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Abstract: Vehicular ad hoc networks (VANETs) recently covered a wide range of intelligent transportation systems 

(ITSs) and applications. VANETs consist of convinced unique characteristics such as dynamic movement and high 

speed. Due to these characteristics, link failures occur, and delay and routing overhead is greatly increased, directly 

affecting the effectiveness, Quality of Service (QoS), and stability of VANETs. To achieve an efficient and reliable 

network performance, this paper proposes QoS Aware Hybrid Optimization for Improving Path Selection (HOIPS-

VANETs) in VANETs. This hybrid optimization combines the Improved ant colony optimization (ACO) and Effective 

Whale Optimization Algorithm (EWOA). The EWOA algorithm is used for initial optimal path selection, and ACO is 

used to find the best optimal solution to achieve effective communication in VANETs. This optimization technique is 

also applied to low-density, medium-density, and high-density scenarios, as it is compared with the earlier methods. 

During the experimentation process, our findings reveal no noticeable change in the performance of the earlier methods 

when applied to the low-density and medium-density scenarios. Still, the performance is gradually reduced when 

applied to the high-density scenario. On the other hand, the performance of the proposed approach is better for all three 

tested scenarios and demonstrates effective communication for the VANETs. 

Keywords: Vehicular ad hoc networks, Intelligent transportation systems, Quality of service, Hybrid optimization, 

Improved ant algorithm, Effective whale optimization algorithm. 

 

 

1. Introduction 

Vehicular Ad-hoc network (VANETs) have 

certain special characteristics, such as high dynamic 

mobility, high-speed vehicles, and complex vehicle 

distribution. It has been adapted in intelligent 

transportation systems (ITS). These features cause high 

path loss, link failure, and delay. Due to this 

drawback, the efficiency, packet delivery ratio, and 

network throughput are highly affected [1, 2]. It is 

essential to secure vehicles from serious issues like 

road accidents and traffic congestion.  

VANETs communication is performed using the 

dedicated short-range communication (DSRC) 

protocol. The physical/MAC layers are constructed 

using the wireless access in vehicular environment 

protocol. Through VANETs, real-time wireless data 

exchange is performed; therefore, significant safety 

benefits are highly concentrated. The communication  
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Figure. 1 VANETs communication [3] 

 

modules of VANETs consist of vehicle 

communication and vehicle to infrastructure 

communication [3]. To achieve effective 

communication in VANETs, finding the optimal best 

path between the sending and receiving vehicles is 

essential. It may also include other devices like 

neighbour vehicles and Roadside Units (RSU). Fig. 1 

shows the architecture of VANETs' communication. 

Reliable data transmission can be attained by 

ensuring the best quality of service (QoS) with low 

delay and routing overhead. The matter of optimum 

route selection can achieve it. Hence the vehicles in 

VANETs are highly movable. Frequent topology 

changes will occur in the network, which leads to 

high delay and packet loss during communication [4, 

5]. A maximum delay occurs during the transmission 

between the vehicles and the RSUs. So, deploying 

sufficient RSUs on the roadside is essential to achieve 

minimum delay cost-effectively. In earlier research, 

several methods are introduced to achieve this target 

which is heuristic and meta-heuristic algorithms to 

solve the set-covering and greed set cover'' problems 

[6]. The particle swarm optimization approach is 

developed to increase the convergence speed of the 

network so that effective communication can be 

achieved in vehicle to infrastructure communication 

[7, 8]. Research optimization is concentrated on 

monitoring the network traffic and best path selection 

to improve the capacity of the VANETs network. But 

currently, the number of vehicles utilized in a real-

time environment is highly increased, so achieving 

the shortest path from the source to the destination is 

still an open research area. To attain maximum 

reliability in multi-hop VANETs, all the parameters 

must be properly identified to accomplish 

cooperative communications. For that purpose, in our 

paper,  

 

• QoS aware hybrid optimization for improved 

path selection (HOIPS-VANETs) is proposed. 

• HOIPS-VANETs combines highly effective 

optimization algorithms such as ACO and 

effective whale optimization algorithm 

(EWOA).  

• Finally, a developed simulation for testing and 

evaluating the HOIPS-VANETs method. 

 

The following section of this paper presents a 

summary of the related work. Sections III and VI 

present the contributions of the paper. Section V 

presents the performance analysis. VI presents the 

results and discussion. Section VII presents the 

conclusion and lists the possible future work. 

2. Related works 

In [9], show how to maximize the coverage ratio 

in a VANET using improved particle swarm 

optimization (IPSO), which was motivated by the 

food-finding behaviour of bird or fish swarms. To 

offer the isolated cars the best connectivity possible, 

internet of drone nodes were deployed according to 

the positions of the vehicles at any given time. The 

stable connection and coverage maximization are its 

key benefits. However, this method produces high 

latency. In [10], introduce two discrete versions of the 

cuckoo search optimization (CSO) technique: The 

Lévy light-based discrete CSO (LF-DCSO) and the 

random walk-based discrete CSO (RW-DCSO) for 

efficient route discovery on VANETs. The advantage 

is that it improves communication link dependability. 

When the service area expands, though, this causes 

the network to become more complicated.  

