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Abstract: Many deep learning-based recommender systems have been proposed recently. Where they involve all the 

users in datasets to build the latent representation of input data to be used later for predicting the missing rates. 

Despite the fact that, users have different interests, and these differences reduce the model prediction accuracy. This 

paper proposed a novel cluster-based denoising autoencoder model (cluster-based DAE) for rate prediction 

recommender systems. Instead of building a single model, it builds K models by using k-means algorithm to divide 

the users into groups based on their preferences. Each group trains a DAE model to generate recommendations for its 

members. The proposed method was trained and tested with MovieLens (100K, 1M, and 10M) datasets where 80% 

of the data are used for training and 20% for testing. The performance of the proposed method compared against 

other state-of-the-art methods that use deep learning to build rate prediction models. It outperformed the other 

compared methods in term of mean absolute error (with 12.9%, 14.7%, and 22.3%) and root mean squared error 

(with 24.2%, 18%, and 21.1%) using MovieLens 100K, 1M, and 10M datasets respectively. 

Keywords: Recommender system, Deep learning, Denoising autoencoder, Clustering, K-means. 

 

 

1. Introduction 

The fast growth of internet applications and 

services produces a huge amount of information 

daily. It becomes a hard task for users to find 

contents that satisfy their desire when they use 

online applications with that rapid development of 

information [1]. For that reason, recommender 

systems (RSs) have become very necessary for users. 

RSs exclude unnecessary items to generate a list of 

recommended items for users based on their 

historical preferences [2]. Users’ preferences can be 

represented in form of user-item interactions, where 

the interaction could be rate, buy, like, or click. 

Users and items features can be also utilized by RSs 

to generate personalized recommendations [3]. In 

the last decade, several recommender systems have 

been proposed. They can be nearly categorized into 

three types: collaborative filtering models (CF), 

content-based models (CB), and hybrid-based 

models [4]. 

CF approach has been quite effective approach. 

It utilizes the similarity among the users’ 

preferences to generate recommendations [5]. It is 

based on the assumption that suggests users with 

similar tastes most likely have a similar opinion on 

an item [6]. On the other hand, CB approach try to 

recommend items that are most similar to the ones 

that are preferred by a user previously. Hybrid 

filtering combines CF and CB techniques to 

overcome the limitations of RSs [7]. 

Clustering techniques are the most widely used 

techniques in RSs for grouping users based on their 

similar interests [8]. They are unsupervised 

techniques that try to divide the data samples into 

clusters, where each cluster has the most similar 

samples (in terms of features) and they are different 

from the other cluster’s samples [9]. 

There are many non-deep learning-based 

approaches of CF [6]. Matrix factorization (MF) 

techniques, such as probabilistic matrix factorization 

(PMF) [10] and biased matrix factorization 
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(BiasedMF) are particularly popular [11]. 

