
Received: December 6, 2022. Revised: January 9, 2023. 215

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.18

Multi-Objective Robot Path Planning Using an Improved Hunter Prey

Optimization Algorithm

Jaafar Ahmed Abdulsaheb1,2* Dheyaa Jasim Kadhim1

1Department of Electrical Engineering, College of Engineering, University of Baghdad, Iraq, Iraq

2Department of Electronics and Communication, College of Engineering, Uruk University, Iraq
* Corresponding author’s Email: jaafer@uruk.edu.iq

Abstract: This work considers the best path planning algorithm for a mobile robot that travels independently in an

unknowable environment. To get around the limitations of unstable searches in the conventional Hunter-Prey

Optimization Algorithm (HPO), the improved HPO optimization algorithm is used and introduces a new control

parameter referred to as randomization adjustment in order to avoid stagnation and early convergence. The absence of

the transfer parameter from exploration and exploitation is a significant flaw in the HPO algorithm, which results in

an unstable search and additional time waste. Another new parameter called the changing parameter (CP) is used to

address this flaw. It is used in an environment with erratic static and dynamic obstacles and a static and dynamic target.

Finding a collision-free path that is also the objectively shortest path and the smoothest path can solve the path-

planning problem. The proposed algorithm attempts to mimic the real world by taking into account the actual size of

the mobile robot, a kinematic model, and the robot's specifications. The proposed algorithm is evaluated by comparing

it on 30 dimensions using 13 benchmark test functions. The performance of the proposed algorithm is evaluated against

the results of five swarm optimization algorithms. According to the results of the standard deviation tests, the proposed

algorithm performs the best in 92% of the 13 test functions. Furthermore, the average outcomes for three complex

maps (10×10) m in size demonstrate the potency of this approach for robot paths from the starting point to the target.

The average distance over ten runs for maps 1, 2, and 3 is 12.6436 meters, 12.4961 meters, and 17.6547 meters,

respectively. It demonstrated how quickly and easily it could avoid both stationary and moving obstacles.

Keywords: Robot path planning, Multi-objectives optimization, Hunter prey optimization algorithm, Shortest path,

Smoothness, Obstacle detection and avoidance.

1. Introduction

Numerous industries, including searches and

rescue, the armed services, agricultural production,

medical services, and entertainment., use

autonomous mobile robot (AMR) navigation [1].

Concerning robot navigation (RN), there are three

main problems that need to be solved: safety,

accuracy, and speed. The safety and accuracy issues

are finding a collision-free path and following the

precise addressed path. The ability of the algorithm

to stop and turn robots repeatedly is referred to as

efficiency. This is a waste of time and effort. Several

categories of RN problems include localization, path

planning, cognitive mapping, and motion control.

Path planning could be argued to be the most

important issue. The aim of path planning is to find

the best, most direct, and collision-free route from a

starting point to an objective in a given environment.

A robot can usually get to its goal in more than one

way, but the best way is chosen based on a set of rules

[2].

Robot path planning (RPP) was first studied in

the 1960s, and several strategies, including the cell

decomposition approach [3], roadmap [4], and

potential fields algorithm [5], have since been put

forth. The main drawbacks of the aforementioned

methods are their inaccuracy and inefficiency (large

processing costs) and a significant risk of getting

stuck in relative minima. To get around these

algorithms' drawbacks, several heuristic techniques

Received: December 6, 2022. Revised: January 9, 2023. 216

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.18

can be applied [6]. These include genetics, neural

networks, and nature-inspired algorithms. The

following describes some of the associated works.

To prevent becoming stuck in local minimums or

experiencing slower convergence while path

planning, it was suggested in [7] to enhance the

conventional ACO. The challenge of mobile RPP is

addressed in [8] using a novel approach based on

adaptive particle swarm optimization (APSO). Real-

time problems are frequently solved by the APSO

method, which is more intelligent than the

conventional PSO algorithm. The robot will

hopefully come up with a new way to get around

obstacles and move faster. In the work [9], a team of

mobile robots introduces a novel cuckoo search-

based odor source localization method. It makes use

of a robot that determines the location of the

maximum gas concentration, from which it directs

further robots to search for odor sources upwind. This

technique can be used by the robots to escape both

eddy locations and localized high-concentration areas.

In the study [10], a brand-new algorithm was created

using the bacterial foraging optimization (BFO)

method. It devises a path to the destination and

navigates past impediments using particles that are

scattered around the robot in a circle. The work [11]

employs the artificial immune algorithm (AIA),

which is based on the idea of immunity, to choose a

path for mobile robots that avoids obstacles. The

outcomes of the simulations demonstrate that the

mobile robot can use AIA to avoid hazards, get out of

binds, and accomplish its objective. In this study, an

obstacle-avoiding path for mobile robots is planned

using the artificial immune algorithm (AIA), which

was developed from the immune principle. The

outcomes of the simulations demonstrate that the

mobile robot can use AIA to avoid hazards, get out of

binds, and accomplish its objective. It has been

suggested to use a unique multi-objective approach

based on the Whale optimization algorithm (WOA)

to plan the best possible paths for mobile robots [12].

WOA transforms the smoothness and distance of the

robot's path planning problems into minimization

problems. The robot selects the best whale in each

iteration and advances in line toward it. Path

optimization issues have seen extensive use of GA

[13]. The newly suggested crossover operator

prevents early convergence and enables pathways

with higher fitness values than their parents. I Robot

Create (a mobile robot) features a fuzzy logic

controller [14] that interfaces with the arduino uno.

The robot's left and right wheels travel at different

speeds, which are controlled by fuzzy rules. The

hybrid multi-objective bare-bones particle swarm

optimization with differential evolution [15] method

is used to help mobile robots plan better routes. To

choose a particle's individual optimum position, a

novel Pareto dominance with collision limitations

has been created. The efficiency of this algorithm is

supported by simulation data. RPP makes use of and

recommends the chicken swarm optimization

algorithm (ICSO) (improved) [16]. The numbers

demonstrate that the ICSO The approach is more

accurate, stable, and has a more powerful search

capability in RPP for unconstrained optimization.

[17] proposes a path planning algorithm with self-

adaptive population size based on the firefly

algorithm. Population size distinguishes between

viable and infeasible solutions. The suggested

method is better than the fixed population size firefly

algorithm in terms of how stable it is, how quickly it

converges, and how long it takes to calculate. The

Morphin algorithm [18] was developed to swiftly

dodge moving obstacles. Simulation results show that

the proposed method performs well for planning an

initial, static optimal path. [19] The authors provide a

dynamic window strategy for combining the

maximum and minimum ant systems and creating an

adaptive distance induction factor based on the

improved ant colony method. Simulations show that

the technique does what it's supposed to do, which is

improve the performance of global path optimization

while avoiding local dynamic barriers.