In [11], develop ant colony-based temporarily 

ordered algorithm to provide the shortest routes based 

on vehicle priority. This framework achieves an 

enhanced packet delivery rate with minimized packet 

loss, average cluster duration, and low energy 

consumption. But the major drawback of this 

framework is the traffic congestion level cannot be 

reduced if the motorist disregards the route 

recommendation. In [12], create an analytical 

deployment framework for deploying BSs and 

energy harvest roadside units in specific low-

frequency service zones to lower the cost of 

deployment and maintenance in VANET. To 

minimize deployment and operating expenses, an 

optimization issue is put forth. This framework's key 

benefit is considerably lowering operations and 

deployment costs, but it needs to expand network 

communication flexibility or reduce network 

overhead.  

In [13], introduce the "Greedy3P4" greedy 

method for the RSU deployment. This framework's 

primary benefit is that it is appropriate for real-time 

implementation. This approach enables higher PDR  
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Table 1. Definition of terms 

notation meaning 

Horizontal position 𝑥𝑖(𝑡0) 

Position of vehicle 𝑥𝑖(𝑡0 + ∆𝑡0) 

Speed of vehicle 𝑣𝑖(𝑡0 + ∆𝑡0) 

Horizontal distance ∆𝑇𝑖(𝑡0 + ∆𝑡0) 

Minimum values 𝑣𝑚𝑖𝑛  

Maximum values 𝑣𝑚𝑎𝑥 

Number of packet exchanges NoPE 

Global pheromone 𝜏𝐺 

Vehicles at the hop 𝑉𝐴𝑖 

Coefficient vectors 𝐶1
⃑⃑⃑⃑   𝐶2

⃑⃑⃑⃑  

Random vector 𝑟1⃑⃑⃑   

Iteration number  𝑡0 

Position vector �⃑�  

Number of CHs. 𝐾 

 

and lower energy usage even in crowded network 

environments. However, only road crossings were 

considered as candidate places to make the challenge 

less challenging, which obviously decreased the 

quality of the responses. In [14], present an efficient 

and collaborative framework. This framework 

provides a quicker detection time, a greater detection 

rate, and less overhead using Markov-based 

reputation scheme. However, this framework's 

primary flaw is that it is unsuitable for real-time 

applications because of its higher network delay and 

decreased dependability.  

3. System model 

VANET technology has undergone numerous 

changes and advancements [15-21]. There will be 

data traffic in the network transmission route when 

there are many vehicles. This is the primary problem 

examined, and a better path selection is needed to 

improve data flow. The positioning of a vehicle, 

which serves as a neighbour node, can affect the 

performance of information distribution. The 

intersection connectivity is generally enhanced via 

RSU placement. The proposed approach uses reports 

from vehicles inside the RSU communication range 

to determine the ideal place for RSU. The RSU 

installation is suggested to expand the number of 

connected vehicles. However, the communication 

between vehicles and infrastructure (V2I) is 

restricted by the physical obstructions between the 

receiver and the transmitter, limiting the broadcast 

signal. Table 1 shows all the notations that are being 

used throughout this paper. 

In VANETs, there is a lot of temporal and spatial 

connectivity between vehicles. The location history 

state of a vehicle denotes its leading vehicle, which 

has comparable motion properties that can be used to 

pinpoint the position of a vehicle within a certain 

interval. An initial position and initial velocity are 

given to each vehicle. The vehicles maintain specific 

restrictions and motion patterns as they travel over 

time. The horizontal position of the 𝑖𝑡ℎ  vehicle at 

time 𝑡0 is denoted by 𝑥𝑖(𝑡0), while its previous and 

subsequent vehicles are 𝑥𝑖+1(𝑡0)  and 𝑥𝑖−1(𝑡0), 
accordingly.  

The speedy vehicle 𝑖 is between the two extremes, 

which is 𝜗𝑖(𝑡)𝜖[𝜗𝑚𝑎𝑥, 𝜗𝑚𝑖𝑛]  and acceleration is 

𝑎𝑖(𝑡0), the vehicle's present speed is defined by its 

starting speed and acceleration. After the time 

interval ∆𝑡0 , the position of vehicle 𝑖  will have 

changed to 𝑥𝑖(𝑡0 + ∆𝑡0), and its speed will increase 

with 𝑣𝑖(𝑡0 + ∆𝑡0) . Thus, Eq. (1 and 2) are the 

calculation of the speed, and the moving behaviour of 

the vehicle is given in. 

 

𝑥𝑖(𝑡0 + ∆𝑡0) = (𝑣𝑖(𝑖)∆𝑡0 + 
1

2
 𝑎𝑖(𝑡0)∆𝑡0

2) + 

𝑥𝑖(𝑡0)      (1) 

 

              𝑣𝑖(𝑡0 + ∆𝑡0) = 𝑣𝑖(𝑡0) + 𝑎𝑖(𝑡0)∆𝑡0        (2) 

 

The horizontal distance between the 𝑖𝑡ℎ  vehicle 

and the (𝑖 + 1)𝑡ℎ vehicle is given in Eq. (3) 

 

∆𝑇𝑖(𝑡0 + ∆𝑡0) = 𝑥𝑖+1(𝑡0 + ∆𝑡0) − 𝑥𝑖(𝑡0 + ∆𝑡0)  (3) 

