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Abstract: Managing big data backups is challenging due to high volumes of redundant data. Data deduplication is 

widely used but incurs significant computational and time costs. This paper proposes a hybrid deduplication system 

that combines file-level and block-level methods to enhance deduplication while reducing costs. File-level 

deduplication eliminates duplicate files, while block-level deduplication is applied to non-duplicated files using a 

dynamic list of divisors to enhance deduplication. A multi-hash function generates three hash values for each file or 

chunk to improve chunking speed and reduce hash collisions. The proposed hybrid system outperforms other state-of-

the-art methods in terms of time, data deduplication ratio, and deduplication gain. Experimental results show 

reductions of 97.2%, 91.6%, and 82.1% in data size for Dataset 1, Dataset 2, and Dataset 3, respectively, and 

demonstrate that the proposed multi-hash function is faster and requires less storage than other hash functions. 
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1. Introduction 

Using backup storage is crucial for any data 

protection architecture, particularly in safeguarding 

users against data loss caused by accidental deletion. 

High backup performance is necessary when quickly 

backing up a significant data volume, such as big data. 

Due to the utilization of diverse data processing, 

storage, and recovery technologies in big data, there 

may be inherent complexities associated with these 

technologies [1, 2]. As the volume, variety, and speed 

of big data continue to grow, there is a pressing need 

for increased computer resources, storage space, and 

network bandwidth to accommodate it [1, 3]. The 

cost-effectiveness of extensive data storage 

management is a significant challenge [4]. Backup 

files of big data often contain redundant data due to 

incremental changes between backups [5, 6]; 

therefore, vast duplicate data across backups are 

frequently found [5]. Backup storage systems widely 

use data deduplication [7] to save storage space and 

achieve an impressive compression ratio and 

throughput performance. The deduplication process 

reduces the storage size, and unnecessary data, 

improving the efficiency of storage space utilization 

[8]. The backup deduplication system dramatically 

increased their storage efficiency [9]. Furthermore, 

this approach prevents the storage and transmission 

of duplicate data across networks [10]. Data 

deduplication can be performed at the file or block 

levels [5].  

File-level deduplication involves storing only one 

copy of identical files, which results in reduced 

resource utilization and simplified implementation 

[11]. However, it may not detect duplicates with 

different names or metadata and cannot identify 

changes made to a single byte in the file [12]. On the 

other hand, Block-level deduplication can be 

performed using fixed or variable-length blocks. In 

fixed-length block deduplication, data is divided into 

chunks of a constant size, whereas in variable-length 

block deduplication, data is divided into distinct 

chunks based on different factors [9, 12]. While 

block-level deduplication is more efficient than file-

level Deduplication, it requires more system 

resources [13, 14].  
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The content defined chunk (CDC) [15] technique 

is commonly used in data deduplication and can 

detect and remove duplicate data in various systems 

[5]. Implementing CDC improves the efficiency of 

the deduplication system, mainly when using the 

variable chunk size-based technique, which is 

common in backup storage systems [5]. Basic sliding 

window (BSW) and two threshold two divisors 

(TTTD) algorithms commonly used in CDC 

techniques rely on Rabin fingerprints of the content 

to identify the boundaries of chunks [16, 17]. 

Although these algorithms effectively detect 

duplicates, they can be time-consuming. This is 

because the Rabin fingerprints of the data stream are 

calculated and compared byte by byte against a 

condition value [18]. Furthermore, selecting 

appropriate values for the Threshold and divisor 

parameters is challenging and essential since they can 

significantly impact the deduplication ratio and 

execution time [19, 20]. 

