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Abstract: High-risk maternal health condition is alarming, especially in developing countries. Intensive monitoring 

is mandatory to prevent such issue. However, the long-term invasive method to pregnant women harms both the 

baby and the mother. In this research, we proposed a cost-efficient non-invasive foetal heartbeat classification based 

on a phonocardiograph with feature assembly. Since the high number of features and computationally expensive, we 

cut the size to half by utilizing Principal Component Analysis. Furthermore, data balancing using SMOTE is 

incorporated to improve classification performance. We proposed a method based on a neural network and optimized 

it using Random Search optimization. Eventually, the proposed method gained the top position in all data balancing 

compared to other machine learning algorithms, with 91.7 % for both accuracy and Area Under Curve with a score at 

91.6 %. 
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1. Introduction 

One target of the Sustainable Development 

Goals (SDG) is improving maternal health and 

reducing any threatening risks of pregnancy. The 

risks arise regarding lack of nutrition, blood issues, 

and disease-carrier mother [1, 2]. In developing 

countries, pregnant women are faced with high-risk 

pregnancies [3-5] This is mainly caused by 

inadequate information about maternal health 

awareness of blood-related disease [6, 7] 

Furthermore, due to minimum awareness, the risk 

spiked dramatically [6, 8]. All of these issues lead to 

an increase in the foetal mortality rate. 

High-risk pregnancies demand such intensive 

monitoring using one or sometimes more of these 

devices, for instance, cardiotocography (CTG), 

Doppler Echocardiography (FED), and Fatal 

Electrocardiography (FECG). However, long-term 

usage of those might harm the foetal [9, 10]. 

In order to reduce such risk, many solutions 

have been conducted, mainly using a non-invasive 

method based on phonocardiography (PCG) [10-12]. 

PCG is a pure passive method of recording foetal 

heartbeat sounds. It can provide some crucial details 

regarding the foetal health situation, including the 

ability to find anomalies such as murmurs and 

intrauterine growth [10].  

PCG is considered cost-efficient for heartbeat 

recording. However, a manual investigation and 

monitoring of foetal heartbeat are time-consuming. 

For these reasons, artificial intelligence (AI) 

approaches surge to the surface for tackling such 

issues [13, 14] Many works have been introduced 

using machine learning [15-18]. Their works were 

based on a single modal feature like MFCC. We 

proposed a framework for PCG abnormal heartbeat 

identification to address the issue.  

The remaining of this paper are structured as 

follows: Related Works in Chapter 2, Proposed 

Model in Chapter 3, Results and Discussion in 
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Chapter 4, Conclusion in Chapter 5, and in the last 

chapter is Acknowledgement. 

Our contribution towards the research of 

arrhythmia detection is in the feature size reduction 

while improving the performance of classification 

results and the neural network architecture 

optimization. Our feature combines audio features 

such as Mel-Frequency Cepstral Coefficients 

(MFCC), Zero Crossing Rate (ZCR), Chroma, and 

Spectral. We took 13 MFCC coefficients and then 

calculated each coefficient's mean and standard 

deviation. In addition to MFCC, we incorporated 

ZCR, Chroma Short-Term Fourier Transform 

(STFT), Spectral Centroid, Spectral Bandwidth, and 

Spectral Roll-off. Thus, our feature size is 31. Due 

to the large size of the feature, we utilize 

dimensionality reduction using Principal Component 

Analysis (PCA) before being fed to the classifier 

algorithm. However, manually hand-picking the 

parameters of the classifier takes a toll. Thus, we 

employed hyperparameter tuning to find the best 

parameters. 

2. Related works 

In the last decade, many approaches have been 

proposed for PCG audio classification using 

machine and deep learning. In 2018, Yaseen [15] 

proposed an automatic heart abnormality detection 

based on PCG signal using SVM and Deep Neural 

Network. The features used here were MFCC and 

DWT. The dataset contained five classes, Normal, 

Aortic Stenosis, Mitral Stenosis, Mitral 

Regurgitation, Mitral Valve Prolapse.  

Yadav [17] proposed a cardiac disease 

classification using machine learning based on PCG 

sound. All features were picked using p-values, 

which are based on discrimination. On signal pre-

processing, the band was taken between 20 - 500 Hz. 

All frequencies above the maximum band were 

removed as they were considered noises. The feature 

extraction filters used here were zero crossing rate, 

energy entropy, roll-off, and spectral flux. Then, 

each filter product was analysed using mean and 

standard deviation. His work was compared with 

four different algorithms: Support Vector Machine 

with linear kernel, Random Forest, Naive Bayes 

with Gaussian distribution, and k-nearest neighbours. 