 

The network connectivity between two vehicles 

is based on the most important parameters, such as 

distance, link duration, and stability. With 

considering the broadcast coverage between vehicles 

is 𝑟 , the necessary condition for the vehicle 𝑖 and 

vehicle 𝑖 + 1 to have timely communication 𝑡0  is 

∆𝑇𝑖(𝑡) ≤ 𝑟 . Also, the maintenance of the 

communication link needs to be guaranteed for a 

specific period; otherwise, connectivity failure 

happens. The vehicle speed is restricted to a specific 

range since they are typically not permitted to reverse 

while driving and because urban roadways will have 

speed limitations is given in Eq. (4) 

 

       {
𝑖𝑓 (𝑣𝑖(𝑡0) <  𝑣𝑚𝑖𝑛),         𝑣𝑖(𝑡0) = 𝑣𝑚𝑖𝑛

𝑖𝑓 (𝑣𝑖(𝑡0) >  𝑣𝑚𝑎𝑥),   𝑣𝑖(𝑡0) = 𝑣𝑚𝑎𝑥   
    (4) 

 

The starting vehicle speed and acceleration 

should be retained throughout that legal range with a 

random distribution between the given maximum and 

minimum values. The speed-acceleration equation 

can be used to determine the speed of a moving object  
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Figure. 2 The proposed HOIPS-VANETs approach 

 

at any given time. Additionally, a safe distance is kept 

between each vehicle node. 

4. HOIPS-VANETS approach 

The HOIPS-VANETs approach combines two 

effective optimization algorithms such as ACO and 

EWOA. In our hybrid optimization process, 

optimization is performed on two levels: initial 

optimal path selection and best optimal solution 

finding. In the HOIPS-VANETs algorithm, ACO is 

used for initial optimal path selection, and the EWOA 

algorithm is used for the best optimal solution-

finding process. The workflow of the proposed 

HOIPS-VANETs approach is illustrated in Fig. 2. 

4.1 Improved ant colony optimization (ACO)  

Ants can most effectively and intelligently find 

the shortest route from their colony to a food source. 

It is referred to as ACO and swarm intelligence-based 

technique that insect and animal behaviour 

principally inspired. Ants release chemical 

substances called pheromones along their path as 

they seek food to identify the area they have travelled. 

The following ants can gather information about the 

shortest route to food through the pheromones that 

have been produced. The high concentration of 

pheromone, which evaporates, attracts ants over time. 

Ants can quickly find the best way since the shortest 

path maintains a higher pheromone concentration 

than the longer path. The proposed algorithm has 

been designed based on the following assumptions. 
 

• Each vehicle is equipped with a GPS and an on-

board unit (OBU) module. The OBUs provide 

information on the vehicles, such as GPS 

coordinates, speed, the route toward the next 

vehicle, and infrastructure. 

• Using a periodic beacon, vehicles broadcast 

their current location so that other vehicles 

inside the coverage area can transfer the data to 

the desired location. 

• Buildings and other obstructions do not impact 

the signal propagation loss in this situation. 

• When the source transmits, not all vehicles 

receive data packets simultaneously. 

 

The source vehicle transmits forward ant packets 

to send a packet to the target vehicle. When the hop 

count constraint reaches the maximum set value, 

packets stop covering the already covered vehicle. 

The hop count is examined, and the pheromone trail 

is adjusted when the vehicle receives a forward ant 

transmission. The total amount of pheromones 

associated with the entire route is comparable to each 

intermediate link's unique pheromone. As soon as 

next hop vehicle B receives a packet from the sender, 

it transmits it to the next phase of vehicles, which 

then receives it and inform the previous phase with 

an acknowledgment (ACK) signal and packet 

recognition. Vehicles A and C do not transmit data 

packets to the following layer because transmitting 

consumes more energy than receiving. Parallel to the 

next layer, only the highest quality route is used for 

packet transmission. It cannot transmit packets to the 

next hop when the next hop vehicle is unavailable or 

challenging to reach due to a hop breakdown in the 

link between them. The following hop from vehicle 

D to vehicle F is outside of the acceptable range due 

to a catastrophic event or a coverage problem. After 

that, vehicle D utilizes V2I communication to 

transmit a unicast message and the packet to the 

closest RSU. Then, the RSU transmits the packet and 

builds a pseudo-ant vehicle to terminate the Data 

transmission. This method can manage data 

transmitting in both areas with heavy traffic and areas 

with light traffic, where an extensive number of 

vehicles are not present. Forward ant packets 

transform into backward ant packets once they arrive 

at their final destination. The source vehicle is visited 

by backward ant packets using the same procedure. 

