from

(10-100) and from (500-5000) processes. The

comparison of algorithms in terms of average

waiting time is shown in Fig.23 and Fig 25. For (10

to 100) and (500 to 5000) processes, the stacked line

chart is plotted lying in the ready queue. The

average waiting time of the processes is provided in

milliseconds and plotted against the y-axis, while

the number of processes in the ready queue is

plotted against the x-axis. The proposed algorithm

(MMRR) gives better results, followed by EDRR

[16], MARR [18], HYRR [17] and ADRR [15]. A

substantial improvement is given by these

algorithms when compared to RR algorithm. As the

number of processes is increasing in the ready queue

the performance of the algorithms is enhanced. The

EDRR, MARR, HYRR gives significant results

compared to RR while ADRR gives reasonable

improvement results compared to RR. Whereas the

proposed algorithm shows more significant

improvement results than other algorithms. In terms

of a lower number of processes, the proposed

algorithm act similarly, however as the number of

processes increases, the performance of MMRR

showed an upward trend in average waiting time

compared to other algorithms. In comparison to

suggested algorithms, the average waiting time for

RR is consistently increasing, as seen in the line

chart.

The behaviour of algorithms in terms of average

turnaround time exhibits a similar pattern as shown

in Fig 24 and Fig 26. For (10 to 100) and (500 to

5000) processes, the stacked line chart is plotted

lying in the ready queue. The average turnaround

time of the processes is provided in milliseconds and

plotted against the y-axis, while the number of

processes in the ready queue is plotted against the x-

axis. The proposed algorithm (MMRR) gives better

results, followed by EDRR [16], MARR [18],

HYRR [17] and ADRR [15]. A substantial

improvement is given by these algorithms when

compared to RR algorithm. As the number of

processes is increasing in the ready queue the

performance of the algorithms is enhanced. The

EDRR, MARR, HYRR gives significant results

compared to RR while ADRR gives reasonable

improvement results compared to RR. In terms of a

lower number of processes, the proposed algorithms

act similarly, however as the number of processes

increases, the performance of MMRR showed an

upward trend in average turnaround time compared

to other algorithms. In comparison to suggested

algorithms, the average turnaround time for RR is

consistently increasing, as seen in the line chart.

It is obvious that the proposed algorithm is

efficient and effective for CPU process scheduling.

Figure. 23 Comparative graph for the average waiting

time

Figure. 24 Comparative graph for the average turnaround

time

0
50

100
150
200
250
300
350

Ti
m

e
(m

s)

Algorithms

AWT

ATT

NOS

0

1000

2000

3000

4000

5000

6000

7000

8000

10 30 50 70 90

Ti
m

e
(m

s)

Number of tasks

RR

ADRR

HYRR

EDRR

MARR

MMRR

0

2000

4000

6000

8000

10 30 50 70 90

Ti
m

e
(m

s)

Number of tasks

RR

ADRR

HYRR

EDRR

MARR

MMRR

Received: July 16, 2022. Revised: August 8, 2022. 702

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

Figure. 25 Comparative graph for the average waiting

time

Figure. 26 Comparative graph for the average turnaround

time

7. Conclusion and future work

Many improvements have been developed the

Round Robin algorithm for task scheduling to be

compatible with time sharing systems and real-time

systems. The most important issue in the RR

algorithm is the time quantum. The main

contribution of this paper is enhancing the efficiency

of the RR algorithm by proposing a Median Mean

Round Robin algorithm (MMRR). It found an

intelligent dynamic time quantum which is

calculated as └(median +mean)/2┘ and taking the

remaining burst time of the current process into

account. If the remaining burst time of the current

process is less than half of the time quantum, it

allocated again. Otherwise, it is placed at the end of

the ready queue. Each cycle will have its TQ based

on their burst time for these processes. By using a

variable TQ depends on the burst time, it lead to

minimize the average waiting time, turnaround time

and number of context switches. The experimental

results showed that the proposed algorithm enhances

the performance of the system by reducing the

average waiting time, turnaround time and number

of context switches. The proposed MMRR

algorithm when compared to the RR, ADRR, HYRR,

EDRR and MARR algorithms, successfully

optimised the average waiting time, turnaround time

and number of context switches. So this algorithm

meets the demands in real-time systems. In the

future work, we will improve the RR algorithm by

developing an algorithm of time quantum

calculation combining the dynamic and fixed

quantum values.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization of this paper, Kamal, Mervat,

Afaf and Nermeen; methodology, Kamal, Afaf, and

Nermeen; the software, Afaf and Nermeen; writing

(original draft), Nermeen; review and editing,

Kamal, Afaf and Nermeen.

Acknowledgments

The authors thank the editors and the

anonymous reviewers for their valuable suggestions.

