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Abstract: Capsule Network has proved its performance against image deformation, through its ability to preserve 

space relations among features. However, the Capsule Network underperforms at classifying complex images datasets. 

Through an in-depth examination of Residual Neural Network, we present a novel Capsule Network named ER-caps 

to improve the model performance toward complex images classification and reconstruction. The architecture of ER-

caps uses customized residual blocks to enhance feature extraction without using any pooling methods to conserve 

spatial information among features and preserve the Capsule Network equivariance. Our model adopts the RELU and 

the ELU activation function to ensure fast convergence and uses an advanced decoder to allow better reconstruction 

for complex images. The experiments show that the suggested model outperforms the baseline Capsule Network with 

dynamic routing on a variety of benchmark datasets CIFAR-10, CIFAR-100, and SVHN by approximately: 17 %, 9 %, 

and 4 % respectively. Moreover, ER-caps reduces the number of training parameters. 

Keywords: Residual neural network, Convolutional neural network, Capsule network, Dynamic routing, ELU 

activation function, Complex images. 

 

 

1. Introduction 

Convolutional Neural Network (CNN) has shown 

its potential in object recognition [1], and image 

classification [2]. The deeper structures CNN have 

been introduced to enhance the feature extraction 

performance by stacking convolution and pooling 

layers [3,4] as well as by training as much data as 

possible. However, these networks have shown 

issues with gradient exploding, gradient vanishing, 

and accuracy saturation, which impedes an effective 

training. To alleviate these issues, Residual Network 

(ResNet) introduced skip connections between the 

input and the output of residual block [5], which 

achieved high precision and stability. 

CNN has shown a high performance for image 

recognition and classification tasks. Nevertheless, the 

performance of CNN decreases drastically if the 

image has been rotated, deformed, or tilted. It is due 

to the inability of CNN to consider the spatial 

relationship between features. From the use of the 

max-pooling layer to extract the most significant 

features and as well as from the image size reduction, 

spatial information between object entities and other 

useful features can get lost, resulting in false positive 

classifications. The use of data augmentation for a 

multi-angle dataset can alleviate the above issue but 

cannot eradicate it. 

Capsule Network (CapsNet) [6] was introduced 

in response to the aforementioned shortcomings of 

CNN; it includes one convolutional layer followed by 

a primary capsule layer (PrimCaps) and a class 

capsule layer (ClassCaps) to make classification 

predictions. Then use a fully connected decoder to 

reconstruct the input image. CapsNet replaced 

convolutional scalar values with vectors (capsules). 

The capsule feature is more discriminative than its 

scalar values counterpart and determines the 

translation equivariance characteristic by conserving 

the spatial relationship among features. However, it 

did not perform well on complex and colored datasets 

(such as CIFAR-10, CIFAR-100). This is explained 

by its tendency to focus too much on unimportant 

image details. Moreover, the number of 
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convolutional layers used in the shallow CapsNet is 

not sufficient to extract complex features. 

Attempting to address the aforementioned issues 

of CapsNet, authors in [11] presented a deep CapsNet 

by adding three convolutional capsule layers 

(ConvCaps) before the PimaryCaps layer connected 

by the Dynamic Routing (DR) algorithm. This was 

the first successful attempt at stacking Capsule 

layers; however, using DR algorithm several times 

increases the model complexity [7]. In reference [8], 

the idea of authors was to stack capsule layers using 

the concept of dense connections to make the use of 

hierarchical features more effective. The authors in 

[12] tended to train deep CapsNet using residual 

connections with multiple capsule layers. These 

architectures improved the performance of CapsNet 

on classifying complex images, but stacking dense 

capsule blocks increases the number of training 

parameters; therefore, it requires more training time. 

Shruthi Bhamidi and El-Sharkawy [14] processed the 

input by eight basic residual blocks before the 

PrimCaps layer, while in [13] Res2Net processed the 

input before the PrimCaps layer to extrapolate 

multiscale characteristics and use the Squeeze-and 

Excitation (SE) block to peak useful features and 

eliminate ineffective ones. The SE block decreases 

the number of training parameter; however, it uses 

average pooling which runs counter the CapsNet 

concept. El Alaoui-Elfels and Gadi [15, 16] used two 

parallel convolutional layers to process the input 

image and combine their feature maps by the 

multiplication gate to select features before the 

PrimCaps layer. These works motivated us to 

investigate the effect of the multiplication operator to 

inject the input to the output of the residual block. 

