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Abstract: The purpose of the paper is to classify the Leukemia images. In this paper, we proposed a commutative 

model of a convolutional neural network for Leukemia image classification. We employ commutative hypercomplex 

modeling A[+1, -1] and A[-1, +1] to build the new model. We hire an augmentation model to enrich the image data 

sets for the training sets through rotation, zooming, and flipping. We evaluated our proposed method using acute 

lymphoblastic leukemia image database type 2 (ALL-IDB2). The results show that our proposed method has delivered 

the best average accuracy at 96.43% for A[+1,-1] and 97.05 for A[-1,+1]. We have measured and found maximum 

accuracy at 100% for A[+1,-1] and A[-1,+1]. Comparison results show that our proposed method outperformed K-

nearest neighbor, support vector machine-radial basis function, support vector machine-linear, support vector machine-

polynomial, naïve bayes gaussian, naïve bayes complement, decision tree, and colour hybrid modelling. 
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1. Introduction 

Acute lymphoblastic leukemia (ALL), a disease 

primarily affecting children, has become one of the 

top causes of cancer-related deaths. An expert doctor 

must assess whether someone has Leukemia. The 

diagnosis of ALL can be complex and time-

consuming, requiring thorough examination of bone 

marrow and blood samples with laboratory 

techniques such as flow cytometry, 

immunohistochemistry, and cytogenetics. This 

method also carries the risk of not being able to detect 

minimal residual disease (MRD). Furthermore, it is 

highly costly and requires substantial time 

investment; many people cannot bear the cost or fear 

that the long wait for a diagnosis may negatively 

impact their health. 

Researchers have conducted and produced 

numerous results using the gray level co-occurrence 

matrix (GLCM) regarding acute lymphoblastic 

Leukemia [1–3]. Theoretically, GLCM features can 

be utilized for many computer vision tasks, for 

instance, image classification, detection, recognition, 

restoration, and segmentation. The GLCM forms a 

matrix that measures the probability of a pixel's 

center concerning its neighbor based on distance and 

angle. GLCM can be processed to deliver the main 

object features. The size of the GLCM does not rely 

on the size of the image but on its utmost gray level. 

Therefore, various image sizes with the same 

maximum gray level value will produce the same 

GLCM size, but GLCM formation will take different 

amounts of time. One of them is second-order 

statistic-based features such as contrast, homogeneity, 

energy, and correlation, which contribute to reducing 

the characteristic dimensions of an object while 

concurrently reducing computation time. The critical 

processes required for object classification were pre-

processing, building GLCM, feature extraction, and 

classification. They have produced GLCM and 

extracted the eleven shape feature vectors employed 

in the study. This method was used to capture the 

spatial association between pixels in an image and 

essential details related to its texture [4]. Nonetheless, 

it also has several drawbacks; it is vulnerable to 

image noise, orientation, and angle, while its 

accuracy depends on differences in distance and 

angle used. In addition, complex textures cannot be 
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captured using the GLCM, thus requiring more 

advanced analysis to produce appropriate features.  

A color-based segmentation approach has been 

suggested for classifying acute lymphoblastic 

Leukemia based on stages, pre-processing, 

segmentation, feature extraction, and classification. 

A 95.38% precision has been attained in representing 

objects via shape and texture characteristics [5]. 

Flaws in image segmentation may result in incorrect 

categorization, necessitating enhancement. Texture 

characteristics, including homogeneity, entropy, 

energy, and contrast, have been produced to 

overcome the limitation of GLCM. The accuracy rate 

has been boosted to 96.67% due to adding these four 

characteristics. Even though image segmentation 

enhancement produced a mere 1.29% increase in 

accuracy, research suggests that refining 

segmentation alone may not substantially improve 

[3]. 

Muntasa and Yusuf [3] have surpassed the 

limitations of the GLCM by using multiple channels, 

distances, and orientations. They utilized three 

channels: red, green, and blue, to capture all object 

characteristics in the image. Then, they built a GLCM 

for each channel, resulting in sixteen GLCMs with 

sixty-four features each. Multiplying sixteen GLCMs 

by four resulted in one hundred and ninety-two 

features used to classify the images. The 

experimental results revealed that this approach 

produced better accuracy than previous research [1]. 

An accuracy of 96.97% was obtained with the 

Chebyshev method, and 96.16% was obtained with 

the Canberra method. It suggests that utilizing 

multiple perspectives at various angles and 

orientations can increase accuracy for all 

classifications. A limitation of this research is that 

segmentation errors may cause classification errors; 

however, even correct segmentation results do not 

always guarantee accurate classifications [6]. 

Classification based on the CYMK model has 

been proposed by Abdeldaim et al. [7]. They offered 

the CYMK model from the RGB model. They 

improved image sample sets using Histogram 

Equalization, then determined the thresholding value 

to remove the image background. The researchers 

have employed several feature models from different 

perspectives to extract the image, i.e., color, texture, 

and shape. They use several similarity measurement 

methods, such as K-NN, support vector machine 

(radial basis function (SVM-RBF), linear (SVM-L), 

and polynomial (SVM-P)), naïve bayes gaussian, 

naïve bayes complement, and decision tree to classify 

the image. They employed ALL-IDB2 to evaluate 

their proposed method. The results show that 96.01%, 

92.8%, 93.43%, 93.89%, 89.97%, 86.02%, and 

86.81% accuracies for KNN, SVM-RBF, SVM-L, 

SVM-P, NB-G, NB-C, and Decision Tree 

respectively.  

In Laosai and Chamnongthai [8, 9] improved 

ALL images' quality by employing contrast 

enhancement and morphological color segmentation 

techniques. Moreover, they classified features using 

fuzzy C-mean, resulting in an accuracy rate of 98% 

on the ALL-IDB1 dataset. Nevertheless, additional 

tests with various indices are necessary to determine 

if their method can be relied upon. Additionally, they 

developed a new approach for classifying Leukemia 

images by combining knowledge-based morphology 

with cluster of differentiation (CD) markers. This 

methodology was also used to classify images by 

isolating white blood cells based on four 

characteristics: nucleoli, color, texture, and shape. 

Consequently, with the help of CD markers, the 

proposed algorithm achieved an accuracy rate of 

99.67%; however, no information was provided 

regarding the computation time for image 

classification [10]. 