It was mentioned that the proposed prominent 

feature selection gained impressive results. 

Baghel [20] proposed a CNN based on 

identifying cardiovascular diseases (CVD) from 

PCG. The balanced target contains several classes: 

Aortic Stenosis, Mitral Regurgitation, Mitral 

Stenosis, Mitral Valve Prolapse, and Normal. Before 

training, the dataset underwent an augmentation step 

containing pitch, speed, time shifting, and back 

sound deformity. By applying data augmentation, 

the number of the dataset was doubled. The 

proposed CNN architecture contains two one-

dimensional convolutions with ReLU on each layer. 

The fully-connected (FC) layer has 128 nodes. The 

accuracy difference before and after data 

augmentation was increased by 2.4 %. 

In the same year, Oh [13] proposed signal 

classification based on WaveNet. The dataset 

acquired from [15] contains five classes which 

similar to [20]. Each audio record was sampled with 

8,000 Hz frequency and normalized from between -

1 and 1. The WaveNet architecture consist of six 

residual blocks then followed by one-on-one 

convolution. For each residual block, there are two 

dilated one-dimension convolution. Finally, the FC 

layers contain ten and 5 nodes, respectively. The 

highest accuracy achieved here was 98.2 %. 

In the next year, Mei [14] introduced a CVD 

audio classification based on wavelet scattering 

transform (WST). The dataset used is taken from 

Computing in Cardiology (CinC) [21] The proposed 

method was structured as Quality Assessment, 

Wavelet Scattering, Audio Classification, and 

Voting. The final step plays significant role for 

increasing the accuracy by two percent. 

In Yadav work, it incorporated centroid and 

spectral features. Baghel’s work, it directly used the 

signal fed to the CNN. Yaseen’s works incorporated 

MFCC and DWT as features. Mei’s work uses WST. 

In our work, we incorporated MFCC, Spetral, 

centroid features. Since the feature dimesion is large, 

we employ PCA. 

3. Proposed work 

In this part, we exhibit the overview of the 

proposed approach for the foetal heartbeat (FHB) 

sound classification. Our approach comprises 

multiple levels, such as audio analysis, ensemble 

feature extraction, data balancing, dimensionality 

reduction using PCA, and FHB abnormality 

detection. The audio analysis includes a visual plot 

of audio signals based on each feature in order to 

extract meaningful information such as audio pattern, 

peak, noise content, and waveform. In the feature 

extraction part, we employed two different features, 

MFCC and ensemble features constructed from 

MFCC, Zero Crossing Rate (ZCR), Chroma STFT, 

Spectral Centroid, Spectral Bandwidth, and Spectral 

Roll-off.  

It is certain that in the medical world, 

particularly in pregnant women, abnormality  
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Figure. 1 The proposed framework block diagram 

 

sometimes happens and is challenging to diagnose at 

the early stage of pregnancy. If an observation is 

taken, it leads to dataset imbalance. In order to 

tackle the such issue, we decided to employ several 

techniques, under-sampling, over-sampling, and 

synthetic minority oversampling technique 

(SMOTE). An imbalanced dataset is usually 

dominated by one class over the other. Here, we 

explored each method to determine the best for data 

balancing.  

Under-sampling is one technique in data 

balancing. It works by reducing the amount of one 

or some majority classes until it meets the minority 

quantity. This method is incredibly fast since the 

number of the dataset is reduced. Since most data 

are removed, much information, probably the most 

important, has been lost. Meanwhile, for its 

counterpart, the number of minority data is 

arbitrarily duplicated to satisfy the majority class. 

Over-sampling is one of the favorable methods in 

data balancing. It can be helpful for machine 

learning methods where several duplicate samples 

can influence the model fit for a particular class if 

the distribution is skewed. However, due to its 

random behavior in selecting from minority data, 

over-sampling causes the probability of over-fitting 

increases significantly related to data variance. Such 

risk must be completely avoided. 

To address the issue of both under-sampling and 

over-sampling, we exploit SMOTE. The concept of 

SMOTE is quite similar to under-sampling. It still 

utilizes data duplication out of the minor class. The 

difference lies in how data are duplicated. SMOTE 

nominates samples inside the feature set that are 

equivalent to one another, draws a line between the 

precedents, and then creates a new sample at a 

location along the line. In specific, stochastic 

specimens from a minor class are picked in the first 

place with k number of adjacent data. Subsequently, 

synthetic data is randomly generated between the 

two nearest neighbours. The position of the newly 

generated data is located inline.   

