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Abstract: Internet of drones (IoD) are commonly constructed with unmanned vehicles, have been progressively 

prevalent due to their capability to operate quickly and their vast range of applications in a variety of real-world 

circumstances. These IoDs are interact with zone service providers (ZSPs) to achieve the goal of assisting drones in 

accessing controlled agriculture services. The utilization of drones in precision farming has lately gained a lot of 

attention from the scientific community. This study addresses with the assistance of drones in the precision 

agricultural area by analysing communication protocols and applying them to the challenge of commanding a fleet of 

drones to protect crops from parasite infestations. objectively and equitably assigns a weight to multiple service 

scheduling parameters based on maldistributed decision making theory, calculates the serving priority of each 

service request group, and then serves the service request groups based on the calculated serving priori-ty 

accordingly Hence, this paper proposes reinforcement learning-based topology-aware routing protocol with priority 

scheduling (RLTARP)  to provide reliable combinations between the source and destination. It also improves the 

routing decision by considering two-hop neighbour nodes, extending the local view of the network topology. The 

priority scheduling method adopts maldistributed decision making theory, to find the group of priorities based on 

service request. The proposed RLTARP is compared with three existing methods such as DroneCOCoNet, Markov 

decision process (MDP)and deep deterministic policy gradient (DDPG) and hence it produces 46.34% of packet 

delivery ratio, 67.49% of end to end delay, 16.45% of routing overhead, 13% of energy consumption and 97.6% of 

network lifetime. 
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1. Introduction 

All Since they were first used in 1980, 

unmanned aerial vehicles (UAVs) have been put to a 

wide variety of purposes. The drone throughout 

agriculture seems to be a feasible option to meet the 

requirement of enhanced populations and food 

manufacturing because of their improved precision, 

reliability, and capacity to overcome huge barriers 

that conventional equipment cannot. This sector 

would be greatly improved through precise 

measurements, actual data collection, and improved 

agricultural management [1]. Different IoT 

technologies can be included into agriculture drones 

to benefit the agricultural business as IoT becomes 

increasingly industrialized. Drones are more user-

friendly, effective, and capable of being piloted by 

landowners for collect precise, actual information. 

Improved effective crop maintenance can feasible 

by localizing, analysing, and interpreting the 

elevated images taken by the drone [2]. The relevant 

studies of comparable aircraft have been discussed 

in this research along with potential fixes. Some few 

suggested methods have been provided that could be 

combined with Microprocessor to produce better 
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aircraft for agriculture [3] employing the most 

effective and appropriate equipment. With a 

reliability of 79% and 66%, correspondingly, aerial 

photographs are employed for purposes including 

recognizing sparse shrub lands and grassland for 

degradation surveillance. Nevertheless, drone should 

be deployed in order to meet the demand for smart 

agriculture. When they get nearer to the ground, the 

drones deliver precise data on the ground and 

increasingly accurate images [4]. Drones could be 

adjusted and utilized to measure distances out from 

ground, depth levels, agricultural water stress levels, 

physiological properties of crops, and many other 

things. Thus, effective, precise cultivation is made 

feasible by an aircraft that is appropriately outfitted 

with necessary equipment and technologies [5]. 

Remotely sensed equipment, including spacecraft 

and UAVs, are used to identify the presence of bugs 

and pests on fields in order to discover carnivorous 

bugs and rapidly alert landowners towards the issue.  

The advantages of elevated technology for remote 

sensing for agriculture include a wide monitoring 

region, precise sensitivity, a short returning interval, 

& inexpensive budget. On the one hand, a satellite 

device might cover a wide area and therefore is 

helpful for a range of catastrophe surveillance [6]. 

Contrarily, space monitoring can weather-sensitive 

and has a lower density, which makes it much more 

challenging to meet this need for insect monitoring 

in agricultural fields [7]. Unmanned aerial vehicle 

(UAV)-based recognition methods, some-times 

referred to as low-altitude remote location 

technologies, are currently widely employed in 

contemporary sectors and guarantee excellent data 

accuracy. Agricultural illnesses and infestations 

surveillance should be regulated and computerized 

whenever drones are employed to detect the 

presence of bugs and pests. However, a drone on a 

distant vast field must deal with problems including 

a limited travel time and frequent charge changes 

because of its limited transporting capacity and 

memory [8]. It is becoming increasingly popular to 

utilize training techniques to improve information 

retrieval from sensory information. Regrettably, 

such methods have trouble in handling different 

biological shapes and may require extensive 

training. Researcher gathered a semi-machine 

learning method that would combine human 

computer data to train from blended human Parasite 

plantations [9].  

1.1 Contributions 

1- To solve the localization with current position-

based routing protocols in IoDs, researchers 

suggest a reinforcement learning-based topology-

aware routing protocol with priority scheduling 

(RLTARP). 
2- The priority scheduling method adopts 

maldistributed decision making theory, to find 

the group of priorities based on service request. 

3- Service scheduling model is applied to service 

calls for both downloading and uploading. 

4- To maintain the overall topology among UAV 

nodes for predicting the best route using various 

metrics. 