The earlier route taken by the forward ant might not 

be exactly where the later one takes place. The 

reliability of the routing path is determined by the 

diversity of the lists of vehicles found by the leading 

and rear ant vehicles. To determine the precise 

position of the target and the present forwarder, 

location-based services are used. Data is transmitted 

to the target unless the target is outside the coverage 

area of the present vehicle's broadcast range. In this 

case, the current vehicle seeks the optimal path to 

transmit the data to the target. The data packet is 

routed if the present forwarder locates the next hop 

node; else, a unicast join request is transmitted to the 

closest RSU. The RSU developed a pseudo-ant 

vehicle to reach its destination. After obtaining an ant  
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Figure. 3 Process of ACO model 

 

packet, vehicles transmit an ACK packet. Global 

pheromones will be updated following a GPS 

distance calculation from the user's position to the 

destination. When the destination is reached, a 

transformation from forward to backward occurs, and 

the ant then travels back in the opposite direction to 

the source. When a source obtains backward ant 

packets, it uses the global pheromone level to find the 

shortest path and delivers information to the 

destination. The most stable path exhibits similarities 

between forward and backward motion. The route is 

followed for data transfer. The process of the ACO 

model is described in Fig. 3. For future ants to choose 

a path much more informedly, the pheromone is 

dispersed along the ant's travel path. 

A forward ant packet converts to a backward ant 

only occurs when the transmission delay to the target 

is less than the threshold limit. Backward ants 

primarily determine the routing reliability. Both ant 

packets keep their unique ant tables to provide the 

optimum route while returning to the source. The 

vaporization level of the pheromone, as it changes 

over time, determines the link quality or longevity. 

The pheromone is applied to a specific connection. 

𝜑𝐵𝐹  is calculated by the sum of link sustainability 

and possibilities of getting successful packets as 

shown in Eq. (5). 

 

            𝜑𝐵𝐹 = 𝑙𝑠𝐵𝐹 + 𝑃𝑝𝑘𝑡
𝐵𝐹                        (5) 

 

where the term 𝑙𝑠𝐵𝐹 implies the sustainability of the 

link between vehicles B and F, 𝑎𝑛𝑑 𝑃𝑝𝑘𝑡
𝐵𝐹  implies the 

possibilities of successful packets .  The vehicle is 

situated in the center of the broadcast range, where 

link quality computation gives maximum 

significance to direction-matching packet flow and 

minimum velocity. 𝑃𝑝𝑘𝑡
𝐵𝐹   implies the ratio between 

ant packets transmitted by the previous vehicle and 

ant packets acquired from the next hop vehicle. 

 

                           𝑃𝑝𝑘𝑡
𝐵𝐹 =

𝑃𝑅
𝐹

𝑃𝑇
𝐵                (6) 

 

where ant "a" is changing links from B to F. The 

possibility that Ant 'a' is shown in Eq. (7). 

 

             𝑃𝐵𝐹
𝑎 =

[𝜏𝐵𝐹(𝑡0)]
𝛼[𝛾𝐵𝐹(𝑡0)]

𝛽

∑ 𝑎𝐹𝑒𝑎𝑙𝑙𝑜𝑤𝑒𝑑 [𝜏𝐵𝐹(𝑡0)]
𝛼[𝛾𝐵𝐹(𝑡0)]

𝛽         (7) 

 

where 𝛾𝐵𝐹(𝑡0) implies the adaptive coefficient, and 

𝜏𝐵𝐹(𝑡0)  implies the pheromone density level. To 

limit the impact of 𝜏𝐵𝐹(𝑡0)  and 𝛾𝐵𝐹(𝑡0)   is 0 ≤
𝛼 𝑎𝑛𝑑 𝛽 ≥ 1. The mathematical expression for the 

calculation of 𝜏𝐵𝐹(𝑡0) is given in Eq. (8). 

 

        𝜏𝐵𝐹 = (1 − 𝜌 + 𝜂)𝜏𝐵𝐹 + 𝜌𝜂𝜏0          (8) 

 

where 𝜌 is the pheromone's vaporization coefficient, 

𝜂  is the pheromone stability factor, 𝜏0  is the basic 

pheromone value for links B and F. The sum of each 

ant packet's arcs can be used to calculate the total 

pheromone level. Once the ant packets validate the 

route to choose the optimum stable path, a general 

updating process is carried out. The global 

pheromone amount for the entire path is indicated 

mathematically in Eq. (9).  

 

𝜏𝐺 = 𝜏𝐺(1 +  𝜂) −  𝜌(𝜏𝐺 −
𝜂

𝑑𝑒𝑙𝑎𝑦
−  𝜂. 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡  (9) 

 

While the delay is measured by the time it takes a 

forward ant packet to travel from the source to a 

backward ant that the source has received. The degree 

of similarity among the forward and backward ant 

tables is called stability. For our suggested algorithm, 

the required number of packet exchanges (NoPE) is: 

 

    𝑁𝑜𝑃𝐸 = ∑ (𝑣𝑖 + 𝑐𝑖) ∗ 2𝑛
𝑖=0                 (10) 

 

where 𝑣𝑖 implies the number of vehicles transmitting 

packets at each hop, 𝑐𝑖  is the package that was 

delivered to the additional vehicle. The ACK packets 

result in a doubling of the packet count. The NoPE 

for ACO mathematically expressed below. 

 

       𝑁𝑜𝑃𝐸𝐼𝐴𝐴=∑ (𝑉𝐴𝑖) ∗𝑛
𝑖=0 𝐹𝑖             (11) 

 

where 𝑉𝐴𝑖 implies all the vehicles at the hop, and 𝐹𝑖 

implies retry or incomplete packet transmission. 