In recent years, various attempts have been made 

to investigate ALL image databases using machine 

learning (ML) techniques to facilitate the detection, 

classification, and diagnosis of ALL. Medical 

imaging has revealed significant prospects for ML 

algorithms, as they can reveal patterns and structures 

that may go unnoticed. Convolutional neural 

networks (CNNs) are a general approach that is 

highly effective for image recognition applications 

such as medical image processing. CNNs eliminate 

the need for pre-processing, feature extraction, and 

classification operations by learning directly from the 

image datasets. It reduces computation time while 

increasing accuracy in object recognition and 

segmentation applications. CNNs have several 

advantages, like dealing with high-dimensional data, 

unsupervised feature extraction, and brief 

generalization to novel data space; nonetheless, it has 

some pitfalls, such as overfitting, lack of 

interpretability, and computational complexity. Even 

though these issues exist, CNNs are still a favored 

and efficient tool for many computer vision tasks, 

such as diagnosing and classifying medical images, 

including ALL classification. 

To improve the classification of Leukemia, 

researchers have devised a deep learning framework 

and implemented data augmentation techniques to 

bolster the variability present in the training dataset. 

To mitigate the issue of over-fitting, the researchers 

employed the utilization of transfer learning 

alongside a dense convolutional neural network 

(DCNN) architecture. Additionally, an ensembled 

technique was applied for the extraction of features. 
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Numerous deep convolutional neural network 

(DCNN) models, namely, AlexNet, VGGNet-16, 

VGGNet-19, MobileNet, ShuffleNet, and two 

NASNet variants, InceptionV3 and Xception, along 

with DenseNet20 and MobileNet have been deployed 

in the context of classifying Leukemia. Collectively, 

these models have yielded an essential accuracy of 

96.58%. Nonetheless, it must be noted that there exist 

limitations inherent in this methodology, such as the 

prolonged duration required for model construction 

and the substantiated expense involved in achieving 

accurate image classification [11]. 

Researchers have adopted deep learning 

architectures and applied data augmentation to 

improve the diversity of the training set for image 

classification. Transfer learning with DCNN 

architectures and an ensemble technique are utilized 

to achieve similar feature extraction outcomes to 

avoid overfitting. Various DCNNs such as LeNet, 

AlexNet, VGGNet, Efficientbet Bo till B7, ResNet50, 

InceptionResNetV2, Googlenet, and Inception have 

been employed to facilitate Leukemia classification. 

Unfortunately, this method is time-consuming and 

costly in constructing the model for image 

categorization [12, 13]. 

The visual geometry group (VGG) suggested 

employing VGG16 and VGG19 architectures for 

image classification and the xception CNN for data 

extraction and labeling. Research results revealed 

that VGG16 had a 92.48% accuracy, VGG19 

achieved 91.59%, and xception CNN furnished 

90.41% accuracy after four hundred passes with a 

0.00001 learning rate. The proposed approach has 

been evaluated using C-NMC 2019 dataset, and their 

experiments have produced F1-score of 92.6%, 

91.7%, and 90.7% for VGG16, VGG19, and xception 

CNN, respectively [14]. Nevertheless, these 

advanced architectures possess numerous trainable 

parameters, necessitating powerful computing 

hardware to quickly execute the image extraction and 

classification processes. 

A new technique has been devised to escalate the 

performance of VGG16 and VGG19 by transferring 

knowledge and utilizing VGG-f architecture for 

feature extraction. Subsequently, the features assign 

labels to images using a support vector machine. 

VGG-f is modeled after AlexNet, yet it employs 

kernels of smaller size in the first, third, and fourth 

stages of convolution [15–17]. Furthermore, the 

number of fully connected neurons in VGG-f is 

retained as 4096, similar to that of AlexNet. The 

researchers have also augmented image quality by 

transforming color space from the original to 

CIELAB color space. 

A modern approach of exchange learning 

utilizing VGGf to extricate the highlights is proposed 

to move forward the VGG16 and VGG19. They 

employed a back vector machine to classify the 

highlight extraction comes about. VGG-f could be a 

convolutional neural organize design that's built 

based on AlexNet. The VGG-f utilized littler parts for 

the convolution preparation within, to begin with, the 

third and fourth [17]. Be that as it may, they still have 

4096 neurons for fully-connected layers like the 

AlexNet design. They made strides in the image by 

changing it into a CIELAB color space. Image 

division is conducted to partition the most question 

and foundations, and the comes about were utilized 

to calculate the shape highlights. At long last, the 

bolster vector machine is used to classify the image. 

They claimed the proposed strategy had been 

assessed utilizing massive databases, i.e., ALL-IDB1. 

ALL-IDB2, Leukocytes, and CellaVision datasets. 

The comes about appears that the VGG-f has 

delivered 99% exactness. 

Additionally, they have conducted image 

segmentation to eliminate the image background to 

extract the main object accurately. In the concluding 

step, they used a support vector machine to classify 

the ALL image data testing. The authors claim this 

technique has been thoroughly tested with numerous 

databases, such as ALL-IDB1, ALL-IDB2, 

Leukocytes, and CellaVision datasets. It has achieved 

a success rate of 99% when VGG-f is used [17]. 

Traditional CNNs have a problem with complex 

or multidimensional data because they can only 

overcome simple numbers. It can cause mistakes in 

the information they deliver as the features. We 

proposed complex numbers to overcome incorrect 

details. Our strong point is that we can extract more 

object features because our proposed method can 

store information in two directions instead of just one. 

We employ Hypercomplex-valued CNNs (HC-

CNNs) to solve this problem. Our proposed 

architecture utilizes numbers like quaternions, 

octonions, and Clifford algebras. These numbers can 

overcome more complex data than regular numbers. 

We created a new model to process images called 

CH-CNNs to fix when mistakes happen during their 

processing. A CHCNN is a computer system that can 

work with detailed information. It is like math with 

more imaginary numbers. It is helpful because it 

allows for even more ways to show things. CHCNNs 

are a type of technology that uses special math to find 

essential parts of the information you give it. It is 

different than regular math and can discover more 

critical components. CHCNNs can work with data 

that does not follow a specific order, and the outcome 

changes based on the order. Regular CNNs are made 
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for data that is the same regardless of the order in 

which it is carried out. In simple terms, CHCNNs can 

understand how different features in the input are 

related to each other because hypercomplex numbers 

have both size and direction.[18]. 

In addition, this paper is divided into four 

sections: introduction, material and method, 

experimental and discussions, and conclusions. The 

"Introduction part" discusses acute lymphoblastic 

Leukemia (ALL), its impact on cancer-related deaths, 

and the challenges in diagnosing the disease. 

Furthermore, it also discusses prior studies that 

explored various approaches to classify acute 

lymphoblastic Leukemia. These methods encompass 

the texture model, second-order statistic, color-based, 

probabilistic-based, and convolutional neural 

network models. Research gaps, brief purposes, 

innovation, and strong points are also mentioned in 

this part. We explained our proposed method in the 

“Material and Method.” We also demonstrate in 

detail the results of “The Experiment and Discussion” 

as the outcomes of the new model and a comparison 

with existing methods. Finally, the general 

conclusion and future research are presented as well. 