Deep learning-based recommender systems have 

been ardently studied lately, where the features of 

items and users are joint to generate predictions by 

following many perceptron layers [12]. Furthermore, 

deep learning (DL) techniques are being used in CF 

as well. For example, R. Salakhutdinov used 

restricted Boltzmann machines (RBM) in 

collaborative filtering with unsupervised nonlinear 

learning method [13]. Sedhain proposed AutoRec 

which is a novel framework for collaborative 

filtering. It uses autoencoder network to extract the 

latent space [14]. Zheng proposed a neural 

autoregressive architecture for collaborative filtering 

tasks, which is inspired by RBM model and neural 

autoregressive distribution estimator (NADE), the 

model called CF-NADE [15]. Zhuang proposed a 

framework called recommendation via dual-

autoencoder (ReDa). It learns the latent 

representation of items and users using autoencoders, 

and reduces the variations of training data [16]. Yi 

proposed a deep learning-based CF framework, 

named as deep matrix factorization (DMF), which 

can integrate side information efficiently in a model 

[17]. Lee proposed a novel scalable deep learning-

based collaborative filtering algorithm (Scalable 

DL) by using normalized vectors as inputs to a 

neural network to prevent network from overfitting 

[18]. Wang presented a deep learning-based RS 

model with two stages called TDR. Two separate 

marginalized stacked denoising auto-encoder 

models are applied to the items and users’ features 

at the first stage to learn the latent space, then the 

output is used as input for the deep neural network 

(DNN) component for optimizing the model at the 

second stage [19]. Khan proposed a hybrid RS 

model named as deep semantic based topic driven 

hybrid RS (DST-HRS); it uses item’s semantics 

description that is influenced by its topics 

information [20]. Zhang proposed a probabilistic 

matrix factorization model based on 

backpropagation neural network ensemble learning, 

bagging, and fuzzy clustering (FCM-bagging-BP-

PMF) [21]. Sarridis proposed a neural interaction 

matrix factorization (NIMF) method that is applied 

to the rating matrix. In order to extract user and item 

embeddings; it takes a normalized rating matrix as 

input to the neural network [22]. Mondal presented 

DeCS which addressed the cold start problem in RSs 

by using deep neural network framework to learn 

low-dimensional embeddings and side information 

of the user and item [23]. Boudiba developed a tag-

based model, which is extracted from contextual 

BERT. The proposed model uses multi perceptron 

layers architecture and named as neural CF-MLP 

[24]. 

The problem with the reviewed deep learning-

based CF models is that, they use the rates of all 

users in dataset to build the latent space which will 

be used later to predict the missing rates of each user. 

Despite the fact that, users have different interests, 

and these differences reduce the model predictions 

accuracy.  

This research proposes a novel model that 

involves the users with most similar preferences in 

recommendations generation process, instead of 

involving all the users. In other words, it distributes 

the users over multiple models based on their 

similarity. The proposed system combines clustering 

technique such as K-means, with a deep learning 

model such as denoising autoencoder (DAE) to 

improve the prediction accuracy. 

The proposed method has some important 

differences if it is compared with other autoencoder-

based models:  

 

a) Instead of using the whole users in the dataset 

to train the DAE model, it divides the users 

into k clusters based on their interest 

similarity by using K-means algorithm, then it 

uses the members of each cluster to train their 

own DAE model.  

b) It uses explicit feedback (1-5 rates) in form of 

item-user interactions with added noise 

(corruption) to the input data, to learn latent 

representations of corrupted item-user 

preferences that can best reconstruct the full 

input. 

 

The rest of the paper is structured as follows: 

Section 2 presented the theoretical background of 

the techniques that are used in the proposed method; 

proposed method is explained in section 3; results 

and performance evaluation are presented in section 

4 and section 5 covers the paper conclusions. 

2. Background and theories 

Our method is based on the following 

techniques: clustering and autoencoders. In this 

section, we will briefly discuss these topics. 

2.1 Clustering 

K-Means is an unsupervised clustering 

algorithm. It is the simplest, most used, and 

computationally efficient clustering algorithm [25]. 

K-means is used for partitioning data into K clusters 

using clusters’ centres (centroids). The centroid of 

each cluster is computed by taking the average of all 

data points in the cluster. Determining the number 
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of clusters before the model training is required in 

this method. The main 4 steps of the K-means 

algorithm are described as follow [26]: 

 

1. Randomly select K data points as initial 

centroids. 

2. Assign each data point Xi to the closest 

cluster by calculating its distance to all 

centroids using Euclidean distance. 

3. Update the centroids by calculating the mean 

of the assigned points. 

4. Repeat steps 2 and 3 until no convergence or 

maximum iteration is met. 

 

The optimal number of clusters (k) can be 

determined by using Silhouette method. It validates 

the consistency of data within each cluster. The 

silhouette method measures how much a point is 

similar to its cluster compared to other clusters by 

calculates silhouette coefficients of each point [27]. 

The silhouette coefficient for a sample is 

computed as follows: 

 

Silhouette Coefficient =
(𝑏−𝑎)

𝑚𝑎𝑥(𝑎,𝑏)
   (1) 

 

Where, a is the mean intra-cluster distance, and 

b is the mean nearest-cluster distance. 