Typically, data deduplication techniques consist 

of identifying and removing duplicate data 

components using a cryptographic hash function. In 

hash-based approaches, hashing algorithms, such as 

secure hash algorithm SHA1, SHA256 and message-

digest algorithm MD5, generate unique hashes for 

each data block [21]. These hash values are then used 

to identify and remove duplicate data blocks during 

the data deduplication. The same hash value is 

produced when the data is processed multiple times 

using the hashing algorithm. However, data 

deduplication can be computationally intensive, 

resulting in long runtimes and increased processor 

resource usage for the system [22]. This article aims 

to enhance the deduplication process by improving its 

efficiency and increasing the deduplication ratio 

through three key contributions: 

1. The article suggests a hybrid system 

integrating file-level and block-level methods to 

enhance deduplication. By leveraging the advantages 

of both file-level (lower resource utilization and 

simplified implementation) and chunk-level (higher 

efficiency) deduplication techniques  

2. The article proposes a novel method for 

generating a dynamic list of divisors based on the 

frequency of triple bytes. This improves 

deduplication precision by accurately identifying 

data chunk boundaries. 

3. The article presents a multi-hashing function 

that generates three hash values per chunk, lowering 

the chance of hash collisions during matching.   

Also, this article improves matching processes by 

introducing a new method to group chunks into 

multiple categories before comparing them against 

added chunks. 

2. Related work 

Data deduplication techniques are heavily used in 

data backup. Therefore, researchers have recently 

considered data deduplication one of the most crucial 

subjects. In this paper, the following articles are 

considered: 

H. Jasim and A. Fahad, 2018 [1] proposed a novel 

technique to improve the TTTD chunking algorithm 

called the content-based two threshold two divisor 

with multilevel hashing technique (CB-TTTD-

multilevel hashing technique). It involves a new 

multilevel hashing and matching technique and a new 

chunk condition to generate more small chunks. They 

also incorporated four hashing techniques to improve 

the deduplication ratio and address the collision 

problem. However, a drawback of their method is its 

reliance on primitive numbers to determine the 

breakpoint used in TTTD. In our proposed approach, 

we employ a dynamic method based on the file 

contents to determine the divisors for the breakpoint 

data.  

A. Saeed and L. George, 2020 [10], proposed a 

new method for data deduplication, the bytes 

frequency-based chunking (BFBC) algorithm, which 

outperforms commonly used CDC efficiency 

algorithms. The technique introduces a three-way 

hash function algorithm that is faster and more 

efficient than widely-used SHA1 and MD5. BFBC is 

ten times faster than BSW and around three times 

faster than TTTD, achieving a better deduplication 

ratio (DER) than other CDC algorithms. However, a 

notable drawback of the BFBC method is that the 

increased data size requires a corresponding increase 

in the size of the hashes used to represent the 

fingerprints. Consequently, this leads to an expansion 

of the hash index table size and imposes additional 

computational overhead. In our proposed approach, 

we address this issue by implementing file-level 

deduplication. By eliminating similar files at the 

beginning of the process, we significantly reduce the 

size requirements of the index table. This size 

reduction minimizes storage demands and alleviates 

the computational burden associated with managing 

a larger index table. 

S. Ahmed and L. George, 2021 [22], Proposed a 

data deduplication technique that eliminates 

redundancy in large-scale storage by identifying cut-

points in chunks using commonly repeated patterns 

(CRP) and a lightweight triple-level hashing function 

(LT-LH). The technique reduces hashing function 

processing and storage overhead costs. Furthermore, 

it is faster and more efficient than BSW and TTTD 

techniques. Regarding speed and storage savings, the 

LT-LH function outperforms SHA1 and MD5. Future 
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work in this study recommended dynamic allocation 

for the set of divisors, aiming to enhance the 

deduplication ratio further. In our article, A dynamic 

triple devisers method is developed to complement 

this study and improve overall deduplication 

performance. 

Z. Xu and W. Zhang, 2022 [16] introduce 

QuickCDC, a technology that enhances content-

defined chunking (CDC) for data deduplication. It 

employs three techniques to improve performance. 

Firstly, it jumps directly to the boundaries of 

duplicate chunks, skipping corresponding chunk 

lengths. Secondly, it skips the minimum chunk length 

for unique chunks. Lastly, it dynamically adjusts 

mask bit lengths to optimize the distribution of chunk 

lengths. Experimental results show that QuickCDC is 

11.4 times faster than RapidCDC, improves the 

deduplication ratio by up to 222.3%, and increases 

throughput by 111.4%. Overall, QuickCDC offers 

significant speed improvements the data 

deduplication. In contrast to the mentioned study, our 

proposed method surpasses it by achieving 

significant improvements in both the speed of the 

deduplication process and the deduplication ratio. 