1.2 Paper organization 

The structure of paper is as follows: A relevant 

collection of research for IoDs for smart farming 

and agriculture is provided in section 2 of the 

presentation with table. In section 3 suggested 

reinforcement learning model is given. In part 4, the 

performance of the suggested model is shown along 

with a benchmark method. section-5 gives the 

conclusion. 

2. Related works 

Machine learning has made it possible for data 

analysis in the number of disciplines of agro 

technology, that has benefited from the development 

of big data innovation and knowledge computers. 

Throughout this article, scientists provide a 

thorough evaluation of research on machine learning 

models in agro ecosystems. The smart irrigation 

system in [10] uses models to determine the quantity 

of water a crop will need. It consists of heating rate, 

moisture, and pressure sensor that are placed in farm 

areas and transmit data through a computer chip to 

create an IoT system with data centre. To effectively 

forecast outcomes, the decision tree method, an 

advanced machine learning technique, was used to 

gathered information. 

According to [11], decision-making systems that 

use artificial intelligence could improve the 

advantages of smart agriculture. In terms of 

controlling micro-nutrients, computer vision plays a 

crucial role in agriculture. Under [12], the authors 

present a cutting-edge "DroneCOCoNet" system for 

aerial footage analytics which organizes smart 

analysis of massive video collections via edge cloud 

computing and carries out internet protocol 

allocation using resource awareness. They offer 2 

techniques for outsourcing peripheral calculation: 

heuristic-based and reinforcement learning-based 

methods. Such strategies offer clever job 

communication and collaboration for dynamic 

decision-offloading amongst UAVs. 

A unique crossover choice technique using deep 
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reinforcement learning (DRL) was presented within 

[13] with the goal of preventing pointless transitions 

whilst preserving stable communication. The 

suggested DRL framework creates a received signal 

strength indicator (RSSI) cantered on an 

optimization method for the digital training of UAV 

turnover choice and uses the UAV environment as 

just an inputs for a localized strategy evolutionary 

algorithms. In [14], two deep reinforcement learning 

algorithms are put out to handle the optimization 

problem of maximizing the whole network sum-rate 

along with a Markov decision-making process. 

Using the UAV's starting spot and the 

destination device, [15] employed the deep 

deterministic policy gradient (DDPG) approach that 

create the optimum design for the UAV inside an 

extra hurdle context. In [16] the author made 

suitable for low resource usage, a pervasive farming 

mobile sensor network-based threshold built-in 

MAC routing protocol (TBMP) has been developed. 

Mobility management UAV-based grouping 

(MMUG), for the transfer of bio-logical data 

through one base station to another via UAV, was 

proposed in this study ([17]). Using the cluster 

head's service area, the UAV develops the clustering 

structure. The node closest to the base station is 

chosen by the cluster head. It continuously tracks 

the movement of UAVs within its coverage area, 

which con-tributes to the reliability of the 

connection. 

Using a drone to float over the IoT devices and 

gather data, [18] provides two route strategies for 

data gathering in WSN. Every sensor node is 

assigned a weight based on its importance during the 

data collection process. The drones would choose 

the node with the biggest weight while choosing its 

ultimate destination. Utilizing the data distributed by 

the sensor nodes in WSN, using the optimized link 

state routing (OLSR) method, researchers had built 

parameter estimators. With Smart crop monitoring 

in consideration, an appropriate adaptation to the 

routing protocol for low power and loss networks 

(RPL) has already been suggested in [19]. The 

suggested improvement proposes an energy-efficient 

unique cluster - based routing topology. 

3. System model 

IoDs, which are connected with sensors, were 

developing into strong detecting systems that enable 

IoT-based methodologies. The sensors' job is to take 

pictures with a superior spatial and temporal 

resolution, that can help with monitoring a variety of 

vegetation-related traits. According upon the various 

agricultural factors that must be observed, as  
 

Table 1. Comparison of various existing methods 

Ref. Method Merits demerits 

[10] 
Decision tree 

algorithm 

Reduced 

inefficiency 

due to highly 

controlled 

flooding 

In comparison 

to other 

protocols, there 

is still a large 

latency. 

[11] 
decision 

making system 

Accelerate 

the rate of 

received 

packets 

Minimal 

recovery plan 

[12] DroneCOCoNet 
increased 

scaleability 

There is no 

substitute to 

ensure 

information 

transmission. 

[13] 

Deep 

Reinforcement 

Learning 

Increase the 

rate of 

packet 

transmission  

network's 

latency is more 

[14] 

Markov 

decision 

process 

Boost packet 

arrival rates 

for systems 

with few 

connections. 

ignores the 

time till the 

connection 

expires 

[15] 

deep 

deterministic 

policy gradient 

Ease traffic 

restriction 

based on an 

application 

[16] 

threshold built-

in MAC routing 

protocol 

Increase the 

rate of data 

packets 

the network's 

latency is huge 

[17] 

Mobility 

Management 

UAV-based 

Grouping 

(MMUG) 

capable of 

managing 

costs 

delay in 

function 

[18] 

optimised link 

state routing 

(OLSR) 

protocol 

lower price It requires time. 

