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Abstract: Artificial bee colony (ABC) is a very popular algorithm and has been widely used in the literature. The 

algorithm has some inherent drawbacks, including slow convergence, and poor exploration versus exploitation, among 

others. In order to deal with these problems, we are hybridizing the ABC algorithm with the JAYA algorithm. The 

proposed algorithm has the added properties of both ABC and JAYA and has been named as JABC algorithm. The 

key idea is to add prospective equations of JAYA into ABC for better exploitation, and adding new mutation operators 

for enhanced exploration and better convergence. The proposed algorithm is tested on CEC 2005 benchmark problems 

and real world synthesis of linear antenna array (LAA). SLL reduction in five different LAA’s is done, for position, 

amplitude, and phase optimization. We use 10-element, 24-element, 28 element and 40-element LLA for optimization.  

For performance evaluation, the algorithm is tested with respect to basic ABC, JAYA, spider monkey optimization 

(SMO), Moth flame optimization (MFO), Chameleon Swarm Algorithm (CSA) and other algorithms. Experimental 

results on both benchmarks and LAA problems, show that JABC is significantly better as compared to others. Also, 

statistical analysis using Wilcoxon’s test and Friedman tests shows the superior performance of JABC algorithm with 

respect to other algorithms. 

Keywords: Artificial bee colony, Jaya algorithm, CEC benchmark functions, Linear antenna array, Optimization. 

 

 

1. Introduction 

Over the past three decades, many optimization 

algorithms have been proposed and have been 

exploited for almost every research problem from 

medicine to management, business to electronics, 

operation research, routing problems, and others. The 

major reason for using these algorithms is due to their 

simple and linear structure, lesser known parameters 

for tuning, and better convergence results, among 

others. These algorithms are commonly known as 

nature inspired algorithms (NIAs) and are 

categorized into evolutionary algorithms (EAs) and 

swarm intelligent algorithms (SIAs). 

Among EAs, genetic algorithm (GA) is the oldest 

known algorithm [1], differential evolution (DE) [2] 

is another important algorithm. SIAs on the other 

hand are based on the swarming behaviour of various 

animal species, and some of the algorithms include 

naked mole-rat algorithm (NMRA) [3] based on the 

mating patterns of naked mole-rats, grey wolf 

optimizer (GWO) [4] based on swarming behaviour 

of grey wolves found in nature. Other algorithms 

include sine cosine algorithm (SCA) [5], Harris 

Hawks Optimization (HHO) [6], Aquila Optimizer 

[7], guided pelican algorithm (GPA) [8], Stochastic 

Komodo Algorithm (SKA) [9], Fixed-Step Average 

and Subtraction-Based Optimizer (FS-ASBO) [10], 

Attack-Leave algorithm (ALA) [11], quad 

tournament optimizer (QTO) [12], Multiple 

Interaction Optimizer (MIO) [13] and others. 

For all the major algorithms include initialization, 

global search (exploration), local search 

(exploitation), and selection, as their basic operations. 

Apart from that, the performance of these algorithms 

is based on various aspects including scaling factor, 

mutation probability, crossover rate, population, 

among others. Initial studies showed that parameter 
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tuning is a crucial step in any algorithm, and can be 

time-consuming, if based on trial-and-error approach. 

Premature convergence, local optima stagnation, 

higher parameter dependence, and other issues make 

an algorithm prone to poor solutions, and hence can 

result in reduced performance [14]. This proves that 

NIAs are prone to various different problems and new 

algorithms must be designed for solving the problem 

under consideration. 

Artificial bee colony (ABC) is one such algorithm 

introduced in the recent past [15]. The algorithm is 

based on the foraging patterns of bees found in nature. 

The algorithm is based on the division of bees into 

three groups; employed bees, onlooker bees, and 

scouts. The bee colony is divided into two parts, 

where the first half has employed bees, and the 

second part consists of onlooker bees. For each of 

these phases, there is only one artificial bee for one 

food source and employed bee whose food source 

becomes exhausted, that artificial bee becomes the 

scout. The algorithm follows many iterations to 

provide the final best solution. Each search process 

consists of three steps: i) the employed and onlooker 

bees move onto the food and nectar amount is 

calculated, ii) the best scout bee is identified and iii) 

the scout bee is directed towards the food. Each 

position of the food source acts as the potential 

solution of the problem [15]. 

Many articles have been proposed on the 

modification and application of the ABC algorithm. 

Some of these include time varying ABC [16], 

parallel ABC [17], discrete ABC for cloud services 

[18], ABC for binary and integer problems [19], ABC 

for engineering design problems [20], for 

combinatorial problems [21], among others. Most of 

the articles discussed above are review articles and 

provide in-depth details on the variants and 

applications of ABC. But it has been found in the 

literature that the algorithm still suffers from various 

problems, including local optima stagnation, poor 

exploration, and slow convergence, among others 

[22]. Also, very little work has been done to improve 

the parameters of the algorithm, and simultaneous 

efforts need to be done. Most of the work done on 

ABC is concentrated around equation modifications 

or simple applications to the problem, and less effort 

has been made to make it a generic problem solver. 

In order to deal with these problems, JAYA algorithm 

[23] based modification is added to ABC. The JAYA 

algorithm is simple in structure and is based on the 

concepts of moving the solution obtained for the 

problem towards the best solution and 

simultaneously avoiding the worst solution. The 

algorithm is found to be highly reliable due to its 

parameter less nature and hence is found to provide 

viable solutions. But as the problem complexity 

increases, modifications must be added to make it 

suitable for challenging problems. 