Our approach outperforms the referenced method 

regarding gain and deduplication ratio, making it a 

more efficient and effective solution for data 

deduplication.    

H. Jehlol and L. George, 2022 [23] present a new 

method for accelerating and improving data 

deduplication. It classifies data based on Pearson 

correlation between histogram extensions, uses 

divisors from data repeating patterns, and introduces 

faster hash functions. The proposed method achieves 

a deduplication ratio ten times higher than the Basic 

Sliding Window method and approximately five 

times higher than the two thresholds two divisors 

method, demonstrating its effectiveness and potency. 

Our new article improves this study by utilizing a 

hybrid method to enhance the deduplication process 

speed. Additionally, we enhance the deduplication 

ratio by incorporating triple divisors into our 

approach.  

S. Babu, P. Ramya, and J. Gracewell,2022 [24] 

introduced a content deduplication with granularity 

tweak (CDGT) technique within the Hadoop 

architecture, specifically targeting large text datasets. 

CDGT utilizes the Reed-Solomon technique to 

enhance deduplication efficiency by effectively 

handling small changes within similar content. It 

achieves this by verifying intercontact changes and 

identifying and eliminating a more significant 

amount of duplicate content. An indexing approach 

improves performance by organizing data into 

clusters, facilitating faster access and retrieval 

operations. However, one drawback of this technique 

is its limited effectiveness in handling large text 

datasets. To address this limitation, our proposed 

method is designed to apply to different data types. 

To validate the performance and suitability of our 

approach, we conducted comprehensive experiments 

using multiple datasets, ensuring a thorough 

evaluation across various data types. 

Y. Deng, 2022 [25] The proposed technique 

improves deduplication-based backup systems by 

addressing the challenges of index lookup bottleneck 

and data fragmentation. It introduces HID (hot 

fingerprint entry distilling) to segregate useless and 

fragmented fingerprint entries, optimizing memory 

utilization and reducing disk accesses. EHID 

(Evolved HID) incorporates a Bloom filter to identify 

unique and fragmented chunks, avoiding disk 

accesses and reducing false positives. Experimental 

results show significant reductions in memory 

overhead, improved backup throughput, and reduced 

disk I/O traffic compared to the state-of-the-art 

method HAR. The main drawback of this method of 

dividing the index into three parts (hot, fragmented, 

and useless fingerprint entries) and using containers 

based on a threshold introduces complexity to the 

deduplication process. This additional layer of 

management and classification increases the 

implementation and maintenance effort needed for 

the deduplication system. Therefore, we improve the 

index lookup by retrieving chunks of the same size 

and divisors; after that, we compute the three hash for 

these chunks and compare them with the new chunks. 

3. Proposal system 

This paper introduces a hybrid data deduplication 

system combining two techniques. The first 

technique is file-level deduplication, which treats 

each file as a single entity and does not divide it into 

smaller units. The second technique is chunk-level 

deduplication, which divides data into various chunks 

of different sizes. The proposed system consists of 

three phases: file-level Deduplication, block or 

chunk-level Deduplication, and data indexing and 

storage. Fig. 1 illustrates the three main phases of the 

proposed system. 

3.1 Multi-hash function algorithm 

A new hash function is introduced in the proposed 

system to generate the fingerprint of the input file or 

chunk. This function computes a multi-hash function 

for each file or chunk, reducing the computation, 

storage space, and collision issues that conventional 

deduplication system hash functions face. The  
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Figure. 1 The layout of the proposed system 

 

proposed multi-hash algorithm employs a 

fundamental mathematical concept to reduce 

processing time and system resources.   

Algorithm 1 part (1) is designed to generate three 

random sequences of hash arrays for a given file. The 

algorithm takes a file as a stream of bytes as input and 

produces three output arrays: h1, h2, and h3, each 

containing 255 random values. The algorithm 

generates three random sequences of hash arrays by 

shuffling a sequence array using a random number 

generator. The shuffling process ensures the 

randomness of the generated sequences. These 

sequences can be used for various purposes, such as 

fingerprint operations. 

