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Abstract: Diabetes is a disease that the entire world is afraid of. Early detection measures are required in this instance. 

Diabetes diagnosis by blood samples has the disadvantage of being uncomfortable. This study uses a urine sample to 

estimate a person's risk of developing diabetes. The electronic nose is a system that has the potential to recognize 

diabetes in this way. This method consists of quartz crystal microbalance gas sensors coated with carbon nanomaterials, 

including single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and 

graphene oxide. A reciprocal counter implemented in a field programmable gate array (FPGA) device is used to 

measure the frequency shift on the sensor. The convolutional neural network technique is used to detect diabetes. The 

results of the experiments suggest that this system can distinguish between healthy and diabetic people with an 

accuracy of 91%. 
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NOMENCLATURE 
 

QCM side 

 

Δf 
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Δm 

Resonant frequency shift 

Base frequency 

Crystal density 

Shear modulus of quartz crystal 

Change in mass per unit area 

 

CNN side 

 

g(τ) 

h(t-τ) 

x 

y 

wt 

wt-1 

η 

η’ 

α 

ε 

 

∂L/∂w 

Original signal 

A function shifted to the original signal 

Input value 

The output, which has a value between 0 to 1 

Weight value in the current iteration 

Weight value in the previous iteration 

Learning rate 

Updated learning rate 

Summation of gradient square 

A tiny number used to avoid division zero 

value 

The gradient of the loss function 

1. Introduction 

Recently, diabetes has become a severe health 

problem. This disease can cause various 

complications such as cardiovascular, kidney disease, 

and others [1]. The cause of this disease is a decrease 

in insulin production. Therefore, the glucose in the 

blood becomes high. Kidneys can also filter glucose 

in the blood, but only in specific amounts. If it 

exceeds its capacity, the kidneys will excrete it 

through the urine, as shown in Fig. 1.  

Currently, clinical diagnosis relies on the 

examination of glucose in the blood. This diagnosis 

is considered fast and accurate. However, the 

possibility of infection and pain during blood 

sampling is problematic. Many attempts have been 

made to improve the sensitivity of glucose detection.  

Biosensors have attracted much attention because 

of their low cost, simplicity, and practicality [3]. 

However, natural enzymes still have some intrinsic 

disadvantages, such as easy to change properties,  
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Figure. 1 Process of producing glucose in the urine [2] 

 

 
Figure. 2 Electronic nose system block diagram 

 

 

Figure. 3 The basic principle of the QCM sensor [17] 

 

high purification costs, and difficulties in preparation 

and storage. Several sensor materials have unique 

peroxidase-like catalytic activity and are applied to 

fabricate hydrogen peroxide and glucose sensors. 

These materials are based on metal oxide 

nanomaterials of Fe3O4 nanospheres [4], Fe-Pd/rGO 

[5], NiCo2O4 [6], graphene [7], and commercial metal 

oxide [8]. Metal oxide materials have low sensitivity, 

selectivity, and energy consumption disadvantages. 

Furthermore, nanomaterials for manufacturing 

glucose sensors are based on precious metals such as 

PtAu and carbon-based nanomaterials such as carbon 

nanotubes [9]. All nanomaterials are used to improve 

sensor capabilities. Carbon nanomaterials have the 

advantages of being soluble in water, having a fast 

response, very light, large surface area, and high 

sensitivity. In addition, glucose can be detected with 

the lowest limit using localized surface plasmon 

resonance (LSPR) optical fiber [10, 11] and 

spectrometer [12]. LSPR sensors and spectrometers 

are optical sensors with expensive equipment, 

complex systems and are not portable. Electrode 

sensors are used in detecting glucose [13]. This 

sensor has a large size and limited sensitivity. Other 

sensors, such as quartz crystal microbalance (QCM), 

are also used in glucose detection [14]. This sensor 

has the advantage of being sensitive to changes in gas 

mass and is stable. 

Diabetes identification through urine has been 

carried out in previous studies with several machine 

learning methods, including k-nearest neighbors (k-

NN), support vector machine (SVM), and PCA-

logistic regression (PCA-LR), ANN, and 

convolutional neural network (CNN) [8, 15, 16]. 