Transmission failure rates increase as the number of 

participating automobiles increases. The fastest and 

most stable path is chosen as the optimum route for 
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data transmission since it has the most pheromones 

placed along it. Vehicles transmit forward after a set 

time if a path is not provided. According to this 

process, the initial path selection is performed in the 

network to find the optimal solution. 

4.2 Effective WOA optimization 

EWOA algorithm is among the simple, powerful, 

and swarm intelligence-based meta-heuristic 

techniques that utilize the intelligence of the 

humpback whales hunting behaviour. EWOA 

algorithm is highly effective in finding the global 

solution for the optimization problem, concentrating 

on all the unconstrained optimization trouble. The 

core principle of the EWOA is the bubble-hunting 

strategy that mimics the hunting characteristics of 

whales. The search is initiated using a random 

solution, the initial positions are identified with the 

agent's help, and the best solution is identified. The 

improved version of the EWOA is used in our 

research, called the strategy based embedded EWOA, 

to achieve an effective solution for the optimization 

problem in the VANETs network. This optimization 

concept includes whale initialization, exploitation, 

and effective exploration. Using this process, an 

effective best optimal solution is found during 

network communication. EWOA's mathematical 

model is divided into three phases: prey encircling, 

exploitation, and exploration. Prey encircling phase: 

EWOA starts with the encirclement of the prey 

(optimal agent) by humpback whales (search agents). 

The targeted prey is then identified as the current and 

best possible solution. All other search agents then 

make an effort to advance in the direction of the best 

option after the best search agent has been identified 

in the Eqs. (12) and (13): 

 

                �⃑⃑� =  |𝐶1
⃑⃑⃑⃑ . 𝑌∗⃑⃑⃑⃑ (𝑡0) − �⃑�  (𝑡0)|              (12) 

 

              �⃑�  (𝑡0 + 1) =  𝑌∗⃑⃑⃑⃑ (𝑡0) − 𝐶2
⃑⃑⃑⃑  . �⃑⃑�            (13) 

 

where the terms 𝐶1
⃑⃑⃑⃑  and 𝐶2

⃑⃑⃑⃑  imply the coefficient 

vectors,  𝑎𝑛𝑑 𝑡0 denotes the iteration number. 𝑌∗⃑⃑⃑⃑ (𝑡0) 

and �⃑�  vectors relate to the position vector and the 

best agent position vector. Also, if an optimum 

solution can be found in each iteration, 𝑌∗⃑⃑⃑⃑  should be 

enhanced. Additionally, vectors 𝐶1
⃑⃑⃑⃑  and 𝐶2

⃑⃑⃑⃑  are 

represented as follows: 

 

                      𝐶1
⃑⃑⃑⃑ =   2𝑟1⃑⃑⃑                            (14) 

 

      𝐶2 ⃑⃑⃑⃑  ⃑ = 2𝑎 . 𝑟1⃑⃑⃑  −  𝑎                   (15) 

where  𝑟1⃑⃑⃑  is a random vector in [0, 1], 𝑎  is a vector that 

decreases linearly from 2 to 0 during the iteration 

process. Exploitation phase: The numerical analysis 

of the bubble-net attacking approach is described 

with these methods: Shrinking encircling approach: 

In this mechanism, the value of 𝐶2 ⃑⃑⃑⃑  ⃑  is randomly 

chosen between [-1, 1]. Moreover, A search agent's 

new position could be anywhere between the current 

position of the agent and the position of the newest 

optimum agent. The spiral upgrading position 

approach begins with computing the distance 

between the agent (�⃑�  (𝑡0)) and the optimum agent 

( 𝑌∗⃑⃑⃑⃑ (𝑡0). Then, it uses motions that mimic the 

spiralling motion of humpback whales (5). 

 

     �⃑�  (𝑡0 + 1) =  𝐷𝑖𝑠⃑⃑⃑⃑ ⃑⃑   . 𝑒𝜑𝑙 . cos(2𝜋𝑙) + 𝑌∗⃑⃑⃑⃑       (16) 

 

where the terms 𝐷𝑖𝑠⃑⃑⃑⃑ ⃑⃑  =  𝑌∗⃑⃑⃑⃑ (𝑡0) − �⃑�  (𝑡0) imply the 

distance, 𝜑 implies a constant, and the value l implies 

a random number between [-1, 1]. Then, with a 50% 

level of probability, EWOA updates the search 

agent's position and chooses between the spiral 

mechanism and the shrinking encircling method 

follows:  

 

�⃑�  (𝑡0 + 1) = 

   {
𝑌∗⃑⃑⃑⃑ (𝑡0) − 𝐶2

⃑⃑⃑⃑  . �⃑⃑�   𝑖𝑓 𝑝 < 0.5 

 𝐷𝑖𝑠⃑⃑ ⃑⃑ ⃑⃑  ⃑ . 𝑒𝜑𝑙 . cos(2𝜋𝑙) + 𝑌∗⃑⃑⃑⃑   𝐼𝑓 𝑝 ≥ 0.5 
        (17) 

 

where 𝑝 implies a random number between [0; 1] 

and followed process exploration phase is initiated. 