2. Material and method 

In this study, we presented a novel classification 

technique for Leukemia images utilizing 

commutative hypercomplex-based convolutional 

neural networks (CH-CNNs). Before training the 

model, we divide our dataset into training and 

validation sets. We apply image augmentation to 

create multiple new images to increase the size of the 

training dataset. This process involves transforming 

the original image in various ways, such as rotation, 

zooming, and flipping. It can ensure the model 

accurately recognizes an object's different sizes, 

shapes, and orientations. Additionally, augmenting 

the data can reduce overfitting by introducing 

randomness and diversity into the training data - thus 

preventing it from simply memorizing rather than 

understanding the fundamental patterns of an image. 

The convolution process is a mathematical 

operation that combines the input image with a set of 

learnable filters to generate a set of feature maps in a 

convolutional neural network (CNN) employing 

commutative hypercomplex values. The convolution 

filters are represented as commutative hypercomplex 

values, an extension of complex numbers with 

additional components beyond the real and imaginary 

portions of the original complex numbers. In contrast 

to conventional real-valued filters, CNNs use 

commutative hypercomplex values to capture more 

abstract and complex input image features. 

Representing the filters as commutative 

hypercomplex values, including commutative ones, 

enables the neural network to generate a more 

complex feature map and abstract characteristics of 

the input image. In addition, the convolution process 

can capture spatially invariant features and reduce the 

required parameters to achieve greater precision and 

stability. Here is our proposed method, as shown in 

Fig. 1. 

2.1 ALL-IDB2 as experimental datasets  

We use the dataset of acute lymphoblastic 

Leukemia image database type 2 (ALL-IDB2) to 

evaluate our proposed method. It consists of 260 

images, of which 130 images are categorized as 

healthy images, and the remaining are Leukemia 

images [19]. We obtain the ALL-IDB2 datasets from 

the department of computer science - università degli 

studi di Milano (in acronym "UniMi"). Expert 

oncologists have provided the classification and 

location of ALL lymphoblasts for every image in the 

dataset, as shown in the image samples in Fig. 2. The 

ALL-IDB2 image datasets are crop results from the 

ALL-IDB1 datasets with a 2592 x 1944 resolution 

size of 24-bit color depth. 

We employ many variables to represent the 

model and proposed method, as shown in Table 1. 

2.2 Image input 

Fig. 1 depicts the first layer of a CH-CNN, also 

known as the input layer, responsible for receiving 

the image datasets supplied into the network. It 

comprises numerous neurons or nodes representing a 

pixel or other image component. Our CH-CNNs 

input layer consists of three dimensions, which we 

refer to as height, breadth, and depth. The depth 

dimension reflects the number of red, green, and blue 

color channels or characteristics extracted from the 

image.  

In this study, we utilized 130 images for the 

healthy population and the remaining images for the 

leukemia population. In addition, we altered the pixel 

values of each channel in the input image. There are 

255 possible values for each D symbol, representing 

the red, green, and blue channels. In addition, we 

divided each pixel by 28-1; 8 illustrates image data as 

the following equation. 

 

 ℱ𝑖,𝑗,𝐷 =  
𝑓𝑖,𝑗,𝐷

(28−1)
   (1) 

 

Furthermore, we replace the real model space 

with hypercomplex space by adding zero matrices on  

 



Received:  June 6, 2023.     Revised: June 29, 2023.                                                                                                         212 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.19 

 

 
Figure. 1 Our proposed method 

 

 
Figure. 2 Image sample datasets: First row indicates 

healthy cells, Second row is lymphoblasts [19] 

 

Table 1. List of variables used 
No Variables Explanation 

1 𝐹 and ℱ Image matrix after 

normalization 

2 𝑖 and 𝑗 Row and column indexes 

for the image 

3 𝑖′ and 𝑗′ Row and column indexes 

for the image process 

result 

4 D Channel 

5 𝐷′ Number of kernels 

6 (𝑥, 𝑦) An index of pixel position 

7 (𝑥′, 𝑦′) The new index after 

rotation 

8 𝜃 Angle 

9 𝑚 and 𝑛 Number of rows and 

columns 

10 𝜇 and 𝑣 Index for columns for both 

11 𝑠𝑥  and 𝑠𝑦 Zooming scale for a row 

and column 

12 𝑧𝑟
′  and 𝑧𝑐

′  Row and column of the 

zooming image 

13 (𝑥𝑔
′ , 𝑦𝑔

′ ) New position after 

flipping 

14 𝛼 Constant value 

15 ℍ Hypercomplex domain 

16 𝑝 and 𝑞 The real and imaginary 

values 

No Variables Explanation 

17 𝕁(ℎ)(𝑝, 𝑘) Hypercomplex output 

18 𝜎𝐴 Activation function 

19 (𝑏(ℎ)(𝑘)) Hypercomplex bias  

20 (𝕀(ℎ)) Hypercomplex value 

image 

21 (𝔽(ℎ)). Hypercomplex value filter 

22 𝕁(ℎ)(𝑝, 𝑘) Hypercomplex output 

23 𝒦 Image kernel 

24 ℝ𝐻′×𝑊′×𝐷×𝐷′
 The domain of a kernel 

25 𝐻′, 𝑊′, 𝐷′, and 𝐷  Kernel height, Kernel 

width, number of kernels, 

and number of channels 

26 𝑊′ Kernel width 

27 𝒴 Image convolution result 

28 𝑏 Bias 

29 𝑃 and 𝑆 Padding and stride 

30 𝑃ℎ
−, 𝑃ℎ

+, 𝑃𝑤
−, and 𝑃𝑤

+ Top image border, bottom 

image border, left image 

border, and the right 

image border. 

31 𝑆ℎ  and 𝑆𝑤 Vertical and Horizontal 

stride 

32 𝐻′′ and 𝑊′′ Height and width of the 

image convolution results 

33 𝑊′′′ and 𝐻′′′ Maximum values of row 

and column indexes for 

the image process result 

34 ℙ𝑤  and ℙℎ Width and height pooling 

dimension result 

35 𝓌𝑖𝑗  Random weight 

36 ℬ𝑗 Bias initials 

37 𝑝(𝑥) and 𝑞(𝑥) Actual and prediction 

values of the model 

38 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 True Positive, true 

negative, false positive, 

and false negative 
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Figure. 3 Sample of image augmentation 

 

the fourth dimension. The next step is to separate the 

training and validation data, followed by an 

augmentation process to reproduce the training data. 

In this case, we hired image rotation, zooming, and 

flipping to rebuild the training set. 

