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Abstract: To encourage the good health and well-being sustainable development goal, this article presents the design 

and implementation of real-time indoor air quality index (AQI) prediction using an artificial internet of things (AIoT) 

electronic nose integrated into a vacuum cleaner robot. The objective of the proposed method is to implement an 

effective embedded AIoT solution utilizing sensor fusion and the TinyML framework for the purpose of strengthening 

the environmental health system with suitable current technology. The high-accuracy sensor outputs of total volatile 

organic compounds (TVOC), humidity, equivalent carbon dioxide (eCO2), and PM2.5 gathered as the dataset are 

normalized in the data pre-processing state and utilized to create trained models using dense neural networks (DNN) 

deep learning algorithms. Tiny machine learning is responsible for neural network training, as it is capable of executing 

AI algorithms on embedded devices with extremely low power consumption and limited RAM and ROM resources. 

The testing results demonstrate that the predictive model performed well, with 99% accuracy for a maximum absolute 

regression error less than 15 and an 18.33 mean square error. The embedded device implementation uses Wio terminals 

with ARM Cortex-M4F microcontrollers for real-time indoor air quality index prediction and visualization. 

Experimental results demonstrating the average precision of the indoor AQI prediction were obtained at an average 

accuracy of over 98% with a computation time of 10 milliseconds and an acceptable usage of ROM and RAM resources 

of 8.5 KB and 1.1 KB, respectively, along with successive performances that satisfied web application data 

virtualization using the internet of things (IoT). 

Keywords: AIoT, Deep learning, Embedded AI, Electronic nose, Indoor air quality index, TinyML. 

 

 

1. Introduction 

Air pollution is a major environmental health 

concern that can cause a variety of health problems. 

Air pollution is a combination of solid particles and 

gases that may be harmful to both humans and the 

environment. Long-term air pollution exposure can 

result in chronic respiratory disorders such as asthma 

and bronchitis [1, 2]. Children, the elderly, and 

persons with pre-existing illnesses are most sensitive 

to air pollution's health impacts [3, 4]. Furthermore, 

those who reside in places with high levels of air 

pollution are more likely to suffer from air pollution-

related health issues [5, 6]. 

Electronic noses are a type of technology that 

detects and recognizes certain scents, chemicals, and 

entities in the environment [7]. The electronic noses 

equipped sensor arrays provide a comprehensive 

approach to capture the complex chemical 

composition of the air, enabling air pollution 

monitoring [8, 9].   

To enhance the analytical capabilities of 

electronic noses by enabling compound separation 

and identification, gas chromatography have been 

integrated with air quality monitoring. In [10], the 

investigation of the responses of different electronic 

noses to odors emitted from a waste management 

plant was performed by combining results from  
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Figure. 1 AIoT electronic nose integrated in  

vacuum cleaner robot 

 

dynamic olfactometry, gas chromatography, and 

mass spectrometry in order to implement a 

monitoring system and improve cleaner production 

technologies. For odorous air sample analysis, VOCs 

sensors with thermal desorption-gas 

chromatography-mass spectrometry (TD-GC-MS) 

were utilized for environmental measurement-based 

odor emissions [11].  

Aside from the approaches stated above, 

regression analysis has been applied to electronic 

noses for determining air quality parameters. In 

electronic noses, the kernel SPXY data selection and 

support vector machines (SVM) regression 

techniques were used to produce a new approach to 

calibration transfer that delivered superior 

performance for air pollution measurement and 

monitoring systems [12]. The electronic nose system 

was presented as a method for recognizing the kind 

of sample gas and predicting its concentration using 

SVM and least squares regression [13].  

To overcome the limitations of regression 

techniques, machine learning and deep learning have 

been developed to enhance the ability of the system 

to capture complex patterns and non-linear 

correlations in air quality data, resulting in improved 

air quality estimation accuracy [14]. With the goal of 

enhancing accuracy, ARIMA, Facebook Prophet, and 

LSTM machine learning models were suggested for 

predicting time series of PM2.5 concentrations [15]. 

In [16], machine learning models including random 

forest, KNN, ridge and lasso, XGBoost, and 

AdaBoost were used to predict PM2.5 pollutants in 

cities, thereby reducing error rates. Analyzing gas 

pollutant data with convolutional neural networks 

and improved long-short-term memory (CNN-

ILSTM) was used to predict the AQI. The study 

demonstrated the effectiveness of deep learning in 

reducing training time dependencies and improving 

AQI prediction accuracy [17]. Deep learning, which 

involves combining long-term and short-term 

memories in artificial neural networks, was 

demonstrated to be an effective method for 

forecasting air quality in the Madrid area [18]. The 

development of a cloud-based, real-time, in-vehicle 

air quality monitoring system was introduced in [19]. 