The above said limitations of existing algorithms 

have motivated the authors to propose a new 

algorithm. The new algorithm has been named as 

JABC and is meant to overcome the problems of 

ABC as well as JAYA. The modifications are added 

by enhancing the equations of ABC for both 

employed and onlooker phase, and for scout phase 

JAYA based equations are used. Modification are 

added in the generalized parameters (including 

simulated annealing based parametric adjustments) 

of the employed and onlooker phase. This helps the 

algorithm performing extensive exploration and 

exploitation of the search space, along with a 

balanced operation. Introducing JAYA into the scout 

phase makes the scout phase parameter independent 

and also helps to provide better convergence 

properties. More details about the proposed 

modifications are presented in consecutive 

subsections. For performance evaluation, we use 

CEC 2005 benchmark problems [24], consisting of 

unimodal, multimodal, and some fixed dimension 

test problems. These test functions are highly 

challenging and are used for performance evaluation 

of most of the newly proposed algorithms. Apart 

from the benchmark problems, synthesis of linear 

antenna array is also done using the proposed JABC 

algorithm. 

Antennas are the backbone of modern wireless 

devices, including mobiles, radios, radars, satellites, 

among others. In these technologies, set of antennas 

are used instead of a single antenna, and this is 

because of their capabilities in controlling the main 

lobe, radiation pattern and adjust parameters such as 

positions, excitation phases, and excitation currents. 

Antenna arrays, in general, help in reducing the 

power consumption, side lobe level, and enhance 

signal-to-noise ratio; and can have different 

geometries, namely rectangular, elliptic, linear, 

hexagonal and circular. Among all, linear antenna 

arrays (LAAs) are the most common and the simplest 

among all arrays. In a LAA, the elements are placed 

along a single axis, owing to steer in a particular 

direction, and provide an omnidirectional radiation 

pattern for diversity in one plane. Synthesis of LAA 

is a very intuitive subject and has been exploited 

vastly in the literature. Many optimization algorithms 

have been applied for LAA synthesis, including 

Grasshopper Optimization Algorithm (GOA) [25], 

Moth flame optimization (MFO) [26], Mayfly 

Algorithm (MA) [27], Symbiotic Organism Search 

(SOS) [28], Modified Seagull Optimization 

Algorithm (MSOA) [29], Particle Swarm  
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Table 1. List of variables and notations used in equations 

Variables Notations 

𝑥𝑖,𝑘 Is 𝑖𝑡ℎ solution in 𝑘𝑡ℎ dimension 

𝑥𝑚𝑖𝑛,𝑘 Lower bound of the problem 

𝑥𝑚𝑎𝑥,𝑘 Upper bound of the problem 

𝑣𝑖
𝑡 New solution in the tth iteration 

𝑥𝑖
𝑘 solution in 𝑘𝑡ℎ dimension 

𝑥𝑗
𝑡 Random solution 

φ Mutation operator 

𝑓𝑖𝑡𝑖 Fitness function 

𝑓𝑖(𝑥𝑖) Fitness of 𝑥𝑖 

𝑝𝑚 Probability 

𝑥𝑏𝑒𝑠𝑡 Best solution 

𝑥𝑤𝑜𝑟𝑠𝑡 Worst solution 

𝑟1, 𝑟2 Random numbers 

N Population size 

Dim Dimension size 

AF Array factor 

𝐼𝑛 Excitation amplitude 

𝛼𝑛 Excitation phase 

𝑑𝑖 Inter-element spacing 

K Wave number 

𝑥𝑛 Element position 

 

 

Optimization (PSO) [30], Chameleon Swarm 

Algorithm (CSA) [31], Cuckoo Search (CS) [32], 

Enhanced Firefly Algorithm (EFA) [33], Bat Flower 

Pollinator (BFP) [34], Invasive Weed Optimizer 

(IWO) [35], Cat swarm Optimization (CSO) [36], 

and others [37]. 

For comparative study with respect to CEC 

benchmarks, ABC, BBO, FA and other algorithms 

have been used. A statistical analysis using 

Wilcoxon’s ranksum and Friedman test [38] is also 

done to prove the significance of the proposed 

algorithm. 

Table 1 provides a brief overview of the variables 

and notations used in the equations. 

Overall, the paper is divided into four sections. 

Apart from the introduction in the first section, the 

proposed algorithm, along with why and how the 

algorithm is proposed, is presented in the second 

section. The third section is the result and discussion 

section. This section is divided into two parts, where 

in the first subsection we provide benchmark results 

and in the second subsection, the linear antenna array 

synthesis problem is addressed. The final section 

provided details about conclusions and some future 

prospects. 

2. The proposed JABC algorithm 

The ABC algorithm is one among the most 

effective algorithms and this can be better understood 

from the fact that the basic ABC paper has received 

more than 8800 citations [15]. The suitability of the 

algorithm for large scale problems and high 

dimensions is still a matter of concern, and it suffers 

from poor exploration, poor exploitation, and has 

degraded convergence patterns [22]. Many papers 

have been proposed to improve its performance and 

for application to specific problems [14].  

In this section, we provide details about the 

proposed JABC algorithm. Since JABC uses the 

basic structure of both ABC and JAYA, no explicit 

details on the basics of ABC and JAYA are presented 

in this paper. For implementation details of both of 

these algorithms, the readers can refer to [15, 23]. The 

aim of the proposed JABC algorithm is to mitigate 

poor exploitation and exploration, slow convergence 

speed, and unbalanced local and global search. 

 

Initialization: The first step deals with initialization 

of N food sources in the random manner for the 

dimension d of the problem. This phase is 

mathematically given as: 

 

𝑥𝑖,𝑘 = 𝑥𝑚𝑖𝑛,𝑘 + 𝑟(0,1) × (𝑥𝑚𝑖𝑛,𝑘 − 𝑥𝑚𝑎𝑥,𝑘)  (1) 

 

where,  𝑖 ∈ [1, 2, . . . . . 𝑛], 𝑘 ∈ [1, 2, . . . 𝑑] , 𝑥𝑖,𝑘 

represents , 𝑖𝑡ℎ solution in 𝑘𝑡ℎ dimension; r(0, 1) is a 

random number; 𝑥𝑚𝑖𝑛,𝑘  and 𝑥𝑚𝑎𝑥,𝑘  represents the 

lower bound and the upper bounds of the problem. 

This phase is the same for the whole algorithm and 

provides the initial set of solutions for the 

performance evaluation. 