2.2 Autoencoder 

Autoencoder (AE) was first presented in 1991 

by Kramer [28]. It exploited feed-forward neural 

networks to learn the latent representation of an 

input with low dimensions [29]. The output of the 

AE aims to reconstruct the input. Then, the network 

is trained by back-propagating the loss score (e.g., 

mean squared error) during the reconstruction, it 

consists of two parts as below, 

 

Encoder φ: 𝑥 → 𝑧   (2) 

 

Decoder Ψ: 𝑧 → 𝑥   (3) 

 

Where φ, Ψ = arg𝑚𝑖𝑛φ, Ψ ||𝑥 − (φ . Ψ) 𝑥||2. In 

the simplest case, there is only one hidden layer, 

where the encoder takes input x and maps it to z, 

then the decoder maps z into reconstruction x, 

 

Encoder: z = σ(Wx +  b)     (4) 

 

Decoder: x = σ(W′z +  b′)    (5) 

Where σ is a non-linear activation function, 𝑥 ∈
𝑅𝑑  is the input, 𝑧 ∈ 𝑅𝑑  is the hidden node, 𝑊 ∈
𝑅𝑑.𝑘 is weight matrix mapping input to hidden node, 

W′ ∈ 𝑅𝑑.𝑘  is the weight matrix mapping hidden 

node to reconstruction node, 𝑏 ∈ 𝑅𝑘 , b′ ∈ 𝑅𝑑  as 

bias vectors [30]. 

2.3 Denoising autoencoder 

Vincent [31] introduced the denoising 

autoencoder (DAE) to discover more robust features 

through autoencoders and learning the identity 

function. DAE applies, corrupted version of input x 

as x ̃, and the network is trained to denoise and 

reconstruct input x. Many corruption ways can be 

used, but the most common choices are 

multiplicative mask-out/ drop-out noise and additive 

Gaussian noise. In this paper, the drop-out noise is 

used which randomly masks entries of the input by 

setting them to zero [32]. 

3. Proposed method 

The proposed method consists of two main 

steps: users clustering and training DAE model. The 

first step divides the users into clusters based on 

their similar preferences. These preferences are 

extracted from the rates that are given by a user to 

items’ features. MovieLens dataset is used in the 

proposed system, where movies represent the items 

and genres represent the items’ features. Two tables 

have been used out of the dataset: 

 

1) Ratings: it has all the rates given by users to 

movies on a scale between 1 and 5. 

2) Movies: it has all movies with their genres, 

for example, action, drama, comedy, etc. 

there are 19 different genres. 

3.1 Users clustering 

The proposed system groups the users with 

similar interests together (clustering) by applying k-

means algorithm. The similarities among users are 

found by extracting the average rates that is given 

by a user to each genre. Fig. 1 shows a part of the 

users-genres interaction matrix. This matrix is 

obtained by merging ratings with movies tables 

based on movies’ ids. In order to find the best 

number of clusters (K) for the experimented dataset, 

silhouette method is applied by using Eq. (1). 

Silhouette score is computed by trying different 

values of K and the value with highest score is 

selected. 

3.2 Training DAE model 

In the training step, the dataset will be divided 

into K sets, based on the cluster value. Each set will  
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Figure. 1 a part of the users-genres interaction matrix 

 

 
Figure. 2 The proposed model structure 

 

be further divided into training and testing sets with 

80% and 20% of data respectively. All the clusters 

use the same model structure.  

The proposed model follows item-based 

structure, where it uses the items-users matrix as 

input (𝑟𝑖), where items are represented as rows and 

users as columns, the inter-section between a row 

and a column represents the actual rate that is given 

by a user to an item. Item-based structure is used 

because the number of users is less than items, as a 

result of the clustering process, and that will reduce 

the number of nodes in the input and output layers. 

The proposed model structure is shown in Fig. 2. 