 

Algorithm 1: Part 1: Create three random hash values 

for each file 

Objective: 
Generate three random sequences of 

hash arrays. 

Input: File as a stream of byte 

Output: 
h1, h2, and h3: three sequence arrays, 

each containing 255 random values. 

Step 1: Define the following integer vector 

arrays: h1[255], h2[255], h3[255], 

seq[255] 

Step 2: Initialization: Fill the seq array with 

sequence values from 1 to 255. 

Step 3: Compute the length of the stream of 

bytes and assign it to L. 

Step 4: Loop from i = 254 to 0:  

- Generate a random value j 

between 0 and i (inclusive). 

- Swap the values of seq[i] and 

seq[j]. 

- Set seq[i] as L. 

- Set seq[j] as L. 

Move to the next iteration. 

Step 5: Loop from L = 0 to 254: 

- Assign the value of seq[L] to 

h1[L]. 

- Assign the value of seq[L] to 

h2[L]. 

- Assign the value of seq[L] to 

h3[L]. 

Move to the next iteration. 

Step 6: Return the three random sequence 

arrays: h1, h2, and h3. 

 

As demonstrated in the Algorithm 1 part 2, the 

hashing algorithm generates hash values for each file 

or chunk. It focuses on generating three hash 

functions for a given file. The algorithm's input is the 

file as a stream of bytes and three sequence arrays (h1, 

h2, and h3). It produces three output arrays: hash1, 

hash2, and hash3, representing the three hash 

functions. Three hash values are produced by 

iterating through a file's byte stream and performing 

multiplication and addition operations using 

sequence arrays. 

The proposed hashing method calculates three 

values for every file or chunk, with each hash 

occupying two bytes. Consequently, each file 

requires 6 bytes (48 bits) in total. Traditional hash 

algorithms such as SHA1, SHA256, and MD5, 

commonly used for data deduplication, demand extra 

system resources to generate hash values and store 

them on storage media. For example, SHA1 

necessitates 160 bits of data, while MD5 requires 128 

bits. Eq (1), Eq (2), and Eq (3) show how  
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Algorithm 1: part2: Generate Three Hash Functions 

for Each File 

 Objective: Calculate three hash values. 

Input: File as a stream of bytes, h1, h2, and 

h3 (three sequence arrays generated 

from Algorithm 1, Part 1). 

Output: 
hash1, hash2, and hash3 (three hash 

functions). 

Step1: Define the following integer vector 

arrays: hash1[], hash2[], hash3[] 

Step2: Initialization: Fill hash1, hash2, and 

hash3 arrays with 0 values. 

Step3: Assign the byte stream of the file to the 

variable s. 

Step4: Loop from j = 1 to the end of the file: 

- Calculate k = j mod 255. 

- Update hash1 as (hash1 + s[j] 

× h1[k]) modulo 65535. 

- Update hash2 as (hash2 + s[j] 

× h2[k]) modulo 65535. 

- Update hash3 as (hash3 + s[j] 

× h3[k]) modulo 65535. 

Move to the next iteration. 

Step5:  Return the three hash functions: hash1, 

hash2, and hash3. 

 

mathematically it generates three hash functions. 

 

𝐻𝑎𝑠ℎ1 =  

∑ ([𝑠[𝑗] × ℎ1[𝑗 𝑚𝑜𝑑 255]])
𝑛

𝑗=1
𝑚𝑜𝑑 65536   (1) 

 

𝐻𝑎𝑠ℎ2 =  

∑ ([𝑠[𝑗] × ℎ2[𝑗 𝑚𝑜𝑑 255]])
𝑛

𝑗=1
𝑚𝑜𝑑 65536 (2) 

 

𝐻𝑎𝑠ℎ3 =  

∑ ([𝑠[𝑗] × ℎ3[𝑗 𝑚𝑜𝑑 255]])
𝑛

𝑗=1
𝑚𝑜𝑑 65536  (3) 

 

In these equations: n represents the length of the file 

and the loop iterates from j = 1 to n. 