The mobile robot was treated as a simple particle

in the studies mentioned above, which is one of their

flaws. Some of these algorithms were designed to

find the shortest path while dodging static obstacles,

but other research concentrated on dodging dynamic

obstacles while achieving the shortest distance

without taking the path's smoothness into account.

The grid-based methods used in some of the

aforementioned researches are also simple to use, but

they have a number of drawbacks, such as an

imprecise representation of the obstacle that reserves

the entire cell even if the obstacle only occupies a

small portion of the cell. Space is wasted as a result,

and environments that are dynamic have less

flexibility. Additionally, the robot was depicted as a

point, and the actual dimensions of the mobile robot

were not taken into account.

There are many modern algorithms that have not

been applied to path planning yet but may be in the

future. The following describes four of these new

algorithms: [20] The guided pelican algorithm (GPA)

has the improvements needed for a shortcoming in

another algorithm, namely the pelican optimization

algorithm (POA). GPA mimics the behavior of

pelican birds during hunting. Simulation is

implemented to observe GPA's performance in

Received: December 6, 2022. Revised: January 9, 2023. 217

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.18

optimizing both theoretical and real-world problems.

[21] The stochastic Komodo algorithm (SKA) is an

improved version of the Komodo mlipir algorithm

(KMA), which is inspired by the behavior of the

Komodo dragon during foraging and mating. The

improvement is conducted by simplifying the basic

form of KMA. It eliminates the sorting mechanism at

the beginning of the iteration. Work [22] proposes a

new metaheuristic algorithm: a fixed-step average

and subtraction-based optimizer (FS-ASBO). This

algorithm is then implemented into a simulation to

evaluate its performance. The result shows that this

proposed algorithm is competitive in solving

theoretical problems and superior in solving real-

world problems. Paper [23] aims to introduce a new

optimization algorithm called the Puzzle

Optimization Algorithm (POA) to solve various

optimization problems. The main advantage and

feature of the proposed POA is that it has no control

parameters and therefore does not require parameter

setting.

The principal contributions made by this research

project are listed below:

(1) The main problem with the traditional HPO

algorithm is that it doesn't include the parameter

of transfer from exploitation to exploration. As a

result, searches become unstable (the local

optimum stagnates), wasting more time. In order

to get around this problem, the IHPO algorithm

was proposed.

(2) This algorithm is used to generate and choose

various multi-objective combinations (shortest

path and smoothness), as proposed in this paper.

In order to compare the new algorithm to the

previous one, thirteen benchmark test functions

were also used.

(3) The proposed IHPO algorithm is combined with

a local search method that turns impractical

solutions into ones that can be used in an

uncharted environment with random erratic static

obstacles, a static and moving target, and random

dynamic obstacles.

(4) Also, the kinematic model with robot

specifications and the actual size of the mobile

robot are taken into account (assuming turtlebot3

burger as a given).

The structure of this paper is as follows: Problem

formulation is represented in section 2. Section 3

discusses the HPO optimization. Section 4 describes

our suggested improved HPO algorithm; Section 5

illustrates robot path planning using IHPO; and

Figure. 1 Classification of RPP

section 6 displays the simulation result and

discussion. Finally, section 7 of this work represents

its conclusion.

2. Problem formulation

One of the crucial elements in the study of robot

navigation is Robot path planning (RPP). As shown

in Fig. 1, RPP can be classified into two types based

on the environment in which the robot is located:

static (environment with fixed obstacles) and

dynamic (environment with moving obstacles).

There are additional subgroups that can be created

within each of these two categories: both local path

planning (LPP) and global path planning (GPP), in

which all fixed and moving obstacles are known in

advance, can be prepared before the robot moves

(offline) (LPP). At this location (GPP), it is

impossible to get an advance understanding of the

environment. In order to gather information about the

environment the mobile robot is moving through,

there are sensors (online) [24].

In this work, local path planning is used in a

setting with erratic static and moving obstacles and

an unknowable fixed and moving target. The actual

size of the mobile robot as well as the kinematic

model with guidelines for robots in 2-D space are also

taken into consideration. The MTALAB workspace

imports the robot map, and an occupancy binary map

is produced. Every pixel on the occupancy map,

which is a 2D matrix, either has a binary 0 (empty) or

a binary 1 (filled) (occupied by a static or moving

obstacle).

Received: December 6, 2022. Revised: January 9, 2023. 218

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.18

3. Standard hunter prey optimization

algorithm (HPO)

In 2022, Naruei et al.[25] proposed HPO

optimization, a new intelligent optimization

algorithm. It simulates the animal hunting process

and has the advantages of fast convergence and

strong optimization ability. In the standard HPO

algorithm, the population position in the solution

space is set at random. The formula for setting the

population position is as follows:

𝑥𝑖 = 𝑟𝑎𝑛𝑑(1, 𝑑) × (𝑢 − 𝑙) + 𝑙 (1)

𝑥𝑖 denotes the position of the ith hunter or prey, i

= 1, 2,... N, N denotes the population size, l and u are

the search space's lower and upper bounds

respectively, and rand(1,d) is the random number of

[0, 1], d = 1, 2,..., M, and M represents the size of the

search space. The formula for updating the hunter's

location is as follows:

𝑥𝑗,𝑖(𝑡 + 1) = 𝑥𝑗,𝑖(𝑡) + 0.5 [(2 × 𝐶 × 𝑍 ×

𝑃𝑝𝑜𝑠(𝑖) − 𝑥𝑗,𝑖(𝑡) + 2(1 − 𝐶)𝑍𝜇(𝑖) − 𝑥𝑗,𝑖(𝑡))]

(2)

where x(t) and x(t + 1) represent the location of

hunters now and in the future, respectively; Ppos

represents the location of the prey. 𝜇 =
1

𝑛
∑  𝑛
𝑖=1 𝑥𝑖 is

the average of all locations; Eq. (4) calculates the

adaptive parameter Z.

𝑃 = 𝑟1 < 𝐶; 𝐼𝐷𝑋 = (𝑃 == 0) (3)

𝑍 = 𝑟2⊗ 𝐼𝐷𝑋 + 𝑟3⊗ (∼ 𝐼𝐷𝑋) (4)

Where r1 and r3 are [0, 1] random vectors; P is a

0 or 1 random vector; and r2 is a random number

within [0, 1]. IDX is the index value of the vector r1

that meets the conditions (P == 0); and C is the factor

balancing exploitation and exploration, whose value

decreases from 1 to 0.02 during the iterative process.