All the works cited previously demonstrated the 

potent potential of CapsNet, and some architectures 

upgrade the classification accuracy on complex 

datasets by using pooling layer, which deviates 

somewhat from original aim of CapsNet, whereas 

other works stacked capsules layer which makes the 

model more complex. Therefore, in order to resolve 

the previously mentioned challenges of CapsNet [6] 

and enhance its ability to process complex datasets, 

we present the ELU Residual Capsule Network (ER-

Caps), which is different from the above-mentioned 

works in two aspects. First, we propose an improved 

customized residual neural network (ResNet) to 

enhance features extraction without using any 

pooling methods. Second, we combine it with 

CapsNet with an advanced decoder to create a model 

that benefits from both residual and capsule 

operations and better reconstruct the input images. 

The key contributions of our work are the following: 

 

• Originating from the ResNet, we use multiple 

residual blocks on top of the CapsNet to extract 

features from complex images. The skip 

connections used in the ResNet help the 

information to flow deeper into the network 

layers. Moreover, they mitigate exploding and 

vanishing gradient issues. 

• We use the Exponential Linear Unit (ELU) and 

the Rectified Linear Unit (RELU) alternatively 

in the residual blocks for better performance and 

faster convergence. 

• We perform element-wise multiplication to 

inject the residual identity to the output of the 

residual block, this shows higher accuracy than 

the addition operator does. 

• We apply small convolutional kernels on the 

primary capsule layer to reduce the number of 

training parameters in the capsule layers. 

• We use the ELU activation function in the first 

two layers of the decoder in order to improve the 

reconstruction of complex images. This function 

allows negative input values and therefore 

passes more information, which results in better 

reconstructed images. 

• We validate the suggested models on several 

benchmark complex datasets to prove the 

generalization ability of our model. 

 

We trained our models on the CIFAR-10, 

CIFAR-100 [9], and SVHN [10] datasets without 

using any data augmentation method, any ensemble 

networks or other common training tricks. ER-Caps 

shows competitive results on the above-mentioned 

test datasets over most state-of-the-art CapsNet 

approaches. Furthermore, it allows faster 

convergence and better reconstruction results. 

The rest of this paper is structured as follows: we 

present the background of CapsNet and ResNet in 

section 2. In section 3, we detail the proposed ER-

Caps model. We demonstrate, compare, and discuss 

our experimental results in section 4. Finally, we 

conclude this work in section 5. 

2. Background 

2.1 CapNet 

CapsNet has attracted more and more attention 

since it has greater picture analysis skills and 

conforms to the peculiarities of the human perception 

system. CapsNet presents a new concept that uses 

capsules instead of scalers, where a capsule is a group 

of neurons that represents instantiation parameters 

such as size, hue, position, rotation, texture. The 

output of a capsule is a vector whose length presents  
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Figure. 1 The baseline CapsNet’s structure 

 

 

the probability of the existence of an entity. If the 

input image has been rotated, then the output vector 

keeps the same length, but its orientation changes 

(equivariance). 

The CapsNet [6] architecture was designed for 

MNIST images. It includes a convolution layer, a 

PrimCaps layer and a ClassCaps layer for the encoder 

part as well as three fully connected layers as a 

decoder (Fig. 1). A convolution layer (256 kernels, 

9x9 size, stride of 1, RELU activation function) is 

applied to the input image to extract features. The 

resulting feature maps are processed by the PrimCaps 

layer, using eight convolutional capsules (32 

channels, 9x9 kernels, stride of 2). The output feature 

maps are then encapsulated to vectors of 8 scalars to 

constitute the primary capsules. These low-level 

capsules are mapped to class capsules (16D) through 

the DR algorithm, which replaces the pooling 

operation to preserve the spatial relationships 

between object entities. The low-level capsules have 

a narrow receptive field and can only detect the 

posture and presence of a specific entity, while the 

high-level capsules can detect larger and more 

complicated objects. The fully connected (FC) layers 

are used to reconstruct the input image via three 

layers. The first two layers are activated by the RELU 

function and the third layer by the Sigmoid function. 