The article employed multilayer perceptron, support 

vector regression, and linear regression to accurately 

predict in-vehicle air quality indices by learning 

complex relationships between various factors 

affecting air quality. In addition, the investigation 

into the development of a real-time air quality 

monitoring system for utilizing within vehicles that 

makes use of machine learning prediction algorithms 

were discussed in [20]. This work provided insights 

for improving air quality prediction by using the 

machine learning algorithms long-short term memory 

(LSTM) and gated recurrent unit (GRU) for real-time 

prediction. 

The previously stated research articles discuss the 

methodology of cloud-based machine learning or 

deep learning AQI prediction, which have internet-

dependency limitations. Data transmission and 

processing in cloud-based systems rely on an internet 

connection. Problems with connectivity can disrupt 

real-time monitoring and predictions. The 

transmission of data to the cloud and its subsequent 

processing may impose latency. Monitoring in real 

time and immediate response may be affected. 

To overcome the limitations of a cloud-based 

framework, this article proposes an embedded 

device-based artificial internet of things (AIoT) 

electronic nose that utilizes sensor fusion and the 

TinyML framework for real-time indoor air quality 

index prediction. The designed AIoT electronic nose 

integrated into a vacuum cleaner robot shown in Fig. 

1 can process data locally, providing real-time AQI 

predictions without relying on internet connectivity 

while enabling immediate responses because local 

processing minimizes latency. The accuracy sensor 

outputs of total volatile organic compounds (TVOC), 

humidity, equivalent carbon dioxide (eCO2), and 

PM2.5 are gathered as the dataset, normalized in the 

data pre-processing state, and used to create trained 

models for indoor air quality index prediction using 

deep learning algorithms based on dense neural 

networks (DNN). 

The aim of this study is to implement an effective 

embedded AIoT solution utilizing sensor fusion and 

the TinyML framework for the purpose of 

strengthening the environmental health system with 

suitable current technology. The significance of 

article contributions is highlighted as follows: 
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• Indoor AQI real-time prediction using dense 

neural networks (DNN) deep learning 

algorithms: the real-time indoor air quality 

index is predicted when the data from sensor 

fusion of TVOC, humidity, eCO2, and PM 2.5 

are sensed by accurate sensors and carried 

through data pre-processing techniques, then 

processed by a DNN trained model. The result 

of indoor AQI prediction is demonstrated by the 

output of the neuron network, which ranges 

between 0-500 and conforms to the six bands of 

indoor AQI based on the EPA’s Air Quality 

Index (AQI) and ISO 16000-29:2014 standard. 

• Embedded AI deployment: an AIoT 

electronic nose integrated into a vacuum 

cleaner robot using Wio terminals with an 

ARM Cortex-M4F embedded device that 

executed a neural network trained model for 

real-time indoor air quality index prediction and 

data visualization. TinyML TensorFlow Lite is 

used for neural network training, and the 

generated model is exported to an embedded 

device using an optimized compiler, allowing 

deep learning to execute on hardware with 

limited RAM and ROM resources. 

• The internet of things (IoT): IoT is integrated 

into an electrical nose module to create a 

network of connected systems on a cloud 

platform, allowing the module to communicate 

with a central data system and allow for more 

efficient demonstration and notification of 

indoor air quality index values via web 

applications. 

The structure of this article is as follows: The 

second section describes the materials and 

methodology proposed. Experiments, results, 

analysis, and discussion are presented in the third 

section. Our conclusion is stated in the final section. 

2. Materials and methods 

2.1 AIoT electronic nose module 

The AIoT electronic nose module in Fig. 2 is a 

combination of multi-sensor components listed in 

Table 1, including a total volatile organic compound 

(TVOC) sensor, an equivalent carbon dioxide (eCO2) 

sensor, a PM2.5 sensor, and a temperature-humidity 

sensor integrated into a Wio terminal embedded 

device with a powerful microcontroller, the 

ATSAMD51P19 with an ARM Cortex-M4F core 

running at 120 MHz, internet access via Realtek 

2.4Ghz or 5Ghz Wi-Fi, a 2.4" LCD screen, and a Li-

po battery chassis. The compact design of the  

 

Table 1. List of AIoT electronic nose components 

AIoT Electronic Nose Components Total 

SGP30 TVOC, eCO2 sensor 1 

HM3301 PM2.5 sensor 1 

Temperature and humidity sensor 1 

Wio terminal microcontroller 1 

3.7 Volts Li-Po battery chassis 1 

 

 
Figure. 2 AIoT electronic nose module 

 

developed module is suitable for installation on a 

vacuum cleaner robot that moves around the 

specified area not only for cleaning purposes but also 

for checking and notifying the user of the air quality 

condition via IoT protocol and a warning message via 

a web application. 