2.3 Image rotation 

Suppose we have an image with m rows and c 

columns. We can conduct rotate an image using the 

following equation: 

 

𝑥′ =  𝑥 cos 𝜃 −  𝑦 sin 𝜃   (2) 

 

𝑦′ = 𝑥 sin 𝜃 +  𝑦 cos 𝜃    (3) 

 

In this case, (𝑥, 𝑦) depicts an index of pixel position, 

where m indicates row and n presents the column of 

the image, (𝑥′, 𝑦′) express new position after rotation, 

and 𝜃  interprets rotation angle. 

2.4 Image zooming 

Zooming in on an image, or scaling it up or down, 

is a standard operation performed on digital images. 

This method sees extensive use in computer vision 

and digital image processing settings. In most cases, 

this is accomplished by interpolating the values of the 

original image's pixels to generate new higher-

resolution pixels. Conversely, when you zoom out, 

the image gets smaller, giving the impression that it 

is farther away and has less information. 

Subsampling or decimation is commonly used to 

achieve this effect, in which some of the original 

image's pixel values are discarded to create a smaller, 

lower-resolution image, as written in the following 

equation. 

 

𝑧𝑟
′ =  𝑠𝑥  . 𝑚     (4) 

 

𝑧𝑐
′ =  𝑠𝑦 . 𝑛     (5) 

 

Symbol of m and n indicates the row and column 

sizes from the original image, while 𝑧𝑟
′  and 𝑧𝑐

′  

Indicate the row and column of the zooming image. 

We utilized 𝑠𝑥 and 𝑠𝑦 to depict the zooming scale for 

a row and column. 

2.5 Image flipping 

In addition to rotation and zooming, we flip the 

image to obtain more sample variants of the image 

datasets as the following equation. 

 

(𝑥𝑔
′ , 𝑦) → (𝑥, 𝑛 −  𝑦)    (6) 

 

(𝑦𝑔
′ , 𝑦) → (𝑚 − 𝑥, 𝑦)    (7) 

 

Fig. 3 displays the various flipping models that use 

the input images by rotation, zooming, vertical 

flipping, and horizontal flipping. Image 

augmentation aims to enrich the training set with new 

information to assist the network in learning more 

generalizable and stable patterns.  

Fig. 3 displays the various flipping models that 

use the input images by rotation, zooming, vertical 

flipping, and horizontal flipping. Image 

augmentation aims to enrich the training set with new 

information to assist the network in learning more 

generalizable and stable patterns 

2.6 Hypercomplex building layer 

The technique of producing hypercomplex 

images entails the generation and alteration of images 

by employing hypercomplex numbers as the primary 

tool. The hypercomplex model, which also contains 

quaternion and octonion numbers, is a generalization 

made from complex numbers. Complex numbers are 

the building blocks of hypercomplex numbers, which 

can be considered an extension of complex numbers. 

When making hypercomplex images, each pixel in an 

image is represented by a number that is itself 

hypercomplex. It is performed as part of the process 

of creating hypercomplex images. The significance 

of the hypercomplex number determines not only the 

color but also the position of each pixel in the image. 

There are several ways in which the construction of 
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hypercomplex images and mathematical physics, 

particularly string theory and quantum mechanics, 

can be compared. With the assistance of 

hypercomplex numbers, scientists have been able to 

model the behavior of subatomic particles and space-

time geometry.   

A method that can describe color information in 

a more expressive and adaptable manner has been 

developed using hypercomplex four-dimensional 

integers. The actual part of the number corresponds 

to the pixel's intensity, while the three fake 

components correspond to the color information of 

the image pixels. According to this method, each 

pixel is represented as a hypercomplex 4-D number. 

It enables the communication of more nuanced color 

relationships and a more comprehensive range of 

tones than was previously feasible. 

One use of hypercomplex 4-D numbers in image 

processing is color image segmentation. Dividing an 

image into portions reflecting a different entity or set 

of characteristics is called segmentation. It is possible 

to improve the quality of image segmentation 

algorithms by defining color characteristics with 

hypercomplex four-dimensional integers. These 

color characteristics are resistant to changes in 

lighting and shading. 

In general, using hypercomplex 4-dimensional 

integers in image processing applications can 

significantly facilitate the encoding of color 

information. The value of this assistance could be 

derived from various sources. It is feasible to bypass 

some of the shortcomings of typical RGB color 

models and design image processing algorithms that 

are more powerful and versatile if hypercomplex 

numbers are used to describe color data. It is one of 

the advantages of utilizing hypercomplex numbers. 

It is called a commutative hypercomplex 

convolution neural network (CH-CNN), a subclass of 

convolutional neural networks. CH-CNNs are CNNs 

that can process commutative hypercomplex-valued 

input. In CH-CNN, the input data and the network 

weights are represented as hypercomplex numbers, 

allowing the information's amplitude and phase to be 

accurately represented. In certain circumstances, the 

values of R can stand in for the real number. On top 

of this, the hypercomplex can be described in the 

following way: 

 

𝛼 + 0𝑖1 + 0𝑖1 + 0𝑖1 + ⋯ + 0𝑖𝑛 ∈ ℍ  (8) 

 

The term "hypercomplex" refers to a collection of 

hypercomplex numbers that can be employed using 

either the dot product or multiplication and addition 

as the fundamental algebraic operations. Imagine that 

we have two highly complex numbers, as shown 

below: 

 

𝑝 = 𝑝0 + 𝑝1𝑖1 + 𝑝2𝑖2 + 𝑝3𝑖3 + ⋯ + 𝑝𝑛𝑖𝑛       (9) 

 

𝑞 = 𝑞0 + 𝑞1𝑖1 + 𝑞2𝑖2 + 𝑞3𝑖3 + ⋯ + 𝑞𝑛𝑖𝑛     (10) 

 

Furthermore, the multiplication between the values of 

𝑝  and 𝑞  can be expressed using the following 

equation. 

 

𝑝 × 𝑞 = (𝑝0𝑞0 + ∑ 𝑝𝜇𝑞𝑣𝑎𝜇𝑣,0
𝑛
𝜇,𝑣=1 ) + (𝑝0𝑞1 +

𝑝1𝑞0 + ∑ 𝑝𝜇𝑞𝑣𝑎𝜇𝑣,1
𝑛
𝜇,𝑣=1 )𝑖1 + ⋯ + (𝑝0𝑞𝑛 + 𝑝𝑛𝑞0 +

∑ 𝑝𝜇𝑞𝑣𝑎𝜇𝑣,𝑛
𝑛
𝜇,𝑣=1 )𝑖𝑛                (11) 

 

In most cases, the real number and convolution layers 

are utilized in the convolution process. In addition to 

this, the convolution layer is changed, which results 

in the real number becoming hypercomplex, as seen 

in the following equation: 

 

𝕁(ℎ)(𝑝, 𝑘) = 𝜎𝐴 (𝑏(ℎ)(𝑘) + (𝕀(ℎ) ∗ 𝔽(ℎ))(𝑝, 𝑘)) (12) 