The use of QCM sensors and non-enzyme 

materials to increase sensor sensitivity needs to be 

developed. In addition, the method of identifying 

diabetes with pattern recognition algorithms still 

needs to be improved. Therefore, this study 

developed an electronic nose system using a QCM 

gas sensor array coated with carbon nanomaterial to 

diagnose diabetes from urine samples. Several 

methods were used to identify the disease, including 

Naïve Bayes, k-NN, SVM, PCA-LR, and CNN. This 

study contributes to applying electronic nose systems 

to analyze conditions through urine samples.  

This study has several sections, including section 

2, which describes the research method used. Section 

3 discusses the results of the system evaluation. 

Section 4 presents the conclusions of the research that 

has been done. 

2. Methods 

The system design in this study consists of a clean 

air pump including silica gel, a urine sample 

container, three valves, a sensor chamber in which 

there are seven QCM sensors, an oscillator circuit, a 

heater driver, a field programmable gate array 

(FPGA) board, and a computer as shown in Fig. 2. On 

the FPGA board there is a frequency counter, control 

unit, analog to digital converter (ADC), and serial 

communication. The on/off control method adjusts 

the temperature in the sample container.  
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2.1 Quartz crystal microbalance (QCM) 

The QCM sensor is highly sensitive to gas 

molecules attached to the electrode, as shown in Fig. 

3. This sensor will change the oscillation frequency 

of the quartz resonator (Δf ), which is defined as: 

 

   ∆𝑓 = − (
2𝑓2

√𝜌 𝜇
) ∆𝑚   (1) 

 

where f is the base frequency (Hz), ρ is the density of 

quartz crystal (g cm-3), μ is the shear modulus of 

quartz crystal (g cm-1 s-2), Δm is the change in mass 

per unit area (ng cm-2) [18].  

2.2 Carbon nanotubes (CNT) 

CNTs can be described as sheets of graphite 

rolled into a tube. This graphite sheet consists of 

hexagonal sp2 carbon atoms. This structure is formed 

from hexagonal carbon chains with one or many 

layers. The diameter of the tube is approximately 1 

nm, and the length is on the micro-scale. Single-

walled carbon nanotubes (SWCNT) CNTs have a 

tensile strength of 50-100 GPa and Young's modulus 

of 1-2 TPa. CNTs of the multi-walled carbon 

nanotubes (MWCNT) have a tensile strength of 11-

63 GPa and Young's modulus of 270-950 GPa. From 

these characteristics, several studies make CNTs a 

supercapacitor material [19], electrochemical sensors 

[20], and gas sensors [21]. This study used six CNT 

and graphene oxide (GO) materials along with their 

types and sizes, as shown in Table 1. 

The sensor coating solution was obtained by 

mixing carbon nanomaterials, polyvinylpyrrolidone 

(PVP), and demineralized water. PVP is a chemical 

substance that functions to dissolve carbon material 

into water. After that, ultrasonication was carried out 

for 1 hour so that the solution was mixed entirely. 

Then, the coating process was carried out on the 

sensor using an ultrasonic atomizer with an operating 

frequency of 110 kHz, as shown in Fig. 4. By noting 

a drop in its working frequency; the coating was 

applied to both sides of the QCM surface. The 

decrease in frequency on QCM is monitored via a 

computer. The operating frequency was reduced not 

to exceed 10,000 Hz, allowing QCM to operate 

reliably. 

2.3 Oscillator circuit 

An oscillator circuit is needed to generate a 

vibration signal on the QCM sensor. The oscillator 

circuit often used in digital applications is the Pierce 

oscillator type, as shown in Fig. 5. The QCM sensor  

 

Table 1. Types of carbon nanomaterials 

Nanomaterials 
Diameter 

(nm) 

Length 

(μm) 

Purity 

(%) 

SWCNT 

(SW) 

1 - 2 5 - 30 95 

DWCNT 

(DW) 

2 - 4 50 60 

MWCNT 

(M0406) 

4 - 6 0.5 - 2 98 

MWCNT 

(M0515) 

5 - 15 0.5 - 2 95 

MWCNT 

(M1030) 

10 - 30 0.5 - 2 98 

MWCNT 

(M3050) 

30 - 50 0.5 - 2 98 

GO  - 8 - 15 98 

 

 
Figure. 4 Coating process on QCM 

 

   
           (a)                            (b) 

Figure. 5 Oscillator circuit: (a) Schematic diagram, 

and (b) Printed circuit board 

 
used in this study has a vibration frequency of around 

10 MHz. The component values in the oscillator 

circuit include Rbias=2kΩ, R1=3kΩ, and C1=C2= 

25pF. 

