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Abstract: This work considers the best path planning algorithm for a mobile robot that travels independently in an 

unknowable environment. To get around the limitations of unstable searches in the conventional Hunter-Prey 

Optimization Algorithm (HPO), the improved HPO optimization algorithm is used and introduces a new control 

parameter referred to as randomization adjustment in order to avoid stagnation and early convergence. The absence of 

the transfer parameter from exploration and exploitation is a significant flaw in the HPO algorithm, which results in 

an unstable search and additional time waste. Another new parameter called the changing parameter (CP) is used to 

address this flaw. It is used in an environment with erratic static and dynamic obstacles and a static and dynamic target. 

Finding a collision-free path that is also the objectively shortest path and the smoothest path can solve the path-

planning problem. The proposed algorithm attempts to mimic the real world by taking into account the actual size of 

the mobile robot, a kinematic model, and the robot's specifications. The proposed algorithm is evaluated by comparing 

it on 30 dimensions using 13 benchmark test functions. The performance of the proposed algorithm is evaluated against 

the results of five swarm optimization algorithms. According to the results of the standard deviation tests, the proposed 

algorithm performs the best in 92% of the 13 test functions. Furthermore, the average outcomes for three complex 

maps (10×10) m in size demonstrate the potency of this approach for robot paths from the starting point to the target. 

The average distance over ten runs for maps 1, 2, and 3 is 12.6436 meters, 12.4961 meters, and 17.6547 meters, 

respectively. It demonstrated how quickly and easily it could avoid both stationary and moving obstacles. 

Keywords: Robot path planning, Multi-objectives  optimization, Hunter prey optimization algorithm, Shortest path, 

Smoothness, Obstacle detection and avoidance. 

 

 

1. Introduction 

Numerous industries, including searches and 

rescue, the armed services, agricultural production, 

medical services, and entertainment., use 

autonomous mobile robot (AMR) navigation [1]. 

Concerning robot navigation (RN), there are three 

main problems that need to be solved: safety, 

accuracy, and speed. The safety and accuracy issues 

are finding a collision-free path and following the 

precise addressed path. The ability of the algorithm 

to stop and turn robots repeatedly is referred to as 

efficiency. This is a waste of time and effort. Several 

categories of RN problems include localization, path 

planning, cognitive mapping, and motion control. 

Path planning could be argued to be the most 

important issue. The aim of path planning is to find 

the best, most direct, and collision-free route from a 

starting point to an objective in a given environment. 

A robot can usually get to its goal in more than one 

way, but the best way is chosen based on a set of rules 

[2]. 

Robot path planning (RPP) was first studied in 

the 1960s, and several strategies, including the cell 

decomposition approach [3], roadmap [4], and 

potential fields algorithm [5], have since been put 

forth. The main drawbacks of the aforementioned 

methods are their inaccuracy and inefficiency (large 

processing costs) and a significant risk of getting 

stuck in relative minima. To get around these 

algorithms' drawbacks, several heuristic techniques 
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can be applied [6]. These include genetics, neural 

networks, and nature-inspired algorithms. The 

following describes some of the associated works. 

To prevent becoming stuck in local minimums or 

experiencing slower convergence while path 

planning, it was suggested in [7] to enhance the 

conventional ACO. The challenge of mobile RPP is 

addressed in [8] using a novel approach based on 

adaptive particle swarm optimization (APSO). Real-

time problems are frequently solved by the APSO 

method, which is more intelligent than the 

conventional PSO algorithm. The robot will 

hopefully come up with a new way to get around 

obstacles and move faster. In the work [9], a team of 

mobile robots introduces a novel cuckoo search-

based odor source localization method. It makes use 

of a robot that determines the location of the 

maximum gas concentration, from which it directs 

further robots to search for odor sources upwind. This 

technique can be used by the robots to escape both 

eddy locations and localized high-concentration areas. 

In the study [10], a brand-new algorithm was created 

using the bacterial foraging optimization (BFO) 

method. It devises a path to the destination and 

navigates past impediments using particles that are 

scattered around the robot in a circle. The work [11] 

employs the artificial immune algorithm (AIA), 

which is based on the idea of immunity, to choose a 

path for mobile robots that avoids obstacles. The 

outcomes of the simulations demonstrate that the 

mobile robot can use AIA to avoid hazards, get out of 

binds, and accomplish its objective. In this study, an 

obstacle-avoiding path for mobile robots is planned 

using the artificial immune algorithm (AIA), which 

was developed from the immune principle. The 

outcomes of the simulations demonstrate that the 

mobile robot can use AIA to avoid hazards, get out of 

binds, and accomplish its objective. It has been 

suggested to use a unique multi-objective approach 

based on the Whale optimization algorithm (WOA) 

to plan the best possible paths for mobile robots [12]. 

WOA transforms the smoothness and distance of the 

robot's path planning problems into minimization 

problems. The robot selects the best whale in each 

iteration and advances in line toward it. Path 

optimization issues have seen extensive use of GA 

[13]. The newly suggested crossover operator 

prevents early convergence and enables pathways 

with higher fitness values than their parents. I Robot 

Create (a mobile robot) features a fuzzy logic 

controller [14] that interfaces with the arduino uno. 

The robot's left and right wheels travel at different 

speeds, which are controlled by fuzzy rules. The 

hybrid multi-objective bare-bones particle swarm 

optimization with differential evolution [15] method 

is used to help mobile robots plan better routes. To 

choose a particle's individual optimum position, a 

novel Pareto dominance with collision limitations 

has been created. The efficiency of this algorithm is 

supported by simulation data. RPP makes use of and 

recommends the chicken swarm optimization 

algorithm (ICSO) (improved) [16]. The numbers 

demonstrate that the ICSO The approach is more 

accurate, stable, and has a more powerful search 

capability in RPP for unconstrained optimization. 