 

In this case, 𝕁(ℎ)(𝑝, 𝑘)  depicts the hypercomplex 

output as the convolution results using an activation 

function 𝜎𝐴 . In the activation function, the 

hypercomplex bias (𝑏(ℎ)(𝑘)) has been added to the 

convolution results between a hypercomplex value 

image (𝕀(ℎ)) and filter (𝔽(ℎ)) . First, describing an 

image 𝕀(ℎ) and 𝔽(ℎ) filter using 𝐶 channels specified 

on a four-dimensional hypercomplex algebra is 

possible as the following equation 

 

𝕀(ℎ) =  𝕀0 + 𝕀1𝑖 + 𝕀2𝑗 + 𝕀3𝑘                        (13) 

 

𝔽(ℎ) =  𝔽0 + 𝔽1𝑖 + 𝔽2𝑗 + 𝔽3𝑘                     (14) 

 

In Eq. (13), the symbols of 𝕀0, 𝕀1𝑖, 𝕀2𝑗, and 𝕀3𝑘 

points out the real image using C channels, while the 

values of 𝔽0, 𝔽1𝑖, 𝔽2𝑗, 𝔽3𝑘  represents a 

hypercomplex image filter matrix value.  

2.7 Convolution layer 

If the image kernel is indicated by using 𝒦 ∈

ℝ𝐻′×𝑊′×𝐷×𝐷′
,  then 𝐻′  points out a kernel height, 

𝑊′  performs kernel width, and 𝐷′  represents the 

number of kernels. Moreover, we could write an 

image convolutional equation as follows 

 

𝒴 = ℱ 𝒦                                         (15) 
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𝒴𝑖′, 𝑗′,   𝐷′ =  

∑ ∑ ∑ 𝒦𝑖,𝑗,𝑑 ×𝐷
𝑑=1 ℱ𝑖′+𝑖 −1,𝑗′+𝑗 −1,𝑑,𝐷′

𝑛
𝑗=1

𝑚
𝑖=1  (16) 

 

𝒴𝑖′, 𝑗′,   𝐷′ implies the image convolution result. The 

indexes of 𝒴 are 𝑖 specify new height, 𝑗 indicates an 

image width, and 𝐷′ represents the number of kernels. 

We could add bias values on the convolutional neural 

network results as follows. 

 

𝒴𝑖′, 𝑗′,   𝐷′ = 𝑏𝐷′
+ 

∑ ∑ ∑ 𝒦𝑖,𝑗,𝑑 ×𝐷
𝑑=1 ℱ𝑖′+𝑖 −1,𝑗′+𝑗 −1,𝑑,𝐷′

𝑛
𝑗=1

𝑚
𝑖=1  (17) 

Padding (𝑃)  and stride (𝑆)  The two primary 

parameters are required for the convolution process 

to occur successfully. Adding values equal to zero on 

an image border is known as "zero padding", and it 

appears rather frequently. The padding of zero pixels 

on the top image border (𝑃ℎ
−), bottom image border 

(𝑃ℎ
+), left image border (𝑃𝑤

−), and the right image 

border (𝑃𝑤
+) as follows 

 

𝒴𝑖′, 𝑗′,   𝐷′ =

∑ ∑ ∑ 𝒦𝑖,𝑗,𝑑  ×𝐷
𝑑=1  ℱ𝑆ℎ(𝑖′−1)+𝑖−𝑃ℎ

−,𝑆𝑤(𝑗′−1)+

𝑗−𝑃𝑤
−,𝑑,𝐷′ 

𝑛
𝑗=1

𝑚
𝑖=1   

(18) 

 

Moreover, we also add bias values when the 

convolution process is carried out as the following 

equation. 

 

𝒴𝑖′, 𝑗′,   𝐷′ = 𝑏𝐷′
+

∑ ∑ ∑ 𝒦𝑖,𝑗,𝑑  ×𝐷
𝑑=1  ℱ𝑆ℎ(𝑖′−1)+𝑖−𝑃ℎ

−,𝑆𝑤(𝑗′−1)+

𝑗−𝑃𝑤
−,𝑑,𝐷′ 

𝑛
𝑗=1

𝑚
𝑖=1   

(19) 

 

We could calculate the image convolution size based 

on Eqs. (16), (17), (18), and (19), as shown in Eqs. 

(20) and (21). In this case, the variable of 𝐻′′ and 𝑊′′ 

indicate the height and width of the image 

convolution results. 

 

𝐻′′ = ⌊
𝐻−𝐻′+𝑃ℎ

−+𝑃ℎ
+

𝑆
⌋ + 1                           (20) 

 

𝑊′′ = ⌊
𝑊−𝐻′+𝑃ℎ

−+𝑃ℎ
+

𝑆
⌋ + 1                          (21) 

 

The following process calculates the activation 

function using a rectified linear unit (ReLU). In this 

function, all of the element values 𝒴𝑖′, 𝑗′,   𝐷′ will be 

replaced with 0 when the value is less than 0. 

Otherwise, the value does not change, as described in 

the following equation 

 

𝑓(𝒴𝑖′, 𝑗′,   𝐷′) = {
0, 𝒴𝑖′, 𝑗′,   𝐷′ < 0

𝒴𝑖′, 𝑗′,   𝐷′ , 𝒴𝑖′, 𝑗′,   𝐷′ ≥ 0
     (22) 

 

Through pooling, we used the ReLU function's result 

to reduce the dimension of the convolution result. In 

this case, we also apply two constraints to conduct the 

pooling operation: size and stride. The pooling result 

is well-known as a feature map. Using two 

regulations will determine how big the size of the 

results of the feature map. We replace the variable of  

𝒴𝑖′, 𝑗′,   𝐷′  using 𝕩  for ease of writing and 

understanding. Therefore, we could write a pooling 

mathematical in Eqs. (23) and (24) 

 

𝒴′′ 𝑗′′𝐷 = 𝑚𝑎𝑥
1≤𝑖′≤𝐻′′′,1≤𝑗′≤𝑊′′′ 

𝕩𝑖′′+𝑖′−1, 𝑗′′ + 𝑗′ − 1, 𝐷 

(23) 

 

𝒴′′ 𝑗′′𝐷 =
1

𝑊′′′×𝐻′′′ ×  

∑

1≤𝑖′≤𝐻′′′,1≤𝑗′≤𝑊′′′ 
𝕩𝑖′′+𝑖′−1, 𝑗′′ + 𝑗′ − 1, 𝐷  (24) 

 

Based on Eqs. (23) and (24), we could calculate the 

size of the maximum pooling result as follows. 