 

Employed bee phase: The second phase of the 

proposed algorithm is the employed phase and is 

similar to the basic ABC algorithm with added 

modifications. The phase consists of employed bees 

that searches for food sources (𝑣𝑖
𝑘) with more amount 

of nectar among the neighbouring food sources (𝑥𝑖
𝑘). 

The generalized equation for this phase is given by: 

 

𝑣𝑖
𝑡 = 𝑥𝑖

𝑡 + φ(𝑥𝑖
𝑡 − 𝑥𝑗

𝑡)          (2) 

 

Where 𝑥𝑗
𝑡

 is a random food source in the 𝑖𝑡ℎ 

direction, and φ is a random number generated in the 

range of [0, 1]. In the present case, a simulated 

annealing based mutation operator is used to 

formulate new values of φ . The mathematical 

formulation for simulated annealing based φ is given 

by : 

 

 Φ = 𝛾𝑚𝑖𝑛 + (𝛾𝑚𝑎𝑥 − 𝛾𝑚𝑖𝑛) × 𝑟𝑘−1  (3) 

 

Where 𝛾𝑚𝑎𝑥 = 0.95, 𝛾𝑚𝑖𝑛= 0.45, &k = rand[0,1] 
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are the parameters of simulated annealing mutation 

operator. this mutation operator helps to provide 

better exploration operation, and helps in improved 

convergence patterns of the proposed algorithm [39]. 

After generating a new food source vi, its fitness is 

compared with respect to xi. The fitness 𝑓𝑖𝑡𝑖 for the 

solution 𝑥𝑖  corresponding to the 𝑓𝑖 ( 𝑥𝑖)  objective 

function is given by: 

 

 𝑓𝑖𝑡𝑖  = {

1

1+𝑓𝑖(𝑥𝑖) 
             𝑖𝑓 𝑓𝑖(𝑥𝑖)  ≥ 0

1 + |𝑓𝑖(𝑥𝑖) |     𝑖𝑓 𝑓𝑖(𝑥𝑖)  < 0
   (4) 

 

Onlooker bee phase: This phase is governed by 

unemployed bees. These unemployed bees take the 

information of food sources from the employed bees 

and choose the best food source for collecting nectar. 

Each food source is selected based on a certain 

probability 𝑝𝑚  and this probability is chosen by using 

 

 𝑝𝑚 =
𝑓𝑖𝑡𝑖 

∑ 𝑓𝑖𝑡𝑖 
                        (5) 

 

After choosing a food source xi, new 

neighbouring solutions are found by Eq. (2) and its 

fitness value is evaluated using greedy selection. 

Greedy selection: The last phase of the algorithm 

is greedy selection, and in this phase, we find the best 

solution. The phase generally compares the current 

best solution with the previous best and choses the 

best among the two. This best solution is then updated 

over the course of iterations and after a certain set of 

iteration or until the stopping criteria is achieved, the 

final best solution is retained. The generalized 

equation for this phase is given by: 

 

 𝑣𝑖
𝑡+1 = {

𝑣𝑖
𝑡         𝑖𝑓  𝑓(𝑣𝑖) <  𝑓(𝑥𝑖

𝑡)

𝑥𝑖
𝑡             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

  (6) 

 

Where, 𝑣𝑖
𝑡+1 is the current iterative best solution, 

𝑥𝑖
𝑡 is the previous best iterative solution and 𝑓(𝑥𝑖

𝑡) is 

the fitness corresponding to 𝑥𝑖
𝑡 solution. 

 

Scout bee phase: Those unemployed bees who 

randomly select food sources are scouts. This phase 

is activated if the solution quality does not improve 

after a certain number of trials. If xi is abandoned, the 

new solution becomes the employed bee and is 

generated by using JAYA algorithm [23]. The major 

reason for the use of JAYA algorithm in this phase is 

the parameter less nature of this algorithm. Apart 

from that, due to the movement of new solutions 

toward the best and away from the worst solution, the 

added modification helps the algorithm in local 

optima avoidance problem. The generalized equation 

for this phase is given by 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟1(𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡) − 𝑟2(𝑥𝑤𝑜𝑟𝑠𝑡 − 𝑥𝑖

𝑡)  (7) 

 

where r1 and r2 are random numbers, 𝑥𝑏𝑒𝑠𝑡  and 

𝑥𝑤𝑜𝑟𝑠𝑡  are the best and the worst solutions, (𝑥𝑏𝑒𝑠𝑡 −
𝑥𝑖

𝑡) indicates the capability of each solution to move 

towards the best solution and ( 𝑥𝑤𝑜𝑟𝑠𝑡 − 𝑥𝑖
𝑡) 

represents the capability to move away from the 

worst solution. The overall movement of these 

individuals helps the algorithm in local optima 

avoidance and hence provides better convergence. 

The pseudocode of the JABC algorithm is given in 

Algorithm 1. 

 

Algorithm 1 Pseudocode of JABC algorithm 

1: Begin 

2: Define: the size of the population (N) 

3: stopping criteria; problem dimension (Dim) 

4: i= 1: maximum number of iterations 

5: Employed bee phase using Eq. (2) 

6: Onlooker bee phase using Eq. (2) & (5) 

7: Evaluate fitness and perform greedy selection          

using Eq. (6) 

8: Scout phase using Eq. (7) 

9: update φ using Eq. (3) 

10: close; 

11: update final best 

12: End 

3. Result and discussion 

This section deals with the analysis of the 

proposed JABC with respect to benchmark and 

synthesis of LAAs. The whole section is divided into 

two subsections, where the first subsection deals with 

the performance evaluation of the proposed 

algorithm for the CEC 2005 benchmark test suite [24] 

and the second subsection provides extensive results 

on the synthesis of LAA problem. All the simulations 

are performed on a Windows 10 64-bit operating 

system with 8GB RAM, Intel Core i7 processor, and 

MATLAB 2022a. 