In the DR algorithm, the output of capsule i in 

PrimCaps is represented by ui, which is multiplied by 

Wij to compute the ûj|i, the prediction vector of 

capsule i for the capsule j in the ClassCaps Eq. (1). 

Wij is the transformation weight matrix, which is used 

to encode the relationship between part and whole 

object. 

 

û𝑗|𝑖  =  𝑊𝑖𝑗𝑢𝑖                         (1) 

 

Each capsule j calculates the weighted sum Sj of 

the prediction vectors ûj|i and the coupling coefficient 

Cij Eq. (2) and then applies the squash function Eq. 

(3) to ensure that vector length Vj is between 0 and 1, 

to represent the probability of existence. 

 

𝑆𝑗  =  ∑ 𝐶𝑖𝑗 û𝑗|𝑖
𝑛
𝑖=1                                        (2) 

 

 𝑉𝑗 =
||𝑆𝑗||2  

1+||𝑆𝑗||2   
𝑆𝑗

||𝑆𝑗||
                                       (3) 

 

The coupling coefficient represents the 

connection strength between parent capsule and child 

capsule. It is updated iteratively through Eq. (4), 

where bij is matching degree between capsule i and j. 

 

𝐶𝑖𝑗 =
𝑒𝑏𝑖𝑗

∑ 𝑒𝑏𝑖𝑛
𝑛

                                        (4) 

 

𝑏𝑖𝑗 = 𝑏𝑖𝑗 + 𝑉𝑗û𝑗|𝑖                                   (5) 

 

The loss as described in [6] is the sum of the 

classification loss and the reconstruction loss. 

2.2 ResNet 

For complex tasks, deeper networks outperform 

shallow ones, but they are harder to train [17] and the 

stacking of layers causes the vanishing gradient issue. 

Highway networks [18] were the first framework that 

succeeded to train deep networks of a high number of 

layers. Highway networks use gating units to 

optimize and train networks with several layers 

effectively. ResNets [5] introduced skip connections 

with the use of identity transformation. Unlike 

highway networks, they do not provide additional 

parameters or increase the computing complexity. 

The principle of a basic residual block is 

illustrated in Fig. 2 [5]. It consists of a convolutional  
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Figure. 2 The basic residual block 

 

 

layer (Conv 1), batch normalization layer (BN), 

RELU activation [19] and a second convolutional 

layer (Conv 2) followed by another BN layer. The 

residual block adds a direct connection between the 

input and output of the residual block as follows: 

 

𝐺(𝑥)  =  𝑅𝐸𝐿𝑈(𝐶(𝑥) + 𝐼(𝑥))           (7) 

 

Where: 

 

• x is the input of the residual block. 

• C(x) represents multiple convolutional 

transformations used in the residual block. 

• I(x) is the identity function used to shrink the 

dimensions of x to match those of C(x). 

• G(x) is the output of the residual block, which is 

activated by default with the RELU function. 
 

Authors in [20] investigated the performance of 

ELU function in ResNet by replacing RELU and 

Batch Normalization with ELU. In [21] the authors 

changed the single size of convolutional filters into 

convolution kernels of different sizes to adaptively 

extract the image features. 

3. Proposed framework 

The convolutional layer used in the baseline 

CapsNet [6] merely converts the pixel intensities into 

feature maps of local feature detectors, which are 

passed to the PrimCaps layer. For complicated image 

datasets, this may not be sufficient for further 

processing in the capsules. To enhance the 

performance of CapsNet for complex images, we 

propose to process the input image first by a 

convolutional layer with small kernels of size 3x3 

followed by batch normalization and activated 

through the RELU function. We then pass the 

resulting feature maps to an advanced residual 

network to extract complex features and map the 

output to the PrimCaps. We maintain the concept of 

CapsNet that did not use any pooling and focused on 

equivariance rather than invariance. We modified the 

baseline ResNet [5] to include three residual blocks  
 

 
Figure. 3 The proposed residual block structure 

 

 

based on the skip connections and without using any 

pooling to keep all spatial information. Each of the 

residual blocks consists of two convolutional layers 

(Conv1 and Conv2) followed by a dropout to prevent 

overfitting and to enhance the generalization ability 

(Fig. 3). 

 

• Conv1: 256 channel, 3x3 kernel size, a stride 

of 1, followed by batch normalization and 

activated through the RELU function.  