3.2.1. DAE model design 

The proposed DAE model is designed as 

follows: 

 

1) Input layer 

The number of nodes in the input layer equals 

the number of users, where the inputs nodes 

represent the interaction between an item 𝑖 and all 

users in a specific cluster, 𝑟𝑖 = {𝑅1𝑖, 𝑅2𝑖, 𝑅3𝑖, 𝑅𝑚𝑖} 

where 𝑅 is the rate value, m is the number of users 

and 𝑖 is an item. 

Dropout noise will be applied to mask out the 

input data by setting them to zero randomly, with a 

noise ratio equal to (50%) to introduce a corrupted 

version of input data 𝑟�̃�.  

 

2) Hidden layer 

𝑟�̃�  will be fully connected to the hidden layer 

which has (256) nods to represent the latent space of 

the input data. The activation function that is used in 

the hidden layer is the sigmoid function. The output 

of the hidden layer is computed as follows: 

 

𝑧 = 𝑓(𝑊 ∗  𝑟�̃� + 𝑏)   (6) 

 
Where, 𝑓 is the sigmoid activation function,  𝑟�̃� is 

a corrupted input data, 𝑊 and 𝑏 are the weights and 

bias of the hidden layer respectively. 

 

3) Output layer 

The output layer is fully connected with the 

hidden layer where it has the same number of nods 

that is in the input layer with weights’ values (V). 

The output of this layer is the predicted rates 𝑟�̂�, it is 

computed as follows: 

 

𝑟�̂� = 𝑓(𝑉 ∗ 𝑧 + �̀�)   (7) 

 

Where, 𝑓  is the linear activation function, 𝑧  is 

the output of the hidden layer, 𝑉  and �̀�  are the 

weights and bias of the output layer respectively. 

 

4) Loss function 

The proposed model uses mean squared error 

(MSE) as a loss function. But, since it doesn’t make 

sense to predict zeros in the item’s representation 
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vector 𝑅𝑚𝑖 , the approach from [14] is flowed to 

optimize masked mean squared error (MMSE) loss 

[6]. 

 

MMSE =
∑ 𝑚𝑖.(𝑟𝑖−𝑟�̂�)2𝑖=𝑛

𝑖=1

∑ 𝑚𝑖
𝑖=𝑛
𝑖=1

   (8) 

 

Where 𝑟𝑖  is actual rating, 𝑟�̂�  is reconstructed, or 

predicted rating, and 𝑚𝑖 is a mask function such that 

𝑚𝑖 = 1 if 𝑟𝑖 ≠ 0 else 𝑚𝑖 = 0. 

 

5) Optimization algorithm 

Adam optimization algorithm has been used to 

update the network’s weights. It combines ‘gradient 

descent with momentum algorithm’ and the ‘root 

mean square propagation algorithm’ by using the 

following equations: 

 

𝑝𝑡 = 𝑚1. 𝑝𝑡−1 + (1 − 𝑚1) [
𝜕𝑓

𝜕𝑤
]   (9) 

 

Where, 𝑝  is aggregate of gradients, 𝑚  is the 

moving average parameter, 𝜕𝑓 is derivative of loss 

function, and ∂w is derivative of weights. 

 

𝑞𝑡 = 𝑚2. 𝑞𝑡−1 + (1 − 𝑚2) [
𝜕𝑓

𝜕𝑤
]  (10) 

 

Where, 𝑞𝑡 is the sum of square of past gradients. 

 

𝑝�̂� =
𝑝𝑡

(1−𝑚1
𝑡 )

    (11) 

 

𝑞�̂� =
𝑞𝑡

(1−𝑚2
𝑡 )

    (12) 

 

Where, 𝑝�̂�  and 𝑞�̂�  are the bias corrected weight 

parameters. 

 

𝑊𝑡 = 𝑊𝑡−1 − 𝑎 .  (
𝑝�̂�

√𝑞�̂�+∈
)  (13) 

 

Where, 𝑊𝑡  is the new weight, 𝑎 is the learning 

rate, and ∈  is a small positive constant to avoid 

division by zero. 