[17] proposes a path planning algorithm with self-

adaptive population size based on the firefly 

algorithm. Population size distinguishes between 

viable and infeasible solutions. The suggested 

method is better than the fixed population size firefly 

algorithm in terms of how stable it is, how quickly it 

converges, and how long it takes to calculate.  The 

Morphin algorithm [18]  was developed to swiftly 

dodge moving obstacles. Simulation results show that 

the proposed method performs well for planning an 

initial, static optimal path. [19] The authors provide a 

dynamic window strategy for combining the 

maximum and minimum ant systems and creating an 

adaptive distance induction factor based on the 

improved ant colony method. Simulations show that 

the technique does what it's supposed to do, which is 

improve the performance of global path optimization 

while avoiding local dynamic barriers.  

The mobile robot was treated as a simple particle 

in the studies mentioned above, which is one of their 

flaws. Some of these algorithms were designed to 

find the shortest path while dodging static obstacles, 

but other research concentrated on dodging dynamic 

obstacles while achieving the shortest distance 

without taking the path's smoothness into account. 

The grid-based methods used in some of the 

aforementioned researches are also simple to use, but 

they have a number of drawbacks, such as an 

imprecise representation of the obstacle that reserves 

the entire cell even if the obstacle only occupies a 

small portion of the cell. Space is wasted as a result, 

and environments that are dynamic have less 

flexibility. Additionally, the robot was depicted as a 

point, and the actual dimensions of the mobile robot 

were not taken into account. 

There are many modern algorithms that have not 

been applied to path planning yet but may be in the 

future. The following describes four of these new 

algorithms: [20] The guided pelican algorithm (GPA) 

has the improvements needed for a shortcoming in 

another algorithm, namely the pelican optimization 

algorithm (POA). GPA mimics the behavior of 

pelican birds during hunting. Simulation is 

implemented to observe GPA's performance in 
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optimizing both theoretical and real-world problems. 

[21] The stochastic Komodo algorithm (SKA) is an 

improved version of the Komodo mlipir algorithm 

(KMA), which is inspired by the behavior of the 

Komodo dragon during foraging and mating. The 

improvement is conducted by simplifying the basic 

form of KMA. It eliminates the sorting mechanism at 

the beginning of the iteration. Work [22] proposes a 

new metaheuristic algorithm: a fixed-step average 

and subtraction-based optimizer (FS-ASBO). This 

algorithm is then implemented into a simulation to 

evaluate its performance. The result shows that this 

proposed algorithm is competitive in solving 

theoretical problems and superior in solving real-

world problems. Paper [23] aims to introduce a new 

optimization algorithm called the Puzzle 

Optimization Algorithm (POA) to solve various 

optimization problems. The main advantage and 

feature of the proposed POA is that it has no control 

parameters and therefore does not require parameter 

setting. 

 

The principal contributions made by this research 

project are listed below: 

 

(1) The main problem with the traditional HPO 

algorithm is that it doesn't include the parameter 

of transfer from exploitation to exploration. As a 

result, searches become unstable (the local 

optimum stagnates), wasting more time. In order 

to get around this problem, the IHPO algorithm 

was proposed. 

(2) This algorithm is used to generate and choose 

various multi-objective combinations (shortest 

path and smoothness), as proposed in this paper. 

In order to compare the new algorithm to the 

previous one, thirteen benchmark test functions 

were also used. 

(3) The proposed IHPO algorithm is combined with 

a local search method that turns impractical 

solutions into ones that can be used in an 

uncharted environment with random erratic static 

obstacles, a static and moving target, and random 

dynamic obstacles.  

(4) Also, the kinematic model with robot 

specifications and the actual size of the mobile 

robot are taken into account (assuming turtlebot3 

burger as a given). 

 

The structure of this paper is as follows: Problem 

formulation is represented in section 2. Section 3 

discusses the HPO optimization. Section 4 describes 

our suggested improved HPO algorithm; Section 5 

illustrates robot path planning using IHPO; and  

 

 
Figure. 1 Classification of RPP 

 

 

section 6 displays the simulation result and 

discussion. Finally, section 7 of this work represents 

its conclusion. 

2. Problem formulation   

One of the crucial elements in the study of robot 

navigation is Robot path planning (RPP). As shown 

in Fig. 1, RPP can be classified into two types based 

on the environment in which the robot is located: 

static (environment with fixed obstacles) and 

dynamic (environment with moving obstacles). 

There are additional subgroups that can be created 

within each of these two categories: both local path 

planning (LPP) and global path planning (GPP), in 

which all fixed and moving obstacles are known in 

advance, can be prepared before the robot moves 

(offline) (LPP). At this location (GPP), it is 

impossible to get an advance understanding of the 

environment. In order to gather information about the 

environment the mobile robot is moving through, 

there are sensors (online) [24]. 

In this work, local path planning is used in a 

setting with erratic static and moving obstacles and 

an unknowable fixed and moving target. The actual 

size of the mobile robot as well as the kinematic 

model with guidelines for robots in 2-D space are also 

taken into consideration. The MTALAB workspace 

imports the robot map, and an occupancy binary map 

is produced. Every pixel on the occupancy map, 

which is a 2D matrix, either has a binary 0 (empty) or 

a binary 1 (filled) (occupied by a static or moving 

obstacle). 
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3. Standard hunter prey optimization 

algorithm (HPO) 

In 2022, Naruei et al.[25] proposed HPO 

optimization, a new intelligent optimization 

algorithm. It simulates the animal hunting process 

and has the advantages of fast convergence and 

strong optimization ability. In the standard HPO 

algorithm, the population position in the solution 

space is set at random. The formula for setting the 

population position is as follows: 