• Conv2: 256 channel, 3x3 kernel size, a stride 

of 1, followed by batch normalization and 

activated through the ELU function. 

 

We choose the ELU function to activate the 

second convolutional layer in each residual block 

since it demonstrates its potential in mitigating the 

vanishing gradient issue, enhancing the network 

performance and speeding up the training, which 

allows a fast convergence [20,15]. The ELU is 

defined as: 

 

𝐸𝐿𝑈(𝑥)  =  {
𝛼 (𝑒𝑥 − 1), 𝑥 < 0

   𝑥,                       𝑥 ≥ 0
            (8) 

 

α is a positive hyperparameter that controls where 

ELU saturates at negative input. The ELU function 

includes negative values that push the mean near zero, 

which speeds up the training. 

Inspired by [22] that used element-wise 

multiplication to select features instead of the pooling, 

we tested a combination of addition gate and element-

wise multiplication gate to concatenate the identity to 

the output of Conv2. The element-wise multiplication 

gate and the addition gate are defined in Eq. (9) and 

Eq. (10), respectively: 

 

𝑀(𝑥) =  𝑅(𝑥) ×  𝐼(𝑥)                          (9) 

 

𝐴(𝑥)  =  𝑅(𝑥)  +  𝐼(𝑥)                        (10) 

 

Where R is the output of convolutional layers 

used in our residual block and I was defined in section 

2.2. 
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Figure. 4 Residual subnets with different gates to 

concatenate residual blocks 

 

 

The proposed residual subnets are presented in 

Fig. 4. 

 

• (a) Residual subnet with three element-wise 

multiplication gates (xxx). 

• (b) Residual subnet with addition gate and two 

element-wise multiplication gates respectively 

(+xx).  

• (c) Residual subnet with element-wise 

multiplication gate, addition gate, and 

element-wise multiplication gate respectively 

(x+x). 

• (d) Residual subnet with two element-wise 

multiplication gates and addition gate 

respectively (xx+). 

• (e) Residual subnet with two addition gates and 

element-wise multiplication gate respectively 

(++x). 

• (f) Residual subnet with element-wise 

multiplication gate and two addition gates 

respectively (x++). 

• (g) Residual subnet with addition gate, 

element-wise multiplication gate, and addition 

gate respectively (+x+). 

• (h) Residual subnets with three addition gates 

(+++). 

 

To argue whether the ELU activation function 

indeed enhances the network performance, we keep 

the same architecture of the (d) model, and we replace 

ELU with RELU in all residual blocks. In order to 

reduce the number of training parameters, we use 

small kernels of 4x4 size for the convolution of the 

PrimCaps layer. The result is encapsulated into 64 

primary capsules, mapped to class capsules and 

connected to the reconstruction network Fig. 5. 

To enhance the decoder to reconstruct complex 

images, we use the ELU activation function for the 

first two fully connected layers in the reconstruction 

step. The ELU includes a negative value, which lets 

more information be passed to the next layer and 

allows better reconstruction. 

4. Experiments and results 

4.1 Datasets 

We utilize CIFAR-10, CIFAR-100 and SVHN 

datasets to evaluate the performance of our model. 

The CIFAR-10 and CIFAR-100 are complex datasets, 

where each image contains rich features as well as 

background and noise. CIFAR-10 contains 60000 

32x32x3 pictures belonging to 10 classes, with 50000 

training images and 10000 test images. CIFAR-100 

is similar to CIFAR-10, but it includes 100 classes of 

600 pictures, 500 images for the training set and 100 

for the test set. The SVHN (Street View House 

Numbers) dataset contains 10 classes of images, 

73257 images for the training set and 26032 images 

for the test set, with the same image dimensions as 

CIFAR-10. The SVHN images are not as complex as 

the CIFAR-10 dataset, but they are also colored 

images with some the background noise. 

4.2 Evaluation metrics 

We adopt four classification metrics to evaluate 

the proposed ER-Caps and the compared models. The 

accuracy represents the fraction of the correctly 

predicted classes. The precision is the ratio of the true 

positive observations to the total predicted positive 

ones. The recall describes the proportion of the 

correctly predicted positive samples to the total actual 

positive samples. Finally, the F1-score measures the 

misclassified classes. These metrics are defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                         (11) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                     (12) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                      (13) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                (14) 
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Figure. 5 The architecture of ER-Caps 

 

 

TP and TN represent the number of true positive 

observations and true negative observations 

respectively, while FP and FN mean the number of 

false positives and false negatives. We use the loss to 

measure how good the prediction model performs in 

terms of predicting the intended result. The loss is 

same as [6]. 