The main steps of the proposed model are 

illustrated in algorithm 1. 

3.3. Evaluation metrics 

Root mean squared error (RMSE) and mean 

absolute error (MAE) are used as evaluation 

matrices. They evaluate the accuracy of the 

predicted rates by comparing them with the actual 

testing data. RMSE has a straightforward relation 

with MMSE score. 

 

Algorithm 1. Cluster-based denoising autoencoder 

RS 

Input: Ratings data; 

Output: Predicted rates; 

1 k ← max cluster value 

2 𝑖 ← 0 

3 while 𝑖 <= k do 

4      Get all ratings of cluster 𝑖 

5      m ← number of items rated in cluster 𝑖 

6      n ← number of users in cluster 𝑖 

7      Create m×n ratings array 𝑟𝑖 

8      Split the array into train and test sets 

9      Build AE model with input/output nodes = 

number of users in cluster 𝑖 

10     For each item in train set do 

11          𝑟�̃�   ← dropout_noise(𝑟𝑖, 0.5) 

12         Calculate z using Eq. (6) 

13         Calculate 𝑟�̂� using Eq. (7) 

14         Calculate MMSE using Eq. (8) 

15         Update parameters using Eq. (9, 10, 11, 12, 

and 13) 

16     End for 

17     Generate predictions 

19     𝑖 ←𝑖 +1 

20     End while 

 

RMSE = √𝑀𝑀𝑆𝐸   (14) 

 

MAE computes the mean of the absolute 

differences between the actual rating 𝑟𝑖  and the 

reconstructed rating 𝑟�̂� as follows: 

 

MAE =
∑ 𝑚𝑖.|𝑟𝑖−𝑟�̂�|𝑖=𝑛

𝑖=1

∑ 𝑚𝑖
𝑖=𝑛
𝑖=1

   (15) 

 
Where, 𝑚𝑖 = 1 if 𝑟𝑖 ≠ 0 else 𝑚𝑖 = 0. 

4. Results and discussion 

Three of MovieLens (ML) datasets (ML-100K, 

ML-1M, and ML-10M) are applied to the proposed 

method. All of datasets have the same tables with 

the same attributes. But they have different numbers 

of users, movies, and ratings as shown in Table 1. 
 

Table 2. Datasets statistics 

Dataset Users Movies Ratings 

ML-100K 943 1,682 100,000 

ML-1M 6,040 3,706 1,000,209 

ML-10M 69,878 10,681 10,000,052 
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In order to determine the number of clusters (K) 

for each dataset, Silhouette method is used to 

compute the scores of different values of K 

(between 2 and 20) and the highest score is selected. 

The selected K values for the experimented datasets 

were as follows: 5, 11, and 23 clusters for ML-100K, 

ML-1M, and ML-10M datasets respectively. Where 

it is obvious that, as the size of data increases the 

number of clusters increases too. 

MovieLens datasets are used to train and test the 

proposed model (cluster-based DAE). They are 

divided into 80% and 20% for training and testing 

respectively. The hyperparameters configuration is 

selected by trying different settings and they are 

evaluated based on the MAE and RMSE scores. The 

hyperparameters of the proposed model are: 

 

• Sigmoid and linear activation functions for 

hidden and output layers respectively. 

• Adam optimizer with learning rate (0.0001). 

• The noise ratio is 50%. 

• Regularization rate is (0.0001). 

• Number of epochs is (500). 

• The number of hidden nodes is (256) in 

ML-100K and ML-1M datasets models, and 

(512) in ML-10M dataset model. 

 

The experiment was performed on a laptop PC 

equipped with an Intel(R) Core(TM) i7-11800H 

CPU@2.3GHz, NVIDIA GeForce RTX 3060 GPU, 

and 16 GB RAM. The proposed model is 

implemented by using python 3.9.12 programming 

language with keras 2.9.0, tensorflow 2.9.1, numpy 

1.22.4, pandas 1.4.2, and scikit-learn 1.1.1. 