These equations calculate the updated values of 

hash1, hash2, and hash3 by summing the product of 

each byte s[j] with the corresponding element h1[j 

mod 255], h2[j mod 255], or h3[j mod 255] from the 

sequence arrays. The modulo operation is applied to 

ensure the result stays within the range of 0 to 65534. 

3.2 Files level deduplication phase 

The proposed hybrid system utilizes file-level 

Deduplication to remove duplicate files by 

considering each file as a single entity and entering it 

into the deduplication system as a stream of bytes.  

 

 
Figure. 2 The File Level deduplication 

 

Fig. 2 depicts the critical stages of the file-level 

Deduplication technique. Using file-level 

deduplication eliminates feeding duplicated files into 

the second phase of the deduplication system. It 

provides several benefits, including creating only one 

index per file, saving time and space, reducing the 

number of index values stored, and minimizing CPU 

usage and I/O operations.  

However, file-level deduplication may not detect 

changes made to a small portion of the file. The 

proposed system uses a hybrid approach to overcome 

the limitation of file-level deduplication. If changes 

occur in a file's bytes, the system resolves the issue in 

the second phase by breaking the file into chunks 

using variable-sized chunk-level deduplication.  

3.2.1. File identification and comparison 

A unique identifier (ID) is generated for each file 

to enable efficient file identification and comparison. 

This ID comprises the file's size, type (extension), 

and three hash functions. Files are classified based on 

size and type (extension) to expedite comparison, 

resulting in several groups of similar files. When a 

new file is introduced, it is only compared with files 

in the group that share the same size and type. This 

grouping method accelerates comparison operations 

and facilitates the detection of identical files. For 
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example, suppose the new file matches previous files 

with identical size, type (extension), and fingerprint 

(three hashes); in that case, it is eliminated and 

replaced by a logical reference pointing to the 

dataset's current file. In contrast, if the new file is 

unique, its bytes are stored on the disk. 

3.3 Chunking level deduplication phase 

During the chunking level phase, the non-

duplicate files obtained from the file level phase are 

segmented into several chunks. This paper describes 

a novel method to improve the TTTD algorithm by 

dividing files into several chunks using a dynamic list 

of divisors. The list of divisors is constructed 

depending on the content and size of the dataset, and 

it defines the file chunking breakpoints. 

3.3.1. Dynamic list of divisors  

A new method is proposed to generate a list of 

divisors that leverage statistical analysis of a dataset's 

content. The proposed system utilizes statistical 

analysis to determine each contiguous triple-byte 

frequency, which is then utilized as divisors to 

partition files. The divisors are automatically adapted 

according to the size and nature of the file to enhance 

the partitioning process. The resulting divisors are 

then employed as division points to break the data 

stream into smaller, more easily manageable parts. 

The new technique is practical and feasible for 

generating divisors to partition datasets into 

manageable segments. The proposed system follows 

a three-step process to find the divisors: 

 

Step 1: computing the frequency of each  adjacent 

triple byte, i.e., the number of times it appears 

in a dataset, resulting in a set of divisors based 

on the triple byte frequency.  

Step 2: The list is sorted in descending order based on 

the frequency of the triple bytes. 

Step 3: Selects a set number of triple bytes with the 

highest frequency as divisors for each group. 

The optimal number is determined through 

experimentation to achieve the best deduplication 

results. 

3.3.2. File chunking 

This article introduces a new chunking technique 

that enhances the efficiency of the TTTD algorithm. 

As shown in Fig. 3, The new technique determines 

the breakpoints based on the most frequent triple byte 

in the dataset. The technique incorporates a minimum 

chunk size (Tmin) to prevent the generation of small 

chunks and a maximum chunk size (Tmax) to avoid 

forming large chunks. The breakpoints are 

established based on the list of divisors with high 

frequency, and the scanning process begins at Tmin 

and continues until Tmax to detect the breakpoints. If 

no divisors are found within this range, Tmax is used 

as the breakpoint. The last breakpoint to the end of 

the file may form a (Tail) greater than 0 bytes but less 

than Tmax, and no is found. After determining the 

breakpoints based on the most frequent triple byte in 

the dataset, the files are divided into chunks of 

varying sizes. 