References

[1] S. Zouaoui, L. Boussaid, and A. Mtibaa,

“Priority based round robin (PBRR) CPU

scheduling algorithm”, International. Journal

of Electrical and Computer Engineering, Vol. 9,

No. 1, pp. 190-202, 2019.

[2] P. Patra and P. Pradhan, “An integrated

dynamic model optimizing the risk on real time

operating system”, International Journal of

Information Security and Privacy, Vol. 8, No. 1,

pp. 38-61, 2014.

[3] M. Awadalla, “Heuristic Approach for

Scheduling Dependent Real-Time Tasks”,

Bulletin of Electrical Engineering and

Informatics, Vol. 4, No. 3, pp. 217-230, 2015.

[4] S. Iqbal, H. Gull, S. Saeed, M. Saqib, M.

Alqahtani, Y. Bamarouf, G. Krishna, and M.

Aldossary, “Relative time quantum-based

enhancements in Round robin scheduling”,

Computer Systems Science and Engineering,

Vol. 41, No. 2, pp. 461-477, 2022.

[5] K. Eldahshan, A. Abdelkader, and N. Ghazy,

“Round Robin based Scheduling Algorithms, A

Comparative Study”, Automatic Control and

System Engineering Journal, Vol. 17, No. 2, pp.

29-42, 2017.

[6] N. Harki, A. Ahmed, and L. Haji, “CPU

Scheduling Techniques: A Review on Novel

Approaches Strategy and Performance

Assessment”, Journal of Applied Science and

Technology Trends, Vol. 1, No. 2, pp. 48-55,

0

50000

100000

150000

200000

250000

300000

350000

5
0

0

1
5

0
0

2
5

0
0

3
5

0
0

4
5

0
0

Ti
m

e
(m

s)

Number of tasks

RR

ADRR

HYRR

EDRR

MARR

MMRR

0

100000

200000

300000

400000

Ti
m

e
(m

s)

Number of tasks

RR

ADRR

HYRR

EDRR

MARR

MMRR

Received: July 16, 2022. Revised: August 8, 2022. 703

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

2020.

[7] R. Mishra and G. Mitawa, “Scheduling Process

for CPU”, In: Proc. of Third International

Conference on Intelligent Communication

Technologies and Virtual Mobile Networks, pp.

590-593, 2021.

[8] S. Mostafa and H. Amano, “Dynamic round

robin CPU scheduling algorithm based on K-

means clustering technique”, Applied Sciences

(Switzerland), Vol. 10, No. 15, 5134, 2020.

[9] B. Richardson and W. Istiono, “Comparison

Analysis of Round Robin Algorithm with

Highest Response Ratio Next Algorithm for

Job Scheduling Problems”, International

Journal of Open Information Technologies, Vol.

10, No. 2, pp. 21-26, 2022.

[10] P. Banerjee, B. Kumar, and P. Banerjee,

“Mixed Round Robin Scheduling for Real

Time Systems”, International Journal of

Computer Trends and Technology, Vol. 49, No.

3, pp. 189-195, 2017.

[11] Hayatunnufus, M. Riasetiawan, and A. Ashari,

“Performance Analysis of FIFO and Round

Robin Scheduling Process Algorithm in IoT

Operating System for Collecting Landslide

Data”, In: Proc. of International Conference on

Data Science, Artificial Intelligence, and

Business Analytics, pp. 63-68, 2020.

[12] T. Balharith and F. Alhaidari, “Round Robin

Scheduling Algorithm in CPU and Cloud

Computing: A review”, In: Proc. of 2nd

International Conference on Computer

Applications & Information Security, pp. 1-7,

2019.

[13] S. Mostafa and H. Amano, “An adjustable

variant of round robin algorithm based on

clustering technique”, Computers, Materials

and Continua, Vol. 66, No. 3, pp. 3253-3270,

2020.

[14] A. Fiad, Z. Maaza, and H. Bendoukha,

“Improved version of round robin scheduling

algorithm based on analytic model”,

International Journal of Networked and

Distributed Computing, Vol. 8, No. 4, pp. 195-

202, 2020.

[15] U. Shafi, M. Shah, A. Wahid, K. Abbasi, Q.

Javaid, M. Asghar, and M. Haider, “A novel

amended dynamic round robin scheduling

algorithm for timeshared systems”, The

International Arab Journal of Information

Technology, Vol. 17, No. 1, pp. 90-98, 2020.

[16] P. Sharma and Y. Sharma, “An Efficient

Customized Round Robin Algorithm for CPU

Scheduling”, In: Proc. of the Second

International Conference on Information

Management and Machine Intelligence.
Springer, pp. 623-629, 2021.