The experimental results of the proposed model 

are performed over the three datasets by computing 

the average of MAE and RMSE of all clusters’ 

models. Tables 2, 3, and 4 present the results of 

applying ML-100K, ML-1M and ML10M datasets 

respectively. Fig. 3 summarizes the performance 

results of the proposed model over the three datasets. 
 

Table 2. Results of each cluster’s model in ML-100K 

dataset 

Cluster 
# Items 

(Samples) 

#Users 

(Input 

nodes) 

MAE RMSE 

1 1570 234 0.6043 0.6760 

2 1036 177 0.5041 0.5035 

3 1346 134 0.4683 0.7480 

4 1335 226 0.6339 0.4950 

5 1022 172 0.6495 0.5149 

 
Total: 

943 

Average:   

0.5720 

Average:   

0.6313 

Table 3. Results of each cluster’s model in ML-1M 

dataset 

Cluster 
# Items 

(Samples) 

#Users 

(Input 

nodes) 

MAE RMSE 

1 3194 742 0.5823 0.6760 

2 2715 377 0.4690 0.5035 

3 3268 652 0.6440 0.7480 

4 2483 361 0.4574 0.4950 

5 2386 375 0.4818 0.5149 

6 2404 370 0.5355 0.5836 

7 2281 326 0.4551 0.4925 

8 3563 783 0.6617 0.7840 

9 2616 510 0.5490 0.6034 

10 2839 542 0.5795 0.6539 

11 3533 1002 0.6300 0.7441 

 
Total: 

6040 

Average:  
0.5496 

Average:  
0.6181 

 

 
Table 4. Results of each cluster’s model in ML-10M 

dataset 

Cluster 
# Items 

(Samples) 

#Users 

(Input 

nodes) 

MAE RMSE 

1 5946 5625 0.5013 0.5738 

2 10232 7881 0.56 0.6712 

3 4224 1708 0.467 0.5145 

4 10632 6853 0.5877 0.7121 

5 4196 1401 0.4688 0.5135 

6 3526 2689 0.4523 0.4976 

7 5462 3670 0.5197 0.5844 

8 6823 1829 0.5039 0.5673 

9 8765 7944 0.5336 0.6253 

10 7003 2187 0.4739 0.5389 

11 5574 1631 0.4804 0.5365 

12 7866 1924 0.4627 0.5187 

13 4389 2047 0.5138 0.5646 

14 6118 2795 0.523 0.5872 

15 4664 2098 0.5044 0.5589 

16 3422 1175 0.4394 0.4812 

17 6648 5304 0.5263 0.6006 

18 3847 2473 0.4892 0.5381 

19 4357 2570 0.4851 0.5392 

20 5132 858 0.4654 0.5033 

21 6478 2485 0.5097 0.571 

22 5919 967 0.4697 0.518 

23 7127 1764 0.4937 0.5548 

 
Total: 

69878 

Average: 

0.4970 

Average: 

0.5596 
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Figure. 3 Performance of the proposed model over 

different MovieLens datasets 

 

Tables 2, 3, and 4 show the number of items and 

users that is used to train each cluster’s model with 

their interactions over ML-100K, ML-1M, and ML-

10M datasets respectively. The MAE and RMSE 

scores of all clusters’ models are evaluated. The 

average MAE and RMSE of ML-100K dataset are 

(0.5720) and (0.6313) respectively. In ML-1M 

dataset the average MAE and RMSE are (0.5496) 

and (0.6181) respectively. Where the average MAE 

and RMSE of ML-10M are (0.4970) and (0.5596) 

respectively. 

The proposed model is compared with other 

state-of-the-art deep learning-based rate prediction 

methods in terms of prediction quality (MAE and 

RMSE) using ML-100K, ML-1M, and ML-10M 

datasets. Tables 5, 6, and 7 show the MAE and 

RMSE results of deep learning-based models that 

are compared with our proposed model in ML-100K, 

ML-1M, and ML-10M datasets respectively. 