 

𝑥𝑖 = 𝑟𝑎𝑛𝑑(1, 𝑑) × (𝑢 − 𝑙) + 𝑙                   (1) 

 

𝑥𝑖 denotes the position of the ith hunter or prey, i 

= 1, 2,... N, N denotes the population size, l and u are 

the search space's lower and upper bounds 

respectively, and rand(1,d) is the random number of 

[0, 1], d = 1, 2,..., M, and M represents the size of the 

search space. The formula for updating the hunter's 

location is as follows: 

 

𝑥𝑗,𝑖(𝑡 + 1) = 𝑥𝑗,𝑖(𝑡) + 0.5 [(2 × 𝐶 × 𝑍 ×

𝑃𝑝𝑜𝑠(𝑖) − 𝑥𝑗,𝑖(𝑡) + 2(1 − 𝐶)𝑍𝜇(𝑖) − 𝑥𝑗,𝑖(𝑡))]  

(2) 

 

where x(t) and x(t + 1) represent the location of 

hunters now and in the future, respectively; Ppos 

represents the location of the prey. 𝜇 =
1

𝑛
∑  𝑛
𝑖=1 𝑥𝑖 is 

the average of all locations; Eq. (4) calculates the 

adaptive parameter Z. 

 

𝑃 = 𝑟1 < 𝐶;  𝐼𝐷𝑋 = (𝑃 == 0)                    (3) 

 

𝑍 = 𝑟2⊗ 𝐼𝐷𝑋 + 𝑟3⊗ (∼ 𝐼𝐷𝑋)                (4) 

 

Where r1 and r3 are [0, 1] random vectors; P is a 

0 or 1 random vector; and r2 is a random number 

within [0, 1]. IDX is the index value of the vector r1 

that meets the conditions (P == 0); and C is the factor 

balancing exploitation and exploration, whose value 

decreases from 1 to 0.02 during the iterative process. 

The following is an illustration of the calculation: 

 

𝐶 = 1 − 𝑖𝑡 (
0.98

𝐼𝑡𝑚𝑎𝑥
)                               (5) 

 

where it and Itmax represent the number of 

iterations at present and at the most, respectively. Eq. 

(6) shows how to figure out the euclidean distance 

from the average position of each person searched: 

 

𝐷euc(i) = (∑  𝑑
𝑗=1 (𝑥𝑖,𝑗 − 𝜇𝑖,𝑗)

2
)

1

2
                         (6) 

The search agents that are the furthest away from 

the average position 𝜇 are considered prey Ppos: 

 

𝑃𝑝𝑜𝑠 = 𝑥𝑖 ∣ 𝑖 is index of 𝑀𝑎𝑥( end ) 𝑠𝑜𝑟𝑡(𝐷𝑒𝑢𝑐)  

(7) 

 

The algorithm's convergence is poor if each 

iteration takes the greatest distance between the 

search agent and the average μ position into account. 

When the prey is captured in the actual hunting scene, 

the hunter will move to the new prey location the next 

time. To simulate this scenario, the decreasing 

mechanism is used, as shown in Eq. (8). 

 

𝑘𝑏𝑒𝑠𝑡 = 𝑟𝑜𝑢𝑛𝑑(𝐶 × 𝑛)                        (8) 

 

Where n represents how many search agents 

there are, 𝑘𝑏𝑒𝑠𝑡  = N at the start of the algorithm. 

During each iteration of the algorithm, the hunter 

chooses the search agent that is farthest from where 

the prey is usually found and attacks it while the 

𝑘𝑏𝑒𝑠𝑡 gradually decreases. The 𝑘𝑏𝑒𝑠𝑡 is equal to the 

first search agent at the end of the algorithm (the 

shortest distance from the average position). So, Eq. 

(7) can be replaced by Eq. (9) to figure out where the 

prey is: 

 

𝑥𝑖,𝑗(𝑡 + 1) = 𝑇𝑝𝑜𝑠(𝑗) + 𝐶 × 𝑍 𝑐𝑜𝑠(2𝜋𝑟4) × 

(𝑇𝑝𝑜𝑠(𝑗) − 𝑥𝑖,𝑗(𝑡))  (9)  

 

Where x(t) and x(t+1) represent the prey's 

current and next iteration positions, respectively; The 

next prey position is determined by the function cos 

and its input parameters at various radii and angles 

from the global optimal position, where Tpos is the 

global optimal position, r4 is a random number 

within [1, 1], and. When Eqs. (2) and (9) are put 

together, you can choose the following updated 

version of the hunter or prey position. 

 

𝑥𝑖,𝑗(𝑡 + 1) =

{
  
 

  
 

𝑥𝑖,𝑗(𝑡) + 0.5 [
(2 × 𝐶 × 𝑍 × 𝑃𝑝𝑜𝑠(𝑗) − 𝑥𝑖,𝑗(𝑡))

+ (2(1 − 𝐶)𝑍𝜇(𝑗) − 𝑥𝑖,𝑗(𝑡))
]

, (10𝑎)

𝑇𝑝𝑜𝑠(𝑗) + 𝐶 × 𝑍 × 𝑐𝑜𝑠(2𝜋𝑟4) × (𝑇𝑝𝑜𝑠(𝑗) − 𝑥𝑖,𝑗(𝑡))

, (10𝑏)

   

 

r5 is a random number between 0 and 1, and 𝛽 = 

0.1 is the adjusting parameter If r5 < 𝛽 the search 

agent is considered a hunter, the location update 

formula is (10a); if r5 ≥ 𝛽 the search agent is  
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Figure. 2 :(a) Hunter behaviour, and (b) prey behaviours 

 

considered prey, the location update formula is (10b). 

As shown in Fig. 2. 