In statistics, there are two well-known 

terminologies, univariate and multi-variate. These 

two resemble the number of features in the data. For 

one variable case, it is called single feature selection, 

and for multi variables, it is called multiple feature 

selection. For certain occurrences, features are 

probably taken from a single source. However, if the 

feature is collected from multiple sources, it is 

called a multi-modal. An audio signal can be 

extracted using distinct algorithms which decide 

their results. The outcomes can be discrete signals, 

spectrum, and chroma audios. For example, audio 

extracted using MFCC returns numerous features. 

They are called Mel features. Short-Time Fourier 

Transform (STFT) alters audio into a time-

frequency domain using a frame-based signal of 

Fourier transform. STFT produces chroma features 

and spectrograms for signal visualization. 

Principal Component Analysis PCA is a robust 

algorithm for handling issues in large-size features. 

Since our features are constructed from multiple 

features, -let us refer to this as an ensemble feature-, 

the feature size increases gradually. Due to 

numerous features, we decided to employ PCA to 

reduce the dimension by prioritizing only the most 

essential features. 

Our data consist of 100 foetal heartbeat audio 

signals. A quarter of it contains abnormal heartbeats. 

According to this condition, our proposed method 

works like a charm from the aforementioned steps. 

The data are extracted using MFCC, STFT, and 

Zero Crossing. Before entering the feature reduction 

stage, they go into SMOTE to achieve balanced data. 

Subsequently, PCA took its part to prioritize 

important features only. All aforementioned steps 

are displayed in Fig. 1. 
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3.1 Audio pre-processing 

This step plays an essential role mainly in 

achieving an outstanding classification performance. 

Thus, before being provided for further investigation, 

audio data must undergo a number of pre-processing 

steps. Data framing, the initial step, entails putting 

the audio data into a machine-readable format. After 

a certain amount of time, we gain value. The 

sampling rate is the pace at which it is sampled. For 

instance, we extract values every second from a 10-

second audio recording. Here, we set the sampling 

rate (SR) to 44100 as default value.  

Heartbeat sound is considered a non-stationary 

signal because its statistical attributes differ over a 

period. Accordingly, extracting the signal features 

such as spectral, short-time energy, and MFCC from 

the audio signal patch is imperative. The windowing 

process is crucial because it is based on the 

assumption that for every patch, the properties of the 

signal are stationary. The frame-blocking procedure 

is efficient for real-time systems over many samples.  

Calculating the number of frames and samples is 

not rocket science. Assume there is an audio signal 

with a duration of five seconds and SR of 4 KHz. 

The SR is defined as the ratio between samples and 

signal per second. The SR value of 4 KHz must be 

converted into Hz. Now, we have 4,000 Hz per 

second. Thus, the samples are calculated as  

4,000 ∗  5 =  20,000 samples. On the contrary, the 

frame is a portion of the sample series. 

The discrete signal is transformed into a time-

frequency domain in the following stage. However, 

it is challenging for audio analysis, considering the 

time-frequency properties. Therefore, using STFT, 

we can visually inspect the audio signal using the 

spectrogram. A spectrogram is a visual 

representation of an audio signal with properties of 

time and amplitude. The x-axis of the spectrogram 

represents time, and the y-axis is the amplitude. 

As we know, machine learning (ML) learns 

patterns from features. On a large scale feature, it is 

composed of a wide range of different data units. 

Each variable has its measurement and limit. If ML 

is fed with non-uniform range data, it is possible to 

suffer from dreadful recognition performance and 

lead to inconsistency. Therefore, we need the exact 

measurement for every single variable. To do this, 

we deployed a method called min-max scaling 

which can be attained by using Eq. (1): 

 

𝑥 =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
                       (1) 

 

where 𝑥  is the input variable subtracted by the 

lowest possible number, then divided by the 

maximum and minimum possible number difference. 

3.2 MFCC feature extraction 

A raw audio signal holds much information. 

However, we can extract any necessary information 

by applying a particular technique. Here, we utilized 

the MFCC feature algorithm, which is widely used 

in speech and voice recognition. Generally, the steps 

in MFCC are pre-emphasis, frame blocking, frame 

windowing, fast Fourier transform, Mel spectrum, 

discrete cosine transform filter, and delta coefficient 

extraction.  

Pre-emphasis contributes toward isolating high 

frequencies in order to balance the high slope roll-

off spectrum of audio. Low-frequency signal has 

low variance in time, and the magnitude tends to 

move slowly. So that the part of the signal that has 

an insignificant change in adjacent windows is 

removed. Pre-emphasis is given by the following Eq. 