The following is an illustration of the calculation:

𝐶 = 1 − 𝑖𝑡 (
0.98

𝐼𝑡𝑚𝑎𝑥
) (5)

where it and Itmax represent the number of

iterations at present and at the most, respectively. Eq.

(6) shows how to figure out the euclidean distance

from the average position of each person searched:

𝐷euc(i) = (∑  𝑑
𝑗=1 (𝑥𝑖,𝑗 − 𝜇𝑖,𝑗)

2
)

1

2
 (6)

The search agents that are the furthest away from

the average position 𝜇 are considered prey Ppos:

𝑃𝑝𝑜𝑠 = 𝑥𝑖 ∣ 𝑖 is index of 𝑀𝑎𝑥(end) 𝑠𝑜𝑟𝑡(𝐷𝑒𝑢𝑐)

(7)

The algorithm's convergence is poor if each

iteration takes the greatest distance between the

search agent and the average μ position into account.

When the prey is captured in the actual hunting scene,

the hunter will move to the new prey location the next

time. To simulate this scenario, the decreasing

mechanism is used, as shown in Eq. (8).

𝑘𝑏𝑒𝑠𝑡 = 𝑟𝑜𝑢𝑛𝑑(𝐶 × 𝑛) (8)

Where n represents how many search agents

there are, 𝑘𝑏𝑒𝑠𝑡 = N at the start of the algorithm.

During each iteration of the algorithm, the hunter

chooses the search agent that is farthest from where

the prey is usually found and attacks it while the

𝑘𝑏𝑒𝑠𝑡 gradually decreases. The 𝑘𝑏𝑒𝑠𝑡 is equal to the

first search agent at the end of the algorithm (the

shortest distance from the average position). So, Eq.

(7) can be replaced by Eq. (9) to figure out where the

prey is:

𝑥𝑖,𝑗(𝑡 + 1) = 𝑇𝑝𝑜𝑠(𝑗) + 𝐶 × 𝑍 𝑐𝑜𝑠(2𝜋𝑟4) ×

(𝑇𝑝𝑜𝑠(𝑗) − 𝑥𝑖,𝑗(𝑡)) (9)

Where x(t) and x(t+1) represent the prey's

current and next iteration positions, respectively; The

next prey position is determined by the function cos

and its input parameters at various radii and angles

from the global optimal position, where Tpos is the

global optimal position, r4 is a random number

within [1, 1], and. When Eqs. (2) and (9) are put

together, you can choose the following updated

version of the hunter or prey position.

𝑥𝑖,𝑗(𝑡 + 1) =

{

𝑥𝑖,𝑗(𝑡) + 0.5 [
(2 × 𝐶 × 𝑍 × 𝑃𝑝𝑜𝑠(𝑗) − 𝑥𝑖,𝑗(𝑡))

+ (2(1 − 𝐶)𝑍𝜇(𝑗) − 𝑥𝑖,𝑗(𝑡))
]

, (10𝑎)

𝑇𝑝𝑜𝑠(𝑗) + 𝐶 × 𝑍 × 𝑐𝑜𝑠(2𝜋𝑟4) × (𝑇𝑝𝑜𝑠(𝑗) − 𝑥𝑖,𝑗(𝑡))

, (10𝑏)

r5 is a random number between 0 and 1, and 𝛽 =

0.1 is the adjusting parameter If r5 < 𝛽 the search

agent is considered a hunter, the location update

formula is (10a); if r5 ≥ 𝛽 the search agent is

Received: December 6, 2022. Revised: January 9, 2023. 219

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.18

Figure. 2 :(a) Hunter behaviour, and (b) prey behaviours

considered prey, the location update formula is (10b).

As shown in Fig. 2.

4. Improved Hunter–prey Optimization

(IHPO) Algorithm

1) Any metaheuristic algorithm's main control

parameter is the randomization factor. In contrast,

we introduced a control parameter called β to

adjust the randomization in order to prevent

stagnation and early convergence. The HBO

algorithm uses rand [0,1] as the only random

factor in Hunter–prey 's Eq (10). The newly

introduced parameter aids in changing the

direction of the search and is defined as follows:

𝛽 = 2 × rand − 1 (11)

2) The absence of the transfer parameter from

exploration and exploitation is a significant flaw

in the HPO algorithm, which results in an

unstable search and additional time waste. A new

parameter called the changing parameter (CP) is

used to address this flaw. CP, periodic parameter

that is used to increase the chance of exploitation

and speed up the process of exploration.

𝐶𝑃 = 𝑠𝑖𝑛 (𝐶 −
𝑡

𝑇
) (12)

Let, 𝛼 = 𝛽 × 𝐶𝑃 (13)

𝑥𝑖,𝑗(𝑡 + 1) =

{

𝑥𝑖,𝑗(𝑡) + 0.5 [

(𝛼 × 2 × 𝐶 × 𝑍 × 𝑃𝑝𝑜𝑠(𝑗) − 𝑥𝑖,𝑗(𝑡))

+ (2(1 − 𝐶)𝑍𝜇(𝑗) − 𝑥𝑖,𝑗(𝑡))
]

, (14𝑎)

𝑇𝑝𝑜𝑠(𝑗) + 𝛼 × 𝐶 × 𝑍 × 𝑐𝑜𝑠(2𝜋𝑟4) ×

(𝑇𝑝𝑜𝑠(𝑗) − 𝑥𝑖,𝑗(𝑡)) , (14𝑏)

5. Robot path planning using IHPO

The path taken by the robot should be optimized

to meet certain standards so that the path planning

problem can be categorized as an optimization

problem. The first objective is to find the shortest

path without violating the problem's constraint,

which is to avoid all obstacles in the way. The

formulation of the optimization problem is a discrete

optimization problem in which the objective function

f1(x,y) seeks to minimize the total path traveled by

the mobile robot. It is given by:

𝑓1(𝑥, 𝑦) = ∑ √(∆𝑥)2 + (∆𝑦)2 𝑛−1
𝑗=1 (15)

As shown in Fig. 3, where n is the number of via

points where a change in trajectory happened, which

is a project parameter in this case, and:

Figure. 3 The Euclidean distance between two points

Received: December 6, 2022. Revised: January 9, 2023. 220

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.18

Figure. 4 Path smoothness

∆𝑥 = 𝑥(𝑗 + 1) − 𝑥(𝑗) (16)

∆𝑦 = 𝑦(𝑗 + 1) − 𝑦(𝑗) (17)

In addition to the first goal, the algorithm should

also meet the second goal, which is to minimize the

angles made by the goal, the current position, and the

next suggested position's straight lines, as shown in

Fig. 4 and the following equation:

𝑓2(𝑥, 𝑦) = ∑ ∆𝜃𝑗
𝑛
𝑗=1 (18)

∆𝜃𝑗 = 𝑡𝑎𝑛
−1 (

∆𝑦

∆𝑥
) − 𝑡𝑎𝑛−1 (

𝑦(𝑔𝑜𝑎𝑙)−𝑦(𝑗)

𝑥(𝑔𝑜𝑎𝑙)−𝑥(𝑗)
) (19)

 Where, 𝑗 = 1,2, …𝑛 − 1

When there are multiple objective functions in a

problem that needs to be optimized and the aim is to

find one or more optimal solutions, multiple

objective optimization (MOO) is used. A popular

technique for handling multiple objectives in

optimization is the weighted sum method. Fig. 5

shows how the different objective functions are

combined into a single objective function that is

easier to understand using the weighted sum [24].