4. Improved Hunter–prey Optimization 

(IHPO) Algorithm 

1) Any metaheuristic algorithm's main control 

parameter is the randomization factor. In contrast, 

we introduced a control parameter called β to 

adjust the randomization in order to prevent 

stagnation and early convergence. The HBO 

algorithm uses rand [0,1] as the only random 

factor in Hunter–prey 's Eq (10). The newly 

introduced parameter aids in changing the 

direction of the search and is defined as follows: 

 

𝛽 =  2 ×  rand − 1                            (11) 

 

2) The absence of the transfer parameter from 

exploration and exploitation is a significant flaw 

in the HPO algorithm, which results in an 

unstable search and additional time waste. A new 

parameter called the changing parameter (CP) is 

used to address this flaw. CP, periodic parameter 

that is used to increase the chance of exploitation 

and speed up the process of exploration. 

 

𝐶𝑃 = 𝑠𝑖𝑛 (𝐶 −
𝑡

𝑇
)                                 (12) 

 

Let, 𝛼 =  𝛽 ×  𝐶𝑃                                  (13) 

 
𝑥𝑖,𝑗(𝑡 + 1) =

{
 
 
 

 
 
 
𝑥𝑖,𝑗(𝑡) + 0.5 [

(𝛼 × 2 × 𝐶 × 𝑍 × 𝑃𝑝𝑜𝑠(𝑗) − 𝑥𝑖,𝑗(𝑡))

+ (2(1 − 𝐶)𝑍𝜇(𝑗) − 𝑥𝑖,𝑗(𝑡))
]

, (14𝑎)

𝑇𝑝𝑜𝑠(𝑗) + 𝛼 × 𝐶 × 𝑍 × 𝑐𝑜𝑠(2𝜋𝑟4) ×

(𝑇𝑝𝑜𝑠(𝑗) − 𝑥𝑖,𝑗(𝑡)) , (14𝑏)

  

5. Robot path planning using IHPO 

The path taken by the robot should be optimized 

to meet certain standards so that the path planning 

problem can be categorized as an optimization 

problem. The first objective is to find the shortest 

path without violating the problem's constraint, 

which is to avoid all obstacles in the way. The 

formulation of the optimization problem is a discrete 

optimization problem in which the objective function 

f1(x,y) seeks to minimize the total path traveled by 

the mobile robot. It is given by:  

 

𝑓1(𝑥, 𝑦) = ∑ √(∆𝑥)2 + (∆𝑦)2            𝑛−1
𝑗=1 (15) 

 

As shown in Fig. 3, where n is the number of via 

points where a change in trajectory happened, which 

is a project parameter in this case, and: 

 

Figure. 3 The Euclidean distance between two points 
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Figure. 4 Path smoothness 

 

∆𝑥 =  𝑥(𝑗 + 1) − 𝑥(𝑗)                                   (16) 

 

∆𝑦 = 𝑦(𝑗 + 1) − 𝑦(𝑗)                              (17) 

 

In addition to the first goal, the algorithm should 

also meet the second goal, which is to minimize the 

angles made by the goal, the current position, and the 

next suggested position's straight lines, as shown in 

Fig. 4 and the following equation: 

 

𝑓2(𝑥, 𝑦) = ∑ ∆𝜃𝑗
𝑛
𝑗=1                                 (18) 

 

∆𝜃𝑗 = 𝑡𝑎𝑛
−1 (

∆𝑦

∆𝑥
) − 𝑡𝑎𝑛−1 (

𝑦(𝑔𝑜𝑎𝑙)−𝑦(𝑗)

𝑥(𝑔𝑜𝑎𝑙)−𝑥(𝑗)
)   (19) 

                                             Where, 𝑗 = 1,2, …𝑛 − 1 

 

When there are multiple objective functions in a 

problem that needs to be optimized and the aim is to 

find one or more optimal solutions, multiple 

objective optimization (MOO) is used. A popular 

technique for handling multiple objectives in 

optimization is the weighted sum method. Fig. 5 

shows how the different objective functions are 

combined into a single objective function that is 

easier to understand using the weighted sum [24]. 

 

𝑓(𝑥, 𝑦) =  ∑ 𝑊𝑚 𝑓𝑚 (𝑥, 𝑦)
𝑀
𝑚=1   

             = 𝑊1 𝑓1 (𝑥, 𝑦) +𝑊2 𝑓2(𝑥, 𝑦)                (20) 

 

The weighting coefficient, W = (W1, W2,..., Wm), 

must be defined because it determines the strong 

solution. These weights have undoubtedly been 

satisfying and beneficial [26]. ∑ 𝑊𝑚 = 1𝑀
𝑚=1  , Wm ∈ 

[0,1]. 

 
Figure. 5 Weighted sum selections for MOO 

 

The velocity (𝑣𝑜𝑏𝑠) and direction (𝜃𝑜𝑏𝑠) of the 

dynamic obstacles in the case of the dynamic obstacle 

that shifts from one location to another at each time 

step, the following equations assume that it is random. 

 

𝜒𝑜𝑏𝑠 = 𝜒𝑜𝑏𝑠 + 𝑣𝑜𝑏𝑠 × 𝑐𝑜𝑠 𝜃𝑜𝑏𝑠                     (21) 

 

𝑦𝑜𝑏𝑠 = 𝑦𝑜𝑏𝑠 + 𝑣𝑜𝑏𝑠 × 𝑠𝑖𝑛 𝜃𝑜𝑏𝑠                    (22) 

 

Where, 

 

𝜃𝑜𝑏𝑠 =  360 × 𝑟𝑎𝑛𝑑(0,1)                     (23) 

 

𝑣𝑜𝑏𝑠 = 𝑟𝑎𝑛𝑑(0,1)                            (24) 

 

Using the same principle from [27] to detect and 

avoid the obstacles with a local search strategy, the 

proposed algorithm for path planning can be clarified 

in the following flowchart, Fig. 6. 