(2): 

 

𝑆(𝑛) = 𝑠(𝑛) − 𝛼𝑠(𝑛 − 1)                  (2) 

 

where 𝑆(𝑛) is the output signal, 𝛼 is the controlling 

variable with range value between 0.9 and 1.0. 

Frame blocking is also known as frame 

segmentation which generally splits the signal into 

20~30 milliseconds frames. This process is done in 

a block that varies in terms of duration--the small 

value of the block assists in a detailed analysis. 

Nevertheless, the bigger window conveys a 

significant resolution of spectral signal. The results 

are multiplied using the Hamming window to 

preserve the constancy of the first and last points. 

The Hamming window is denoted as in Eq. (3): 

 

𝑤(𝑛, 𝛼) = −𝛼 (1 + cos (
2𝜋𝑛

𝑁−1
))              (3) 

 

where 𝑛 is the frame number, 𝑁 is the total frame, 

and 𝛼 affects the curve. 

The products of each window from preceding 

calculation undergo to the Discrete Fourier 

Transform (DFT) to filter the magnitude. By using 

Eq. (4), we can get the result before entering the 

next process: 

 

𝑥(𝑘) = ∑ 𝑥(𝑛)𝑒
−𝑗2𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0                   (4) 

 

where 𝑥(𝑛)  is the signal from frame blocking 

windows. 
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Algorithm 1. PCA components selection algorithm 

 
 

In the fifth step from MFCC feature extraction, a 

signal is distilled its spectrum using Mel-filter bank 

(MFB). A unit in Mel is measured based on human 

ear perception which has a better resolution on a 

lower frequency. Generally, MFB is applied for 

frequency and time domain. But, in this case, MFB 

only deployed in frequency domain. These formulae 

can be used to transform from Hertz (f) to Mel (m) 

using Eq. (5): 

 

𝑚 = 2595 ∗ ln (1 +
𝑓

700
)                   (5) 

 

and Mel to Hertz using Eq. (6): 

 

𝑓 = 700(10
𝑚

2595 − 1)                      (6) 

 

As in Eq. (5), there is a natural log (𝑙𝑛). It is 

perceived that both log function and human ears 

have related properties. The input value ( 𝑓 ) is 

dramatically increased but tends to be less at a 

higher value. 

From Eq. (5), we applied the Mel frequency to 

Discrete Cosine Transform (DCT) to produce 

cepstral coefficients (CC). The system can be made 

robust by extracting only those coefficients, and 

truncating higher-order DCT components, as the 

first few MFCC coefficients represent the majority 

of the signal information. Therefore, we have: 

 

𝑠(𝑚) = ∑ [|𝑋(𝑘)|2𝐻𝑚(𝑘)]𝑁−1
𝑘=0               (7) 

 

where the constraint of 𝑚 is: 

 

0 ≤ 𝑚 ≤ 𝑀 − 1                         (8) 

 

then we calculate 𝐿  by log base 10 from Eq. (7) 

using: 

Algorithm 2. MFCC pre-processing 

 
 

𝐿(𝑚) = log (𝑠(𝑚))                     (9) 

 

Finally, we can measure Mel CC with: 

 

𝑐(𝑛) = ∑ cos (
𝜋𝑛(𝑚−0.5)

𝑀+1
) 𝐿(𝑚)𝑀

𝑚=1       (10) 

 

where the constraint 𝑛 from Eq. (10) is: 

 

𝑛 ∈ 𝑅|0 ≤ 𝑛 ≤ 𝐾 − 1                      (11) 

 

where 𝑐(𝑛) is the CC, and K is the number of CC. 

There are only 8-13 cepstral coefficients used in 

conventional MFCC systems. Since the zeroth 

coefficient indicates the mean of log energy from 

the original signal, which conveys a tiny amount of 

specific information, it is frequently removed. By 

this condition, we utilize 13 CCs. 