[19] 

hierarchical 

routing 

structure 

It brings 

down 

variability. 

intricate 

connection 

 

 

illustrated in Fig. 1, various types of sensors can be 

utilized in an agricultural IoD. 

In this investigation, 𝑁 low-altitude UAVs or 

drones are taken into account, and their index sets 

are denoted by 𝑋 = {1,2, … 𝑥}. UAVs are used in the 

sensing of a surface area for observation operations 

and are outfitted with GPS, inertial measurement 

units (IMU), cameras, sensors, and a wireless 

communication interface. It is assumed that all 

UAVs are randomly distributed in a 3D space. With 

a shared constant transmission range R at each 

station, each UAV may detect a region. By  
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Figure. 1 System architecture for IoD deployment and 

message transmission in network 

 

employing GPS, each UAV is aware of its current 

location(𝑎, 𝑏, 𝑐). The BS, which is regarded as the 

destination of the data packets, receives the data 

from UAVs that monitor the region and collect 

photos and video from the surveillance area. UAV 

node 𝑖 ∈  𝑋  location data and transmission power 

are shown as 𝑡𝑗 = (𝑎𝑗
𝑢𝑎𝑣, 𝑏𝑗

𝑢𝑎𝑣, 𝑐𝑗
𝑢𝑎𝑣)  and 𝑄𝑖 , 

correspondingly. Let’s describe the network model 

as 𝐺 = (𝑋, 𝑅),, where 𝑋 is the set of UAV nodes and 

𝑅 = {𝑟1, 𝑟2, … 𝑟𝑛} is the set of UAV node positions, 

taking into account all UAV placements and 

transmission powers. We take into account the 

forwarding path of N number of UAVs for collision-

free paths. Suppose that location parameters of UAV 

network i at time,  ∀𝑖 ∈ {1, 2, … , 𝑁}, t ≥ 0 are as 

follows: 𝑟𝑖 (𝑡) = (𝑎𝑗
𝑢𝑎𝑣(𝑡), 𝑏𝑗

𝑢𝑎𝑣 (𝑡), 𝑐𝑗
𝑢𝑎𝑣 (𝑡) . In 

order to prevent collisions between two UAVs, a 

minimum distance 𝑑_𝑚𝑖𝑛  is necessary. The 

following need must be met in order to entirely 

prevent a collision involving two UAVs. The 

preceding prerequisite should always be met in 

order to fully prevent a difference between two 

UAVs: 

 

𝑟𝑖(𝑡) − 𝑟𝑗(𝑡) ≥ 𝑑𝑚𝑖𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑗, 𝑡 ≥ 0       (1) 

 

With this scenario, the UAVs modify its height 

to prevent a conflict whenever 2 of them are less 

than or equivalent to 𝑑𝑚𝑖𝑛. 

3.1 Channel model 

Both of the doppler effect of the UAV flying and 

the micro-doppler effect of the UAV movement 

must be accounted for while simulating the route. 

Additionally, reflection between UAVs should be 

taken into account in the situation of multi-UAV 

interaction. The UAV's cruising route could be a 

straightforward circular with a circumference of [20] 

 

𝑅𝑎𝑑 =
𝑉𝑒𝑙2

11.26×𝑡𝑎𝑛(𝜃)
                                         (2) 

 

𝑅  stands for radius in feet, 𝑉𝑒𝑙  for speed in 

knots, and 𝜃 for bank angle. A UAV with >150 per 

kg extra capacity must maintain a top speed of 200 

mm (14.4 knots). The complicated value network 

coefficient of the wireless medium here between 

receiver and the transmitter can be described as 

follows for the spectrum non-selective wideband 

transmission medium: 

 

𝜎 = √𝜌(𝑑)𝛿′                                                    (3) 

 

Where 𝐸[𝛿′2] = 1. 𝛿′ is typically equal to 1, and 

𝜌(𝑑)  is a complicated nonlinear function that 

reflects the large-scale path loss. The tiny 

attenuation due to multipath channels generated 

through other UAVs the uplink route loss is thus 

provided: 

 

𝜀 = 𝜌(𝑑). 𝛼                                                      (4) 

 

Regardless of whether the transmitter and 

receiver are placed equally apart, the route loss 

between them may change because of possible 

changes in climate. A common model for is the log-

distance path-loss (𝑃𝑎𝑡_𝐿𝑜𝑠𝑠)  concept 𝜌(𝑑)  is 

given as 

 

𝑃𝑎𝑡_𝐿𝑜𝑠𝑠𝐿𝐷(𝑑)[𝑑𝐵] = 𝑃𝑎𝑡𝐿𝑜𝑠𝑠𝐿𝐷
(𝑑𝑖𝑠𝑡𝜃) +

10𝑛𝑙𝑜𝑔(
𝑑𝑖𝑠𝑡

𝑑𝑖𝑠𝑡𝜃
)                                                        (5) 

 

Where in d is the 3D radius in metres and 𝑑𝑖𝑠𝑡𝜃 

is the standard length of the free space route loss 

(from the broadcast ends to the receivers). It is 

necessary to precisely determine "𝑑𝑖𝑠𝑡𝜃" in various 

propagation conditions.  