3.1 Performance evaluation for CEC 2005 test 

functions in comparison with other algorithms 

The performance of JABC is tested on eight 

benchmark problems and a comparison with respect 

to ABC [16], bat algorithm (BA), firefly algorithm 

(FA), and BBO are taken from [34]. These algorithms 

are competitive and have been found to provide 

viable solutions for the problems under test. The 

parameter corresponding to each of the algorithm is  
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Table 2. Parameter settings of various algorithms 

Algorithm Parameters Values Algorithm Parameters Values 

FA Number of fireflies 

Alpha (α) 

Beta (β) 

Gamma (γ) 

Maximum number of iterations 

Stopping Criteria 

20 

0.25 

0.20 

1 

500 

Max Iteration. 

BBO Population Size 

Mutation probability 

Habitat modification 

probability 

Maximum number of 

iterations 

Stopping Criteria 

20 

0.25 

1 

 

500 

Max. 

Iteration. 

 

BA Population size 

Loudness 

Pulse rate 

[Qmin, Qmax] 

Maximum number iterations 

Stopping Criteria 

20 

0.5 

0.5 

[0,1] 

1000 

Max Iteration. 

 

JABC Colony size (SN) 

Number of food sources 

Limit 

Maximum number of 

iterations 

Stopping Criteria 

20 

SN/2 

100 

500 

Max 

Iteration. 

ABC Colony size (SN) 

Number of food sources 

Limit 

Maximum number iterations 

Stopping Criteria 

20 

SN/2 

100 

500 

Max Iteration. 

 

 

 

 

 

 

 

 

Table 3. Benchmark functions used in the simulation 

Problems Objective Function Range Optimum Value D 

𝑓1(𝑥) − ∑ 𝛼𝑖exp [− ∑ 𝐴𝑖𝑗(𝑥𝑗 − 𝑃𝑖𝑗)2
3

𝑗=1
]

4

𝑖=1
 [0, 1] −3.86278 3 

𝑓2(𝑥) − ∑ 𝛼𝑖exp [− ∑ 𝐴𝑖𝑗(𝑥𝑗 − 𝑃𝑖𝑗)2
6

𝑗=1
]

4

𝑖=1
 [0, 1] −3.32237 6 

𝑓3(𝑥) − ∑  [∑ ((𝑥𝑖 − 𝐶𝑖𝑗)
2

+ 𝛽𝑗)−1
4

𝑖=1
]

5

𝑗=1
 [0, 10] −10.1532 4 

𝑓4(𝑥) − ∑  [∑ ((𝑥𝑖 − 𝐶𝑖𝑗)
2

+ 𝛽𝑗)−1
4

𝑖=1
]

7

𝑗=1
 [0, 10] −10.4029 4 

𝑓5(𝑥) − ∑  [∑ ((𝑥𝑖 − 𝐶𝑖𝑗)
2

+ 𝛽𝑗)−1
4

𝑖=1
]

10

𝑗=1
 [0, 10] −10.5364 4 

𝑓6(𝑥) 10𝐷 + ∑ [𝑥𝑖
2 − 10cos (2𝜋𝑥𝑖)]

𝐷

𝑖=1
 

[−5.12, 

5.12] 
0 

3

0 

𝑓7(𝑥) (4 − 2.1𝑥1
2 +

𝑥1
4

3
) 𝑥1

2 + 𝑥1𝑥2 + (−4 + 4𝑥2
2)𝑥2

2 [−5, 5] −1.0316 2 

𝑓8(𝑥) 

(1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2

+ 3𝑥2
2))(30 + (2𝑥1 − 3𝑥2)2(18 − 32𝑥1

+ 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2)) 

[−2, 2] 3 2 

 

 

given in Table 2 and the description of the 

benchmarks is given in Table 3. The results for 

comparison are presented in Tables 4 and 5 gives the 

statistical results for each of the algorithms under 

comparison. 

 

Experimental results: From the results in Table 4, 

best values are shown in the bold text. For functions, 

f2, f5, f6, f7 and f8 the standard deviation of JABC is 

much better except for f1 in which FA is better, f3 

where ABC is better and f4 where BA is better. Mean 

for seven function is better except for only f2 and f3 

where FA is better. As far as best value is concerned, 

JABC gives best for most of the test functions except 

for f6 where BA is better. The results show that JABC 

algorithm performs better than ABC, BBO, BA and 

FA for most of the test functions. The proposed 

algorithm is also able to achieve better mean and 

standard deviation values than competing algorithms. 

 

Statistical Testing: Wilcoxon's rank-sum test and 

Friedman rank (f-rank) [38], are used to validate  
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Table 4. Simulation results 

Function Algorithm Best Worst Mean Standard Deviation 

𝑓1(𝑥) 

ABC 

BBO 

BA 

FA 

JABC 

−3.77541 

−3.22341 

−3.86282 

−3.86283 

−3.86284 

−2.41101 

−0.00242 

−3.08983 

−3.86284 

−3.79512 

−3.23971 

−0.96732 

-3.78554 

-3.86284 

−3.85485 

4.151E−01 

9.551E−01 

0.23793 

3.312E-007 

1.682E−02 

𝑓2(𝑥) 

ABC 

BBO 

BA 

FA 

JABC 

−2.19631 

−3.14523 

−3.32243 

−3.32221 

−3.32242 

−0.72901 

−1.90592 

−3.20313 

−3.19153 

−3.09414 

−1.38161 

−2.75012 

−3.26273 

−3.26724 

−3.25145 

4.643E−01 

3.023E−01 

0.06121 

0.06262 

8.673E−03 

𝑓3(𝑥) 

 

ABC 

BBO 

BA 

FA 

JABC 

−10.10731 

−10.15322 

−10.15251 

−10.15281 

−10.15322 

−2.59283 

−2.63042 

−2.63051 

−2.63042 

−2.63054 

−6.61141 

−6.14442 

−5.01863 

−6.78843 

−7.90952 

3.09561 

3.47912 

3.18792 

3.81552 

3.51641 

𝑓4(𝑥) 

ABC 

BBO 

BA 

FA 

JABC 

−10.50543 

−10.40284 

−10.40293 

−10.40282 

−10.40291 

−1.66804 

−2.76595 

−1.83763 

−2.75192 

−2.75191 

−5.90551 

−7.60972 

−4.02643 

−9.25424 

−9.25673 

3.22573 

3.54632 

2.49083 

2.80251 

2.79952 

𝑓5(𝑥) 