The CC represents stationary attributes because 

of limited information from the input frame. To 

distill additional data, it is required to calculate the 

first and second derivative of CC. Thus, we can find 

the first-order using : 

 

Δcm(𝑛) =
(∑ 𝑘𝑖𝑐𝑚(𝑛+𝑖)𝑇

𝑖=−𝑇 )

∑ |𝑖|𝑇
𝑖=−𝑇  

                  (12) 

 

We can calculate the second order from Eq. (12). 
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Algorithm 3. Feature ensemble algorithm 

 

3.3 Ensemble feature selection and dimensional 

reduction 

MFCC is decisive in human speech recognition 

due to its robust, high-resolution, low-frequency 

extraction. Since FHB has a low audio magnitude, 

relying only on MFCC is insufficient. Therefore, we 

exploit zero crossing rate, chroma, and spectral 

features to improve the audio classification. Each 

one of these additional features holds several unique 

properties. For example, we extract the centroid, 

bandwidth, and roll-off features in spectral. Then, 

they are assembled into the MFCC. We calculate the 

average of every single attribute and put it into a 

two-dimensional matrix 𝐗 as follows: 

 

X = [

𝑐𝑐11 𝑐𝑐12 … 𝑐𝑐1𝑛

𝑐𝑐21 𝑐𝑐22 … 𝑐𝑐2𝑛

⋮ ⋮ ⋮ ⋮
𝑐𝑐𝑚1 𝑐𝑐𝑚2 … 𝑐𝑐𝑚𝑛

]             (13) 

 
Figure. 2 Cohen performance results from our compared 

with other machine learning method 
 

where 𝑚 is the number of rows, 𝑛 is the number of 

column features, and 𝑛 = 29  

The matrix 𝐗  is quite large considering its 

property size and not all of those are essential. 

Handpicking and tuning to determine which feature 

affects the most to machine learning model is 

challenging and takes forever. There is no other way 

but to employ a dimensionality reduction method 

called Principal Component Analysis (PCA). PCA 

works by calculating the current features closeness 

towards each other into a new domain. Determining 

the dimension size in PCA is difficult. This 

component selection algorithm is presented in 

Algorithm 1. 

3.4 Model for classification and parameter tuning 

setup 

In this part, we proposed an optimized machine 

learning based on Neural Network. To prove the 

efficiency of our model, we compared with other 

traditional algorithms Random Forest (RF), Ada 

Boosting (ADA), Gradient Boosting (XGB), Log 

Regression (LR), Support Vector Machine (SVM), 

Decision Tree (DT), and Naive Bayes (NB). 

Algorithm 2Algorithm  exhibits the detailed step 

of MFCC extraction. Assume there is an audio 

signal 𝑇  with the time duration 𝑡 , where 𝑓(𝑥)  is 

frame-blocking product of multiplication between 

sampling rate 𝑠𝑟  and 𝑡  in line 2. Then, the frame 

𝑓(𝑥) was altered to a time-frequency domain, and 

we get 𝑊 . From 𝑊 , the windowing result is 

represented by 𝑠(𝑛) . Subsequently, 𝑠(𝑛)  is 

transformed using FFT, and we acquired X(a, b), a 

two-dimensional matrix that holds both phase and 

magnitude. In line 6, we extracted the Mel-filter 

bank by taking the natural logarithmic of 1 +
 𝑓/700 multiplied by 2595. The triangular feature of 

MFCC 𝑠(𝑚) which is obtained using Eq. (7) then 

fed to Eq. (9) for further processing. Then, we took 
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the log base 10 from 𝑠(𝑚) and we get 𝐿(𝑚). 𝐿(𝑚) 

is used as input in Eq. (10). Consequently, the 

cepstral coefficients are the delta of Δ𝑐, which is the 

first order from Eq. (12). 

The Δ𝑐 is a matrix with 𝑚 𝑥 𝑛 size where 𝑚 is 

the length of CC length, and 𝑛 is the number of CC. 

Instead of using all Δ𝑐, we calculate the mean from 

each CC coefficient. Then, we get a matrix 𝐕 

containing all the MFCC features we need. Before 

the final feature, we concatenate our MFCC features 

with others such as chroma and spectrum. Since our 

dataset is imbalance, we employ SMOTE as in 

Algorithm 3. Eventually, since each feature is 

numerical, we scaled our dataset using Eq. (1). 

4. Experiments, results, and discussion 

The study was carried out using a computer with 

Ubuntu 22.04 LTS, 16 GB RAM, processor intel 

core i7, GPU NVIDIA GTX 1050 Ti which contains 

768 CUDA cores, Python version 3.7, and PyCharm 

Community Edition for the IDE. 

The experiments are conducted as follows: 

dataset preparation, metric evaluator selection, 

Optimum PCA component candidate selection, 

baseline model, data balancing, and performance 

evaluation. All of these were delivered in order. 

Since our data is imbalanced and finding which one 

of the balancing methods suits well for our dataset, 

we utilized downsampling, oversampling, and 

SMOTE trials. 