3.2 Reinforcement learning for IoD 

Throughout this subsection, we construct the 

control system problem in IoD networking for 

sensing application. N drones are used to gather 

data, that is then transmitted to the IoT 

Infrastructure for additional operations. In order to 

meet the QoS criteria and reduce the average system 

electricity costs across all drones, the issue is then 

stated as 

 

𝑃0: 𝑚𝑖𝑛 =  
1

𝑡
∑ 𝐸𝑠𝑦𝑠∞

𝑡=1  (𝑡)                                (6) 
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Obtaining global optimality at every period 

necessitates full knowledge of many epochs (i.e., 

both the past and the future iterations), as they are 

interconnected via each drone's battery level status 

and energy usage. In order to create decisions 

through interacting with the environment, we 

therefore need the reinforcement learning method. 

In order to reduce the cost created, reinforcement 

learning specifically maps the environment states to 

the best way to proceed by the active learning. 

3.3 Reinforcement learning-based topology-

aware routing protocol 

Throughout this subsection, designers introduce 

the RTARP in IoDs reinforcement-learning routing 

technique, which helps to enhance the AODV 

protocol. AODV, nevertheless, can't be used in IoDs 

because it ignores the special characteristics of these 

systems, such as highly mobile UAVs and frequent 

disconnections. Therefore, we work to make this 

routing protocol better so that it may be used with 

IoDs. To develop stable paths with low delay and 

increase the packet delivery rate, RTARP takes into 

account a variety of factors, including link quality, 

movement orientation, path latency, location 

between nodes, and energy (PDR). Two components 

make up RTARP: 1) Route finding 2) Routing 

upkeep. The following provides element examples 

of each part. 

3.4 Two-hop neighbor discovery 

In RTARP, a source node  𝑠𝑜𝑛𝑜𝑑𝑒 looks up a 

reliable path in its routing table when it wishes to 

establish a connection link with a destination node 

𝑑𝑒𝑠𝑛𝑜𝑑𝑒for exchanging data packets. When a valid 

path cannot be found among a node itself and, 

reinforcement learning-based routing is used to find 

the best route, or 𝑏_𝑟𝑜𝑢𝑡𝑒, to exchange data packets. 

Each flying node, or 𝑓𝑙𝑦𝑛𝑜𝑑𝑒 , in this procedure 

exchanges Hello messages with its surrounding 

UAVs on a regular basis. This notification includes 

the following data: spatial information (𝑎𝑖
𝑡 , 𝑏𝑖

𝑡, 𝑐𝑖
𝑡)  

angular velocities (𝑣𝑒𝑙𝑥,𝑖
𝑡 , 𝑣𝑒𝑙𝑦,𝑖

𝑡 , 𝑣𝑒𝑙𝑧,𝑖
𝑡 ) , at the 

period interval, delay information, reinforced-value, 

and energies(𝑒𝑛𝑒𝑟𝑖
𝑡) . An adjacent table is where 

𝑓𝑙𝑦𝑛𝑜𝑑𝑒 maintains information about its neighbours. 

𝑓𝑙𝑦𝑛𝑜𝑑𝑒 computes the filtering parameter 𝑓𝑖𝑙  for 

each nearby node using data from such table, as in 

𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ) . This option enables the 𝑓𝑙𝑦𝑛𝑜𝑑𝑒  to 

select out some of its neighboring who are 

unsuitable for RREQ rebroadcasting and add 

additional competitors to a list of permitted 

neighbours 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 . 𝑓𝑙𝑦𝑛𝑜𝑑𝑒  uses 4 factors for 

calculation, comprising movement direction and 

speed. 

 

• Motion direction 𝛿𝑎,𝑏
𝑡 : 𝑓𝑙𝑦𝑛𝑜𝑑𝑒  computes the 

angle between itself and 𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ) at time 

𝑡. Fly node tends to increase 𝑓𝑖𝑙 pertaining to 

𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ)  to gain a higher chance of being 

placed in license D since the interaction link 

between 𝑓𝑙𝑦𝑛𝑜𝑑𝑒  and 𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ)  is 

legitimate for a prolonged period of time if the 

motion orientation of pair of nodes is 

comparable (i.e. the angle between 𝑓𝑙𝑦𝑛𝑜𝑑𝑒 e 

and 𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ)  is zero. As a result, more 

stable routes are built. The ratio here between 

movement orientations of between 𝑓𝑙𝑦𝑛𝑜𝑑𝑒 e 

and 𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ) is determined by the 

equation following. 

 

𝛿𝑎,𝑏
𝑡 = 𝑐𝑜𝑠−1   

𝑣𝑒𝑙𝑥,𝑗
𝑡 𝑣𝑒𝑙𝑥,𝑖

𝑡 +𝑣𝑒𝑙𝑦,𝑗
𝑡 𝑣𝑒𝑙𝑦,𝑖

𝑡 +𝑣𝑒𝑙𝑧,𝑗
𝑡 𝑣𝑒𝑙𝑧,𝑖

𝑡

|𝑣𝑒𝑐𝑖
𝑡||𝑣𝑒𝑐𝑗

𝑡|
     (7) 

 

Where ( (𝑣𝑒𝑙𝑥,𝑗
𝑡 , 𝑣𝑒𝑙𝑦,𝑗

𝑡 , 𝑣𝑒𝑙𝑧,𝑗
𝑡 )  and 

(𝑣𝑒𝑙𝑥,𝑖
𝑡 , 𝑣𝑒𝑙𝑦,𝑖

𝑡  , 𝑣𝑒𝑙𝑧,𝑖
𝑡 )   are, correspondingly, the 

acceleration matrices of 𝑓𝑙𝑦𝑛𝑜𝑑𝑒 and 𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ). 