 Exploration phase: The other search agents update 

their positions while guided by the ideal search agent 

chosen earlier. In addition, WOA employs 𝐶2
⃑⃑⃑⃑   to 

generate a random value between -1 and 1 that allows 

the search agents to travel far from the benchmark 

agent. The following is mathematical representation 

of this phase is given below: 

 

            �⃑⃑� =  |𝐶1
⃑⃑⃑⃑ . 𝑌𝑟𝑎𝑛𝑑

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  (𝑡0) − �⃑�  (𝑡0)|             (18) 

 

                 �⃑�  (𝑡0 + 1) =  𝑌𝑟𝑎𝑛𝑑
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  −  𝐶2

⃑⃑⃑⃑  . �⃑⃑�          (19) 

 

where the 𝑌𝑟𝑎𝑛𝑑
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   vector implies a random search 

engine chosen from the predetermined demographics. 

This is the core principle of EWOA, and an effective 

optimal path selection process is elaborated below. 

Clustering-based EWOA begins with a set of 

solutions chosen randomly for every VZ. The 

identification address of a specific group of CHs is 

referenced in each solution. At each cycle, the search 

agents update their places after either a random 
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selection search agent or the optimal solution 

acquired previously. The cost of the subsequent 

function is then minimized after the solutions have 

been evaluated: 

 

         𝑐𝑜𝑠𝑡 =  𝛼𝑊1 + 𝛽𝑊2+ 𝛾𝑊3             (20) 

 

𝑊1 = 
∑ 𝐸(𝑛𝑖)

𝑆𝐺
𝑖=1

∑ 𝐸(𝐶,𝐻(𝑝,𝑗))
𝐾
𝑗=1

                    (21) 

 

𝑊2 = ∑
∑ 𝑑𝑖𝑠

𝑁𝐶𝑝,𝑗
𝑖=1 (𝑛𝑖,𝐶𝐻𝑝,𝑗)

𝑁𝐶𝑝,𝑗

𝐾
𝑗=1 +

∑ 𝑑𝑖𝑠(𝐶𝐻𝑝,𝑗,𝐵𝑆)
𝐾
𝑗=1

𝐾
    (22) 

 

  𝑊3 =
𝑆𝐺

∑ 𝐶𝑀𝑆(𝑗,𝐶𝐻𝑗)  
𝐾
𝑗=1

                 (23) 

 

where the coefficients 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾  imply energy, 

distance, and density parameters. 𝐾  represents the 

number of CHs. The function W1 chooses the 

collection of CHs with the highest energy level 𝑛𝑖 Eq. 

(21). The function 𝑊2  in Eq. (22) includes the 

communication cost from CHs to CMs and from CHs 

to the sink. Additionally, Eq. (23) processes the 

vehicle density and selects the CHs covering most 

nodes. According to the following process, the best 

optimal solution is found in the VANETs to achieve 

effective performance in high-speed communication. 

Division phase: Separate the sensing area into four 

VZ. Establish the nodes as SG. Initialization phase: 

Generate W random search agent vectors (sets of 

CHs' IDs). Create values for 𝐶1
⃑⃑⃑⃑ , 𝐶2

⃑⃑⃑⃑ , a, and 𝑀 𝑎𝑥𝑖𝑡𝑟.  

Evaluation phase: Estimate the search agents 

using Eq. (20). Determine the most effective search 

agent (set of CHs) to serve as the ideal agent.  

Updating phase: Adjust the parameters. 𝐶1
⃑⃑⃑⃑ , 

𝐶2
⃑⃑⃑⃑ , 𝑎, 𝑟1, 𝑙, and p. Eqs. (17), (18), and (19) should be 

used to exploit and explore the search agents based 

on the values of 𝐶2 ⃑⃑⃑⃑  ⃑ and 𝑝. Limit the range of the 

search agent values in accordance with the IDs of the 

CHs. Repeat steps 3 and 4 until the maximum number 

of repetitions is achieved, or the termination 

condition is met. Continue using steps 2 and 5 until 

all the VZ's optimal solutions are identified.  

5. Performance analyses 

This section compares the performance of the 

HGFA-VANETs [20] and MOFO-VANETs [21] 

methods with the composed HOIPS-VANETs. the 

comparison finds based on the performance 

calculations. The parameters considered in the 

research are energy efficiency, packet delivery ratio,  

 

Table 2. Simulation parameters 

Parameters Values 

Simulator used NS2.34 

Mobility Model SUMO 

Time 300 ms 

Map Layout Area 2000m*2000m 

No of Vehicles 1000 Vehicles 

MAC Layer IEEE 802.11p 

Packet Transmission Rate 1packet/ms 

Vehicle Transmission Range 300m 

Minimum Vehicle Speed 30 Km/h 

Queue Type DropTail 

Transmission Power 0.500 Joules 

Receiving Power 0.050 Joules 

Data Packet Size 512 tes 

 

 

 
Figure. 4 Energy efficiency calculation 

 

routing overhead, latency, packet loss, throughput, 

energy consumption, and network lifetime. The input 

parameters which are considered for the process of 

simulation are shown in Table 2. 

5.1 Energy efficiency calculation 

Fig. 4 represents the graphical illustration of 

energy efficiency calculation. It shows that the 

HOIPS-VANETs achieve better efficiency when 

compared with the HGFA-VANETs [20] and 

MOFO-VANETs [21]. The drawback HOIPS-

VANETs is introduced which provide effective 

initial path selection and clustering based optimal 

solution finding.  