4.1 Dataset preparation 

In this study, we evaluate a public fetal heartbeat 

audio dataset from Physionet using machine 

learning [9]. The dataset contains many audios 

recorded using Ultrasonography (USG) device. The 

sounds were focused on the lower abdomen of 

pregnant mothers in India. The results were 75 

percent normal heartbeats, and the remaining were 

abnormal. All recordings have an average duration 

of 90 seconds, with the majority SR equal to 16 kHz, 

quantization at 16-bit, and the others at 44,100 Hz. 

A digital stethoscope was used to record with a 

wide-band setting and frequency between 20 to 

1,000 Hz. We split the data into a 60:40 ratio for 

training and testing purposes. 

4.2 Experiment setup and metrics evaluator 

Here, we conduct experiments with seven ML 

algorithms in order to compare our model. 

Performance metrics used here are accuracy (ACC), 

precision (Prec), Recall (Rec), F1-score, Cohen's 

Kappa (CK), Receiving Operating Characteristic  
 

 
Figure. 3 AUC performance for each algorithm 

 

(ROC), and Area Under Curve (AUC). ACC is used 

because we need to evaluate the correctness between 

the predicted value of our model with the actual 

output value. Since it is not enough to measure the 

performance, we utilize Prec, defined as a ratio of 

the True Positive (TP) value with the sum of TP 

with the False Positive (FP) value. Prec is powerful 

when we need to find out how well our model 

corrected prediction and false prediction. Rec is 

especially useful when it is needed to categorize an 

event that has already happened. For instance, high 

Rec is required for fraud detection models to 

identify scams effectively. The genuine 0s are 

irrelevant to us in these circumstances because our 

primary goal is to identify the real 1s as frequently 

as feasible. The misidentification in Rec is called 

False Negative (FN). A good classifier is relied on 

how Prec and Rec are close to one. In other words, 

FP and FN tend to be zero. Therefore, the F1-score 

metric plays a role here. 

4.3 PCA component selection 

Due to the number of features in our dataset 

being quite large, the calculation is computationally 

expensive. To reduce the burden, we employ PCA. 

However, finding the optimum number of PCA 

components is expensive as well. Here, we utilize a 

brute force method in which the number of PCA 

components gained the best results as in Algorithm 

Fig. 2. First, let 𝐗  be a matrix 𝑚 𝑥 𝑛  where the 

number of data and the current ensemble feature are 

represented by 𝑚  and 𝑛 , respectively. Second, we 

created a list to buffer the Accuracy, which is sorted 

in ascending order later. Third, we iterated all 

possible combinations of PCA based on the feature-

length 𝑛. Before training, the PCA features (𝐗𝐏𝐂𝐀) 

are calculated, and then the Accuracy is measured. 

All Accuracy values are stored in a list. Eventually,  
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Table 1. Hyper-parameter with its optimum value 

No. Parameters Value Comment 

1 Hidden Layer 3 layers 

2 Nodes 50,100,50 Each layer 

3 Activation Function ReLU - 

4 Weight Optimizer ADAM - 

5 Learning Rate 0.002 - 

 

we can get the best number of PCA components by 

sorting the list in ascending order and filtering by 

the zero indexes. 

4.4 Multi-layered perceptron baseline model 

Here, we tested and evaluated our proposed 

model with the baseline model (BM). The BM 

method is based on one of neural network 

descendant, the multi-layered perceptron (MLP). 

The BM hidden layer structure composed of two 

layers which each layers hold ten nodes. The 

learning rate was set to 1𝑒 − 2 . Generally, when 

traning data using neural network, the loss error may 

fall into local minima. To tackle this issue, we set 

the activation function to ADAM. 

4.5 The proposed model 

One of the challenge in building a neural 

network (NN) model is finding the optimum hyper-

parameter. By default, the structure is handpicked 

such as the number of layer, nodes, learning rate, 

and the activation function on each nodes. Of course, 

such work takes a toll on the time and energy. 

Hence, we conducted optimization (OPT) for hyper-

parameters using Random Search. First, the number 

of hidden layer is considered in OPT because it is 

the foundation of an NN. Second, the activation 

function is also selected with varies among of Tanh, 

ReLU, Sigmoid, and Linear function. Third, the 

weight optimizer is picked from Quasi-Newtonian 

method, Stochastic Gradient Descent, and ADAM 

solver. The fourth parameter is the learning rate. We 

choose a variation from 0.001, 0.002, and 0.003. 

From Random Search, we got the optimized hyper-

parameters as in Table 1. 