Additionally, the vectors' lengths are indicated by 

|𝑣𝑒𝑐𝑖
𝑡||𝑣𝑒𝑐𝑗

𝑡|. 

 

• Distance 𝑑𝑖𝑠𝑖,𝑗
𝑡 :  𝑓𝑙𝑦𝑛𝑜𝑑𝑒   raises the 𝑓𝑖𝑙 

equivalent to 𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ) if the proximity 

between it and its neighbor, such as 

𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ) , is appropriate. As a result, 

𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ)  has a higher chance of having a 

license. The appropriate distance denotes that 

𝑓𝑙𝑦𝑛𝑜𝑑𝑒  and 𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ) are not located 

close to one another because if fly 

(node(neigh)) is chosen as a relay node, the 

path's hop count will increase, making it harder 

for fly node to locate the path. The appropriate 

proximity, on either contrary, indicates 

that𝑓𝑙𝑦𝑛𝑜𝑑𝑒  and 𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ)  were not very 

far from one another these two nodes swiftly 

leave each other's transmission distance. As a 

result, the path that these nodes generated will 

shortly become invalid. 𝑑𝑖𝑠𝑖,𝑗
𝑡 , also known as 

the appropriate distance between the two nodes, 

lies between 𝐷𝑚𝑖𝑛  and 𝐷𝑚𝑎𝑥 , where 0 ≤
𝐷𝑖𝑠𝑚𝑖𝑛 < 𝐷𝑖𝑠𝑚𝑎𝑥  and 0 ≤ 𝐷𝑖𝑠𝑚𝑎𝑥 ≤
𝑅𝑎𝑑 .  𝑅𝑎𝑑  represents the network's UAVs' 

broadcast range. 𝑓𝑙𝑦𝑛𝑜𝑑𝑒 and 𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ) 

can provide stable pathways in this situation. 

It's important to note that this teaching  
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𝑅𝑒𝑤𝑎𝑟𝑑 (𝑛1, 𝑎1) = {

𝑅_ max                        𝑛𝑜𝑑𝑒𝑡+1𝑖𝑠 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑅_ min              𝑛𝑜𝑑𝑒𝑡+1𝑖𝑠 𝑙𝑜𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚   

(1 −
𝑟𝑜𝑢𝑡𝑖𝑚𝑒

max(𝑟𝑜𝑢𝑡𝑖𝑚𝑒)
+ (1 −

ℎ𝑐𝑜𝑢

𝑁−1
) + 𝑓𝑖𝑡𝑟𝑜𝑢, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (8) 

 

approach considers the networking to be the 

environment. The flying node (also known as 

the 𝑓𝑙𝑦𝑛𝑜𝑑𝑒 ) that has obtained the RREQ 

message is represented by the state of the 

agents. The activity throughout this procedure 

stands for a collection of nearby nodes that are 

permitted to receive RREQ messages in their 

current states (i.e., 𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ) ∈ 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 ). 

This set's representation is 𝐴 = {𝑓𝑙𝑦𝑛𝑜𝑑𝑒 →
𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ)1, 𝑓𝑙𝑦𝑛𝑜𝑑𝑒 →

𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ)2, … 𝑓𝑙𝑦𝑛𝑜𝑑𝑒 →

𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ)𝐾 . When the RREQ message, 

the agent, is in the state 𝑓𝑙𝑦𝑛𝑜𝑑𝑒  i  and 

performs the action, the state is changed to 

𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ) . Researchers establish various 

reinforcement learning elements, such as the 

learning rate (𝛼) , discount factor (𝛾)  and 

reinforced value, when the path discovery 

procedure is first started. While transmitting 

RREQ from the 𝑠𝑜𝑛𝑜𝑑𝑒 and 𝑑𝑒𝑠𝑛𝑜𝑑𝑒 , the 

suggested learning model should optimize the 

payoff. In RTARP, we take into account three 

balances: route time 𝑟𝑜𝑢𝑡𝑖𝑚𝑒 , hop count 

(ℎ_𝑐𝑜𝑢 ), and route fitness ( 𝑓𝑖𝑡_𝑟𝑜𝑢 .). The 

function that rewards finding the optimum path 

(_𝑃𝐴𝑇𝐻) for transferring data packets between 

the 𝑠𝑜𝑛𝑜𝑑𝑒 and 𝑑𝑒𝑠𝑛𝑜𝑑𝑒 . The path with the 

highest fitness, the fewest hops, and the 

shortest delay is called Best Route. As a result, 

the compensation function is determined using 

Eq. (8) 

 

The objective of the route scheduled 

maintenance is to quickly identify a broken route 

and substitute it with a fresh way for data packet 

transmission. The constructed route must be 

modified if one of the following mechanisms is 

present to prevent failure: 

 

• Phase 1: Whenever a 𝑓𝑙𝑦𝑛𝑜𝑑𝑒 is in the process 

of dying in a path, which occurs whenever the 

vitality level falls below the 𝑒𝑛𝑒𝑟_𝑡ℎ  energy 

threshold (i.e.,  𝑒𝑛𝑒𝑟𝑓𝑙𝑦𝑛𝑜𝑑𝑒
< 𝑒𝑛𝑒𝑟_𝑡ℎ ). 