𝑓(𝑥, 𝑦) = ∑ 𝑊𝑚 𝑓𝑚 (𝑥, 𝑦)
𝑀
𝑚=1

 = 𝑊1 𝑓1 (𝑥, 𝑦) +𝑊2 𝑓2(𝑥, 𝑦) (20)

The weighting coefficient, W = (W1, W2,..., Wm),

must be defined because it determines the strong

solution. These weights have undoubtedly been

satisfying and beneficial [26]. ∑ 𝑊𝑚 = 1𝑀
𝑚=1 , Wm ∈

[0,1].

Figure. 5 Weighted sum selections for MOO

The velocity (𝑣𝑜𝑏𝑠) and direction (𝜃𝑜𝑏𝑠) of the

dynamic obstacles in the case of the dynamic obstacle

that shifts from one location to another at each time

step, the following equations assume that it is random.

𝜒𝑜𝑏𝑠 = 𝜒𝑜𝑏𝑠 + 𝑣𝑜𝑏𝑠 × 𝑐𝑜𝑠 𝜃𝑜𝑏𝑠 (21)

𝑦𝑜𝑏𝑠 = 𝑦𝑜𝑏𝑠 + 𝑣𝑜𝑏𝑠 × 𝑠𝑖𝑛 𝜃𝑜𝑏𝑠 (22)

Where,

𝜃𝑜𝑏𝑠 = 360 × 𝑟𝑎𝑛𝑑(0,1) (23)

𝑣𝑜𝑏𝑠 = 𝑟𝑎𝑛𝑑(0,1) (24)

Using the same principle from [27] to detect and

avoid the obstacles with a local search strategy, the

proposed algorithm for path planning can be clarified

in the following flowchart, Fig. 6.

6. Results and discussions

6.1 IHPO algorithm performance on benchmark

test functions

This section evaluates the IHPO algorithm using

13 criterion functions and 30 dimensions. These are

common functions that have been used by many

researchers [24]. IHPO compares the results of these

tests to those of the HPO algorithms. These common

functions are shown in Table 1, where (Range)

indicates the limit of the function's search space and

(fmin) is the ideal value. The last six functions are

multimodal, while the first seven are unimodal.

Received: December 6, 2022. Revised: January 9, 2023. 221

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.18

Figure. 6 Flowchart for the proposed algorithm

The fact that the unimodal functions (f1- f7) have a

global optimum but no local optimum makes them

well suited for use in determining how algorithms

should be exploited. Multi-modal functions (f8–13)

have a lot of local optimalities. Because of this, they

can be used to look at the exploration and avoid the

local optima of algorithms.

Optimization has become a popular research

subject in recent years, as well as a cost-effective

technique to find an ideal solution to complex issues.

Five swarm optimization algorithms are compared

with the IHPO algorithm: the first is particle swarm

optimization (PSO) [28]; the second is another well-

known algorithm called the Salp Swarm Algorithm

(SSA) [29]; and the fitness dependent optimizer

(FDO) [30]. They are also compared with the

conventional COOT [31] optimization algorithm and

the conventional HPO algorithm to validate their

results. The maximum number of iterations is 500,

and there are 30 search agents.

The first one is the PSO algorithm. This

metaheuristic algorithm borrows social behavior

from natural groups of creatures, such as fish schools

and bird flocks. It was developed in 1995 by Eberhart

and Kennedy and is an optimization tool with a

rapidly growing user base for resolving various

engineering and scientific issues. The PSO imitates

social animal behavior, but it doesn't need a group

leader to get the job done. The flock of birds does not

need a leader when searching for food; instead, they

follow the member who is closest to the food. In this

manner, the flock of birds successfully communicates

with the other members of the population to arrive at

the required solution. The PSO algorithm is made up

of a collection of particles, each of which represents

a potential resolution.

The second is the SSA algorithm. Salps have a

transparent, cylindrical body and are members of the

Salpidae family. Their tissues resemble jellyfish

tissues in many ways. They also move very similarly

to jellyfish, which propel themselves forward by

pumping water through their bodies. Because of how

challenging it is to access their environments and

maintain them in laboratory settings, biological

research on this creature is still in its early stages. The

swarming behavior of salps is among their most

fascinating behaviors. A salp chain is a type of swarm

that frequently forms in deep oceans. Although the

primary motivation for this behavior is still unclear,

some researchers think that it is carried out to

improve locomotion through quick, coordinated

movements and foraging.

The FDO algorithm is the third. This algorithm

mimics the reproductive behavior of a swarm of bees.

The core of this algorithm was inspired by how scout

bees select a new suitable hive from a large pool of

potential hives. In this algorithm, every scout bee that

looks for new hives represents a potential solution; in

addition, picking the best hive out of several good

hives is thought to be convergent to optimality. The

search space's artificial scout population is initially

initialized randomly by the algorithm; each position

of the scout bees represents a recently found hive

(solution). Scout bees randomly search more

locations in an effort to find better hives; each time a

better hive is found, the previous one is disregarded.

Similarly, each time the algorithm finds a new, better

solution, the previous one will be disregarded.