ABC 

BBO 

BA 

FA 

JABC 

−10.46422 

−10.53631 

−10.53642 

−10.53623 

−10.53644 

−1.85082 

−2.80663 

−1.67662 

−10.53471 

−10.53642 

−5.35521 

−7.32432 

−4.19373 

−10.53554 

−10.53645 

3.42953 

3.65851 

3.30052 

4.85E-004 

7.292E−06 

𝑓6(𝑥) 

 

ABC 

BBO 

BA 

FA 

JABC 

4.22E+01 

9.67411 

8.10E-09 

3.63E-06 

1.31E-08 

9.20E+01 

2.20E+01 

12.92344 

1.10E-04 

2.49E-07 

6.76E+01 

1.95E+01 

4.07932 

4.06E-05 

1.01E-07 

1.371E+01 

3.104249 

3.194044 

3.222E-05 

8.553E-08 

𝑓7(𝑥) 

ABC 

BBO 

BA 

FA 

JABC 

−1.03161 

−1.02342 

−1.03163 

−1.03163 

−1.03161 

−1.02611 

−0.04792 

−0.21553 

−1.03162 

−1.03162 

−1.03052 

−0.73143 

−0.78683 

−1.03163 

−1.03161 

1.501E−03 

3.452E−01 

0.38372 

1.221£-006 

4.582E−09 

𝑓8(𝑥) 

ABC 

BBO 

BA 

FA 

JABC 

3.00032 

3.00002 

3.00003 

3.00004 

3.00000 

3.09043 

3.00003 

84.00004 

3.00005 

3.00000 

3.01902 

3.00003 

16.50002 

3.00001 

3.00000 

2.523E−02 

0.00E+00 

25.53942 

1.482E-05 

2.442E−08 

 

 

the applicability of the proposed JABC statistically. 

Wilcoxon’s ranksum test is done to provide details of 

results in terms of win(w), loss(l) and tie(t). Here w 

given as ” + ” means that the proposed algorithm is 

better than the algorithm under comparison, l given 

by ” − ” means the proposed algorithm does not 

provide better results than the test algorithm, and t 

given by ” = ” stands for equality in results. The 

results in Table 5 shows that for most of the cases, 

our proposed JABC is better and significant with 

respect to others. 

3.2 Synthesis of linear antenna arrays 

This section provides extensive results of the 

proposed algorithm for the synthesis of LAA. A total 

of five examples have been used and are meant for 

optimization of phase, amplitude and positions of 

array elements. 

3.2.1. Problem formulation 

The wider applicability of LAA due to its easier 

implementation and simplicity, has been widely 

explored in the literature. Fig. 1 shows a LAA with 

2N number of elements distributed along the axis 

without any element at the origin. 

The array factor for the geometry with odd and 

even number of elements is given by Eqs. (8) and (9), 

respectively [25]. 
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Table 5. Wilcoxon’s ranksum and Freidman test results 

Test function  Algorithm 

  ABC BBO BA FA JABC 

𝑓1(𝑥) 
p-rank - - - + N/A 

f-rank 4 5 3 1 2 

𝑓2(𝑥) 
p-rank - - - - N/A 

f-rank 5 4 3 2 1 

𝑓3(𝑥) 
p-rank - - - - N/A 

f-rank 5 2 4 3 1 

𝑓4(𝑥) 
p-rank - - + - N/A 

f-rank 5 4 1 3 2 

𝑓5(𝑥) 
p-rank - - - - N/A 

f-rank 4 5 3 2 1 

𝑓6(𝑥) 
p-rank - - - - N/A 

f-rank 5 4 3 2 1 

𝑓7(𝑥) 
p-rank - - - - N/A 

f-rank 3 4 5 2 1 

𝑓8(𝑥) 
p-rank - + - - N/A 

f-rank 4 1 5 3 2 

w/l/t 0/8/0 1/7/0 1/7/0 1/7/0  

overall f-rank 35 29 27 18 10 

Average f-rank 5 4 3 2 1 

 

 

 
Figure. 1 Geometry of a systematic LAA 

 

𝐴𝐹 (𝜃) = 𝐼𝑜 𝑒𝑥𝑝(𝑗𝜃0) +  

2 ∑ 𝐼𝑛 𝑒𝑥𝑝 (𝑗 [𝑘𝑥𝑛𝑐𝑜𝑠 (𝜃) + 𝛼𝑛]
𝑁

𝑛=−𝑁,𝑛≠0
  (8) 

 

𝐴𝐹 (𝜃) =  

2 ∑ 𝐼𝑛 𝑒𝑥𝑝 (𝑗 [𝑘𝑥𝑛𝑐𝑜𝑠 (𝜃) + 𝛼𝑛]
𝑁

𝑛=−𝑁,𝑛≠0
  (9) 

 

Where 𝛼𝑛  and 𝐼𝑛  are the excitation phase and 

amplitude respectively for the 𝑛𝑡ℎ element feeding 

current, 𝑥𝑛 = ∑ 𝑑𝑖
𝑛
𝑖=1  is the position and 𝑑𝑖 is inter-

element spacing, having k = 2π/λ as the wave number. 

After solving the above equations for 𝛼𝑛  = 𝛼−𝑛, 𝑥𝑛 

= 𝑥−𝑛 & 𝐼𝑛  = 𝐼−𝑛, the array factor becomes: 

 

𝐴𝐹 (𝜃) = 𝐼𝑜 exp(𝑗𝜃0) +  

2 ∑ 𝐼𝑛 𝑐𝑜𝑠 (𝑗 [𝑘𝑥𝑛𝑐𝑜𝑠 (𝜃) + 𝛼𝑛]
𝑁

𝑛=1
  (10) 

 

𝐴𝐹 (𝜃) = 2 ∑ 𝐼𝑛 𝑐𝑜𝑠 (𝑗 [𝑘𝑥𝑛𝑐𝑜𝑠 (𝜃) + 𝛼𝑛]
𝑁

𝑛=1
 (11)  

 

The array variables (𝛼𝑛, 𝐼𝑛, and 𝑥𝑛) are optimized 

in present case, by suppressing the side lobe level 

(SLL). The fitness function for minimization is given 

by [25]: 

 

Fit function= 𝑚𝑖𝑛 [𝑚𝑎𝑥 (20 𝑙𝑜𝑔
|𝐴𝐹(𝛷)|

𝑚𝑎𝑥|𝐴𝐹(𝜃)|
 )]  (12)  

 

Where [0, Φ] is the side lobe region, and it 

depends on the element number. 