2.4 Field programmable gate array (FPGA) 

FPGA offers high resolution and precision in 

counting pulses and delay times [22]. Therefore, 

FPGA is suitable for frequency measurement tools 

utilizing traditional [23] and reciprocal [24] methods. 

In this study, the oscillator circuit requires a 

frequency counter system with channels according to 

the number of QCM sensors. With many frequency  
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(a) 

 
(b) 

Figure. 6 Design on FPGA: (a) Reciprocal counter, and 

(b) Temperature control 

 

 
Figure. 7 The CNN architecture 

 

counter systems, using FPGAs is quite effective in 

implementing frequency counters using the 

reciprocal method. This system requires a 24-bit 

counter that corresponds to the sensor frequency. The 

FPGA module used in this study is Spartan 6 

XC6SLX9 made by Xilinx Corp. This module has 

9,152 logic cells, 1,430 slices, 5,720 6-input LUTs, 

90 distributed RAM, 45 shift registers and 11,440 

flip-flops.  

The reciprocal counter design consists of div, 

count, latch, encode, and serial blocks, as shown in 

Fig. 6 (a). Div serves to divide the input frequency, 

count to count the number of pulses, latch to lock the 

counting results, encode to set the data to be sent, and 

serial to send data to the computer. Meanwhile, Fig. 

6 (b) shows the temperature control scheme, with 

input from the ADC and output to the heater driver. 

2.5 Convolutional neural network  

CNN is capable of studying features and 

classifications for raw input data at the same time. 

The convolution kernel is a filter that can extract 

features from raw data [25]. The CNN architectural 

model in this study consists of two layers of 

convolution, dropout, max-pooling, flattening, and 

fully connected. The convolution operation using one 

dimension for discrete signals is expressed as 

follows: 

 
(𝑔 ∗ ℎ)[𝑡] =  ∑ 𝑔[𝜏]ℎ[𝑡 − 𝜏]𝑑𝜏∞

−∞           (2) 
 

where g is the original signal, and h is a function 

shifted to the original signal. The convolution process 

on the data aims to extract features from the input. 

Convolution produces a linear transformation of the 

input data based on the spatial information contained 

in the data. Dropout functions so that the model does 

not overfit. Layer pooling is a non-linear 

downsampling technique. Max-pooling is one of the 

non-linear operations performed during pooling. The 

principle of max-pooling is to find the highest value 

of several input values. Rectified linear unit (ReLU) 

effectively removes negative values from the 

activation map by replacing zeros. The ReLu function 

is defined as follows: 

 

           𝑦 = 𝑅𝑒𝐿𝑢(𝑥) = max (𝑥, 0)           (3) 

 

where x is the input value, and y is the output with a 

value between 0 and 1. The adaptive gradient 

optimizer (ADAGRAD) is used during the learning 

process, has the following formula: 

 

          𝑤𝑡 = 𝑤𝑡−1 − 𝜂𝑡
′ 𝜕𝐿

𝜕𝑤𝑡−1
                (4) 

 

𝜂𝑡
′ =

𝜂

√𝛼𝑡+𝜀
                          (5) 

 

                     𝛼𝑡 = ∑  (
𝜕𝐿

𝜕𝑤𝑡−1
)

2
𝑡
𝑖=1                     (6) 

 

where wt is the weight value in the current iteration, 

wt-1 is the weight value in the previous iteration, η is 

the learning rate, η’ is the updated learning rate, α is 

the summation of gradient square, and ε is a tiny 

number used to avoid division zero value, ∂L/∂w is 

the gradient of the loss function. Flatten is used to 

convert semi-structured data into a relational 

representation. The cross-entropy loss function is 

used to determine the model's accuracy. The fully 

connected layer is a layer that is often used in the use 

of multi-layer perceptron to modify data dimensions 

that can be classified linearly. Its activation function 

is Softmax.  