Additionally, the artificial scout bee will continue in

its previous direction in the hopes that it will lead it

to a better solution (a hive) if the current move fails

to do so. The current solution, which is the best one

so far, will be continued, though, if the previous

Received: December 6, 2022. Revised: January 9, 2023. 222

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.18

Table 1. Functions for benchmark tests

Function Range fmin

𝑓1(𝑥) =∑  

𝑛

𝑖=1

𝑥𝑖
2 [-100, 100] 0

𝑓2(𝑥) =∑  

𝑛

𝑖=1

|𝑥𝑖| +∏  

𝑛

𝑖=1

|𝑥𝑖| [-10, 10] 0

𝑓3(𝑥) = ∑  

𝑛

𝑖=1

(∑  

𝑖

𝑗−1

𝑥𝑗)

2

 [-100, 100] 0

𝑓4(𝑥) = 𝑚𝑎𝑥{|𝑥𝑖|, 1 ⩽ 𝑖 ⩽ 𝑛} [-100, 100] 0

𝑓5(𝑥) = ∑  

𝑛−1

𝑖=1

[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑙 − 1)

2] [-30, 30] 0

𝑓6(𝑥) = ∑  

𝑛

𝑖=1

([𝑥𝑖 + 0.5])
2 [-100, 100] 0

𝑓7(𝑥) = 𝑚𝑎𝑥{|𝑥𝑖|, 1 ⩽ 𝑖 ⩽ 𝑛} [-1.28, 1.128] 0

𝐹8(𝑥) = ∑  

𝑛

𝑖=1

− 𝑥𝑖 sin (√|𝑥𝑖|) [-500, 500] -418.9829×5

𝐹9(𝑥) = ∑  

𝑛

𝑖=1

[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10] [-5.12, 5.12] 0

𝐹10(𝑥) = −20 cxp(−0.2√
1

𝑛
∑  

𝑛

𝑖−1

𝑥𝑖
2) − exp (

1

𝑛
∑  

𝑛

𝑖−1

cos(2𝜋𝑥𝑖)) + 20 + 𝑐 [-32, 32] 0

𝐹11(𝑥) =
1

4000
∑  

𝑛

𝑖−1

𝑥𝑖
2 −∏  

𝑛

𝑖=1

cos (
𝑥𝑖

√𝑖
) + 1 [-600, 600] 0

𝐹12(𝑥) =
𝜋

𝑛
{10 sin(𝜋𝑦1) +∑  

𝑛−1

𝑖−1

(𝑦𝑖 − 1)
2[1 + 10 sin2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)

2}

+∑  

𝑛

𝑖−1

𝑢(𝑥𝑖 , 10,100,4) +∑  

𝑛

𝑖=1

𝑢(𝑥𝑖 , 10,100,4)𝑦𝑖 = 1 +
𝑥𝑖 + 1

4

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)
𝑚 𝑥𝑖 > 𝑎

0 −𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚 𝑥𝑖 < −𝑎

}

[-50, 50] 0

𝐹13(𝑥) = 0.1 {sin
2(3𝜋𝑥1) +∑  

𝑛

𝑖=1

(𝑥𝑖 − 1)
2[1 + sin2(3𝜋𝑥𝑖 + 1)]

+(𝑥11 − 1)
2[1 + sin2(2𝜋𝑥𝑛)]} +∑  

𝑛

𝑖=1

𝑢(𝑥𝑖 , 5,100,4)

 [-50, 50] 0

direction does not result in a better solution. Scout

bees randomly look for hives in the wild. This

algorithm uses artificial scouts to perform an initial

random search of the environment using a random

walk and a fitness weight mechanism. The artificial

scout bee hopes to discover a better solution each

time it moves by accelerating its current position.

The fourth, the Coot algorithm, a swarm-based

algorithm inspired by collective movements

(irregular and regular movements on the water's

surface), was developed by Naruei and Keynia in

2021. A few coots in front of the group act as the

group's leader and direct everyone else to the desired

location (food). Coots move on the water's surface in

Received: December 6, 2022. Revised: January 9, 2023. 223

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.18

four distinct ways: random movement, chain

movement, adjusting position based on group leaders,

and leading the group to the optimal location, which

is led by their leaders. The last one is a standard HPO

algorithm.

These algorithms were applied to 13 test

functions with 30 dimensions. Six of the seven

unimodal test functions yield the best results when

the proposed IHPO algorithm is used, as shown in

Table 2. (F1-F7). This shows that the search space

has been effectively utilized by the IHPO algorithm.

Utilizing multimodal functions, algorithm

exploration is measured. In these functions, there are

a number of local optimum conditions that the

algorithm ought to avoid. The statistical output of the

algorithms for these functions is shown in Table 2

(F8-F13). In every multi-modal test function, the new

IHPO algorithm performs better. So, the simulation

results demonstrated that the proposed algorithm

offers significant advantages over the options to

which it was compared. According to the results of

the standard deviation tests, the proposed algorithm

performs the best in 92% of the 13 test functions.

6.2 RPP in a challenging static setting

This section illustrates the effectiveness of the

path planning algorithm that has been developed for

mobile robots in environments with static obstacles.

Six erratic static obstacles of various sizes make up

the static environment (Map 1). (0, 0) served as the

starting position, and the goal position (10, 10). The

following configurations were used with the

proposed IHPO algorithm in static environments:

The accepted error must be less than 0.2 m, where

error is defined as norm(robot Current Pose (1:2)-

Goal Position (:)). where robot Current Pose = [robot

Initial Location initial Orientation] and initial

Orientation = 0, the desired linear velocity for the

robot is 0.5 m/sec, the robot wheel radius is 0.034 m,

and the maximum angular velocity is equal to the

linear velocity divided by the wheel radius. Given is

the optimized function. Eq. (20).

(1) Case 1: The goal is static

In this case, the mean distance for Map 1 is

12.6436 m and the error is 0.0012 m and the elapsed-

time is 98.9167 sec; as shown in Fig. 7 and in Table

3.

(2) Case 2: The goal is dynamic

The objective in this scenario is a dynamic that

switches between locations at each succeeding time-

step interval. The dynamic goal's speed and direction

are presumptively random. The configuration is

identical to case 1. As shown in Fig. 8 and in Table 4,

the mean distance for Map 2 is 12.4961 m, the error

is 7.9903×10-4 m, and the elapsed-time is 37.5303 sec.

(3) Case 3: dynamic environment

Ten dynamic obstacles were used to test the

proposed algorithm in a dynamic environment. The

configuration is identical to that of a static

environment. The velocity (𝑣𝑜𝑏𝑠) and direction

(𝜃𝑜𝑏𝑠) of The dynamic obstacles are regarded as

random according to Eq. (23) and (24). As shown in

Fig. 9 and in Table 5, the mean distance for Map 3 is

17.6547m, the error is 9.0404×10-4 m, and the

elapsed-time is 52.2038 sec.

7. Conclusions

The path planning algorithm for mobile robots

that was proposed in this paper combined a local

search strategy, an obstacle detection strategy, and an

improved hunter-prey optimization algorithm. Also,

the proposed method is compared to the standard

algorithm using 13 benchmark test functions. It

considers the actual size of the mobile robot, a

kinematic model, and the robot's specifications in an

effort to simulate the real world. To reduce the

multiple objectives of path length and minimum

angles, the algorithm was tested in static and dynamic

environments with various scenarios. The simulation

results lead to the conclusion that the suggested

algorithm has successfully avoided static and moving

obstacles with a short execution time. Test functions

showed that the suggested algorithm provides

significant improvements over five optimization

algorithms. The H/W implementation of the

suggested algorithm-based path planning on a real

Turtlebot robot will be interesting to in the future.