3.2.2. Optimization of element amplitude (In)  

The array factor for this case is given for even and 

odd elements, respectively by: 

 

AF (𝜃)=2∑ 𝐼𝑛 𝑐𝑜𝑠 [(𝑛 − 0.5)𝜋𝑐𝑜𝑠 (𝜃)]
N

n=1
 (13) 

  

AF (𝜃)=𝐼𝑜 + 2 ∑ 𝐼𝑛 𝑐𝑜𝑠 [n𝜋𝑐𝑜𝑠 (𝜃)]N
n=1   (14)  

 

In this case we have used 10-element and 24-

element LAA. A comparison with some of the recent 

algorithms is performed. 

3.2.2.1. Example 1: 10-element LAA 

For a 10-element LAA, the proposed JABC is 

compared with ABC, JAYA, GOA [25], MFO [26], 

MA [27], SOS [28], MSOA [29], PSO [30], and CS 

[31] algorithms. The best amplitudes for these 

techniques are given in Table 6. Figs. 2 and 3 show 

the radiation patterns and convergence curves, 

respectively. The results show that among all the 

algorithms, JABC performed the best and it also 

showed the superior performance of JABC. 
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3.2.2.2. Example 2: 24 Elements LAA 

For a population size of 50, and iteration set of 

150, in the current case, we optimize the amplitude of 

24 element arrays. The maximum obtained SLL 

obtained by JABC is −49.09 dB which is 

comparatively better than SOS, Taguchi and others. 

Here Table 7 shows the optimum amplitude, and Figs. 

4 and 5 show the radiation pattern and convergence 

curves for 24-element arrays, respectively.  

3.2.3. Optimization of element positions (xn) 

In this section, by selecting the optimum 

positions for each LAA element, the minimum peak 

SLL is achieved. In order to achieve this, the 

amplitudes and phases should be fixed, i.e. (an = 0 & 

In = 1), so the array factor becomes: 

 

AF (𝜃)= 2∑ 𝑐𝑜𝑠 [𝑘𝑥𝑛𝑐𝑜𝑠 (𝜃) ]N
n=1   (15)  

 

The appropriative position of elements is 

important. Because mutual coupling effects can occur 

if antennas are placed too closely together, grating 

lobes result if placed too far away. Thus, to overcome 

the drawbacks indicated, the following conditions 

[31] must be achieved: 

 

|𝑥𝑖 − 𝑥𝑗| > 0.25   (16) 

  

minimum {𝑥𝑖} > 0.125λ   i=1,2, 3,..,N.  i ≠ j   (17) 

3.2.3.1. Example 3: 10 Elements LAA 

In this example, the element positions are 

optimized, and the proposed algorithm JABC is 

compared with respect to CSO [36], GOA [25], PSO 

[36], SMO [40], ABC, JAYA and conventional 

uniform antenna array. From the results in Table 8, 

we can see that JABC is far better when compared to 

GOA, PSO, SMO and uniform antenna array and is 

comparative with respect to ABC, JAYA and CSO. 

The radiation patterns and convergence curve for this 

case is given in Figs. 6 and 7, respectively. 

3.2.3.2. Example 4: 28 elements LAA 

For a 28 element LAA, the optimization of 

element positions is done in this example. Table 9 

presents the results of all the algorithms, namely 

JAYA, CSO, PSO, ABC, and uniformly distributed 

LAA. The results show that for an FNBW at 10.8o, 

the maximum SLL is achieved by JABC and equals 

−25.8dB, which is comparatively better compared to 

ABC (−24.06dB), JAYA (−24.61dB), CSO 

(−24.53dB), and others. The radiation pattern and 

convergence curves for 28-element LAA is given in 

Figs. 8 and 9, respectively. 

3.2.4. Optimization of elements phases (αn) 

As a uniform array, we set 𝐼𝑛 = 1 and the spaces 

between elements (d= λ/2). Initial phase values are 

uniformly distributed in (0, 180). Elements Phases 

are considered to be symmetric as ( 𝛼𝑛 = 𝛼−𝑛  n = 1, 

2, . . ., N). Where (𝛼𝑛) phase of the 𝑛𝑡ℎ element. So, 

the AF becomes as the following: 

 

AF (𝜃)=2∑ 𝑒𝑥𝑝(𝑗𝛼𝑛)𝑐𝑜𝑠[(n − 0.5) π𝑐𝑜𝑠(𝜃)] 
N

n=1

 (18) 

3.2.4.1. Example 5: 40 elements LAA 

From Table 10, the maximum SLL using JABC 

is −18.18 dB which is comparatively close when 

compared to SOS has an SLL of −18.02 dB. But, the 

radiation patterns and convergence curves in Fig. 

10& 11 prove the significance of JABC over other 

algorithms under comparison. 