3.3.3. Chunks hashing 

Multi-hash function: The proposed system 

introduces a new hashing method that computes 

multi-hash values for each chunk, as described in the 

Algorithm (1) parts 1 and 2. where 48 bits are 

required to hash each chunk of data, providing an 

efficient and cost-effective solution. Hash functions 

are critical for efficiently detecting duplicate data, as 

comparing bytes to identify duplicates can be time-

consuming and require multiple input/output 

operations. Data fingerprinting is a preferred 

approach for identifying duplicates, and hash 

functions are crucial. If two data chunks are identical, 

the same data's hash functions are also identical.  

3.4 Indexing and comparison phase 

The third phase of the proposed system's is lookup 

and comparison. For each chunk, the metadata file 

stores the chunk size, divisors, and position (induct to 

position chunk in the container file). The non-

duplicated chunk's value is stored in a container file 

that includes the chunk value and position. As 

illustrated in Fig. 4, this paper introduces a new 

method involving grouping chunks into multiple 

categories, significantly reducing search spaces and 

accelerating the matching process. The proposed 

method involves a multilevel hierarchical search and 

matching mechanism to detect duplicate chunks 

when new chunks are added. The lookup and 

Matching procedure can be summarized as follows:  

 

• The new file is divided into chunks using the 

proposed algorithm that depends on the list of 

divisors of the file's contents.  

• An identifier ID is calculated for each chunk, 

consisting of (chunk size, divisors, hash1, hash2, 

and hash3). 

• A set of records with the exact (chunk size and 

divisors) is retrieved from the metadata. 
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Figure. 3 Chunking file using proposal triple list divisors 

 

 
Figure. 4 Lookup and Incremental Matching 
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• Three hashes are counted for each chunk 

retrieved from the backup storage, creating a 

Chunk ID. 

• If the chunk size, used divisors, and the first hash 

of the two chunks (new chunk and old chunks) 

are the same, then the second hash of the two 

chunks is compared, followed by the third.  

 

When there is a match between the two chunks, 

update the existing chunk's reference where a new 

reference is added to the metadata file, indicating the 

existing chunk and deleting the new duplicated chunk. 

If the new chunk is non-duplicated, it is added to the 

container file, and its reference is saved in the 

metadata file. 

3.5 Dataset and computer description 

The system was evaluated on an Intel (R) Core 

(TM) i5-10300H CPU with four cores, 16.0 GB RAM, 

running Windows 11 operating system, and 

programmed using C# Visual Studio 2022. seven 

datasets containing files of varying sizes, types, and 

properties were used to test the system's performance:  

 

1. Dataset 1: SQLite Sources, comprising 190,703 

files with a combined size of 6.50 gigabytes (GB). 

2. Dataset 2:  three-dimensional drawings plus the 

initials of the author Laurence D. Finston 

(3DLDF) files of (GNU's Not Unix) GNU source 

code versions comprising 5,795 files with a data 

size of 2.27 GB.  

3. Dataset 3: Linux source code, consisting of 

496,867 files with a total size of 6.58 GB.  

4. Dataset 4: The DUC2004 dataset is a specialized 

collection for evaluating document 

summarization techniques. It comprises 500 news 

articles, each accompanied by four human-written 

summaries. The dataset is organized into 50 

clusters of Text REtrieval Conference (TREC) 

documents.  

5. Dataset5: The TAR dataset consists of 95 

compressed files containing source code from 

open-source projects like MySQL, GCC, and 

Glibc. The total size of the dataset is 

approximately 56GB. 

6.  Dataset6: consists of multiple versions of the 

Linux source code, encompassing different 

releases and revisions of the operating system. 

The dataset's total size is 99GB, indicating the 

cumulative space required to store these various 

versions of the Linux source code. 

7. Dataset7: comprises three versions of the Linux 

file system, namely Linux3.9, Linux-4.14.157, 

and Linux-5.8.12. This dataset encompasses 

173,109 files and 11,705 folders, approximately 

2.32 GB. 

4. Experiments and results 

The proposed methods were evaluated based on 

four criteria:  

Deduplication Time: refers to the time required 

for the deduplication technique to provide an output 

response.  