Figure. 7 Map 1

Received: December 6, 2022. Revised: January 9, 2023. 224

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.18

Table 2. Over 1000 times and 30 dimensions were run through the Benchmark test functions

Fun. Fit.
PSO [28]

30 Dim

SSA [29]

30 Dim

FDO [30]

30 Dim

COOT[31]
30 Dim

HPO [25]

30 Dim
IHPO

F1

min

max

avg

std

7.5124 × 10-08

4.0190 × 10-05

2.2965 × 10-06

7.2554 × 10-06

1.6368 × 10-08

6.6116 × 10-07

1.3651 × 10-07

1.5491 × 10-07

3.2270 × 10+03

1.0719 × 10+04

6.3139 × 10+03

1.8230 × 10+03

9.8206 × 10-58

8.6061 × 10-08

8.7095 × 10-11

2.7215 × 10-09

0

0

0

0

0

0

0

0

F2

min

max

avg

std

9.0072 × 10-05

8.6400 × 10-03

1.4400 × 10-03

1.9200 × 10-03

1.0536 × 10-01

3.1663 × 10+00

1.3328 × 10+00

9.3288 × 10-01

2.6008 × 10+01

4.9082 × 10+01

3.3957 × 10+01

5.7193 × 10+00

2.9703 × 10-30

8.5677 × 10-05

3.8193 × 10-07

4.6164 × 10-06

6.2170× 10-198

4.0213× 10-180

5.8110 × 10-183

0

0

6.6346× 10-273

6.6346× 10-276

0

F3

min

max

avg

std

2.4899 × 10+01

3.6510 × 10+02

1.2401 × 10+02

8.1552 × 10+01

1.9521 × 10+02

2.8737 × 10+03

1.2921 × 10+03

7.2173 × 10+02

7.1684 × 10+03

2.9706 × 10+04

1.9184 × 10+04

6.0544 × 10+03

4.9308 × 10-57

1.4499 × 10-07

1.7311 × 10-10

4.6336 × 10-09

0

1.4560× 10-290

1.5673 × 10-293

0

0

0

0

0

F4

min

max

avg

std

8.7640 × 10-01

4.9311 × 10+00

2.0211 × 10+00

8.7088 × 10-01

3.5141 × 10+00

1.7169 × 10+01

9.5648 × 10+00

3.1342 × 10+00

2.4018 × 10+01

3.9262 × 10+01

3.2439 × 10+01

3.7864 × 10+00

1.6363 × 10-34

5.9902 × 10-04

6.2591 × 10-07

1.8948 × 10-05

4.2538× 10-169

1.2689× 10-150

1.3881× 10-153

4.0198× 10-152

0

8.2066 × 10-262

8.2066 × 10-265

0

F5

min

max

avg

std

1.2929 × 10+01

8.4144 × 10+01

3.0213 × 10+01

1.9874 × 10+01

2.0042 × 10+01

1.2065 × 10+03

2.0168 × 10+02

2.7394 × 10+02

2.0875 × 10+02

9.4832 × 10+06

4.9340 × 10+06

1.8511 × 10+06

2.6813 × 10+01

1.6774 × 10+03

4.5168 × 10+01

7.1811 × 10+01

20.6792

25.9952

21.8228

0.4880

4.9762 × 10-16

23.5571

0.4859

2.5575

F6

min

max

avg

std

3.1085 × 10-08

7.8797 × 10-06

1.2411 × 10-06

1.9515 × 10-06

2.2926 × 10-08

6.5254 × 10-07

1.6204 × 10-07

1.5808 × 10-07

2.9047 × 10+03

1.1198 × 10+04

6.0501 × 10+03

1.7282 × 10+03

1.2200 × 10-02

1.2563 × 10+00

1.4580 × 10-01

1.1980 × 10-01

2.2110× 10-14

5.9938 × 10-09

1.5478× 10-11

2.1548× 10-10

0

5.6221 × 10-12

5.6221 × 10-15

1.7779 × 10-13

F7

min

max

avg

std

8.1600 × 10-03

4.4880 × 10-02

2.0240 × 10-02

8.2400 × 10-03

4.9200 × 10-02

3.9160 × 10-01

1.3672 × 10-01

7.2800 × 10-02

1.0362 × 10+00

6.5583 × 10+00

2.7259 × 10+00

1.2317 × 10+00

5.3725 × 10-05

4.2500 × 10-02

5.1000 × 10-03

4.3000 × 10-03

2.3086 × 10-07

0.0010

1.0961 × 10-04

1.3757 × 10-04

2.1034 × 10-08

6.6430 × 10-05

7.8913 × 10-07

5.4790 × 10-06

F8

min

max

avg

std

-6.3116× 10+03

-3.8802 × 10+03

-5.2250 × 10+03

6.4182 × 10+02

-7.1509 × 10+03

-4.8477 × 10+03

-5.9466 × 10+03

6.1953 × 10+02

-3.2318 × 10+03

-1.7393 × 10+03

-2.2258 × 10+03

3.2376 × 10+02

-1.2185 × 10+04

-4.9284 × 10+03

-7.3315 × 10+03

9.1334 × 10+02

-1.1561 × 10+04

-7.7201 × 10+03

-9.3622 × 10+03

573.0050

-8.7196 × 10+03

-7.1753 × 10+03

-8.4011 × 10+03

387.4515

F9

min

max

avg

std

7.6413 × 10+01

7.6413 × 10+01

3.8604 × 10+01

1.2983 × 10+01

2.3083 × 10+01

7.9597 × 10+01

4.7476 × 10+01

1.4882 × 10+01

1.2846 × 10+02

1.8942 × 10+02

1.6083 × 10+02

1.5238 × 10+01

0.0000 × 10+00

3.4416 × 10-06

3.4531 × 10-09

1.0883 × 10-07

0

0

0

0

0

0

0

0

F10

min

max

avg

std

3.6847 × 10-05

2.2509 × 10+00

1.0174 × 10+00

6.5720 × 10-01

1.3170 × 10+00

3.5064 × 10+00

2.0904 × 10+00

5.0912 × 10-01

8.1832 × 10+00

1.1314 × 10+01

1.0321 × 10+01

7.7416 × 10-01

8.8818 × 10-16

2.4877 × 10-05

7.3884 × 10-08

1.0913 × 10-06

8.8818 × 10-16

8.8818 × 10-16

8.8818 × 10-16

0

8.8818 × 10-16

8.8818 × 10-16

8.8818 × 10-16

0

F11

min

max

avg

std

3.0870 × 10-08

5.6720 × 10-02

1.1840 × 10-02

1.3360 × 10-02

7.1483 × 10-04

3.6400 × 10-02

1.3520 × 10-02

9.3600 × 10-03

2.7147 × 10+01

8.6144 × 10+01

5.5598 × 10+01

1.5810 × 10+01

0.0000 × 10+00

4.3979 × 10-07

4.3990 × 10-10

1.3907 × 10-08

0

0