4.6 Results from data balancing 

The proposed work is compared with the BM 

and others, for example, NB, DT, RF, XGB, ADA, 

LR, and SVM. The comparison is evaluated in all 

three balancing methods. The bar chart in Fig. 3 

displays the performance comparison of AUC for 

eight algorithms and the proposed method. The bar 

colors red, green, and blue represent the three 

distinguished data balancing methods:  
 

Table 2. Classification results from downsampling 

No. Model Acc Prec Rec F1-

Score 

1 NB 0.4 0.375 0.3 0.333 

2 DT 0.5 0.5 0.7 0.583 

3 RF 0.55 0.57 0.4 0.47 

4 XGB 0.55 0.5333 0.8 0.64 

5 ADA 0.65 0.636 0.7 0.66 

6 LR 0.4 0.416 0.5 0.4545 

7 SVM 0.5 0.5 0.3 0.374 

8 BM 0.6 0.538 0.5 0.454 

9 Our 0.65 0.636 0.7 0.667 

 
Table 3. Classification results from oversampling 

No. Model Acc Prec Rec F1-

Score 

1 NB 0.729 0.846 0.5 0.628 

2 DT 0.8125 0.933 0.636 0.756 

3 RF 0.79 0.833 0.681 0.749 

4 XGB 0.833 0.85 0.772 0.809 

5 ADA 0.7916 0.8 0.727 0.761 

6 LR 0.6875 0.733 0.5 0.594 

7 SVM 0.729 0.909 0.454 0.606 

8 BM 0.8125 0.842 0.727 0.78 

9 Our 0.8541 0.8541 0.8636 0.844 

 

downsampling (DS), oversampling (OS), and 

SMOTE. Overall, we can see that the others 

overpower DS on average, and SMOTE is second to 

none. NB for DS is at the bottom tier with BM and 

is followed by SVM. Furthermore, LR and SVM are 

in the OS compared to DT, XGB, and RF in the 

lower section. At last, our model dominated all other 

methods for AUC scores in terms of DS and 

SMOTE. 

Here, we also compared our method with other 

methods in Cohen's Kappa metrics. Cohen's Kappa 

is a measurement that can be used to assess the 

classification model. The assessment is based on the 

quantitative score of two raters and their agreement 

frequency. The graph in Fig. 2 exhibits the Cohen 

performance for every algorithm in three categories, 

DS, OS, and SMOTE. Our method stands in the top 

position in all categories, compared to others, 

followed by XGB, BM, and DT on average. 

Meanwhile, LR is in the lowest score in almost all 

categories. 

After comparing the classification results using 

AUC and Cohen's Kappa, we also judge the 

prediction and actual results for our method with 

other algorithms. Table 2 shows the performance of 

all methods in Downsampling. At the same time, the 

performance results for Oversampling are in Table 3. 

Lastly, the SMOTE results are in Table 4. 

From Table 2, our model achieved the top 

position for Acc, Rec, and F1-score with the scores 
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Table 4. Classification results from SMOTE 

No. Model Acc Prec Rec F1-

Score 

1 NB 0.604 0.5862 0.7083 0.6415 

2 DT 0.833 0.86363 0.7916 0.826 

3 RF 0.7291 0.866 0.5416 0.666 

4 XGB 0.833 0.9 0.75 0.818 

5 ADA 0.75 0.75 0.75 0.75 

6 LR 0.708 0.6785 0.791 0.7307 

7 SVM 0.75 0.8 0.66 0.727 

8 BM 0.833 0.944 0.708 0.809 

9 Our 0.917 0.954 0.875 0.913 

 
Table 5. Performance comparison of SOTA and the 

proposed work 

No. Model Feature Acc (%) 

1 YasSVM MFCC+DWT 66.75 

2 YasDNN MFCC+DWT 95.33 

3 YasKNN MFCC+DWT 76.6 

4 

YadSVM 

Centroid, Spectral, 

Entropy 73.5 

5 

YadNB 

Centroid, Spectral, 

Entropy 67 

6 

YadRF 

Centroid, Spectral, 

Entropy 95 

7 

YadKNN 

Centroid, Spectral, 

Entropy 95.75 

8 BaghelDNN PCG Signal 93.75 

9 MeiWST WST 82 

10 Our Ensemble 98.3 

 

at 85 %, 86 %, and 84%, respectively. Unfortunately, 

the Prec score is in the second position after DT. 

The wonderful performance of our model continued 

in Oversampling results. Our model scored 87.5 % 

in Acc, 86 % in Rec, and 86 % in F1-Score.  