Therefore, since fly node cannot complete the 

data transfer procedure, this pathway must be 

changed. 

• Phase 2: The buffering capacity is in the 

overflowing state whenever the traffic level of 

a 𝑓𝑙𝑦𝑛𝑜𝑑𝑒  in one path exceeds the traffic 

threshold 𝑡𝑟_𝑡ℎ (ie., 𝑡𝑟_𝑓𝑙𝑦𝑛𝑜𝑑𝑒 > 𝑡𝑟_𝑡ℎ), As a 

result of the path being blocked, there is an 

extremely significant delay when data is 

transferred along it. As a result, since this path 

is unable to transmit packets of data, it needs to 

be changed. 

• Phase 3: 𝑓𝑙𝑦𝑛𝑜𝑑𝑒 𝑎𝑛𝑑  𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ) 

connector is breaking in mode 3 whenever it 

falls below grade threshold 𝑞_𝑡ℎ , indicating 

that the relationship quality is poor. 

Consequently, this course has to be changed. 

 

The compensation associated with 𝑓𝑙𝑦𝑛𝑜𝑑𝑒  will 

be equal to 𝑅𝑚𝑖𝑛 . if any one of the three modes 

happens. 𝑓𝑙𝑦𝑛𝑜𝑑𝑒 next looks through its forwarding 

table to discover the pathways which involve it. A 

return message with the satisfaction is sent by the 

fly node to the networks it has come before. In order 

to select a different UAV as the next-hop location 

and alter the path, the preceding station 

subsequently runs the reinforcement learning 

algorithm. Keep in mind that till the new path is 

found and updated, the old route is still valid and 

can be used to send data packets. Data packets are 

moved onto the new path after that the old path has 

been eliminated. 

Step-1 establish the connection between  𝑠𝑜𝑛𝑜𝑑𝑒 and 

𝑑𝑒𝑠𝑛𝑜𝑑𝑒 

Step-2 check for the valid path 

If it is found then exchange the packets 

Else, revalidate the path 

Step-3 send the notification message 

Step-4 adopt the 𝑓𝑙𝑦𝑛𝑜𝑑𝑒 

Step-5 compute the distance between 𝑓𝑙𝑦𝑛𝑜𝑑𝑒 and 

𝑓𝑙𝑦𝑛𝑜𝑑𝑒(𝑛𝑒𝑖𝑔ℎ) 

Step-6 computes the radius 

Step-7 calculate route time 𝑟𝑜𝑢𝑡𝑖𝑚𝑒, hop count 

(ℎ_𝑐𝑜𝑢), and route fitness (𝑓𝑖𝑡_𝑟𝑜𝑢) 

3.5 Priority scheduling service 

As upload requests and download service 

requests start competing for the same minimal 

interaction channel capacity, if the agriculture zone 

(AZ) is unable to fulfil a few posting service 

requests, a few data could not be timely up to date 

and download service requests may receive stale 

data, which lowers the quality of data service as a 

whole. In order to maximize the benefits of event 

schedule via combining the supplied download and 
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upload service demands, it is crucial to create a 

service request balancing scheme. Assume that the 

communication throughput for upload requests is 

allotted at, 𝛿 and the remaining bandwidth, rest 1 −
𝛿 is used for download service calls. The advantages 

of delivered posting provider demands 𝑢𝑝_𝑏𝑒𝑛, the 

advantages of served download provider demands 

𝑑𝑜𝑤𝑛_𝑏𝑒𝑛 , and the penalties of delivered install 

service order collective with stale data 𝑝𝑒𝑛_𝑑𝑜𝑤𝑛 

should all be added up to form  𝑡𝑜𝑡_𝑏𝑒𝑛 , which 

represents the overall benefits obtained from the 

served upload and download service requests. Tot 

ben is thus represented as 

 

𝑡𝑜𝑡_𝑏𝑒𝑛 = 𝑢𝑝_𝑏𝑒𝑛 + 𝑑𝑜𝑤𝑛_𝑏𝑒𝑛 + 𝑝𝑒𝑛_𝑑𝑜𝑤𝑛  (9) 

 

Initially, up_ben could be written as 

 

𝑢𝑝_𝑏𝑒𝑛 = 𝜖. 𝛿. 𝑐𝑟𝑒𝑑                                      (10) 

 

where 𝑐𝑟𝑒𝑑𝑢𝑙 is the amount of credit for every 

served uploading service order group and represent 

the number of service order groups in the uploading 

demand table 𝑑𝑜𝑤𝑛_𝑡𝑎𝑏. The expression for second 

𝑑𝑜𝑤𝑛_𝑏𝑒𝑛 is 

 