Duplicate elimination ratio (DER): is a 

comprehensive deduplication metric computed by 

dividing the input data size by the output data size, as 

presented in Eq. (4). This ratio indicates the 

effectiveness of the deduplication system [10]. 

 

DER =
 Data Size Before Deduplication

Data Size After Deduplication
                (4) 

 

Throughput: It is the rate at which data is processed 

and deduplicated in a given period, and it is 

commonly expressed in units such as bits per second 

(bps), megabits per second (Mbps), or gigabits per 

second (Gbps). It is calculated as in Eq. (5)  [10]. 

 

Throughput =
Processed Data 

Time in Second
                        (5) 

 

Deduplication Gain: It is a metric that measures the 

reduction in storage space or processing resources 

achieved by removing duplicate data. It is calculated 

as in Eq. (6) [24]. 

 

Gain = 1 −
𝐷𝑎𝑡𝑎𝑠𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑑𝑒𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝐷𝑎𝑡𝑎𝑠𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑑𝑒𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
           (6) 

 

The proposed hybrid method achieved the best 

throughput results across all three datasets. Fig. 5 

illustrates the throughput results of non-hybrid 

deduplication and the proposed hybrid Deduplication 

system. Note that the proposed hybrid system's 

throughput is higher than the non-hybrid system.  

Table 1 compares the time required for non-

hybrid and hybrid Deduplication systems for three 

datasets. The hybrid deduplication consistently 

required less time than the non-hybrid deduplication, 

 

 
Table 1. Compares the time of the proposed hybrid 

deduplication and non-hybrid deduplication system 

Dataset 
Non-Hybrid Time 

(Sec) 

Hybrid (Sec) Time 

(Sec) 

Dataset1 2143 180 

Dataset2  232 156.6 

Dataset3  7446 952 
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Table 2. Time and DER of file-level and block-level and 

the hybrid between them 

Dataset 

File-level Block level Hybrid 

Time 

(Sec) 
DER 

Time 

(Sec) 
DER 

Time 

(Sec) 
DER 

Dataset1 45 7.7 135 29.0 180 36.7 

Dataset2 12 2.8 144 9.3 156.6 12.1 

Dataset3 180 2.9 772 2.7 952 5.61 

 

 
Figure. 5 A comparison of the throughput of the non-

hybrid and the hybrid deduplication 

 

 
Figure. 6 Data size before and after the hybrid 

deduplication method 

 

indicating its effectiveness in reducing the time 

required for data deduplication. 

Table 2 presents the data deduplication ratio and 

time required for the file-level and block-level 

deduplication methods and the hybrid between them. 

It provides data for three datasets. 

Fig. 6 displays the data size before and after the 

proposed hybrid deduplication system. The analysis 

indicates a substantial reduction in the amount of data, 

with Dataset 1 experiencing a reduction of 97.2%, 

from 6.50 GB to 0.18 GB. Dataset 2 had a reduction 

of 91.6%, while Dataset 3 had a reduction of 82.1%. 

These outcomes demonstrate the effectiveness of the 

proposed hybrid method in reducing the data size.  

Table 3 displays the results of experimentation 

that determined the optimal number of divisors  

 

Table 3. DER and time consumption based on the 

number of divisors (1-10) 

Divisors 

Dataset1 Dataset2 

DER 
Time 

(Sec) 
DER 

Time 

(Sec) 

1 32.1 1600 10.88 150 

2 33.9 1935 11.28 153 

3 36.1 2025 11.27 155 

4 36.7 2143 12.08 156.6 

5 36.4 2166 12.15 156.9 

6 35.5 1943 12.07 190 

7 35.0 1996 12.12 201 

8 35.0 2019 12.15 199 

9 34.8 2385 12.15 210 

10 34.6 2553 12.17 232 

 
Table 4. Compared the proposed hashing method with 

MD5, SHA-1 and SHA256 by considering time criteria 

Dataset 

Hashing Time (Sec) 

MD5 SHA1 SHA256 
Proposed 

Hashing 

Dataset1 50 192 576 25.9 

Dataset2 24.8 60.1 185 7.3 

Dataset3 424.2 462.9 1320 67 

 

 required to achieve the best deduplication outcomes. 