6. Results and discussions 

6.1 IHPO algorithm performance on benchmark 

test functions 

This section evaluates the IHPO algorithm using 

13 criterion functions and 30 dimensions. These are 

common functions that have been used by many 

researchers [24]. IHPO compares the results of these 

tests to those of the HPO algorithms. These common 

functions are shown in Table 1, where (Range) 

indicates the limit of the function's search space and 

(fmin) is the ideal value. The last six functions are 

multimodal, while the first seven are unimodal.  
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Figure. 6 Flowchart for the proposed algorithm 
 

The fact that the unimodal functions (f1- f7) have a 

global optimum but no local optimum makes them 

well suited for use in determining how algorithms 

should be exploited. Multi-modal functions (f8–13) 

have a lot of local optimalities. Because of this, they 

can be used to look at the exploration and avoid the 

local optima of algorithms. 

Optimization has become a popular research 

subject in recent years, as well as a cost-effective 

technique to find an ideal solution to complex issues. 

Five swarm optimization algorithms are compared 

with the IHPO algorithm: the first is particle swarm 

optimization (PSO) [28]; the second is another well-

known algorithm called the Salp Swarm Algorithm 

(SSA) [29]; and the fitness dependent optimizer 

(FDO) [30]. They are also compared with the 

conventional COOT [31] optimization algorithm and 

the conventional HPO algorithm to validate their 

results. The maximum number of iterations is 500, 

and there are 30 search agents.   

The first one is the PSO algorithm. This 

metaheuristic algorithm borrows social behavior 

from natural groups of creatures, such as fish schools 

and bird flocks. It was developed in 1995 by Eberhart 

and Kennedy and is an optimization tool with a 

rapidly growing user base for resolving various 

engineering and scientific issues. The PSO imitates 

social animal behavior, but it doesn't need a group 

leader to get the job done. The flock of birds does not 

need a leader when searching for food; instead, they 

follow the member who is closest to the food. In this 

manner, the flock of birds successfully communicates 

with the other members of the population to arrive at 

the required solution. The PSO algorithm is made up 

of a collection of particles, each of which represents 

a potential resolution. 

The second is the SSA algorithm. Salps have a 

transparent, cylindrical body and are members of the 

Salpidae family. Their tissues resemble jellyfish 

tissues in many ways. They also move very similarly 

to jellyfish, which propel themselves forward by 

pumping water through their bodies. Because of how 

challenging it is to access their environments and 

maintain them in laboratory settings, biological 

research on this creature is still in its early stages. The 

swarming behavior of salps is among their most 

fascinating behaviors. A salp chain is a type of swarm 

that frequently forms in deep oceans. Although the 

primary motivation for this behavior is still unclear, 

some researchers think that it is carried out to 

improve locomotion through quick, coordinated 

movements and foraging. 

The FDO algorithm is the third. This algorithm 

mimics the reproductive behavior of a swarm of bees. 

The core of this algorithm was inspired by how scout 

bees select a new suitable hive from a large pool of 

potential hives. In this algorithm, every scout bee that 

looks for new hives represents a potential solution; in 

addition, picking the best hive out of several good 

hives is thought to be convergent to optimality. The 

search space's artificial scout population is initially 

initialized randomly by the algorithm; each position 

of the scout bees represents a recently found hive 

(solution). Scout bees randomly search more 

locations in an effort to find better hives; each time a 

better hive is found, the previous one is disregarded. 

Similarly, each time the algorithm finds a new, better 

solution, the previous one will be disregarded. 

Additionally, the artificial scout bee will continue in 

its previous direction in the hopes that it will lead it 

to a better solution (a hive) if the current move fails 

to do so. The current solution, which is the best one 

so far, will be continued, though, if the previous 
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Table 1. Functions for benchmark tests 

Function Range fmin 

𝑓1(𝑥) =∑  

𝑛

𝑖=1

𝑥𝑖
2 [-100, 100] 0 

𝑓2(𝑥) =∑  

𝑛

𝑖=1

|𝑥𝑖| +∏  

𝑛

𝑖=1

|𝑥𝑖| [-10, 10] 0 

𝑓3(𝑥) = ∑  

𝑛

𝑖=1

(∑  

𝑖

𝑗−1

𝑥𝑗)

2

 [-100, 100] 0 

𝑓4(𝑥) = 𝑚𝑎𝑥{|𝑥𝑖|, 1 ⩽ 𝑖 ⩽ 𝑛} [-100, 100] 0 

𝑓5(𝑥) = ∑  

𝑛−1

𝑖=1

[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑙 − 1)

2] [-30, 30] 0 

𝑓6(𝑥) = ∑  

𝑛

𝑖=1

([𝑥𝑖 + 0.5])
2 [-100, 100] 0 

𝑓7(𝑥) = 𝑚𝑎𝑥{|𝑥𝑖|, 1 ⩽ 𝑖 ⩽ 𝑛} [-1.28, 1.128] 0 

𝐹8(𝑥) = ∑  

𝑛

𝑖=1

− 𝑥𝑖 sin (√|𝑥𝑖|) [-500, 500] -418.9829×5 

𝐹9(𝑥) = ∑  

𝑛

𝑖=1

[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10] [-5.12, 5.12] 0 

𝐹10(𝑥) = −20 cxp(−0.2√
1

𝑛
∑  

𝑛

𝑖−1

𝑥𝑖
2) − exp (

1

𝑛
∑  

𝑛

𝑖−1

cos(2𝜋𝑥𝑖)) + 20 + 𝑐 [-32, 32] 0 

𝐹11(𝑥) =
1

4000
∑  

𝑛

𝑖−1

𝑥𝑖
2 −∏  

𝑛

𝑖=1

cos (
𝑥𝑖

√𝑖
) + 1 [-600, 600] 0 

𝐹12(𝑥) =
𝜋

𝑛
{10 sin(𝜋𝑦1) +∑  

𝑛−1

𝑖−1

(𝑦𝑖 − 1)
2[1 + 10 sin2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)