 

ℙ𝑤 = (
(𝑊′′−𝑊′′′)

𝑆
) + 1                         (25) 

 

ℙℎ = (
(𝐻′′−𝐻′′′)

𝑆
) + 1                           (26) 

 

The size of the pooling dimension result is 

(ℙ𝑤, ℙℎ, 𝐷 ) as shown, the value of ℙ𝑤  and ℙℎ  in 

Eqs. (25) and (26). Eqs. (23) and (24) show that the 

feature map result will be replaced the one-

dimensional, flattening model. Furthermore, the 

flattening results are supposed as the input layer. The 

input layer will be multiplied by the random weight 

(𝓌𝑖𝑗) of the hidden layer and added by bias initials 

(ℬ𝑗) of the hidden layer. The results will be utilized 

as input on the activation function layer. 

 

𝑦𝑗 = 𝛴𝑖=1
𝑛 (𝒴′′ 𝑗′′𝐷)

𝑖
× 𝓌𝑖𝑗 + ℬ𝑗                (27) 

 

𝓎𝑗 = 𝜎𝑦𝑗(𝑦𝑗)                                   (28) 

 

As seen in Eq. (27), the hidden layer results will be 

input in the activation function as in Eq. (28) and Fig. 

4. Moreover, the equation result Eq. (27) is used to 

input in the output layer as follows:  
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Figure. 4 Representation of Eqs. (27), (28), and (29). 

 

𝑛𝑒𝑡𝑘 = 𝛴𝑗=1
𝑚 (𝓎𝑗 × 𝓌𝑗𝑘 + ℬ𝑘)                   (29)  

 

We can compute the error of the training and the 

testing. Log loss error can be calculated by using the 

following equation. 

 

𝑳𝒐𝒔𝒔 =  −𝒑(𝒙) 𝑰𝒏 𝒒(𝒙) − 

(𝟏 − 𝒑(𝒙))𝑰𝒏(𝟏 − 𝒒(𝒙))      (30) 

 

𝒑(𝒙)  and 𝒒(𝒙)  represent the actual and prediction 

values of the model.  

2.8 Accuracy calculation 

When compared to the overall number of 

forecasts, the accuracy of a prediction may be 

understood by looking at the ratio of the number of 

correct predictions to the total number of predictions. 

The classification results that correspond to the 

accurate prediction are those in which the predicted 

values are identical to those that occurred, as shown 

in the following equation. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                       (31) 

 

True positive (𝑇𝑃)  describes actual and 

prediction conditions that are positive. In contrast, the 

actual and prediction have negative values, well-

known as true negative (𝑇𝑃). If the actual value is 

negative and it is predicted as a positive value, it is 

called a false positive (𝐹𝑃). On the contrary, if the 

prediction result is negative and the actual value is 

positive, then it is categorized as a false negative  

(𝐹𝑁). 

In addition, we compute both precision and recall 

to evaluate our inquiry's correctness and 

comprehensiveness. When positive predictions can 

be made, precision refers to the amount of those  

 
 

Table 2. Confusion matrix 

Actual Prediction 

Positive Negative 

Positive True Positive (TP) False Negative 

(FN) 

Negative False Positive (FP) True Negative 

(TN) 

 
Table 3. Our experimental scenarios 
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Commutative Hypercomplex Values 

A[+1,-1] A[-1,+1] 

1 10-5 10-6 10-7 10-5 10-6 10-7 

2 10-5 10-6 10-7 10-5 10-6 10-7 

3 10-5 10-6 10-7 10-5 10-6 10-7 

4 10-5 10-6 10-7 10-5 10-6 10-7 

5 10-5 10-6 10-7 10-5 10-6 10-7 

 

positive predictions that can be made. It is a crucial 

statistic utilized to investigate the classification 

results, precisely the rate of false positives. As the 

following equation demonstrates, the proposed 

method's precision improves whenever fewer false 

positives are found. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                              (32) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                    (33) 

 

Similarly, the last measurement is a well-known 

recall, and it can be defined as a comparison between 

the true positive and the summation of actual's 

positives as Eq. (33). We can easy representation Eqs. 

(31), (32), and (33) as demonstrated in the Confusion 

matrix model Table 2. 

3. Experimental and discussion 

We used 260 ALL images, of which 130 were 

considered normal, and the remaining images were 

supposed to be Leukemia. We split the data sets into 

eighty and twenty percent for the training and testing. 

Moreover, to integrate training datasets, we enrich 

training datasets using the augmentation process as 

Eqs. (1) until (7). We have selected the learning rate 

values for the commutative hypercomplex, which are 

0.0001=10-5, 0.00001=10-6, and 0.000001=10-7 with 

100 epochs.  

3.1 Experimental results for A[+1, -1] 

commutative of  hypercomplex value 

We have completed the experiment to classify 

ALL image datasets for training and validation. We 

employ K-Fold cross validation to obtain the best  
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Figure. 5 Summary of average accuracy using A[+1, -1] commutative hypercomplex for the training 

 

 
Figure. 6 Summary of average precision using A[+1, -1] commutative hypercomplex for the training 

 
model and validate our image testing set. We have 

used 0.0001, 0.00001, and 0.000001 as the learning 

rate and one hundred epochs. The results show that 

we have obtained the best average model for the A[+1, 

-1] commutative of hypercomplex value is produced 

by the first fold using 0.0001 learning rate, which is 

98.01%, 98.02%, and 98.35% for the accuracy in Fig. 

5, precision in Fig. 6, and recall in Fig. 7, respectively. 

We have found 38 times our training was delivered 

100% accurately. In addition, we have also evaluated 

precision and recall. We have obtained 44 and 43 

times for precision and recall 100% correctly, as 

demonstrated in Fig. 8. Figs. 5, 6, and 7 display the 

resume results for the first until the last fold. We can 

investigate similar results, meaning our proposed 

method has delivered stable results for accuracy, 

precision, and recall.  

Here, we demonstrated the accuracy, 

precision, and recall, followed by error for the 

first fold and 0.0001 learning rate, as shown in 

Fig. 8. We can investigate whether the accuracy, 

precision, and recall overlap, and it shows that 

the training accuracy, precision, and recall are 

stable.  

In addition, we further investigate related to the 

error result of the training for the first fold from the 

first to the one-hundredth expressing that the error 

results are convergence, which results in 

continuously moving toward the zero value, as 

demonstrated in Fig. 9. 

We have evaluated the best training model 

produced by the first fold and 0.0001 learning 

rates. The results show that our model delivered 

the average accuracy, precision, and recall for 

the testing validation are 95.38%, 95.50%, and 

94.27%, respectively. While the maximum result 

for accuracy is 98.68%, precision is 100%, and 

recall is 100%, as demonstrated in Fig. 10. 