0

0

0

0

0

0

F12

min

max

avg

std

2.4686 × 10-09

7.4704 × 10-01

1.4120 × 10-01

1.9880 × 10-01

2.2231 × 10+00

8.9368 × 10+00

4.8889 × 10+00

1.9097 × 10+00

5.4161 × 10+04

8.2632 × 10+06

2.8270 × 10+06

1.9333 × 10+06

5.3513 × 10-04

4.5544 × 10+00

2.0060 × 10-01

4.8000 × 10-01

1.6046 × 10-15

0.0065

6.5451 × 10-06

2.0697 × 10-04

1.5705 × 10-32

7.5616 × 10-07

7.5616 × 10-10

2.3912 × 10-08

F13

min

max

avg

std

2.7983 × 10-07

4.9800 × 10-01

2.7680 × 10-02

9.1360 × 10-02

7.2400 × 10-02

3.4803 × 10+01

1.3999 × 10+01

1.1228 × 10+01

3.2630 × 10+06

2.2232 × 10+07

1.0170 × 10+07

5.3626 × 10+06

2.1300 × 10-02

4.1765 × 10+00

4.5590 × 10-01

4.7000 × 10-01

7.8331 × 10-14

1.1848

0.1053

0.1303

 0.0974

1.3136

0.1109

0.1240

Received: December 6, 2022. Revised: January 9, 2023. 225

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.18

Figure. 8 Map 2

Figure. 9 Map 3

Table 3. Case 1 perfromance

Run Distance (m) Error (m) Time (sec)

1 12.6605 0.0013 68.1097

2 12.7279 0.0010 89.8222

3 12.7279 0.0012 117.3200

4 12.6606 0.0014 99.7441

5 12.7279 0.0010 98.0004

6 12.4366 0.0012 101.1168

7 12.6836 0.0013 93.6202

8 12.4591 0.0013 104.4598

9 12.7279 0.0012 112.0621

10 12.6235 0.0012 104.9120

Mean 12.6436 0.0012 98.9167

Table 4. Case 2 perfromance

Run Distance (m) Error (m)
time

(sec)

1 10.7438 7.8921 × 10-4 45.9580

2 14.3865 9.7320× 10-4 30.0764

3 10.9070 5.7674× 10-4 34.7944

4 13.3758 8.6215× 10-4 37.5094

5 12.3599 8.6533× 10-4 48.8956

6 13.7566 8.7984× 10-4 34.2336

7 13.5236 8.8732× 10-4 43.2677

8 11.8127 9.0469× 10-4 34.7869

9 10.8405 5.3174× 10-4 32.7131

10 13.2550 7.2011× 10-4 33.0675

Mean 12.4961 7.9903× 10-4 37.5303

Table 5. Case 3 perfromance

Run Distance (m) Error (m)
Time

(sec)

1 15.8410 7.6359× 10-4 59.2166

2 16.8796 6.7539× 10-4 64.7438

3 17.2434 8.8301× 10-4 44.9348

4 22.8446 0.0014 75.3341

5 17.5226 9.1849× 10-4 50.2706

6 14.7211 5.8216× 10-4 53.6833

7 18.1267 8.8401× 10-4 43.5966

8 18.2776 6.3378× 10-4 44.2049

9 15.6198 0.0011 41.4114

10 19.4711 0.0012 44.6419

Mean 17.6547 9.0404× 10-4 52.2038

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Jaafar Ahmed Abdulsaheb PhD candidate

contributed to methodology, classification model

proposed, software, and writing review and editing.

Dheyaa Jasim Kadhim contributed to supervising the

overall work and editing the paper.

References

[1] B. K. Patle, G. L. Babu, A. Pandey, D. R. K.

Parhi, and A. Jagadeesh, “A review: On path

planning strategies for navigation of mobile

robot”, Defence Technology, Vol. 15, No. 4, pp.

582–606, Aug. 2019, doi:

10.1016/j.dt.2019.04.011.

[2] P. Ehlert, “The use of Artificial Intelligence in

autonomous mobile robots”, Report on Research

Project, Delft University of Technology,

Netherlands, 1999.

[3] J. M. Keil, “Decomposing a Polygon into

Simpler Components”, SIAM Journal on

Received: December 6, 2022. Revised: January 9, 2023. 226

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.18

Computing, Vol. 14, No. 4, pp. 799–817, 1985,

doi: 10.1137/0214056.

[4] C. Zhong, S. Liu, B. Zhang, Q. Lu, J. Wang, Q.

Wu, and F. Gao, “A Fast On-line Global Path

Planning Algorithm Based on Regionalized

Roadmap for Robot Navigation”, IFAC-

PapersOnLine, Vol. 50, No. 1, pp. 319–324, Jul.

2017, doi: 10.1016/j.ifacol.2017.08.053.

[5] U. O. Rosas, O. Montiel, and R. Sepúlveda,

“Mobile robot path planning using membrane

evolutionary artificial potential field”, Appl Soft

Comput, Vol. 77, pp. 236–251, 2019, doi:

10.1016/j.asoc.2019.01.036.

[6] T. T. Mac, C. Copot, D. T. Tran, and R. D.

Keyser, “Heuristic approaches in robot path

planning: A survey”, Rob Auton Syst, Vol. 86,

pp. 13–28, 2016, doi:

10.1016/j.robot.2016.08.001.

[7] J. Ou and M. Wang, “Path Planning for

Omnidirectional Wheeled Mobile Robot by

Improved Ant Colony Optimization”, In: Proc.

of Chinese Control Conf., CCC, IEEE Computer

Society, Guangzhou, China, pp. 2668–2673, Jul.

2019, doi: 10.23919/ChiCC.2019.8866228.

[8] H. S. Dewang, P. K. Mohanty, and S. Kundu, “A

Robust Path Planning for Mobile Robot Using

Smart Particle Swarm Optimization”, Procedia

Comput Sci, Vol. 133, pp. 290–297, 2018, doi:

10.1016/j.procs.2018.07.036.