The CNN architecture used in this study consists 

of 1-D convolution, dropout, max-pooling, flattening, 

and fully connected, as shown in Fig. 7. This 

architecture has seven inputs from sensors, each 

consisting of 100 points. The 100 × 7 data was  
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(a)                           (b) 

Figure. 8 Sensor coating: (a) QCM surface coated with 

carbon nanomaterial, and (b) The degree of homogeneity 

 

 
Figure. 9 The response of the QCM sensors 

 

 
Figure. 10 The experimental equipment 

 

 
Figure. 11 Temperature control with a setpoint of 38 ℃ 

in the sample container 

 

 
Figure. 12 Sensor responses when exposed to urine vapor 

processed twice in convolution with 16 kernels and a 

filter size of 3 × 1 to 98 × 16 × 7 and 96 × 16 × 7. The 

data were reduced using max-pooling 2 × 1 to 48 × 

16 × 7. Then the data was made into one column 

using flatten to 5376, and from flatten entered the 

fully connected layer, which consists of 512 neurons 

in the hidden and two neurons in the output as the 

number of identification classes. 

2.6 Urine samples 

Urine samples were taken from 38 subjects at 

Muhammadiyah Gresik Hospital. There were 21 

healthy subjects and 17 diabetic subjects. Subjects 

consisted of 22 women and 16 men with an age range 

of 30-60 years. The collection process involves 

fasting for 8 hours, after which about 10 ml of urine 

is collected. 

3. Results and discussion 

The coating of the QCM surface with carbon 

nanomaterials using an ultrasonic atomizer is shown 

in Fig. 8. 

Fig. 9 shows the difference in response between 

uncoated and coated sensors. When the urine vapor 

enters the sensor chamber, the uncoated QCM does 

not change significantly. Meanwhile, the coated 

QCM shows a decrease in frequency response. 

The experiment was carried out three times, 

namely in the morning, afternoon, and evening, so 

there were 114 data with details of 63 healthy and 51 

diabetic subjects. The experimental equipment is 

shown in Fig. 10. The sensor chamber has a volume 

of 650 ml. The sample was flowed at approximately 

50 ml/min for 40 seconds and allowed to stand for up 

to 30 seconds, for a total of 70 seconds. The sampling 

frequency on the system is 16 Hz. Therefore, 16 x 70 

= 1120 points are obtained for a sensor in one take. 

The system has seven sensors, so 7 x 1120 = 7840 

points are obtained. The temperature in the sample 

container is controlled with a set point of 38оC, as 

shown in Fig. 11.  

Fig. 12 shows the sensor response when given 

urine vapor. The dotted line is the boundary of the 

points taken from the 30th to the 36.25th second. 

From these limits, 100 points were collected by 

finding the average value and normalized, as shown 

in Table 2. From this normalization, the response 

patterns between healthy and diabetic subjects were 

used, as shown in Fig. 13. 

Besides that, each data attribute was searched for 

the mean, standard deviation, variance, and median, 

as shown in Table 3 and Table 4. Visualization of the 

attribute values of healthy and diabetic subjects helps  
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Table 2. The normalized value of the sensor response 
Carbon 

Nanomaterials 

Samples 

Healthy Diabetes 

SW 0.05 0.11 

DW 0.08 0.26 

M0406 0.01 0.12 

M0515 0.35 0.26 

M1030 0.73 0.87 

M3050 1.00 1.00 

GO 0.73 0.87 

 

 
Figure. 13   Diabetic and healthy sample data patterns 

 

Table 3. Attribute statistic description for healthy 

Attribute Mean 
Std. 

Dev. 
Variance Median 

SW 10.3 4.34  18.9  10.0 

DW 14.3  6.59  43.54  15.0 

M0406 12.34  7.6  57.78  11.0 

M0515 21.23  8.96  80.3  22.0 

M1030 69.66  23.06  531.96  71.0 

M3050 94.3  27.7  767.32  97.0 

GO  69.88  23.43  549.08  71.0 

 

Table 4. Attribute statistic description for diabetic 

Attribute Mean 
Std. 