2.1.1. Total volatile organic compound (TVOC) sensor 

A total volatile organic compound (TVOC) 

sensor detects and quantifies the total 

concentration of VOCs in the air, including 

individual compounds as well as mixes of 

compounds used in a variety of applications. 

Sensirion's SGP30 TVOC sensor module is 

suitable for indoor air quality applications because of 

its exceptional low power consumption and long-

term stability. The total VOC concentration in the air 

is measured via the I2C interface to create a data set 

for a deep learning indoor AQI predictive model as 

well as real-time prediction. The sensor 

specifications are a 0 to 60000 ppb measuring range, 

1 ppb resolution for the 0–2008 ppb measuring range, 

±2 ppm accuracy, a long-term stability of ±2 ppm per 

year, and a low power consumption of 0.2 mA. 

2.1.2. Equivalent carbon-dioxide (eCO2) sensor 

The quantity of equivalent carbon dioxide (eCO2) 

in the air is one of the most significant factors  
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Table 2. Sensor specifications 

Sensor Type Range Accuracy 

SGP30 TVOC 0 - 6000 ppb 15% of 

meas. value 

SGP30 eCO2 0 - 1000 ppm 15% of 

meas. value 

HM3301 PM2.5 1000 µg/ m3 1 µg/ m3 

DHT11 Temperature 0 – 50 C ±2% 

DHT11 Humidity 20 – 90 %RH ±5 % RH 

 

influencing the indoor air quality index. High levels 

of CO2 can lead to poor air quality, which can cause 

health problems. Based on SGP30 multiple metal-

oxide sensing technology, this module provides a 

fully calibrated eCO2 output signal over the I2C 

interface. The output range is 400 ppm to 60000 ppm 

at a 1 HZ sampling rate. The minimum resolution is 

1 ppm in the 400–1479 ppm measuring range. 

2.1.3. PM2.5 sensor 

PM2.5 is a term used to describe tiny particles in 

the air that are 2.5 micrometres or smaller in diameter. 

It can cause a range of health problems, including 

respiratory and cardiovascular diseases, as well as 

lung cancer. The indoor air quality index (AQI) is 

based on the concentration of PM2.5 particles in the 

air. The higher the PM2.5 concentration, the more 

polluted the air is. The technology for measuring 

PM2.5 included in the HM3301 sensor is laser dust 

detection, which uses light scattering of the particle 

sensed by a photodiode to analyze the count 

concentration and mass concentration of the dust 

particles. Over the I2C interface, the HM3301 PM2.5 

sensor provides a maximum range of 1000 µg/ m3 

and 1 µg/ m3 resolution. 

2.1.4. Temperature and humidity sensor 

A DHT11 temperature and humidity sensor has 

high accuracy, a wide measuring range, and long-

term stability. It provides output through the built-in 

ADC in a humidity range of 5 to 95% RH with an 

accuracy of 5% and a temperature range of -20 to 

60 °C with an accuracy of 2%. The measured values 

of temperature and humidity are not applied for 

indoor AQI predictive modelling but are used for 

absolute humidity compensation for the air quality 

signals (eCO2 and TVOC) of the SGP30 sensor. 

Absolute humidity values (dV) in units of g/m3 can be 

calculated by the following formula: 

 dV(T,  RH)=216.7 [
RH

100%
 ∙ 6.112 ∙𝑒𝑥𝑝(

17.62∙T

243.12+T
 )

273.15 + T
]   (1) 

 

with T temperature and RH relative humidity. 

The specifications of the SGP30 - Multi-gas (VOC 

and eCO₂) sensor and PM2.5 Sensor are listed in 

Table 2. 