2}

+∑  

𝑛

𝑖−1

𝑢(𝑥𝑖 , 10,100,4) +∑  

𝑛

𝑖=1

𝑢(𝑥𝑖 , 10,100,4)𝑦𝑖 = 1 +
𝑥𝑖 + 1

4

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)
𝑚 𝑥𝑖 > 𝑎

0 −𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚 𝑥𝑖 < −𝑎

}

 

 

[-50, 50] 0 

𝐹13(𝑥) = 0.1 {sin
2(3𝜋𝑥1) +∑  

𝑛

𝑖=1

(𝑥𝑖 − 1)
2[1 + sin2(3𝜋𝑥𝑖 + 1)]

+(𝑥11 − 1)
2[1 + sin2(2𝜋𝑥𝑛)]} +∑  

𝑛

𝑖=1

𝑢(𝑥𝑖 , 5,100,4)

 [-50, 50] 0 

 

direction does not result in a better solution. Scout 

bees randomly look for hives in the wild. This 

algorithm uses artificial scouts to perform an initial 

random search of the environment using a random 

walk and a fitness weight mechanism. The artificial 

scout bee hopes to discover a better solution each 

time it moves by accelerating its current position. 

The fourth, the Coot algorithm, a swarm-based 

algorithm inspired by collective movements 

(irregular and regular movements on the water's 

surface), was developed by Naruei and Keynia in 

2021. A few coots in front of the group act as the 

group's leader and direct everyone else to the desired 

location (food). Coots move on the water's surface in 
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four distinct ways: random movement, chain 

movement, adjusting position based on group leaders, 

and leading the group to the optimal location, which 

is led by their leaders. The last one is a standard HPO 

algorithm.  

These algorithms were applied to 13 test 

functions with 30 dimensions. Six of the seven 

unimodal test functions yield the best results when 

the proposed IHPO algorithm is used, as shown in 

Table 2. (F1-F7). This shows that the search space 

has been effectively utilized by the IHPO algorithm. 

Utilizing multimodal functions, algorithm 

exploration is measured. In these functions, there are 

a number of local optimum conditions that the 

algorithm ought to avoid. The statistical output of the 

algorithms for these functions is shown in Table 2 

(F8-F13). In every multi-modal test function, the new 

IHPO algorithm performs better. So, the simulation 

results demonstrated that the proposed algorithm 

offers significant advantages over the options to 

which it was compared. According to the results of 

the standard deviation tests, the proposed algorithm 

performs the best in 92% of the 13 test functions. 

6.2 RPP in a challenging static setting 

This section illustrates the effectiveness of the 

path planning algorithm that has been developed for 

mobile robots in environments with static obstacles. 

Six erratic static obstacles of various sizes make up 

the static environment (Map 1). (0, 0) served as the 

starting position, and the goal position (10, 10). The 

following configurations were used with the 

proposed IHPO algorithm in static environments: 

The accepted error must be less than 0.2 m, where 

error is defined as norm(robot Current Pose (1:2)-

Goal Position (:)). where robot Current Pose = [robot 

Initial Location  initial Orientation] and initial 

Orientation = 0, the desired linear velocity for the 

robot is 0.5 m/sec, the robot wheel radius is 0.034 m, 

and the maximum angular velocity is equal to the 

linear velocity divided by the wheel radius. Given is 

the optimized function. Eq. (20). 

 

(1) Case 1: The goal is static 

In this case, the mean distance for Map 1 is 

12.6436 m and the error is 0.0012 m and the elapsed-

time is 98.9167 sec; as shown in Fig. 7 and in Table 

3. 

(2) Case 2: The goal is dynamic 

The objective in this scenario is a dynamic that 

switches between locations at each succeeding time-

step interval. The dynamic goal's speed and direction 

are presumptively random. The configuration is 

identical to case 1. As shown in Fig. 8 and in Table 4, 

the mean distance for Map 2 is 12.4961 m, the error 

is 7.9903×10-4 m, and the elapsed-time is 37.5303 sec. 

(3) Case 3: dynamic environment 

Ten dynamic obstacles were used to test the 

proposed algorithm in a dynamic environment. The 

configuration is identical to that of a static 

environment. The velocity ( 𝑣𝑜𝑏𝑠 ) and direction 

( 𝜃𝑜𝑏𝑠 ) of The dynamic obstacles are regarded as 

random according to Eq. (23) and (24). As shown in 

Fig. 9 and in Table 5, the mean distance for Map 3 is  

17.6547m, the error is 9.0404×10-4 m, and the 

elapsed-time is 52.2038 sec. 

7. Conclusions 

The path planning algorithm for mobile robots 

that was proposed in this paper combined a local 

search strategy, an obstacle detection strategy, and an 

improved hunter-prey optimization algorithm. Also, 

the proposed method is compared to the standard 

algorithm using 13 benchmark test functions. It 

considers the actual size of the mobile robot, a 

kinematic model, and the robot's specifications in an 

effort to simulate the real world. To reduce the 

multiple objectives of path length and minimum 

angles, the algorithm was tested in static and dynamic 

environments with various scenarios. The simulation 

results lead to the conclusion that the suggested 

algorithm has successfully avoided static and moving 

obstacles with a short execution time. Test functions 

showed that the suggested algorithm provides 

significant improvements over five optimization 

algorithms. The H/W implementation of the 

suggested algorithm-based path planning on a real 

Turtlebot robot will be interesting to in the future. 