Dev. 
Variance Median 

SW 12.92 5.3 28.11 13.0 

DW 13.43 7.96 63.5 12.0 

M0406 12.09 6.34 40.20 10.0 

M0515 23.19 10.96 120.19 22.0 

M1030 62.52 25.03 626.68 62.0 

M3050 92.03 26.46 700.27 99.0 

GO  63.0 24.64 549.08 62.0 

 

in providing information, making it easy to identify 

patterns, as shown in Fig. 14. 

In data processing, two treatments were carried 

out. First, by finding the average value of 100 points 

for a sensor. Because there are seven sensors, seven 

values are obtained and used as data in the Naïve 

Bayes, k-NN, SVM, and PCA-LR methods. 

Meanwhile, the second treatment comprises 100 

points for a sensor, with 700 points for seven sensors. 

 

 
(a) 

 
(b) 

Figure. 14 Attribute statistics for: (a) healthy, and (b) 

diabetic subject 

 

 
Figure. 15 Distribution of data using PCA 

 

This data is used for the CNN method. The training 

and test data ratio is 70:30, with details of 80 training 

data and 34 test data. 

Before evaluating several identification methods, 

it is necessary to review the data distribution so that 

the data's position for each category is known. The 
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data totaled 114 samples consisting of healthy and 

diabetic classes. The principal component analysis 

(PCA) method was used to identify data distribution 

in these two categories. This method can reduce the 

number of variables and visualize the data 

distribution. Fig. 15 shows that the initial data 

processed by PCA looks spread out with a variance 

of 86.55% for PC1 and 6.3% for PC2, so the total 

variance is 92.85%. 

The next step is to evaluate several identification 

methods, as listed in Table 5. The first method, Naïve 

Bayes with the Gaussian distribution, has a higher 

accuracy than the Bernoulli distribution, which is 

76.5%. The second method, k-NN, produces the best 

accuracy at k = 5, which is 71%. The third method, 

SVM with a radial basis function (RBF) kernel, 

obtained better accuracy than sigmoid and 

polynomial kernels, which is 76.5%. The fourth 

method, PCA-LR, obtained an accuracy of 64.7%. 

The fifth method, CNN with eight kernels and a size 

of 5×1, obtained an accuracy of 79.4%. The CNN 

method is the best candidate as a classifier that can be 

further optimized. 

It is necessary to know the distribution of the data 

to identify how effective the convolution process is 

on CNN as the initial data processor in this method. 

After the data has gone through the convolution 

process, they start to collect and group together with 

a 95% variance for PC1 and 2.5% for PC2, as shown 

in Fig. 16, so that the total variance of the two 

components is 97.5%. There are two CNN 

architectural models evaluated in this study. The first 

model consists of two convolutional layers, two max-

pooling layers, dropout, flatten, and fully connected, 

as shown in Table 6. The second model consists 

of two convolutional layers, dropout, max-pooling, 

flatten, and fully connected, as shown in Table 7. 

A total of 80 x 700 points is carried out in the 

training process. To determine the success of the 

process is measured by training loss. Fig. 17 shows 

each training loss curve that decreases with 

increasing epoch. The best weight and bias values 

will be used to identify the 34 test data. The number 

of neurons in a fully connected layer during the 

training process is 512. 

Training losses from the second CNN model 

involving 8 kernels with a size of 5×1 is 0.6, 8 kernels 

with 9×1 is 0.34, and 16 kernels with 3×1 is 0.33. 

From the three curves, the training process fluctuates 

in achieving the smallest losses. 