[9] W. Wang, M. Cao, S. Ma, C. Ren, X. Zhu, and

H. Lu, “Multi-robot odor source search based on

Cuckoo search algorithm in ventilated indoor

environment”, In: 12th World Congress on

Intelligent Control and Automation (WCICA),

Guilin, China, pp. 1496–1501, 2016, doi:

10.1109/WCICA.2016.7578817.

[10] M. A. Hossain and I. Ferdous, “Autonomous

robot path planning in dynamic environment

using a new optimization technique inspired by

bacterial foraging technique”, Rob Auton Syst,

Vol. 64, pp. 137–141, 2015, doi:

10.1016/j.robot.2014.07.002.

[11] P. K. Das, S. K. Pradhan, S. N. Patro, and B. K.

Balabantaray, “Artificial Immune System Based

Path Planning of Mobile Robot”, Studies in

Computational Intelligence, pp. 195–207, 2012,

doi: 10.1007/978-3-642-25507-6_17.

[12] T. K. Dao, T. S. Pan, and J. S. Pan, “A multi-

objective optimal mobile robot path planning

based on whale optimization algorithm”, In:

Proc. of IEEE 13th International Conference on

Signal Processing (ICSP), Chengdu, China, pp.

337–342, 2016, doi:

10.1109/ICSP.2016.7877851.

[13] C. Lamini, S. Benhlima, and A. Elbekri,

“Genetic Algorithm Based Approach for

Autonomous Mobile Robot Path Planning”,

Procedia Comput Sci, Vol. 127, pp. 180–189,

2018, doi: 10.1016/j.procs.2018.01.113.

[14] D. Davis and P. Supriya, “Implementation of

Fuzzy-Based Robotic Path Planning”, in

Advances in Intelligent Systems and Computing,

pp. 375–383, 2016, doi: 10.1007/978-81-322-

2523-2_36.

[15] J. H. Zhang, Y. Zhang, and Y. Zhou, “Path

Planning of Mobile Robot Based on Hybrid

Multi-Objective Bare Bones Particle Swarm

Optimization with Differential Evolution”,

IEEE Access, Vol. 6, pp. 44542–44555, 2018,

doi: 10.1109/ACCESS.2018.2864188.

[16] X. Liang, D. Kou, and L. Wen, “An Improved

Chicken Swarm Optimization Algorithm and its

Application in Robot Path Planning”, IEEE

Access, Vol. 8, pp. 49543–49550, 2020, doi:

10.1109/ACCESS.2020.2974498.

[17] F. Li, X. Fan, and Z. Hou, “A Firefly Algorithm

With Self-Adaptive Population Size for Global

Path Planning of Mobile Robot”, IEEE Access,

Vol. 8, pp. 168951–168964, 2020, doi:

10.1109/ACCESS.2020.3023999.

[18] Y. Quan, H. Ouyang, C. Zhang, S. Li, and L. Q.

Gao, “Mobile Robot Dynamic Path Planning

Based on Self-Adaptive Harmony Search

Algorithm and Morphin Algorithm”, IEEE

Access, Vol. 9, pp. 102758–102769, 2021, doi:

10.1109/ACCESS.2021.3098706.

[19] L. Shao, Q. Li, C. Li, and W. Sun, “Mobile

Robot Path Planning Based on Improved Ant

Colony Fusion Dynamic Window Approach”,

In: Proc. of IEEE International Conference on

Mechatronics and Automation (ICMA),

Takamatsu, Japan, pp. 1100–1105, Aug. 2021,

doi: 10.1109/ICMA52036.2021.9512795.

[20] P. Kusuma and A. Prasasti, “Guided Pelican

Algorithm”, International Journal of Intelligent

Engineering and Systems, Vol. 15, No. 6, pp.

179–190, 2022, doi:

10.22266/ijies2022.1231.18.

[21] P. Kusuma and M. Kallista, “Stochastic

Komodo Algorithm”, International Journal of

Intelligent Engineering and Systems, Vol. 15,

No. 4, 2022, doi: 10.22266/ijies2022.0831.15.

[22] P. Kusuma and A. Dinimaharawati, “Fixed Step

Average and Subtraction Based Optimizer”,

International Journal of Intelligent Engineering

and Systems, Vol. 15, No. 4, 2022, doi:

10.22266/ijies2022.0831.31.

[23] F. Zeidabadi and M. Dehghani, “POA: Puzzle

Optimization Algorithm”, International Journal

Received: December 6, 2022. Revised: January 9, 2023. 227

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.18

of Intelligent Engineering and Systems, Vol. 15,

No. 1, 2022, doi: 10.22266/ijies2022.0228.25.

[24] N. Abbas and J. Abdulsaheb, “An Adaptive

Multi-Objective Particle Swarm Optimization

Algorithm for Multi-Robot Path Planning”,

Journal of Engineering (Eng. J.), Vol. 22, No. 7,

pp. 164–181, 2016.

[25] I. Naruei, F. Keynia, and A. S. Molahosseini,

“Hunter–prey optimization: algorithm and

applications”, Soft comput, Vol. 26, No. 3, pp.

1279–1314, 2022, doi: 10.1007/s00500-021-

06401-0.

[26] W. A. Mahmoud and D. J. Kadhim, “A Proposal

Algorithm to Solve Delay Constraint Least Cost

Optimization Problem”, Journal of Engineering,

Vol. 19, No. 1, pp. 155–160, 2013.

[27] J. A. Abdulsaheb and D. J. Kadhim, “Robot Path

Planning in Unknown Environments with Multi-

Objectives Using an Improved COOT

Optimization Algorithm”, International Journal

of Intelligent Engineering and Systems, Vol. 15,

No. 5, pp. 548–565, 2022, doi:

10.22266/ijies2022.1031.48.

[28] R. Eberhart and J. Kennedy, “A new optimizer

using particle swarm theory”, In: MHS’95.

Proceedings of the Sixth International

Symposium on Micro Machine and Human

Science, pp. 39–43, doi:

10.1109/MHS.1995.494215.

[29] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S.

Saremi, H. Faris, and S. M. Mirjalili, “Salp

Swarm Algorithm: A bio-inspired optimizer for

engineering design problems”, Advances in

Engineering Software, Vol. 114, pp. 163–191,

Dec. 2017, doi:

10.1016/j.advengsoft.2017.07.002.

[30] J. M. Abdullah and T. Ahmed, “Fitness

Dependent Optimizer: Inspired by the Bee

Swarming Reproductive Process”, IEEE Access,

Vol. 7, pp. 43473–43486, 2019, doi:

10.1109/ACCESS.2019.2907012.

[31] I. Naruei and F. Keynia, “A new optimization

method based on COOT bird natural life model”,

Expert Syst Appl, Vol. 183, p. 115352, 2021, doi:

10.1016/j.eswa.2021.115352.