𝑑𝑜𝑤𝑛_𝑏𝑒𝑛 = 𝜔. (1 − 𝜋). 𝜋. 𝑐𝑟𝑒𝑑_𝑢𝑙             (11) 

 

wherein 𝜔  is the total amount of download 

service order groups in the 𝑑𝑜𝑤𝑛_𝑟𝑒𝑞and 𝑐𝑟𝑒𝑑_𝑑𝑙 
is the number of credits for each downloaded 

download service request group that was 

successfully completed. A second expression of 

𝑝𝑒𝑛_𝑑𝑙 is 

 

𝑝𝑒𝑛𝑑𝑙 = 𝜔. (1 − 𝜋). (1 − 𝜋) − 𝑘𝑙                (12) 

 

Considering size of data, grouping demand 

deadlines, and information acceptance everyone has 

multiple evaluation schemes and types, the purpose 

of this procedure is to minimize any adverse effects 

from various metrologies. The AZ then determines 

the jth schedule parameter's probability using the 

given equations: 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑗 =
1

ln 𝑁
∑ (𝐺𝑖𝑗

𝑒𝑛𝑡. 𝑙𝑛𝐺𝑖𝑗
𝑒𝑛𝑡), 𝑗 ∈ [1,3]𝑁

𝑖=1   (13) 

 

Where in 𝐺𝑖𝑗
𝑒𝑛𝑡 is the jth schedule variable linked 

to the service order category 𝑑𝑖 , and therefore is 

denoted as 

 

𝐺𝑖𝑗
𝑒𝑛𝑡 =

𝑥𝑖𝑗

∑ 𝑥𝑘𝑗
𝑁
𝑘=1

                                            (14) 

 

The entropy value of the jth schedule parameter 

𝜇𝑗 could be described as follows based on the theory 

notion of multiple criteria strategic planning and 

entropy: 

 

𝜇𝑗 =
1−𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑗)

∑ (1−𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑘)3
𝑘=1

, 𝑗 ∈ [1,3]                   (15) 

 

Last but not least, it is possible to determine the 

delivering precedence of the service order grouping 

di, represented by 𝑝𝑟𝑖𝑜(𝑖), using 

 

𝑝𝑟𝑖𝑜(𝑖) = 1 −
∑ (𝜇𝑗.𝑋𝑖𝑗)3

𝑗=1

∑ ∑ (𝜇𝑗.𝑋𝑘𝑗)3
𝑗=1

𝑁
𝑘=1

, 𝑖 ∈ [1, 𝑁]     (16) 

 

The piece of data would be upgraded first when 

the uploading service requests are handled sooner, 

allowing the download service requests to acquire 

the most recent versions of the data items. 

Additionally, the very same service scheduling 

model is applied to service calls for both 

downloading and uploading. Because a separate 

service demand table is used for uploading and 

downloading customer inquiries, correspondingly, 

this system is created with the considerations of 

scalability and versatility for prospective growth and 

enhancement in the long term. 

Step-1 analyse the network factors 

Step-2 initiate route finding 

Step-3 obtain two hop discovery 

Step-4 initiate priority scheduling service 

Step-5 find 𝑑𝑜𝑤𝑛_𝑏𝑒𝑛 and 𝑝𝑒𝑛_𝑑𝑜𝑤𝑛 to obtain 

𝑡𝑜𝑡_𝑏𝑒𝑛 

Step-6 determine the schedule using entropy 

4. Performance analysis 

The performance of our proposed reinforcement 

learning-based topology-aware routing protocol with 

priority scheduling (RLTARP) is carried out by 

compared with three existing methods such as 

DroneCOCoNet [12], Markov decision process 

(MDP) [15] and deep deterministic policy gradient 

(DDPG) [16]. 

4.1 Simulation setup 

In a 1000 m × 1000 m × 400 m 3D area where 

drones are placed for surveillance purposes, nodes 

are uniformly distributed. Drones can fly at heights 

ranging from 50m to 200m, although this article will 

primarily focus on drones that fly at low altitudes. 

The drones move at speeds ranging from 12 m/s to 

30 m/s. The drones' maximum broadcast range is set 

to 350 meters. 
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Table 2. Analysis of PDR 

No. 

of 

nodes 

Drone- 

COCoNet 
MDP DDPG 

RLTAR

P 

10 10.2694 12.831 10.23 14.3854 

20 28.1188 30.199 25.67 34.2574 

30 51.9462 54.901 53.58 56.2568 

40 65.2473 71.114 73.98 78.2522 

50 79.5436 86.294 86.4 94.9474 

 
 

 
Figure 2. Packet delivery ratio 

4.2 Comparative analysis 

1- Packet delivery ratio  

The PDR is decided by the number of 

successfully delivered data packets at the destination 

node and the number of data packets originating 

from the source node. This metric excludes 

redundant data packets. PDR reflects the data 

delivery efficiency of the routing protocol. 