However, we have registered the average 

standard deviation for the training and testing 

validation are 0.08 and 0.06. It proved that our 

proposed method could produce stable accuracy, 

even though the validation error obtained 

fluctuates in the 1st to 26th and 69th to 85th epochs, 

as shown in Fig. 11. All models have tried to 

improve the intelligence to gain the minimum 

error. 
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Figure 7. Summary of average recall using A[+1, -1] commutative hypercomplex for the training 

 

 
Figure. 8 Accuracy, precision, and recall using A[+1, -1] commutative hypercomplex for the training using 0.0001 

learning rate and 100 epochs 

 

 
Figure. 9 Error results using A[+1, -1] commutative hypercomplex for the training using 0.0001 learning rate and 100 

epochs 

 

 
Figure 10. Accuracy, precision, and recall using A[+1, -1] commutative hypercomplex for the testing validation using 

0.0001 learning rate and 100 epochs. 
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Figure. 11 Error results using A[+1, -1] commutative hypercomplex for the testing validation using 0.0001 learning rate 

and 100 epochs 

 

 
Figure. 12 Summary of average accuracy using A[-1, +1] commutative hypercomplex for the training 

 

3.2 Experimental results for A[-1, +1] 

commutative of  hypercomplex value 

In addition, we have also conducted the training 

and the testing validation using the A[-1, +1] 

commutative hypercomplex value. We employed the 

0.0001, 0.00001, and 0.000001 learning rates. We 

hired 100 epochs to learn and search for the best 

model for each cross-validation. Based on the 

experiment results, the first fold cross-validation has 

delivered the best model for the A[-1, +1] 

commutative of hypercomplex value. Furthermore, 

the accuracy, precision, and recall are practically 

similar, with no significant difference, as seen in Figs. 

12, 13, and 14 for accuracy, precision, and recall. 

However, it is no significant difference among k-fold 

cross-validation from the 1st to the 5th. It shows that 

the architecture model is stable.  

Fig. 12 clearly shows that the accuracy tends to 

weaken as the learning rate decreases (from 0.0001 to 

0.000001). It could be because the model converges 

more slowly or becomes trapped in local optima 

when the learning rate is low. There is a difference in 

the percentage of correct folds. For instance, the 

model achieves its best accuracy across all three 

learning rates in the first fold. Furthermore, it is 

essential to remember that the accuracy variations 

between the various learning rates and folds are less 

than 2%. It indicates that the learning rate may not 

significantly affect the performance model in this 

setting. 

Fig. 13 demonstrates that the highest precision 

percentages are typically accomplished with a 

learning rate of 0.0001, while the lowest precision 

percentages are typically performed with a learning 

rate of 0.000001. It can be seen by comparing the two, 

and it hints that a more sedate learning rate of 

0.00001 or 0.0001 would work better for this specific 

model. There is some difference in the precision 

percentages across the different folds of the paper. 

For instance, the model obtains the maximum 

precision in the 1st and 4th folds with a learning rate 

of 0.0001, but in the second fold and third folds, the 

model achieves the highest precision with a learning 

rate of 0.0001. However, if we investigate more 

comprehensively, the results for each experiment are 

not almost different.  

Fig. 14 displays that the maximum recall 

percentages are achieved with a learning rate of 

0.00001 over all folds. The current learning rate may 

be ideal for this model and data set. There is some 

discrepancy in the accuracy percentages between the 

various folds, though it is insignificant. With a 

learning rate 0.0001, the 1st fold achieves the highest 

recall, whereas the fifth fold obtains the highest recall 

percentage with a 0.000001 learning rate. It indicates 

that the result depends on the fold utilized. However,  



Received:  June 6, 2023.     Revised: June 29, 2023.                                                                                                         220 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.19 

 

 
Figure. 13 Summary of average precision using A[-1, +1] commutative hypercomplex for the training 

 

 
Figure 14. Summary of average recall result using A[-1, +1] commutative hypercomplex for the training 

 

 
Figure. 15 Accuracy, precision, and recall using A[-1, +1] commutative hypercomplex using 0.0001 learning rate and 

100 epochs 

 

the performance models are also affected by the 

learning rate used. We can check some consistency 

between the learning rates and folds in detail, even 

though the recall percentage changes are always tiny. 

In addition, we spilled in detail the accuracy, 

precision, and recall using a 0.0001 learning rate and 

all-fold cross-validation. Fig. 15 displays the 

experimental accuracy, precision, and recall results. 

The results show that the accuracy, precision, and 

recall increase according to epoch rise, and the results 

have significantly grown before the 26th epoch. 

However, the performance of our proposed method is 

stable after the 26th epoch. If we have observed in 

detail, there are three decreasing points on the 32, 52, 

and 72 epochs for accuracy, precision, and recall, 

even though it is insignificant and stable after passing 

this point. Therefore, the error of the training 

delivered raised on the same location, as displayed in 

Fig. 16. 

The fact that the error values have decreased 

implies that the model is becoming better and more 

accurate as more epochs pass. The presented data 

indicate that the model is improving and optimizing 

over time, as displayed in Fig. 16. However, it is 

essential to remember that the pace at which error 

values decrease appears to change during the training  
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Figure. 16 Error results using A[-1, +1] commutative hypercomplex using 0.0001 learning rate and 100 epochs 

 

 
Figure. 17 Accuracy, precision, and recall using A[-1, +1] commutative hypercomplex for the testing validation using 

0.0001 learning rate and 100 epochs 

 

process, with some epochs displaying higher gains 

than others. It is an essential point to keep in mind. 

This information may help determine which epochs 

should be the primary attention point when analyzing 

the model performance to optimize the training 

process. 

We have completed an experiment to evaluate the 

image validation testing using the best model. We 

employed a 0.0001 learning rate and 100 epochs. The 

results show that from the beginning to the 9th epoch 

displayed that the model has learned fastly, and it can 

be demonstrated that the validation accuracy, 

precision, and recall increase significantly. 

Furthermore, the model moves consistently until the 

last epoch, even though some points have occurred in 

the validation recall. It indicated that an overfitting 

condition appears for the validation recall on the 49th 

epoch, while accuracy and precision have 

consistently delivered results for the validation. 

However, the metrics exhibit certain inconsistencies 

across different epochs, a phenomenon ascribed to 

various factors, including the stochastic initialization 

of the model's parameters, the choice of 

hyperparameters, and the stochasticity of the training 

data. From the results, we have inferred that the 

maximum results for the validation accuracy, 

precision, and recall are 99.34%, 100%, and 98.63%, 

respectively, while the average validation accuracy, 

precision, and recall delivered 95.62%, 96.22%, and 

94.74%. Overall, the current analysis of the metrics 

indicates that the model exhibits a satisfactory 

performance on the validation set. Moreover, as the 

training proceeds, the model appears to acquire 

knowledge from the dataset. It is imperative to 

continually monitor the metrics to ascertain that the 

model is not exhibiting tendencies of overfitting or 

underfitting concerning the underlying data. 