4.3 System setup 

The environment of our experiments is Windows 

10, Python, Pytorch, 8-core CPU, NVIDIA GeForce 

RTX 3070 GPU and 16GB of memory. In our 

experiments, we use a mini-batch of 40 samples for 

SVHN and CIFAR-10 datasets and 10 samples for the 

CIFAR-100 dataset to avoid running out of memory. 

We use the Adam optimizer [23] with an initial 

learning rate of 0.001. The number of training epochs 

is 100 for CIFAR-100 and 70 for CIFAR-10 and 

SVHN. We set the number of iterations to 3 to fine-

tune the routing coefficient. We set α of the ELU 

function to 1 and the dropout rate to 0.05. We adopt 

normalization for all datasets before the training and 

the test. We fixed various parameters based on 

previous experience. All the aforementioned 

parameters were set to achieve a good classification 

accuracy and maintain it across all datasets. We train 

our models on all the datasets without using any 

special weight initialization method, data 

augmentation, ensemble averaging or other training 

tricks. We repeat each experiment 3 times on each 

dataset. 
The baseline-CapsNet processes the input image 

by a convolutional layer, primary capsule layer, and 

class capsule layer, which is similar to the original 

CapsNet [6]. The first convolutional layer uses 256 

convolutional filters with size 9x9, stride of 1 and 

RELU activation function. The primary capsule layer 

is a convolutional capsule layer that applies 8 9x9 

convolutional kernels and a stride of 2 to build 64 

capsules with 8 dimensions at each pixel location. 

4.4 Ablation study 

In this section, we aim to prove the effectiveness 

of employing the multiplication gate, using the 

RELU and ELU activation units alternately, varying 

the number of residual blocks, and applying the small 

convolution kernels. All ablation experiments are 

carried out on the CIFAR-10 dataset. 

We first evaluate our framework using different 

gate combinations for the residual subnet of our ER-

Caps network. We define eight models with three 

residual blocks before the PrimCaps layer. They all 

respect the same architecture, but use different gates 

to inject the residual output of the previous block to 

the output of the next block as described in Fig. 4.  

Table 1 shows the comparison of the eight models’ 

performance, where “x” represents the element-wise 

multiplication gate and “+” represents the addition 

gate. When the “x” gate is used between all the 

residual blocks, the model gets a lower accuracy 

compared to the other models. Consecutive “x” gates 

could not select better features while mixed gates 

improve the accuracy. Among the eight combinations,  
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Table 1. Comparison among different gate combinations 

for the Residual subnet on CIFAR-10 dataset 
Model Accuracy Loss 
xxx (a) 79.8% 0.316 
+xx (b) 84.57% 0.254 
x+x (c) 85.03% 0.232 
xx+ (d) 81.04% 0.281 
++x (e) 87.83% 0.204 
x++ (f) 84.09% 0.233 
+x+ (g) 84.02% 0.246 
+++ (h) 86.81% 0.226 

 
Table 2. Comparison between ER-Caps and No-res on the 

CIFAR-10 dataset 

 Accuracy Convergence epoch 

No-res 86.25% 46 

ER-Caps 87.83 % 36 

 
Table 3. Comparison of ER-Caps with small convolution 

kernels for PrimCaps layer on the CIFAR-10 dataset 

 kernel size Parameters (Million) Accuracy 

O
u

r 

m
o

d
el

s 9x9 17.92M 87.39% 

6x6 12.02M 87.85% 

4x4 9.4M 88.54% 

3x3 8.48M 87.79% 

 
Table 4. Performance comparison of three residual blocks 

and four residual blocks for ER-Caps on the CIFAR-10 

dataset 

Model Accuracy Parameters 

3 residual blocks ++x 88.54% 9.4M 

4 residual blocks ++xx 86.9% 

10.58M 
4 residual blocks ++x+ 85.62% 

4 residual blocks ++++ 87.19% 

4 residual blocks +++x 88.34% 

 

 

the best performing network is the one incorporating 

two additional gates and one element-wise 

multiplication gate respectively (++x) to connect the 

residual block input to its output. Its performance has 

increased by 8 % compared to model (a). It even has 

exceeded model (h) that uses “+” gate between all 

residual blocks, as the regular ResNet does. The 

multiplication gate in the last residual block can 

select better features and thereby improves the 

performance of the residual subnet. We adopt model 

(e) in the following experiments, and we call it ER-

Caps. 