Table 5 shows the effectiveness of the proposed 

method on ML-100K dataset, which outperformed 

the other compered methods in term of MAE (by a 

range between 21% and 12.9%) and RMSE (by a 

range between 33.9% and 24.2%).  Table 6 proved 

that the proposed method has outperformed the 

other methods in term of MAE (by a range between  

 
Table 5. Compassion between the proposed model and 

other models on ML-100k dataset 

Methods MAE RMSE 

PMF * 0.782 0.970 

ReDa [16] 0.720 0.919 

Scalable DL [18] - 0.907 

NIMF [22] - 0.894 

DeCS [23] 0.676 0.891 

DMF+ * 0.655 0.889 

TDR [19] 0.701 0.873 

Cluster-based DAE 

(proposed) 
0.572 0.631 

*: Taken from [17]. 

Table 6. Compassion between the proposed model and 

other models on ML-1M dataset 

Methods MAE RMSE 

PMF * 0.697 0.889 

RBM ** - 0.854 

ReDa [16] 0.665 0.849 

Scalable DL [18] - 0.848 

DST-HRS [20] - 0.846 

BiasedMF ** - 0.845 

DeCS [23] 0.628 0.842 

TDR [19] 0.655 0.835 

DMF+ * 0.608 0.832 

AutoRec ** - 0.831 

CF-NADE [15] - 0.829 

NIMF [22] - 0.829 

FCM-bagging-BP-

PMF [21] 
0.731 0.798 

Cluster-based DAE 

(proposed) 
0.550 0.618 

*: Taken from [17]. 

**: Taken from [14]. 

 

Table 7. Compassion between the proposed model and 

other models on ML-10M dataset 

Methods MAE RMSE 

Neural CF-MLP [24] 0.720 0.930 

BiasedMF ** - 0.845 

RBM ** - 0.825 

AutoRec ** - 0.782 

NIMF [22]  0.781 

DST-HRS [20] - 0.779 

CF-NADE [15] - 0.771 

Cluster-based DAE 

(proposed) 
0.497 0.560 

*: Taken from [17]. 

**: Taken from [14]. 

 

18.1% and 14.7%) and RMSE (by a range between 

27.1% and 18%). The effectiveness of the proposed 

method on ML-10M dataset presented in Table 7, 

which outperformed the other compered methods in 

term of MAE (by 22.3%) and RMSE (by a range 

between 37% and 21.1%). 

The reason that makes the proposed method 

outperforms the other compared methods is that, we 

utilized the similarity of users’ preferences to 

distribute the users over K models (instead of single 

model), where the predictions are generated by 

similar users. 

On the other hand, the training time of the 

proposed method is longer than training the same 

model without clustering. For example, in ML-1M 
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dataset the proposed method took (7 minutes and 45 

seconds) to train cluster-based DAE. Whereas, it 

took (1 minutes and 50 seconds) to train a DAE 

model without clustering. Because, the proposed 

method trains multiple models instead of one. 

5. Conclusion 

This research proposed a cluster-based denoising 

autoencoder model for rate prediction recommender 

systems. It distributed the users over K models 

instead of a single model. The proposed system 

utilized k-means algorithm to divide the users into K 

clusters based on their similar interests. Each 

cluster’s members cooperate to extract the latent 

space of items-users interactions to predict the 

missing rates using denoising autoencoder model. 

The proposed method was trained and tested with 

MovieLens (100K, 1M, and 10M) datasets where 

80 % of the data are used for training and 20% for 

testing. The performance of the proposed method 

compared against other state-of-the-art methods that 

use deep learning to build rate prediction models. It 

outperformed the other compared methods in term 

of MAE (with 12.9%, 14.7%, and 22.3%) and 

RMSE (with 24.2%, 18%, and 21.1%) using 100K, 

1M, and 10M datasets respectively. The proposed 

model requires more training time than using the 

same model without clustering which we will try to 

reduce it in future work. Moreover, the parallel 

computing of proposed method is also worth 

exploring. 
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