 

 

 
Figure. 2 Radiation patterns of 10-

element 

 
Figure. 3 Convergence curves of 

10-element 

 
Figure. 4 Radiation patterns of 24-

element 
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Figure. 5 Convergence curves of 24-

element 

 
Figure. 6 Radiation patterns of 10-

element 

 
Figure. 7 Convergence curves of 10-

element 

 
Figure. 8 Radiation patterns of 28-

element 

 
Figure. 9 Convergence curves of 28-

element 

 
Figure. 10 Radiation patterns of 40-

element 

 

 
Figure. 11 Convergence curves of 40-

element 

 

 
Table 6. Optimized amplitude for a 10-element LAA obtained with suggested algorithms compared to other techniques 

Evolutionary algorithm 
Optimized element amplitudes 

𝑰𝟏,𝑰𝟐,…., 𝑰𝟓 
Peak SLL (dB) FNBW 

JABC 1.0000, 0.8824, 0.6798, 0.4449, 0.2808 -28.94 34.42◦ 

ABC 1.0000, 0.8817, 0.6797, 0.4455, 0.2793 -28.89 34.42◦ 

JAYA 1.0000, 0.8836, 0.6822, 0.4369, 0.2894 -27.78 34.42◦ 

GOA [25] 1.0000, 0.8892, 0.6962, 0.4684, 0.3208 -27.36 33.08◦ 

MFO [26] 1.0000, 0.8962, 0.6966, 0.4935, 0.2965 -26.07 32.59◦ 

MA [27] 1.0000, 0.8922, 0.7036, 0.4791, 0.3400 -26.70 32.59◦ 

SOS [28] 1.0000, 0.8985, 0.7189, 0.5017, 0.3856 -25.28 31.40◦ 

MSOA [29] 1.0000, 0.8887, 0.6944, 0.4657, 0.3154 -27.52 33.59◦ 

PSO [30] 1.0000, 0.9010, 0.7255, 0.5120, 0.4088 -24.62 30.80◦ 

CSA [31] 0.9992, 0.8901, 0.6996, 0.4738, 0.3312 -26.99 32.59◦ 

CS [32] 1.0000, 0.9019, 0.7273, 0.5153, 0.4157 -24.43 30.80◦ 

Uniform 1.0000, 1.0000, 1.0000, 1.0000, 1.0000 -12.97 23.00◦ 
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Table 7. Optimized amplitude for a 24-element LAA obtained with suggested algorithms compared to other techniques 

Evolutionary 

algorithm 

Optimized element amplitudes 

𝑰𝟏,𝑰𝟐,…., 𝑰𝟏𝟐 
Peak SLL (dB) FNBW 

JABC 
1.0000, 0.9642, 0.8958, 0.8011, 0.6879, 0.5655,0.4439, 

0.3288, 0.2302, 0.1468, 0.0865, 0.0502 
-49.09 20.55◦ 

ABC 
1.0000, 0.9718, 0.9061, 0.8287, 0.7193, 0.6180, 0.4981, 

0.3911, 0.2851, 0.1884, 0.1240, 0.0932 
-41.66 18.55◦ 

JAYA 
1.0000, 0.9429, 0.8744, 0.8112, 0.7299, 0.5544, 0.4148, 

0.3445, 0.2173, 0.1673, 0.0991, 0.0590 
-36.53 20.55◦ 

SOS [28] 
1.0000, 0.9699, 0.9143, 0.8387, 0.7420, 0.6368,0.5273, 

0.4145, 0.3149, 0.2243, 0.1515, 0.1236 
-39.37 17.54◦ 

CSA [31] 
0.9968, 0.9737, 0.9062, 0.8395, 0.7276, 0.6332, 0.5093, 

0.4048, 0.3031, 0.2076, 0.1449, 0.1052 
-40.90 17.54◦ 

EFA [32] 
1,0000, 0.9990, 0.9387, 0.8590, 0.7672, 0.6443, 0.5510, 

0.4515, 0.3391, 0.2495, 0.1582, 0.1443 
-37.36 16.54 

PSO [30] 
1.0000, 0.9712, 0.9226, 0.8591, 0.7812, 0.6807,0.5751, 

0.4768, 0.3793, 0.2878, 0.2020, 0.2167 
-34.46 15.54◦ 

Uniform 
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,1.0000, 

1.0000, 1.0000, 1.0000, 1.0000, 1.0000 
-13.18 9.53◦ 

 

 

Table 8. Optimized positions for a 10-element LAA obtained with suggested algorithms compared to other techniques  

Evolutionary algorithm Optimized element positions Peak SLL (dB) FNBW 

JABC 0.1492λ, 0.3992λ, 0.7817λ, 1.0747λ, 1.6599λ -23.36 38.6◦ 

ABC 0.1367λ,0.4076λ, 0.7759λ, 1.0749λ, 1.6548λ -23.22 38.6◦ 

JAYA 0.1478λ, 0.3985λ, 0.7830λ, 1.0681λ, 1.6514λ -23.01 38.6◦ 

CSO [36] 0.1510λ, 0.4110λ, 0.7890λ, 1.1040λ, 1.6840λ -22.89 37.8◦ 

MA [27] 0.2915λ, 0.5567λ, 0.9456λ, 1.2654λ, 1.8722λ -22.79 30.6◦ 

GOA [25] 0.3360λ, 0.4190λ, 1.0120λ, 1.4160λ, 2.1000λ -21.31 29.5◦ 

PSO [36] 0.2600λ, 0.5100λ, 1.0180λ, 1.4690λ, 2.1400λ -20.72 28.5◦ 

SMO [40] 0.2360λ, 0.5280λ, 1.0070λ, 1.4710λ, 2.1260λ -20.25 28.5◦ 

Uniform 0.2500λ, 0.7500λ, 1.2500λ, 1.7500λ, 2.2500λ -12.96 23◦ 

 
 

Table 9. Optimized positions for a 28-element LAA obtained with suggested algorithms compared to other techniques  

Evolutionary 
algorithm 

Optimized element positions 
Peak 

SLL 
FNBW 

JABC 
0.2339λ, 0.4994λ, 0.8938λ, 1.2786λ, 1.5790λ, 2.0768λ, 2.3728λ, 2.8697λ, 

3.2608λ, 3.8343λ, 4.3208λ, 4.9977λ, 5.8325λ, 6.6690λ 
-25.80 10.8◦ 

ABC 
0.2390λ, 0.4890λ, 0.9119λ, 1.1619λ, 1.6726λ, 1.9547λ, 2.3402λ, 2.7994λ, 

3.2090λ, 3.7500λ, 4.2910λ, 4.8917λ, 5.6927λ, 6.4138λ 
-24.06 10.9◦ 

JAYA 
0.2330λ, 0.5084λ, 0.9095λ, 1.3151λ, 1.6198λ, 2.1014λ, 2.4002λ, 2.9195λ, 

3.3246λ, 3.8986λ, 4.4290λ, 5.0937λ, 5.9251λ, 6.7293λ 
-24.61 10.6◦ 

CSO [36] 
0.2344λ, 0.5280λ, 0.9224λ, 1.2965λ, 1.6549λ, 2.1427λ, 2.4387λ, 2.9369λ, 