Second, to illustrate the power of the residual 

subnet on the network performance, we create a 

model (No-res) respecting the same architecture of 

ER-Caps without using the residual connection. 

Table 2 demonstrates that the ER-Caps gets the 

higher accuracy of 87.83 % compared to 86.25 % of 

the No-res and that it converges faster. This 

demonstrates that only stacking the convolution layer 

before the primary capsules is not enough to enhance 

the model performance. 

Third, we use small convolutional kernels for the 

PrimCaps layer not only to reduce the computational 

costs by reducing the number of parameters but also 

to enhance the model performance. Table 3 displays 

the comparison of the ER-Caps network performance 

on the CIFAR-10 dataset with different convolution 

kernel sizes for the PrimCaps layer. The results show 

that the 4x4 kernel size can improve the network 

performance while at the same time remarkably 

reducing the number of training parameters. 

Fourth, previous studies in ResNet have shown 

that multiple residual blocks can improve image 

classification performance. In order to investigate the 

effect of adding more residual blocks to our model, 

we train our model with four residual blocks instead 

of three. Table 4 displays the accuracy of ER-Caps 

with three residual blocks (++x) compared to four 

residual blocks using different gates. Unexpectedly, 

the accuracy has dropped with four residual blocks. 

The (+++x) network is the only model with four 

residual blocks that achieved a very close accuracy of 

88.34 % compared to the (++x) model’s 88.54 %. We 

also observe that with four residual blocks, the 

number of the training parameters becomes higher, it 

reaches 10.58M. Our intuition is to increase CapsNet 

classification performance and reduce the number of 

training parameters to decrease the model complexity. 

Our proposed model (++x) with only three blocks can 

learn sufficient feature information while keeping the 

network simple. From Table 4 and Table 1 we notice 

that using the multiplication gate in the last residual 

block leads to greater performance. In the first 

residual blocks, multiplication gates inhibit some 

features to pass, which influences the model 

performance negatively, while in the last residual 

block, they act as a control tower to select features 

mapped to the PrimCaps layer. 

Last, the ELU activation is known for its capacity 

to speed up the training, overcome the vanishing 

grading issue, and improve the performance of the 

network compared to RELU. We test the 

performance of our model with the RELU activation 

(ER-Caps*) for all convolution layers of the network 

except the convolution of PrimCaps and we do the 

same with ELU activation (ER-Caps**). These two 

models are trained with 100 epochs. The results are 

displayed in Table 5 and Fig. 6. Table 5 presents a 

comparison of model accuracy and the training time 

for each epoch on the CIFAR-10 dataset, the results 

show that ER-Caps gets the higher accuracy and the 

lower loss over the other models. Fig.6 presents the  
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Table 5. Comparison of test accuracy for the model with 

RELU and ELU activation for residual convolution layers 

on the CIFAR-10 dataset 

Model Accuracy 
Training time 

(minute/epoch) 

ER-Caps 88.54% 05:22 

ER-Caps* 88.38% 06:04 

ER-Caps** 85.55% 06:15 

 

 
Figure. 6 Models convergence on the CIFAR-10 dataset 

according to the epochs 

number of epochs needed for each model to achieve 

the best test accuracy on the CIFAR-10 dataset. From 

Fig. 6, it can be seen that 34 epochs were needed for 

ER-Caps to reach the best test accuracy, whereas 45 

epochs were needed for the baseline CapsNet, 54 for 

ER-Caps*, and 70 for ER-Caps**. It can be observed 

that the performance of ER-Caps that uses RELU 

activation for Conv1 and ELU for Conv2 is better 

than adopting ELU or RELU for all activation. The 

ER-Caps framework performs best in terms of 

accuracy and training time required per epoch. 