Datasets 1 and 2 displayed the highest DER when 4 

and 5 divisors were utilized, respectively. 

Nonetheless, employing a single divisor for both 

datasets resulted in the least time-consuming 

approach, despite the low DER outcome.  

Furthermore, Table 3 illustrates a direct 

relationship between the number of divisors and the 

time required, as an increase in divisors corresponds 

to an increase in time consumption. 

The study demonstrates that the proposed hashing 

technique surpasses SHA1, SHA256 and MD5 in 

terms of performance, resulting in reduced hashing 

time, as evidenced in Table 4. These results 

substantiate the effectiveness of the proposed 

technique in improving the efficiency of the data 

deduplication system. 

Table 5 showcases how the proposed hashing 

technique outperforms SHA1, SHA256 and MD5, 

leading to a notable increase in the data deduplication 

system's throughput. These findings strongly endorse 

the proposed technique's efficacy in enhancing the 

system's overall efficiency. 

Table 6 presents a comprehensive comparison of 

the proposed data deduplication method with various 

state-of-the-art methods, focusing on the gain 

percentage and deduplication elimination ratio  
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Table 5. Compared the proposed hashing method with 

MD5, SHA1 and SHA256 by considering throughput 

Dataset 

Hashing Throughput (Mb/s) 

MD5 SHA1 SHA256 
Proposed 

Hashing 

Dataset1 133 34.66 11.5 257 

Dataset2 93.67 38.28 12 318 

Dataset3 13.4 12.4 5.1 100 

 
Table 6. Compared the proposed method with other 

state-of-the-art methods 

Ref. Methods Dataset Gain DER 

[1] CB-TTTD Dataset2 91% 11.6 

[10] BFBC 
Dataset1 96% 30.82 

Dataset3 80% 4.96 

[22] CRP Dataset7 68% 3.11 

[16] QuickCDC Dataste5 41% 1.7 

[23] 

File 

classificatio

n based on 

histogram 

Dataset1 96% 27.17 

Dataset2 91% 11.65 

[24] CDGT Dataste4 84% 7.3 

[25] EHID Dataset6 96.7% 33 

Ours 
Proposed 

method 

Dataset1 97.2% 36.7 

Dataset2 91.6% 12.1 

Dataset3 82.1%. 5.61 

Dataset7 71% 3.5 

 

(DER) achieved by each method. The findings 

highlight the superior performance of the proposed 

method compared to others, primarily attributed to its 

ability to achieve significantly high deduplication 

gain and DER, thereby establishing itself as the most 

efficient approach. 

For Dataset1, the proposed method achieves an 

impressive gain percentage of 97.2% alongside a 

DER of 36.7. Similarly, for Dataset2, it attains a gain 

of 91.6% with a DER of 12.1. In the case of Dataset3, 

the method achieves a commendable gain of 82.1% 

and a deduplication ratio of 5.6. In general, these 

results clearly indicate that the proposed method 

outperforms the majority of other approaches in 

terms of gain percentage and DER.  

5. Conclusion 

This paper presents a new hybrid system that 

effectively combines file- and chunk-level 

deduplication approaches to reduce data redundancy. 

The method's effectiveness is evaluated using three 

datasets of varied sizes and kinds, measuring 

deduplication time, DER, and throughput between 

the hybrid and non-hybrid approaches. The results 

indicate that the hybrid approach saves significant 

time compared to the non-hybrid method across all 

three datasets, with reductions of 97.2%, 91.6%, and 

82.1% in data size for Dataset 1, Dataset 2, and 

Dataset 3, respectively. By examining file contents 

and producing a list of divisors, the hybrid approach 

achieves the maximum Throughput and DER. The 

suggested hash algorithm outperforms SHA1, 

SHA256 and MD5 regarding hash throughput and 

time. Additionally, the proposed approach is 

compared to other state-of-the-art methods, such as 

CB-TTTD, BFBC, CRP, QuickCDC, CDGT and 

EHID, and is shown to be superior in terms of 

deduplication ratio, deduplication gain. 
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