 

 
Figure. 7 Map 1 



Received:  December 6, 2022.     Revised: January 9, 2023.                                                                                             224 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.18 

 

Table 2. Over 1000 times and 30 dimensions were run through the Benchmark test functions 

Fun. Fit. 
PSO [28] 

30 Dim 

SSA [29] 

30 Dim 

FDO [30] 

30 Dim 

COOT[31] 
30 Dim 

HPO [25] 

30 Dim 
IHPO 

F1 

min 

max 

avg 

std 

7.5124 × 10-08 

4.0190 × 10-05 

2.2965 × 10-06 

7.2554 × 10-06 

1.6368 × 10-08 

6.6116 × 10-07 

1.3651 × 10-07 

1.5491 × 10-07 

3.2270 × 10+03 

1.0719 × 10+04 

6.3139 × 10+03 

1.8230 × 10+03 

9.8206 × 10-58 

8.6061 × 10-08 

8.7095 × 10-11 

2.7215 × 10-09 

0 

0 

0 

0 

0 

0 

0 

0 

F2 

min 

max 

avg 

std 

9.0072 × 10-05 

8.6400 × 10-03 

1.4400 × 10-03 

1.9200 × 10-03 

1.0536 × 10-01 

3.1663 × 10+00 

1.3328 × 10+00 

9.3288 × 10-01 

2.6008 × 10+01 

4.9082 × 10+01 

3.3957 × 10+01 

5.7193 × 10+00 

2.9703 × 10-30 

8.5677 × 10-05 

3.8193 × 10-07 

4.6164 × 10-06 

6.2170× 10-198 

4.0213× 10-180 

5.8110 × 10-183 

0 

0 

6.6346× 10-273 

6.6346× 10-276 

0 

F3 

min 

max 

avg 

std 

2.4899 × 10+01 

3.6510 × 10+02 

1.2401 × 10+02 

8.1552 × 10+01 

1.9521 × 10+02 

2.8737 × 10+03 

1.2921 × 10+03 

7.2173 × 10+02 

7.1684 × 10+03 

2.9706 × 10+04 

1.9184 × 10+04 

6.0544 × 10+03 

4.9308 × 10-57 

1.4499 × 10-07 

1.7311 × 10-10 

4.6336 × 10-09 

0 

1.4560× 10-290 

1.5673 × 10-293 

0 

0 

0 

0 

0 

F4 

min 

max 

avg 

std 

8.7640 × 10-01 

4.9311 × 10+00 

2.0211 × 10+00 

8.7088 × 10-01 

3.5141 × 10+00 

1.7169 × 10+01 

9.5648 × 10+00 

3.1342 × 10+00 

2.4018 × 10+01 

3.9262 × 10+01 

3.2439 × 10+01 

3.7864 × 10+00 

1.6363 × 10-34 

5.9902 × 10-04 

6.2591 × 10-07 

1.8948 × 10-05 

4.2538× 10-169 

1.2689× 10-150 

1.3881× 10-153 

4.0198× 10-152 

0 

8.2066 × 10-262 

8.2066 × 10-265 

0 

F5 

min 

max 

avg 

std 

1.2929 × 10+01 

8.4144 × 10+01 

3.0213 × 10+01 

1.9874 × 10+01 

2.0042 × 10+01 

1.2065 × 10+03 

2.0168 × 10+02 

2.7394 × 10+02 

2.0875 × 10+02 

9.4832 × 10+06 

4.9340 × 10+06 

1.8511 × 10+06 

2.6813 × 10+01 

1.6774 × 10+03 

4.5168 × 10+01 

7.1811 × 10+01 

20.6792 

25.9952 

21.8228 

0.4880 

4.9762 × 10-16 

23.5571 

0.4859 

2.5575 

F6 

min 

max 

avg 

std 

3.1085 × 10-08 

7.8797 × 10-06 

1.2411 × 10-06 

1.9515 × 10-06 

2.2926 × 10-08 

6.5254 × 10-07 

1.6204 × 10-07 

1.5808 × 10-07 

2.9047 × 10+03 

1.1198 × 10+04 

6.0501 × 10+03 

1.7282 × 10+03 

1.2200 × 10-02 

1.2563 × 10+00 

1.4580 × 10-01 

1.1980 × 10-01 

2.2110× 10-14 

5.9938 × 10-09 

1.5478× 10-11 

2.1548× 10-10 

0 

5.6221 × 10-12 

5.6221 × 10-15 

1.7779 × 10-13 

F7 

min 

max 

avg 

std 

8.1600 × 10-03 

4.4880 × 10-02 

2.0240 × 10-02 

8.2400 × 10-03 

4.9200 × 10-02 

3.9160 × 10-01 

1.3672 × 10-01 

7.2800 × 10-02 

1.0362 × 10+00 

6.5583 × 10+00 

2.7259 × 10+00 

1.2317 × 10+00 

5.3725 × 10-05 

4.2500 × 10-02 

5.1000 × 10-03 

4.3000 × 10-03 

2.3086 × 10-07 

0.0010 

1.0961 × 10-04 

1.3757 × 10-04 

2.1034 × 10-08 

6.6430 × 10-05 

7.8913 × 10-07 

5.4790 × 10-06 

F8 

min 

max 

avg 

std 

-6.3116× 10+03 

-3.8802 × 10+03 

-5.2250 × 10+03 

6.4182 × 10+02 

-7.1509 × 10+03 

-4.8477 × 10+03 

-5.9466 × 10+03 

6.1953 × 10+02 

-3.2318 × 10+03 

-1.7393 × 10+03 

-2.2258 × 10+03 

3.2376 × 10+02 

-1.2185 × 10+04 

-4.9284 × 10+03 