2.2 Real-time indoor air quality index (AQI) 

prediction 

In Fig. 3, Indoor air quality index prediction 

models use data from TVOC, eCo2, and PM2.5 

sensors to generate a nonlinearly correlated set of air 

quality data. After normalization in the data pre-

processing phase, the models utilize deep learning 

algorithms with dense neural networks (DNN) to 

predict the indoor air quality index. The prediction 

models are then compiled and downloaded to 

embedded devices in order to monitor the prediction 

results over short time frames. The real-time indoor 

air quality index prediction of the electronic nose 

module includes four major methodology 

compartments: dataset collection and pre-processing, 

a dense neural networks (DNN) predictive model, 

TinyML for embedded AI devices, and internet of 

things (IoT) integration. 

2.2.1. Data collection, labelling and pre-processing 

1) Data collection: In this study, the chamber size of 

36x48.5x26.5 cm (25 liters) is used for environmental 

observation. The three designated gas parameters for 

sampling within the chamber are TVOC, eCO2, and 

PM2.5. One set of data acquisition will require 

seventeen minutes and will be repeated three times 

for each experiment. The experiment is carried out at 

a temperature of 32-33 °C and a humidity of 58-60%. 

Figs. 4-6 show the sampled data collection of TVOC, 

eCO2, and PM2.5 concentrations inside the chamber, 

respectively. The sample gases, which vary in 

quantity of TVOC, eCO2, and PM2.5, influence the 

quality of the air within the chamber. The quantity of 

detected gas in the chamber was in the range of 0.8–

1549.72 ppb for TVOC, 400–2807.96 ppm for eCO2, 

and 8.02–286.92 µg/ m3 for PM2.5. 

2) Data labelling: Assigning labels to sampled data 

points in order to train a model, the process of data 

labelling is explained by flowchart in Fig. 7. 

Reference to the USEPA’s Air Quality Index (AQI) 

[21] and ISO 16000-29:2014 standard [22], the 

indoor AQI is divided into six ranges, each of which 

has its own color code and explanation, as shown in 

Table 3. Indoor air quality index values are expressed 

as Eq. (2) [23-24]. 
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Figure. 3 Mechanisms of AIoT electronic nose indoor air quality index (AQI) prediction 

 

 
Figure. 4 TVOC sampled data collection 

 

 
Figure. 5 eCO2 sampled data collection 

 

 
Figure. 6 PM 2.5 sampled data collection 

 

 

IP=
IHi  - ILo

BPHi - BPLo

(CP - BPLo)+ILo                 (2) 

 

Ip is index for pollutant p. 

Cp is the rounded concentration of pollutant p. 

BPHi is the breakpoint greater than or equal to Cp. 

BPLo is the breakpoint less than or equal to Cp. 

IHi is the AQI value corresponding to BPHi. 

ILo is the AQI value corresponding to BPLo. 

3) Data pre-processing: Data normalization 

technique, min-max scalar, has been applied in data 

pre-processing state to ensure that all data points have 

the same scale and range and make neural networks 

work better with the similar features’ range. Eq. (3) 

shows the mathematical formula for the min-max 

scalar normalization method. 

 

 xscaled = 𝑎 +
(𝑥−min(𝑥))(𝑏−𝑎)

max(𝑥)−min(𝑥)
                        (3) 

 

x is the sampled data. 

[a, b] is rescale range.  

2.3 Dense neural networks (DNN) Indoor AQI 

predictive modelling  

This part explains the algorithms used to predict 

the future condition of the indoor air quality index 

when TVOC, eCO2, and PM2.5 signals are input to 

the electronic nose. 

In Fig. 8 the functional sequence of dense neural 

network applied to the proposed a deep learning 

electronic nose is expressed. The designed neural 

network consists of 3 neurons on Input Layer (one per 

each input feature), 2 sequential hidden Dense Layers 

with 20 and 10 neurons with the Relu activation, and 

a one class output layer. There are 1000 epochs, and 

the learning rate is set to 0.0035. For validation 

during training, 20% of original train data will be put 

a part. The threshold of mean squared error (MSE) is 

not more than 15. 

ReLU is the activation method used to enhance 

the output of the 𝑙𝑡ℎ hidden layer as follows: 
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Table 3. Indoor AQI criteria 

eCO2 (ppm) PM2.5 (g/m3) TVOC (ppb) Indoor AQI 6 Bands of Indoor 

AQI Clow-Chigh Clow-Chigh Clow-Chigh Ilow-Ihigh 

400-650 0-12 0-220 0-50 Good 

651-1500 12.1-35.4 221–660 51-100 Moderate 

1501-2000 35.5-55.4 661-1430 101-150 
Unhealthy for 

sensitive group 

2001-2500 55.5-150.4 1431-2200 151-200 Unhealthy 

2501-5000 150.5-250.4 2201-3300 201--300 Very unhealthy 

5001-15000 250.5-500 3301-5500 301-500 Hazardous 

 

 
Figure. 7 Data labelling process  

 

xl = ReLU (Wlxl-1+bl)                             (4) 

 

 ReLU (z) = max(0,z) = {
0 for z≤0

z for z>0
 (5) 

 

x0 is input vector.  

xl is output vector.  