The CNN model is evaluated using two 

parameters, including the number of kernels and filter 

size. In these two parameters, namely 8, 16, 32, and 

3×1, 5×1, 7×1, 9×1. The results of the first model  

 

Table 5. Evaluation results of several methods 

Methods 
Accuracy 

(%) 

Precision 

(%) 

Recall  

(%) 

Naïve Bayes 

(Gaussian) 
76 72 94 

Naïve Bayes 

(Bernoulli) 
67.6 72 68.4 

k-NN 

(k=3) 
61.7 62 79 

k-NN 

(k=5) 
71 70 84 

k-NN 

(k=7) 
64 67 74 

SVM 

(RBF) 
76.5 76.2 84 

SVM 

(Sigmoid) 
61.7 62 79 

SVM 

(Polynomial) 
64.7 62 95 

PCA-LR 64.7 64 84 

CNN 79.4 78.9 83 

 

 
Figure. 16 Distribution of data after convolution 

 

Table 6. Summary of the architecture of the first CNN 

model 

Layer Type 
Output 

Shape 

Filter 

size 

Stride 

0-1 1D Convolution  98, 32 3 × 1 1 × 1 

1-2 
1D Max-

pooling 
49, 32 2 × 1 2 × 1 

2-3 1D Convolution 47, 32 3 × 1 1 × 1 

3-4 
1D Max-

pooling  
23, 32 2 × 1 2 × 1 

4-5 Dropout 23, 32 - - 

5-6 Flatten 736 - - 

6-7 Fully connected 512 - - 

7-8 Fully connected 2 - - 
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Table 7. Summary of the architecture of the second 

CNN model 

Layer Type 
Output 

Shape 

Filter 

size 

Stride 

0-1 1D Convolution  98, 16 3 × 1 1 × 1 

1-2 1D Convolution  96, 16 3 × 1 1 × 1 

2-3 Dropout 96, 16 - - 

3-4 
1D Max-

pooling  
48, 16 2 × 1 2 × 1 

4-5 Flatten 768 - - 

5-6 Fully-connected 512 - - 

6-7 Fully-connected 2 - - 

 

 
(a) 

 
(b) 

 
(c) 

Figure. 17 The second model training losses curve with 

the kernel number and size of: (a) 8 (5×1), (b) 8 (9×1), 

and (c)16 (3×1)  

 

Table 8. CNN architecture evaluation 

Number 

of 

Kernels 

Filter 

size 

Model CNN  

First Second 

Accuracy (%) 

8 3×1 73.5 70.5 

8 5×1 73.5 79.4 

8 7×1 76.4 76.4 

8 9×1 70.5 82.3 

16 3×1 76.4 91.1 

16 5×1 70.5 76.4 

16 7×1 70.5 82.3 

16 9×1 79.4 73.5 

32 3×1 82.3 73.5 

32 5×1 67.6 73.5 

32 7×1 79.4 76.4 

32 9×1 61.7 82.3 

 

evaluation obtained the lowest accuracy of 61.7% on 

32 kernels with a size of 9×1. Meanwhile, the highest 

accuracy was 82.3% on 32 kernels with a size of 3×1. 

In the second model, the evaluation results 

obtained the lowest accuracy obtained by 8 kernels 

with a size of 3×1 of 70.5%. The highest accuracy 

was obtained for 16 kernels with a size of 3×1 of 

91.1%, as presented in Table 8. From the evaluation 

of each model, it can be concluded that the second 

CNN architectural model is better than the first model. 

Table 9 shows the results identified by this system 

compared with the subject's clinical tests. The clinical 

test measures blood sugar using the ACCU-CHEK 

tool in units of mg/dL. 

The confusion matrix can be used for extra 

information in evaluating the identification method. 

This method is usually described as a comparison 

between actual conditions and predictions. Fig. 18 

shows 17 healthy subjects according to actual 

conditions, and two healthy subjects are in the 

diabetes category. Then, there are 14 diabetic 

subjects according to actual conditions and one 

diabetic subject in the healthy category. For further 

analysis, the results of CNN identification are divided 

into true positive rate (TPR), false positive rate (FPR), 

true negative rate (TNR), and false negative rate 

(FNR). TPR measures the proportion of correctly 

identified positives, also called sensitivity. 
The TPR value of 0.944 indicates that the 

evaluation of the CNN method in identifying is good, 

as shown in Table 10. From evaluating several 

identification methods, including Naïve Bayes, k-NN, 

SVM, PCA-LR, and CNN, the best accuracy results 

were 76%, 71%, 76%, 65%, and 91%, respectively, 

as shown in Table 11. 
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Table 9. Diabetic identification results 