-7.3315 × 10+03 

9.1334 × 10+02 

-1.1561 × 10+04 

-7.7201 × 10+03 

-9.3622 × 10+03 

573.0050 

-8.7196 × 10+03 

-7.1753 × 10+03 

-8.4011 × 10+03 

387.4515 

F9 

min 

max 

avg 

std 

7.6413 × 10+01 

7.6413 × 10+01 

3.8604 × 10+01 

1.2983 × 10+01 

2.3083 × 10+01 

7.9597 × 10+01 

4.7476 × 10+01 

1.4882 × 10+01 

1.2846 × 10+02 

1.8942 × 10+02 

1.6083 × 10+02 

1.5238 × 10+01 

0.0000 × 10+00 

3.4416 × 10-06 

3.4531 × 10-09 

1.0883 × 10-07 

0 

0 

0 

0 

0 

0 

0 

0 

F10 

min 

max 

avg 

std 

3.6847 × 10-05 

2.2509 × 10+00 

1.0174 × 10+00 

6.5720 × 10-01 

1.3170 × 10+00 

3.5064 × 10+00 

2.0904 × 10+00 

5.0912 × 10-01 

8.1832 × 10+00 

1.1314 × 10+01 

1.0321 × 10+01 

7.7416 × 10-01 

8.8818 × 10-16 

2.4877 × 10-05 

7.3884 × 10-08 

1.0913 × 10-06 

8.8818 × 10-16 

8.8818 × 10-16 

8.8818 × 10-16 

0 

8.8818 × 10-16 

8.8818 × 10-16 

8.8818 × 10-16 

0 

F11 

min 

max 

avg 

std 

3.0870 × 10-08 

5.6720 × 10-02 

1.1840 × 10-02 

1.3360 × 10-02 

7.1483 × 10-04 

3.6400 × 10-02 

1.3520 × 10-02 

9.3600 × 10-03 

2.7147 × 10+01 

8.6144 × 10+01 

5.5598 × 10+01 

1.5810 × 10+01 

0.0000 × 10+00 

4.3979 × 10-07 

4.3990 × 10-10 

1.3907 × 10-08 

0 

0 

0 

0 

0 

0 

0 

0 

F12 

min 

max 

avg 

std 

2.4686 × 10-09 

7.4704 × 10-01 

1.4120 × 10-01 

1.9880 × 10-01 

2.2231 × 10+00 

8.9368 × 10+00 

4.8889 × 10+00 

1.9097 × 10+00 

5.4161 × 10+04 

8.2632 × 10+06 

2.8270 × 10+06 

1.9333 × 10+06 

5.3513 × 10-04 

4.5544 × 10+00 

2.0060 × 10-01 

4.8000 × 10-01 

1.6046 × 10-15 

0.0065 

6.5451 × 10-06 

2.0697 × 10-04 

1.5705 × 10-32 

7.5616 × 10-07 

7.5616 × 10-10 

2.3912 × 10-08 

F13 

min 

max 

avg 

std 

2.7983 × 10-07 

4.9800 × 10-01 

2.7680 × 10-02 

9.1360 × 10-02 

7.2400 × 10-02 

3.4803 × 10+01 

1.3999 × 10+01 

1.1228 × 10+01 

3.2630 × 10+06 

2.2232 × 10+07 

1.0170 × 10+07 

5.3626 × 10+06 

2.1300 × 10-02 

4.1765 × 10+00 

4.5590 × 10-01 

4.7000 × 10-01 

7.8331 × 10-14 

1.1848 

0.1053 

0.1303 

 0.0974 

1.3136 

0.1109 

0.1240 
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Figure. 8 Map 2 

 

 
Figure. 9 Map 3 

 

Table 3. Case 1 perfromance 

Run Distance (m) Error (m) Time (sec) 

1 12.6605 0.0013 68.1097 

2 12.7279 0.0010 89.8222 

3 12.7279 0.0012 117.3200 

4 12.6606 0.0014 99.7441 

5 12.7279 0.0010 98.0004 

6 12.4366 0.0012 101.1168 

7 12.6836 0.0013 93.6202 

8 12.4591 0.0013 104.4598 

9 12.7279 0.0012 112.0621 

10 12.6235 0.0012 104.9120 

Mean 12.6436 0.0012 98.9167 

 

 

 

 

Table 4. Case 2 perfromance 

Run Distance (m) Error (m) 
time 

(sec) 

1 10.7438 7.8921 × 10-4 45.9580 

2 14.3865 9.7320× 10-4 30.0764 

3 10.9070 5.7674× 10-4 34.7944 

4 13.3758 8.6215× 10-4 37.5094 

5 12.3599 8.6533× 10-4 48.8956 

6 13.7566 8.7984× 10-4 34.2336 

7 13.5236 8.8732× 10-4 43.2677 

8 11.8127 9.0469× 10-4 34.7869 

9 10.8405 5.3174× 10-4 32.7131 

10 13.2550 7.2011× 10-4 33.0675 

Mean 12.4961 7.9903× 10-4 37.5303 

 

Table 5. Case 3 perfromance 

Run Distance (m) Error (m) 
Time 

(sec) 

1 15.8410 7.6359× 10-4 59.2166 

2 16.8796 6.7539× 10-4 64.7438 

3 17.2434 8.8301× 10-4 44.9348 

4 22.8446 0.0014 75.3341 

5 17.5226 9.1849× 10-4 50.2706 

6 14.7211 5.8216× 10-4 53.6833 

7 18.1267 8.8401× 10-4 43.5966 

8 18.2776 6.3378× 10-4 44.2049 

9 15.6198 0.0011 41.4114 

10 19.4711 0.0012 44.6419 

Mean 17.6547 9.0404× 10-4 52.2038 
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