Wl is weight matrix.  

bl is bias vector.  

z is the vector of raw neural network outputs.  

 

The mean squared error (MSE), root mean 

squared error (RMSE), mean absolute error (MAE), 

and coefficient of determination (R2) are used to 

assess the performance of the deep learning model 

employed to the electronic nose air quality prediction. 

Eqs. (6-9) present the formula for the evaluation 

metrics. 

 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1  (6) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1  (7) 

 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1  (8) 
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Figure. 8 Dense neural networks (DNN) structure 

 

 
Figure. 9 TensorFlow lite implementation workflows 

 

 𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

 (9) 

 
�̂�𝑖 is predicted value of y. 

�̅�𝑖 is mean value of y.  

2.4 TinyML for embedded AI device  

TinyML is a machine learning approach that 

combines efficient and simplified machine learning 

applications [25]. It may be used to conduct artificial 

intelligence tasks in low-energy devices [26-27]. For 

AIoT electronic nose, the TinyML TensorFlow Lite 

framework on the Edge Impulse platform is used for 

training, optimizing, and deploying deep learning 

models to Wio terminal embedded device. The 4 keys 

steps workflow of TensorFlow Lite implementation 

for deep learning models can be expressed in Fig. 9.  

These steps are:  

1) Collecting raw data: Connect with real time 

sensors for collecting the raw data. 

2) Extracting meaningful features: A method for 

reducing data dimensionality by identifying the most 

significant features from a dataset. 

3) Train deep learning algorithms: The process of 

building a model from a given dataset involves 

selecting the right algorithm, tuning the parameters of 

the algorithm, and evaluating the performance of the 

model. 

4) Deploying:  Build and deploy the program to 

embedded devices. 

2.5 Internet of things (IoT) 

The internet of things (IoT) is another function 

that is integrated to an electrical nose module for 

creating a network of connected system to cloud 

platform. IoT enables communication with central 

data system, allowing for more efficient monitoring 

and message notifying processes.  

The Wio Terminal embedded device of AIoT 

electronic nose depicted in Fig. 10 is implemented for 

the IoT for data and prediction results visualization 

using MQTT (message queuing telemetry transport) 

protocol over Wifi to a Thingsboard cloud platform. 

The Wio Terminal is set up to connect to the MQTT 

broker running on the cloud platform. Once 

connected, it published the indoor AQI, TVOC, eCO2, 

PM2.5, temperature and humidity data being 

collected by the Thingsboard. The Wio Terminal’s 

LCD display is then also used to show predicted 

indoor AQI, TVOC, eCO2, PM2.5, temperature and 

humidity data. 

3. Experimental results and discussion 

Regarding the designed dense neural network 

(DNN), there are 3 neurons on the input layer, 2 

sequential hidden Dense Layers with 20 and 10 

neurons with Relu activation, and an output layer 

with 1 class. The learning rate is set at 0.0035 and 

there are 1000 epochs total. Consequently, the trained 

model over training data has resulted in a loss of MSE 

in Fig. 11. Fig. 12 demonstrates the obtained 99%  
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Figure. 10 Internet of things (IoT) feature 

 

Figure. 11 Training and validation loss 

 
Figure. 12 Model testing results 

 

 
Table 4. Comparison of prediction model results 

 MSE RMSE MAE R2 

DNN 21.96 4.69 3.22 0.9947 

SVM 26.69 5.17 1.83 0.9936 

LR 1,254.75 35.42 28.29 0.6997 

 

accuracy for a threshold setting of maximum absolute 

regression error less than 15 and a mean square error 

(MSE) of 18.33 when validating the model over 

validated data.  

For model comparison, Google Colab was used 

to execute scripts. Using the various prediction 

models of dense neural networks (DNN), support 

vector machines (SVM) with a linear kernel type, and 

linear regression (LR) using Ordinary least squares 

(OLS), 100 data points were predicted. 

Table 4 displays the validation results used to 

verify the prediction capability of the indoor AQI 

prediction models. Compared to other models, the 

DNN model had the highest R2 and the lowest MSE, 

RMSE. The DNN prediction model had the most 

accurate predictions and superior generalization 

performance. The maximum R2 obtained was 0.9947. 