5.2 Packet delivery ratio calculation: 

Fig. 5 shows that the HOIPS-VANETs achieve a 

better packet delivery ratio when compared with the 

HGFA-VANETs [20] and MOFO-VANETs [21]. A 

result of those causes the packet delivery ratio 

attained by the HOIPS-VANETs is higher than that 

of the earlier methods. 
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Figure. 5 Packet delivery ratio calculation 

 

 
Figure. 6 Routing overhead calculation 

 

 
Figure. 7 Latency calculation 

5.3 Routing overhead calculation 

Fig. 6 shows that the HOIPS-VANETs produced 

low routing overhead compared to the HGFA-

VANETs [20] and MOFO-VANETs [21]. The 

effective optimization during communication greatly 

reduces the production of forward packets and 

decrease of the routing overhead in the HOIPS-

VANETs networks compared with the earlier 

approaches. 

5.4 Latency calculation 

Fig. 7 shows that the HOIPS-VANETs produced 

low latency compared to the HGFA-VANETs and 

MOFO-VANETs. The latency generated by the 

HOIPS-VANETs approach is lower than the other.  

 

 
Figure. 8 Packet loss calculation 

 

 
Figure. 9 Throughput calculation 

 

Using the ACO and EWOA algorithms, the overhead 

produced by the network is also lower, which helps 

to achieve lower latency during data transmission in 

high-speed networks. 

5.5 Packet loss calculation 

Fig. 8 shows that the HOIPS-VANETs produced 

low packet loss compared to the HGFA-VANETs [21] 

and MOFO-VANETs [21]. The HOIPS-VANETs 

cleverly concentrate on clustering effective hybrid 

optimization for VANETs. The possibility for data 

loss is extremely minimized even in a densely 

populated urban environment. 

5.6 Throughput calculation 

Fig. 9 shows that the HOIPS-VANETs produced 

higher throughput when compared with the HGFA-

VANETs [20] and MOFO-VANETs [21]. The 

network's fundamental needs to attain maximum 

throughput at the time of data transmission by using 

ACO and EWOA algorithms. The parameters are 

highly reduced which reflects in the achievement of 

high-speed data transfer. 

7.7 Energy consumption calculation 

Fig. 10 shows that the HOIPS-VANETs achieve 

lower energy consumption when compared with the 

HGFA-VANETs [20] and MOFO-VANETs [21].  
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Figure. 10 Energy consumption calculation 

 

 
Figure. 11 Network lifetime calculation 

 

The HOIPS-VANETs ingeniously focus on 

clustering-based effective hybrid optimization for 

VANETs. The high energy consumption is extremely 

minimized even in a densely populated urban 

environment. 

5.8 Network lifetime calculation 

Fig. 11 shows that the HOIPS-VANETs achieve 

better network lifetime when compared with HGFA-

VANETs [20] and MOFO-VANETs [21]. The 

consumption of energy for each transmission is 

moderate due to absence of a proper communication 

model used in it. The HOIPS-VANETs is focus on 

effective initial path selection and clustering based 

optimal solution finding. 

6. Results and discussion 

This section discusses the measurements of the 

considered parameters. Table 3 shows the Energy 

efficiency for the parameter’s energy efficiency, 

packet delivery ratio and routing overhead.  

The energy efficiency completed using the 

Energy efficiency of the HOIPS-VANETS method is 

14% better than MOFO-VANETS, and 18% better 

than HGFA-VANETS. The packet delivery ratio of 

the HOIPS-VANETS method is 88.21%, compared 

with HGFA-VANETS is 75.29% and MOFO-

VANETS 79.26%. Hence, the packet delivery ratio  

 

Table 3. The calculation for the energy efficiency, packet 

delivery ratio and routing overhead parameters 
Vehicle 

Density 

HGFA-

VANETs 

MOFO-

VANETs 

HOIPS-

VANETs 

Energy Efficiency 

150 4.25 7.41 15.23 

300 15.46 26.23 45.46 

450 25.48 39.85 65.28 

600 33.74 46.17 74.17 

750 41.46 57.25 76.28 

900 46.28 61.16 80.17 

1050 53.17 69.27 84.13 

1200 59.76 72.16 86.25 

1350 65.13 74.22 88.22 

1500 71.11 75.46 89.39 

Packet Delivery Ratio 

150 71.23 74.29 84.26 

300 72.03 75.08 84.88 

450 73.11 76.55 85.06 

600 73.89 77.24 85.98 

750 74.02 77.68 86.32 

900 74.94 77.94 86.55 

1050 75.01 78.24 87.11 

1200 75.09 78.99 87.69 

1350 75.11 79.08 88.08 

1500 75.29 79.26 88.21 

Routing Overhead (PACs) 

150 125 102 46 

300 333 241 102 

450 468 365 135 

600 589 463 169 

750 666 555 226 

900 719 599 298 

1050 769 655 324 

1200 801 689 368 

1350 816 701 401 

1500 825 745 435 

 

of the HOIPS-VANETS method is 9% better than 

MOFO-VANETS, and 12% better than HGFA-

VANETS. The routing overhead proposed by the 

HOIPS-VANETS approach is 435 packets. Therefore, 

the routing overhead of the HOIPS-VANETS 

approach is 310 packets lower than MOFO-VANETS, 

390 packets lower than HGFA-VANETS. Table 4 

shows the value calculation for the parameter’s 

latency, packet loss, and throughput. 