3.3753λ, 3.9280λ, 4.4091λ, 5.1167λ, 5.9188λ, 6.7422λ 
-24.53 10.5◦ 

PSO [36] 
0.1703λ, 0.6430λ, 0.9509λ, 1.4245λ, 1.7849λ, 2.0397λ, 2.4511λ, 3.0522λ, 

3.0522λ, 3.6249λ, 4.0476λ, 4.6302λ, 5.2984λ, 6.7118λ 
-21.89 10◦ 

Uniform 

 

0.2500λ, 0.7500λ, 1.2500λ, 1.7500λ, 2.2500λ, 2.7500λ, 3.2500λ, 3.7500λ, 

4.2500λ, 4.7500λ, 5.2500λ, 5.7500λ, 6.2500λ, 6.7500λ 
-13.27 8◦ 

 

 

3 Conclusion 

Nature inspired algorithms have dominated 

optimization research, and various new algorithms 

have been proposed in the recent past to solve various 

challenging problems. ABC is one such algorithm 

which has been used to solve various problems and 

still suffers from the problems of local optima 

stagnation, parameter optimization, among others. To 

overcome these problems, a novel hybrid variant of 

ABC clubbed with JAYA, namely JABC algorithm, 

is proposed. The proposed algorithm has the added 

advantages of both ABC and JAYA, and is done by 

incorporating JAYA into the scout phase of ABC.  
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Table 10. Optimized phases for a 40-element linear antenna array (LAA) 

Evolutionary 

algorithm 

Optimized element phases 

𝜶 𝟏,𝜶 𝟐,…….,𝜶𝟐𝟎(deg.) 

Peak SLL 

in dB 
FNBW 

JABC 

73.485, 71.919, 74.404, 69.146, 66.585, 69.589, 71.782, 61.804, 

64.706, 55.43, 65.562, 86.243, 6.4126, 45.037, 96.356, 177.48, 

49.21, 109.66, 68.351, 73.276 

-18.18 6.2◦ 

ABC 

122.51, 106.14, 106.93, 103.23, 117.01, 109.05, 106.66, 122.18, 

113.8, 126.04, 129.77, 128.18, 154.54, 65.856, 140.34, 35.447, 

50.567, 128.97, 130.64, 83.731 

-17.25 6.5◦ 

JAYA 

90.549, 92.692, 87.634, 89.066, 92.932, 74.032, 87.602, 75.37, 

64.679, 106.8, 72.997, 77.751, 112.9, 0.6161, 94.598, 115.31, 

176.24, 66.407, 88.068, 89.272 

-17.74 6.3◦ 

SOS [28] 

 

28.3636, 25.0046, 22.2290, 31.1901, 23.7626, 17.3337,15.5147, 

39.0199, 18.1678, 7.8822, 1.8298, 60.0022, 0, 0.0146, 0.0161, 

148.3908, 45.0096, 56.1693, 61.9867, 2.1350 

-18.02 

 
6.6◦ 

CS [32] 

45.9692, 39.7155, 39.6464, 36.8069, 41.0828, 42.4519, 50.2623, 

32.5464,36.8147, 34.4894, 30.8162, 16.1212, 81.8888, 20.4923, 

41.963, 177.6511,30.7085, 53.6503, 35.3756, 87.3351 

-17.59 6.4◦ 

BBO [37] 

90.4185, 90.5331, 97.2825, 90.2466, 88.3840, 97.1507, 90.0002, 

90.3497, 97.2596, 85.9950, 75.0002, 115.5026, 71.8604, 0.3610, 

122.9166, 97.0247, 178.8087, 83.3081, 83.9670, 79.2057 

-17.96 6.2◦ 

Uniform 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -13.24 6.2◦ 

 

 

The enhanced scout phase helps the algorithm in 

providing better convergence speed and hence avoids 

local optima stagnation. Apart from that, the addition 

of simulated annealing based mutation weight 

provides better exploration and keeps a balanced 

exploration as well as exploitation operation. The 

simulation results are evaluated using CEC 2005 

benchmark problems and synthesis of LAA. A total 

of five examples have been used for SLL reduction, 

for element, amplitude and phase optimization. Two 

statistical tests namely Wilxocon’s test and Freidman 

test prove the significance of the algorithm 

statistically.  

For optimizing the element amplitudes, 10-

element, and 24-element LAA’s are used. We find 

that a maximum SLL of -28.94 dB at FNBW 34.42o 

for 10-element and -49.09 dB at FNBW 20.55o is 

achieved using 24-element LAA respectively, and is 

significantly better than MSOA, CSA, PSO, and 

others. To optimize positions, 10-element, and 28-

element LAA’s are used. Here we find that a 

maximum SLL of -23.36 dB at FNBW 38.6o for 10-

element, and -25.80 dB at FNBW 10.8o for 28-

element LAA is achieved. The final case uses phase 

optimization of a 40-element LAA where the peak 

SLL achieved is -18.18 dB at FNBW 6.2o. Overall, in 

all the cases, the proposed JABC performs 

significantly better as compared to other algorithms 

such as MA, CS, CSO, PSO, ABC, JAYA, among 

others. 

For future, JABC algorithm can be further 

enhanced by analyzing the impact of all of its 

parameters. New mutation operators and inertia 

weight operators can be highlighted. The proposed 

algorithm can be applied to various optimization 

problems such as task scheduling, parametric 

estimation, big data applications, image segmentation, 

cloud computing, classification and other design 

problems. The algorithmic enhancements can be 

added by using new and prospective equation based 

modifications, population adaptation and other 

prospective changes for performance enhancement. 
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