The distributions of prediction results are depicted in 

Fig. 13 for simplicity of interpretation. The prediction 

model of the DNN exhibits similar shapes and 

tendencies to the actual indoor AQI data, as depicted 

by the graph. Additionally, the SVM prediction 

model displays a well-fitting line. The LR prediction 

model, however, does not match the actual data. 

A DNN deep learning model was utilized to 

deploy to Wio Terminal, an ATSAMD51-based 

microcontroller ARM Cortex-M4F CPU with a speed 

of 120 MHz, 192 KB of RAM, and 512 KB of ROM. 

Once the trained model was used to run on an 

embedded device, the experimental results of real-

time indoor AQI prediction performance on the Wio 

Terminal, embedded device can be found in Fig. 14. 

The validation results of the DNN trained models 

deployed to embedded device, Wio Terminal, are 

presented in Table 5 to ensure the accuracy of real-

time embedded-based predictions. The average 

prediction performances are 95.55%, 99.22%, 

99.08%, 98.11%, 97.99% and 98.49% respectively 

where the prediction for 6 indoor AQI bands are 

performed 10 times using different values of input 

validating features to get the average values. 

According to the indoor AQI prediction results, 

the trained model AIoT electronic nose can satisfy the 

prediction performance with an average accuracy of 

over 98 % and an acceptable usage of resources of 8.5 

KB in ROM and 1.1 KB in RAM. Important 

considerations for the real-time prediction model 

include high accuracy, low computation time, and 

minimal resource consumption. In addition, a 

comparison of the model's regression computation 

time for various prediction algorithms in edge 

computing is presented. The Edge Impulse platform 

demonstrated that the proposed indoor AQI required 

only 10 msec of regression computation time, 

whereas cloud-based AQI prediction in [19] required 

more computation time for both the SVM and LR 

prediction models. 
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Figure. 13 The prediction of indoor AQI in DNN, SVM, and linear regression 

 

 
(a) 

 
(b) 

 
(c) 

Figure. 14 Real time indoor AQI predictive result: (a) 

Good, (b) Moderate, and (c) Less Unhealthy 

 

 

 

Table 5. Average indoor AQI prediction performance 

Indoor AQI Bands Avg. Performance 

Good 95.55% 

Moderate 99.22% 

Less Unhealthy 99.08% 

Unhealthy 98.11% 

Very Unhealthy 97.99% 

Hazardous 98.49% 

 

The result of the internet of things (IoT) is 

expressed in Fig. 15. The AIoT electronic nose uses 

a Wio terminal to connect to the MQTT broker 

running on the cloud platform. Once connected, it 

published the indoor AQI, TVOC, eCO2, PM2.5, 

temperature, and humidity data being demonstrated 

by the dashboard, while the high alarm threshold for 

the AQI index can be set for warning notifications on 

web applications. 

4. Conclusion 

This article focused on investigating an essential 

approach for real-time indoor air quality index (AQI) 

prediction. By proposing an effective embedded 

AIoT solution utilizing sensor fusion and the TinyML 

framework of an electronic nose integrated into a 

vacuum cleaner robot, the sensor fusion outputs of 

total volatile organic compounds (TVOC), humidity, 

equivalent carbon dioxide (eCO2), and PM2.5 are 

normalized and utilized to create indoor AQI 

predictive models using deep learning algorithms 

employing dense neural networks (DNN). The neural 

network training is performed by tiny machine 

learning, which is capable of executing on-device 

data analytics with limited RAM and ROM resources  
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Figure. 15 IoT web application of real time indoor AQI AIoT electronic nose 

 

 

on embedded devices. The embedded device 

implementation uses Wio terminals with ARM 

Cortex-M4F microcontrollers for real-time indoor air 

quality index prediction and visualization, extended 

with the further feature of the internet of things (IoT), 

which enables demonstrating and notifying the 

indoor air quality index values via web applications. 

Experiments indicated the achieved performance in 

prediction was reached with an average accuracy of 

over 98% at a regression computation time of 10 

milliseconds and an acceptable usage of ROM and 

RAM resources of 8.5 KB and 1.1 KB, respectively. 

We hope that our research will be beneficial in 

solving the difficulty of on-device deep learning 

implementation as well as raising public awareness 

related to air pollution and environmental health. To 

further our research, we plan to augment the 3D 

mapping feature for creating a 3D map of its air 

pollution so that it applies to industrial applications. 
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