4.5 Performance evaluation 

In this section, we start by comparing the 

accuracy and the loss of the ER-Caps and baseline 

CapsNet models during training and test on SVHN, 

CIFAR-10, and CIFAR-100 datasets (Fig. 7). Then, 

we compare the test accuracy of our proposed model 

with the state-of-the-art based CapsNet models 

(Table 6) on the same datasets, and we analyse the 

number of training parameters and epochs (Table 7) 

on the CIFAR-10 dataset.  

 

 
Figure. 7 Learning curves of ER-Caps and CapsNet on the benchmark datasets 
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Table 6. Classification accuracy of ER-Caps and state-of-the-art CapsNet-based models on CIFAR-10, CIFAR-100, and 

SVHN datasets 

Model CIFAR 10 (%) CIFAR 100 (%) SVHN(%) 

Inverted dot product [36] 82.13 – – 

Baseline CapsNet 
71.91 43.74 92.33 

89.40 (7-ensemble) – 95.7 

Fast Inference [24] 70.33 – – 

Max–min [25] 75.92 – – 

Fsc-CapsNet [26] 78.73 – – 

Residual CapsNet [27] 75.62 – – 

STAR-Caps [28] 91.23 67.66 – 

RS-CapsNet [13] 89.81 64.14 96.50 

Residual Capsule Network [14] 84.16 – – 

HitNet[29] 73.30 – 94.50 

Quaternion CapsNet [30] 82.21 – 95.37 

Multi-lane [31] 76.79 – – 

MS-CapsNet [32] 75.70 – – 

Gabor CapsNet [33] 85.24 68.17 – 

DenseCaps[8] 89.41 – 95.99 

DA-CapsNet[34] 85.47 – 94.82 

ER-Caps 88.54 52.88 95.67 

 
 
Table 7. Analysis of different Capsule Network models’ 

parameters on the CIFAR-10 dataset 

Model Parameters 
Training 

epochs 

Baseline CapsNet 14.43M 70 

7-ensemble CapsNet[6] 101.5 M 500 

Multi-lane [31] 14.25 M 20 

MS-CapsNet [32] 11.2 M 50 

DenseCaps [8] 16 M 100 

HitNet [29] 8.89M 250 

Residual Capsule Network [14] 11.86M 120 

ER-Caps 9.4 M 70 

 
Table 8. Precision, recall, and F1-score of the baseline 

CapsNet and ER-CapsNet on the CIFAR-10 dataset 

Models Precision Recall F1-score 

Baseline CapsNet 74.1% 74.1% 74.1% 

ER-Caps 88.1% 88.3% 88.2% 

 

 

ER-Caps needs fewer epochs to converge (Fig. 7) 

than the baseline CapsNet, except on the CIFAR-100 

dataset. Moreover, it can be observed that when the 

two networks converge, our model attains the higher 

accuracy and the smaller loss. It surpasses the 

baseline CapsNet accuracy by 17 %, 9 %, and 4 % on 

CIFAR-10, CIFAR-100, and SVHN datasets, 

respectively. 

In Table 6, ‘-’ indicates that the results for the 

corresponding dataset are not given in the related 

experiments of the model. ER-Caps outperforms 

most of the other CapsNet models on CIFAR-10 and 

gets competitive results on the SVHN. STAR-Caps 

[28] and RS-CapsNet [13] have slightly better 

accuracies on CIFAR10. However, both models use 

pooling to reduce the number of parameters and filter 

the background, which is criticized in [35, 6], since 

pooling causes loss of some useful spatial 

information and reduction of the network 

equivariance. The 7-Ensemble of CapsNet and 

DenseCaps uses a tremendous number of parameters 

and only reaches a slightly higher accuracy. From the 

single models trained on CIFAR-10, ER-Caps gets 

the second fewest parameters (Table 7) beneath the 

HitNet [29], but it highly outruns the HitNet 

performance. In addition, our framework reduces the 

parameter number by 34.85 % on the CIFAR-10 

compared to the baseline CapsNet. Despite the 

Multilane [24] needing the fewest training epochs, its 

number of parameters is as high as the baseline 

CapsNet and the classification results are poor. 

In order to validate our model performance, we 

compare the precision, the recall, and the F1-score 

metrics of ER-Caps to the baseline CapsNet on the 

CIFAR-10 dataset (Table 8). Our model has obvious 

ascendancy in all classification metrics, exceeding 

the baseline CapsNet results by about 14 %. The 

performance disparity between ER-Caps and 

demonstrates that there are still a lot of aspects for 

improvement, regardless of the routing method or 

CapsNet design. 