Fig. 18 demonstrates the error results of the 

testing validation using A[-1, +1] commutative 

hypercomplex with a 0.0001 learning rate and 100 

epochs. The results show that the error goes down 

from the beginning at the onset and concludes at the 

48th epoch. The model has adapted to the training 

results to evaluate the validation testing set. However, 

overfitting occurred on the 49th epoch, where the 

error rate increased significantly. Fortunately, this 

condition can be improved until the end of an 

iteration. The error also can be decreased 

considerably on the 50th epoch, though the loss still 

increases on the certainty points, but finally, the error 

decrease until near zero. If we deeply observed Fig. 

17, we obtained information that considerably 

decreases the recall on the same epoch. Overfitting 

may manifest in a machine learning model that is  
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Figure. 18 Error results using A[-1, +1] commutative hypercomplex for the validation testing using 0.0001 learning rate 

and 100 epochs 

 

excessively intricate and consequently encapsulates 

the excessive noise, or random changes, embedded 

within the training dataset instead of discerning the 

fundamental pattern that applies to novel data. This 

phenomenon may lead to a developed model that 

exhibits substantial aptitude when evaluated on the 

training set yet a poor performance outcome when 

exposed to new, unseen data. It is attributable to the 

model having retained the training data explicitly 

rather than acquiring a more broadly applicable 

pattern, reflecting an inadequate degree of 

generalization.  

3.3. Comparison results and discussion 

The training model's building is always the 

random number for the first epoch. If the initial 

random numbers used are suitable for building the 

model, the model will deliver good results for 

accuracy, precision, and recall. Otherwise, the model 

will send bad results. We have conducted several 

experiments with different scenarios divided into two 

parts. Firstly, we build the model based on the 

training sets. In addition, the best model is used to 

evaluate the validation set of the samples. Secondly, 

we select the best model to evaluate the validation 

sets. Our proposed method's best training model 

selection is based on the average accuracy of each 

fold for all epochs. 

Moreover, we applied the highest average 

accuracy to evaluate the image validation image sets. 

We guarantee that the validation image sets have zero 

intersection with the training image sets. It means that 

we do not employ the image training sets for the 

validation image sets.   

We can see that the model for the training sets has 

delivered stable results after the tenth epoch. If we 

ignore the first till the ninth epochs, our proposed 

method produces over 99% average accuracy for all 

scenarios. The lowest accuracy for training and 

validation processes usually appears before the tenth 

epoch. We have noticed the experimental results that 

our proposed method has delivered 100% accurate 

results for each fold cross-validation. It shows that 

our proposed method can be used as a reference 

model to develop a Leukemia detection system.   

Our proposed method's best training model 

selection is based on the average accuracy of each 

fold for all epochs. Moreover, we applied the highest 

average accuracy to evaluate the image validation 

image sets. We guarantee that the image validation 

sets have zero intersection with the training image 

sets. It means that we do not employ the image 

training sets for the validation image sets.  

Furthermore, we compare our proposed method 

results to the others, such as K-nearest neighbour 

(KNN) [7], support vector machine-radial basis 

function (SVM-RBF) [7], support vector machine-

linear (SVM-L) [7], support vector machine-

polynomial (SVM-P) [7], Naïve Bayes Gaussian [7], 

Naïve Bayes complement [7], decision tree [7], Muti 

distance model [3], colour hybrid modelling pyramid 

model [20], and hypercomplex model [18] as shown 

in Fig. 19. We compare the best training model's 

average accuracy to the others. In addition, we have 

implemented the best model of our proposed method 

to evaluate the validation image sets. We calculate 

the average accuracy of the best model, as shown in 

Fig. 19. 

Fig. 19 shows that our proposed method A[+1, -

1] Commutative Hypercomplex model outperformed 

KNN [7], SVM-RBF [7], SVM-L [7], SVM-P [7], 

Naïve Bayes Gaussian [7], Naïve Bayes complement 

[7], decision tree [7], colour hybrid modelling [20]. 

Moreover, the Pyramid model [20] and 

hypercomplex model [18] have produced better 

accuracy than our proposed method. However, It is 

not better than the multi distance model [3], Pyramid 

model [20], and hypercomplex model [18]. In 

addition, our proposed method A[-1, +1] 

commutative hypercomplex model has exceeded the 

accuracy of A[+1, -1] commutative hypercomplex 

model, the multi distance model [3], and the  

 



Received:  June 6, 2023.     Revised: June 29, 2023.                                                                                                         223 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.19 

 

 
Figure. 19 The comparison results of the average accuracy of our proposed method to the others 

 

 
Figure. 20 The comparison results of maximum accuracy of our proposed method to the others 

 

Hypercomplex model [18]. However,  it is not better 

than Pyramid model [20].  

We also compare the maximum accuracy of our 

proposed method to the others. Our proposed method 

is better than the others, except the Pyramid model 

[20]. The pyramid model has generated the same 

accuracy as our proposed method for A[+1, -1] and 

A[-1,+1] commutative hypercomplex models. It is 

accuracy at 100%, as demonstrated in Fig. 20.  

4. Conclusion and future research 

Our experimental results have delivered the best 

model for the training using A[+1, -1] and A[-1, +1] 

commutative of hypercomplex. Our proposed 

method has yielded the best average accuracy at 

96.43% for A[+1,-1] and 97.05 for A[-1,+1] 

commutative hypercomplex. In addition, our 

proposed method also produced maximum accuracy 

at 100%. Maximum accuracy has occurred several 

times during the experiment for training and 

validation processes. Theoretically, using a learning 

rate has affected the accuracy and error rates, and a 

lower learning rate has delivered better accuracy than 

a higher one. Our proposed method also produced 

maximum precision and recall for all models, 100% 

for A[+1, -1] and A[-1,+1]. In other words, our 

proposed method can be used as a reference to 

implement in the real world, especially in the medical 

field.  

However, our proposed method shows that the 

use of different learning rates slightly differs in 

accuracy for training and validation processes. 

According to comparison results, our approach has 

defeated K-Nearest Neighbor, Support Vector 

Machine-Radial Basis Function, Support Vector 

Machine-Linear, Support Vector Machine-

Polynomial, Nave Bayes Gaussian, Nave Bayes 

Complement, Decision Tree, and Color Hybrid 

Modeling.  

We will improve our convolutional neural 

network architecture for further research to obtain 

better results. In addition, we also employ other 

image datasets with a more considerable number of 

images to reduce computation time during the 

training process due to the utilized massive image 

datasets. 
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