Finally, in the last balancing method score 

(SMOTE), our model overpowered all methods in 

all metrics. In terms of Acc, our model gained 

91.7 % followed by BM, DT, and XGB, with a score 

of 83 % each. Meanwhile, we successfully secured 

the top position in Prec with a 1.1% difference 

between our and the second position, baseline model 

(BM). For Rec and F1-score, our model achieved 

87.5% and 91.3 %, respectively. 

4.7 Performance comparison with the state-of-

the-art methods 

In here, we compared our proposed work with 

the state-of-the-art (SOTA) algorithms Yaseen [15], 

Yadav [17], Baghel [20], and Mei [14]. Yaseen 

presented a public dataset which contains five 

classes of cardiac disease such as Aortic Stenosis 

(AS), Mitral Regurgitation (MR), Mitral Stenosis 

(MS), Mitral Valve Prolapse (MVP), and Normal 

(N). As our comparison, we employed four machine 

learning methods as in Yaseen’s work and we coded 

each one of them as follows: SVM (YasSVM), 

Centroid KNN (YasKNN), and Deep Neural 

Network (YasDNN). As information, we only 

compared the best features (MFCC and DWT) based 

on the accuracy performance results in Yaseen work. 

In Yadav, we use his four machine learning works, 

SVM (YadSVM), Naïve Bayes (YadNB), Random 

Forest (YadRF), and k-Nearest Neighbour 

(YadKNN). The features used in Yadav are centroid, 

energy entropy, spectral roll-off, spectral flux, and 

zero crossing rate. Each result from Yadav features 

is calculated with mean and standard deviation to 

reduce complexity. The proposed DNN from Baghel 

(BaghelDNN) also compared with our work. Finally, 

the last SOTA method to compare is from Mei 

which is based on Wavelet Scattering Transform 

(WST). All parameters used in this experiment were 

taken based on their best results from each method.  

We tested all SOTA using Yaseen public dataset 

and evaluated their accuracy performance. It can be 

seen from Table 5 that our proposed work using 

ensemble feature surpassed all related SOTAs with 

98.3 % accuracy. In the second position is achieved 

by Yadav feature using KNN classifier followed by 

Yaseen DNN, Yadav RF, and Baghel DNN.  

4.8 Discussion 

This research studies about fetal heartbeat sound 

classification using nine different algorithms. 

Several studies for pregnant women conducted in 

developing countries triggered much attention. 

Research using USG as a medium of recording the 

sound from fetal has been conducted. The results 

were astounding. The data contains many clinical 

histories of maternal, for example, high blood 

tension, bipolar, abortion, amniotic fluid, admitted 

abnormal fetus, preeclampsia, and hypoglycemia. 

All of these conditions affect the heartbeat rhythm. 

By this condition, we conducted research for 

arrhythmia detection based on FHB phonograph 

audio. Due to the data imbalance between normal 

and abnormal, we utilize three balancing techniques. 

In audio classification, we extracted the features 

using MFCC, Chroma, Spectral, and roll-off, then 

assembled them. The assembly process leads to a 

large size of the feature. Thus, we implement a 

dimensionality reduction method, PCA, to improve 

performance and efficiency. PCA successfully cut 

down the feature to half of its original size. Even 

though the size was reduced, the classification 

performance was remarkable. 

To prove the effectiveness of our method we 

also compared with related SOTAs. As a fair 



Received:  November 2, 2022.     Revised: December 15, 2022.                                                                                   570 

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023           DOI: 10.22266/ijies2023.0228.48 

 

comparison, we tested using the same dataset from 

Yaseen. Each SOTA parameters were picked based 

on their top results. Finally, our method achieved the 

best result. 

5. Conclusion 

In this paper, we exhibit a phonocardiograph-

based audio classification of fetal heartbeats using 

neural network optimization. The experiment results 

show significant improvement by utilizing 

dimensionality reduction and ensemble features. 

Furthermore, we investigated the data using 

downsampling, oversampling, and SMOTE. The 

improvement of classification performance is 

significantly rising by 0.5 % between downsampling 

and SMOTE. At the same time, our proposed model 

overwhelmed the baseline model by 1 % on average. 

Finally, the best result is achieved with SMOTE-

PCA combination with the accuracy and F1-score at 

91.7 % and 91.3 %, respectively. 

Of course, there is still plenty of room for 

improvement in future works. For example, the 

dataset coverage must be improved in quantity and 

variety. The improvement can be conveyed in a 

larger population, especially in developing countries 

with a considerable malnutrition risk. The 

classification performance can be expanded into 

more than two classes and be focused on abnormal 

results. In dimensional reduction, many techniques 

must be explored to determine the effect on machine 

learning performance. 
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