[17] K. Faizan, A. Marikal, and K. Anil, “A Hybrid

Round Robin Scheduling Mechanism for

Process Management”, International Journal of

Computer Applications, Vol. 177, No. 36, pp.

14-19, 2020.

[18] Sakshi, C. Sharma, S. Sharma, S. Kautish, S.

Alsallami, E. Khalil, and A. Mohamed, “A new

median-average round Robin scheduling

algorithm: An optimal approach for reducing

turnaround and waiting time”, Alexandria

Engineering Journal, Vol. 61, No. 12, pp.

10527-10538, 2022.

[19] T. Paul, R. Hossain, and M. Samsuddoha,

“Improved Round Robin Scheduling Algorithm

with Progressive Time Quantum”, International

Journal of Computer Applications, Vol. 178,

No. 49, pp. 30-36, 2019.

[20] P. Sharma, S. Kumar, M. Gaur, and V. Jain, “A

novel intelligent round robin CPU scheduling

algorithm”, International Journal of

Information Technology, Vol. 14, No. 3, pp.

1475-1482, 2021.

[21] K. E. Dahshan, A. Abdelkader, and N. Ghazy,

“Achieving Stability in the Round Robin

Algorithm”, International Journal of Computer

Applications, Vol. 172, No. 6, pp. 15-20, 2017.

[22] K. Arif, M. Morad, M. Mohammed, and M.

Subhi, “An Efficient Threshold Round-Robin

Scheme for CPU Scheduling (ETRR)”, Journal

of Engineering Science and Technology, Vol.

15, No. 6, pp. 4048-4060, 2020.

[23] A. Gupta, P. Mathur, C. T. Gonzalez, M. Garg,

and D. Goyal, “ORR: Optimized Round Robin

CPU Scheduling Algorithm”, In: Proc. of the

International Conference on Data Science,

Machine Learning and Artificial Intelligence,

pp. 296-304, 2021.

[24] A. Emara, A. G. Elrab, A. Sobhi, and K. Raslan,

“Genetic-Based Multi-objective Task

Scheduling Algorithm in Cloud Computing

Environment”, International Journal of

Intelligent Engineering and Systems, Vol. 14,

No. 5, pp. 571-582, 2021, doi:

10.22266/ijies2021.1031.50.

[25] S. Jaber, Y. Ali, and N. Ibrahim, “An

Automated Task Scheduling Model Using a

Multi-objective Improved Cuckoo Optimization

Algorithm”, International Journal of Intelligent

Engineering and Systems, Vol. 15, No. 1, pp.

295-304, 2022, doi:

10.22266/ijies2022.0228.27.

[26] J. Varghese and J. Sreenivasaiah, “Entropy

Based Monotonic Task Scheduling and

Received: July 16, 2022. Revised: August 8, 2022. 704

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.59

Dynamic Resource Mapping in Federated

Cloud Environment”, International Journal of

Intelligent Engineering and Systems, Vol. 15,

No. 1, pp. 235-250, 2022, doi:

10.22266/ijies2022.0228.22.

[27] S. Kodli and S. Terdal, “Hybrid Max-Min

Genetic Algorithm for Load Balancing and

Task Scheduling in Cloud Environment”,

International Journal of Intelligent Engineering

and Systems, Vol. 14, No. 1, pp. 63-71, 2020,

doi: 10.22266/ijies2021.0228.07.

[28] P. Krishnadoss, G. Natesan, J. Ali, M.

Nanjappan, P. Krishnamoorthy, and V. K.

Poornachary, “CCSA: Hybrid Cuckoo Crow

Search Algorithm for Task Scheduling in Cloud

Computing”, International Journal of

Intelligent Engineering and Systems, Vol. 14,

No. 4, pp. 241-250, 2021, doi:

10.22266/ijies2021.0831.22.

[29] P. Banerjee, P. Banerjee, and S. Dhal,

“Comparative Performance Analysis of

Average Max Round Robin Scheduling

Algorithm (AMRR) using Dynamic Time

Quantum with Round Robin Scheduling

Algorithm using static Time Quantum”,

International Journal of Innovative Technology

and Exploring Engineering, No. 1, pp. 2278-

3075, 2012.

[30] H. Mora, S. Abdullahi, and S. Junaidu,

“Modified Median Round Robin Algorithm

(MMRRA)”, In: Proc. of 13th International

Conference on Electronics, Computer and

Computation, pp. 1-7, 2017.

[31] S. Ali, R. Alshahrani, A. Hadadi, T. Alghamdi,

F. Almuhsin, and E. E. Sharawy, “A Review on

the CPU Scheduling Algorithms : Comparative

Study”, International Journal of Computer

Science & Network Security, Vol. 21, No. 1, pp.

19-26, 2021.