In Table 4, the latency proposed via means of the 

HOIPS-VANETS approach is 102.96 ms, which is 

for the HGFA-VANETS is 201.49 ms and MOFO-

VANETS is 175.68 ms. The latency of the HOIPS-

VANETS approach is 70 ms less than MOFO-

VANETS, and 95 ms less than HGFA-VANETS. The 

packet loss proposed via the HOIPS-VANETS 

approach is 254 packets for the HGFA-VANETS is 

568 packets and MOFO-VANETS is 514 packets.  
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Table 4. The calculation for the latency, packet loss, and 

throughput parameters 
Vehicle 

Density 

HGFA-

VANETs 

MOFO-

VANETs 

HOIPS-

VANETs 

Energy Efficiency 

150 78.12 65.79 23.28 

300 102.09 88.26 41.08 

450 141.06 101.08 49.67 

600 166.87 121.44 58.64 

750 181.23 129.33 66.39 

900 194.37 136.55 69.35 

1050 196.34 149.87 79.64 

1200 198.46 156.38 91.06 

1350 199.48 163.44 98.22 

1500 201.49 175.68 102.96 

Packet Loss (PACs) 

150 96 81 39 

300 355 265 68 

450 469 336 126 

600 498 376 156 

750 526 401 186 

900 539 435 201 

1050 546 476 223 

1200 550 498 236 

1350 561 510 241 

1500 568 514 254 

Throughput (Kbps) 

150 96.17 124.78 235.19 

300 155.46 281.09 411.09 

450 187.26 332.69 603.46 

600 277.46 369.47 685.04 

750 321.46 436.98 723.46 

900 346.26 486.34 780.31 

1050 368.94 501.36 821.56 

1200 398.34 568.19 846.07 

1350 409.64 601.23 865.79 

1500 465.17 625.17 894.77 

 

 

Therefore, the packet loss of the HOIPS-VANETS 

approach is 250 packets less than MOFO-VANETS, 

and 310 packets less than HGFA-VANETS. The 

throughput calculated for the HOIPS-VANETS 

technique is 894.77 Kbps for the HGFA-VANETS is 

465.17 Kbps and MOFO-VANETS is 625.17 Kbps. 

Therefore, the throughput of the HOIPS-VANETS 

approach is 260 Kbps better than MOFO-VANETS, 

430 Kbps better than HGFA-VANETS. Table 5 

shows the value calculation for the eenergy 

consumption and network lifetime. 

In Table 5, the energy consumption proposed via 

the HOIPS-VANETS is 524%, which for the HGFA-

VANETS is 856 % and MOFO-VANETS is 725 %. 

Therefore, the energy consumption of the HOIPS-

VANETS is 200% less than MOFO-VANETS, and 

230% less than HGFA-VANETS. The network  

 

Table 5. The calculation for the energy consumption and 

network lifetime parameters 
Vehicle 

Density 

HGFA-

VANETs 

MOFO-

VANETs 

HOIPS-

VANETs 

Energy Consumption 

150 8.28 5.15 1.63 

300 16.11 10.26 2.17 

450 19.89 12.28 3.05 

600 21.16 14.16 4.29 

750 23.28 16.28 4.12 

900 25.27 18.17 8.09 

1050 26.11 21.36 8.46 

1200 27.92 23.22 10.17 

1350 28.94 24.04 10.16 

1500 29.28 25.26 11.23 

Network Lifetime (Joules) 

150 56.58 61.79 125.78 

300 111.03 139.64 268.31 

450 135.09 194.16 306.89 

600 168.49 209.38 349.16 

750 198.16 222.68 368.17 

900 206.38 233.67 389.16 

1050 212.06 255.39 401.28 

1200 224.13 268.16 411.08 

1350 229.37 274.19 421.04 

1500 256.25 296.28 428.19 

 

lifetime completed using the HOIPS-VANETS is 542 

Joules. The HGFA-VANETS is 154 Joules, MOFO-

VANETS is 256 Joules. The Network Lifetime of the 

HOIPS-VANETS is 190 Joules better than previous 

strategies. 

7. Conclusion 

This hybrid optimization concept identifies the 

shortest path from the source to the destination, 

reflecting the reduced energy consumption, delay, 

routing overhead, and packet loss in the network. The 

algorithms experienced in this research are ACO and 

EWOA, where the ACO algorithm identifies the 

initial path towards the destination from the source, 

and the highly effective best solution according to the 

vehicle mobility is found with the help of the EWOA 

algorithm. The implementation is performed in NS2 

and the results of the HOIPS-VANETs are compared 

with the HGFA-VANETs and MOFO-VANETs. The 

results are observed that the HOIPS-VANETs 

achieve better energy efficiency, better packet 

delivery ratio, lower routing overhead, 20 ms to 95 

ms less latency, less packet loss, better throughput, 

lower energy consumption and 100 joules to 200 

joules high network lifetime when compared with the 

earlier approaches. In the future direction to increase 

the density of the network clustering will get included 

in VANETs. 
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