No 
Subject 

(mg/dL) 
Indication Identification 

1 77 Healthy Healthy 

2 97 Healthy Healthy 

3 98 Healthy Healthy 

4 108 Healthy Healthy 

5 111 Healthy Diabetic 

6 117 Healthy Healthy 

7 118 Healthy Healthy 

8 121 Healthy Healthy 

9 121 Healthy Healthy 

10 123 Healthy Healthy 

11 126 Healthy Healthy 

12 129 Healthy Healthy 

13 132 Healthy Healthy 

14 136 Healthy Healthy 

15 141 Healthy Healthy 

16 142 Healthy Healthy 

17 147 Healthy Diabetic 

18 148 Healthy Healthy 

19 156 Healthy Healthy 

20 173 Diabetic Diabetic 

21 193 Diabetic Diabetic 

22 197 Diabetic Diabetic 

23 199 Diabetic Diabetic 

24 208 Diabetic Diabetic 

25 212 Diabetic Healthy 

26 231 Diabetic Diabetic 

27 217 Diabetic Diabetic 

28 252 Diabetic Diabetic 

29 220 Diabetic Diabetic 

30 223 Diabetic Diabetic 

31 234 Diabetic Diabetic 

32 241 Diabetic Diabetic 

33 255 Diabetic Diabetic 

34 342 Diabetic Diabetic 

 

Several previous studies related to the 

identification of diabetes have been carried out. The 

methods included the Naïve Bayes classifier with 

graphene-based sensors [26], RB-Bayes with blood 

glucose sensors, blood pressure, and load cells [27], 

multi-layer feed-forward neural networks (MLFF-

NN) that use blood glucose sensors and body weight 

[28], artificial neural networks (ANN) with blood 

glucose sensors, blood pressure, and load cells [29], 

long short-term memory (LSTM) with blood glucose 

sensors, blood pressure, and load cells [30], gradient 

boosting tree (GBT) using metal oxide sensors [31], 

 

 
Figure. 18 Confusion matrix 

 

Table 10. Performance measurement of the CNN model 

TP FP TN FN TPR FPR TNR FNR 

17 14 2 1 0,944 0,125 0,875 0,055 

 

Table 11. Comparison of the five pattern recognition 

methods 

Classifier 
Accuracy 

(%) 

Precision 

(%) 

Recall (%) 

Naïve Bayes 76 72 94 

k-NN 71 70 84 

SVM 76 76 84 

PCA-LR 65 64 84 

CNN 91 89 94 

 
Table 12. Comparison of several methods for the 

classification of diabetes 

Ref. Sensor Classifier 
Accuracy 

(%) 

[26] Graphene based 

sensor 

Naïve 

bayes 

70 

[27] Blood Glucose, 

Blood Pressure, 

Load cell 

RB-

Bayes 

72.9 

[28] Loadcell, blood 

glucose 

MLFF-

NN 

84.17 

[29] Blood Glucose, 

Blood Pressure, 

Load cell 

ANN 85.1 

[30] Blood Glucose, 

Blood Pressure, 

Load cell 

LSTM 87.26 

[31] Metal oxide GBT 90.4 

[32] ECG SVM 90.5 

This 

work 

QCM + Carbon 

nanomaterial 

CNN 91.1 

 

SVM uses a heart rate sensor [32], and CNN uses a 

carbon nanomaterial coated QCM sensor. The results 

of the accuracy of these studies are listed in Table 12. 

From the table, it can be seen that the CNN method 

has the highest accuracy in detecting diabetes. 

4. Conclusion 

This study developed a system of carbon 

nanomaterial-coated QCM sensors coupled with a 

pattern recognition algorithm to identify diabetes 

through urine. The carbon nanotubes involved in 
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experiments include SW-CNT, DW-CNT, MW-CNT, 

and GO. Some methods are deployed to become the 

classifier model, including Naïve Bayes, k-NN, SVM, 

PCA-LR, and CNN. The CNN architecture, which 

involves 16 kernels with a size of 3×1, has the highest 

accuracy rate of 91.1% in identifying diabetes. 

Further studies will develop the system to be more 

portable with lower power consumption. 
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