The confusion matrix is computed to evaluate  
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Figure. 8 Confusion matrix of the baseline CapsNet on 

the CIFAR-10 dataset 

 

 
Figure. 9 Confusion matrix of ER-Caps on the CIFAR-10 

dataset 

 

 

ER-Caps results and to compare with the baseline 

CapsNet. It is a detailed matrix of the model’s 

performance on each class. We use it to examine 

confusion between multiple classes and analyse 

classification errors efficiently. The column 

represents the real labels, while the row represents the 

predicted labels. Figs. 8 and 9 illustrate the confusion 

matrix of the baseline CapsNet and the ER-Caps 

respectively for the CIFAR-10 dataset. The analysis 

of the confusion matrix for the baseline CapsNet 

shows that four classes reach an accuracy superior to 

80 %. For the other classes, the confusion is large. 

Four categories achieved an accuracy lower than 

60 %. As for the ER-Caps, nine classes achieve an 

accuracy higher than 80 %, six of which even reach 

over 90 %. Only the class of ‘cat’ achieves an  
 

 
(a)                           (b)                               (c) 

Figure. 10 Comparison among the input images of 

CIFAR-10 dataset and the reconstructed images of the 

baseline CapsNet and the ER-Caps 

 

 

accuracy of 77 % since it can be confused with the 

‘dog’ class. This confusion can be explained by the 

small image size. It makes the image blurry and 

therefore, the two classes have similar features, 

which makes it difficult to distinguish one from the 

other. Nevertheless, our proposed model, compared 

to the baseline CapsNet accuracy, has achieved a 

great improvement of about 20 % higher accuracy. 

These numbers show that ER-Caps outperforms 

the baseline CapsNet and achieves competitive 

results compared to the other CapsNet models. Our 

framework based on residual blocks with the ELU 

activation and the multiplication gate demonstrates 

that it can enhance classification performance. 

Furthermore, CapsNet as a new network of deep 

learning still has many unknowns to work out, which 

requires patience and time. 

4.6 Reconstruction 

In order to demonstrate the performance of our 

proposed decoder, we compare the reconstructed 

images of the baseline CapsNet with the ones 

reconstructed by ER-Caps in CIFAR-10 (Fig. 10). 

The left column (a) of Fig. 10 shows the input images, 

the middle column (b) is the reconstructed images of 

baseline CapsNet and the right column (c) is the 

images reconstructed by our model ER-Caps. The 

images (c) reconstructed by ER-Caps contain more 

texture; hence they can more accurately express the 

posture and texture of a dog, a car, and a horse. It can 

be seen that the baseline CapsNet cannot reconstruct 

the dog image, while ER-Caps design has achieved to 

reconstruct more features of the image. Moreover, 
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ER-Caps is more prominent in focusing more 

information on the image and processing its 

characteristics. To the best of our knowledge, this is 

the first work that applies ELU activation unit on the 

decoder of CapsNet and it achieves better 

reconstruction with only three fully connected layers. 

5. Conclusion and future work 

In this work, we leverage the power of the 

Residual Network with the best characteristics of the 

Capsule Network to introduce the ER-Caps network, 

a framework for complex image classification. Our 

model improves feature extraction using an improved 

residual subnet without any pooling to keep the 

spatial relationships between features and enhance 

the reconstruction result. ER-Caps performs well 

compared to the state-of-the-art Capsule Network 

models on CIFAR-10 datasets. Our model surpasses 

the baseline CapsNet in terms of accuracy by 

approximately 17 %, 9 %, and 4 % on CIFAR-10, 

CIFAR-100, and SVHN respectively, and it reduces 

the number of parameters remarkably by 34.26 %. 

The concept of the Capsule Network and dynamic 

routing used to connect capsules requires a higher 

computational cost. Moreover, it is challenging to 

apply the CapsNet to high-resolution images and 

datasets with a high number of classes. Therefore, we 

intend to improve the DR algorithm of ER-Caps and 

enhance its computational efficiency, and we plan to 

boost its performance on more complex large datasets 

such as ImageNet in the future. 
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