Fig. 2 depicts the shows packet delivery ratio 

comparison of existing DroneCOCoNet, MDP, 

DDPG and proposed RLTARP. X axis and Y axis 

shows that number of nodes and the values obtained 

in percentage respectively. When compared, existing 

DroneCOCoNet, MDP and DDPG methods achieve 

39.18%, 42.55% and 43.2% of Packet delivery ratio 

while the proposed RLTARP method achieves 

46.34% of Packet delivery ratio which is 7.2% better 

than DroneCOCoNet, 4.21% better than MDP and 

3.14% better than DDPG method. 

 

2- Average end to end delay 

The average time required for a successful data 

transmission between the source and destination is 

defined as the average E2E. 

Fig. 3 depicts the shows end to end delay 

comparison of existing DroneCOCoNet, MDP, 

DDPG and proposed RLTARP. X axis and Y axis 

shows that number of nodes and the values obtained 

in percentage respectively. When compared, existing 

DroneCOCoNet, MDP and DDPG methods achieve 

94.55%, 80.4% and 43.2% of Packet delivery ratio 

while the proposed RLTARP method achieves  

 

Table 3. Analysis of end to end delay 

No. of 

nodes 

Drone- 

COCoNet 
MDP DDPG 

RLTA

RP 

20 52.289 39.592 32.5 29.343 

40 85.482 71.912 73.7 15.769 

60 12.212 83.281 82.7 12.227 

80 37.379 18.934 45.4 11.338 

100 79.985 58.912 43.6 16.268 

 

 
Figure. 3 End to end delay 

 
Table 4. Analysis of routing overhead 

No. of nodes Drone- 

COCoNet 

MDP DDPG RLTARP 

20 56.7 61.4 72.3 21.5 

40 59.4 64.3 73.6 25.6 

60 58.4 65.4 76.4 26.44 

80 56.2 66 71.4 23.2 

100 55.9 66.7 70.9 22.65 

 

 

 
Figure. 4 Comparison of routing overhead 

 

16.45% of packet end to end delay which is 78.1% 

better than DroneCOCoNet, 63.95% better than 

MDP and 26.75% better than DDPG method. 

 

3- Routing overhead 

The number of control packets transmitted by a 

routing protocol is defined as the routing overhead. 

Routing overhead includes the Hello packets and 

node location information inserted in the packet 

header for topology construction and routing 

decisions. 

Fig. 4 depicts the shows routing overhead 

comparison of existing DroneCOCoNet, MDP, 

DDPG and proposed RLTARP. X axis and Y axis  
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Table 5. Analysis of energy consumption 

No. of nodes 
Drone- 

COCoNet 
MDP DDPG RLTARP 

20 24.6 17.8 23.4 14.2 

40 23.1 18.6 21.6 13 

60 21.7 19.4 21 12.7 

80 22.5 17.6 20.9 13.2 

100 21.8 16 20.5 13.9 

 

 

 
Figure. 5 Comparison of energy consumption 

 

shows that number of nodes and the values obtained 

in percentage respectively. When compared, existing 

DroneCOCoNet, MDP and DDPG methods achieve 

59%, 69.6% and 76.5% of routing overhead while 

the proposed RLTARP method achieves 16.45% of 

routing overhead which is 42.55% better than 

DroneCOCoNet, 53.15% better than MDP and 

60.05% better than DDPG method. 

 

4- Energy consumption: 

Energy consumption is defined as the amount of 

power consumed by each UAV node during the 

communications. Node energy consumption have 

major impact on overall network lifetime. 

Fig. 5 depicts the shows energy consumption 

comparison of existing DroneCOCoNet, MDP, 

DDPG and proposed RLTARP. X axis and Y axis 

shows that number of nodes and the values obtained 

in percentage respectively. When compared, existing 

DroneCOCoNet, MDP and DDPG methods achieve 

23%, 19% and 21% of energy consumption while 

the proposed RLTARP method achieves 13% of 

energy consumption which is 10% better than 

DroneCOCoNet, 7% better than MDP and 8% better 

than DDPG method. 

 

5- Network lifetime: 

The network lifetime is expressed as the total 

routing time until the first node dies. A longer 

network lifetime indicates more efficient routing. 

Fig. 6 depicts the shows network lifetime 

comparison of existing DroneCO-CoNet, MDP,  
 

Table 6. Analysis of network lifetime 

No. of 

nodes 
DroneCOCoNet MDP DDPG 

RLTA

RP 

20 64.7 74.3 83.58 97.6 

40 66.5 75.7 85.5 95.7 

60 62.5 78.9 83 98.6 

80 61.8 79 89.3 94.6 

100 60.5 76.6 81.6 94 

 

 

 
Figure. 6 Comparison of network lifetime 

 
Table 7. overall comparative analysis 

Parameter

s 

DroneCOCoN

et 

MD

P 

DDP

G 

RLT

ARP 

Packet 

delivery 

ratio (%) 

39.18 
42.5

5 
43.2 46.34 

Average 

End to end 

delay (%) 

94.55 80.4 43.2 67.49 

Routing 

overhead 

(%) 

59 69.6 76.5 16.45 

Energy 

consumpti

on (%) 

23 19 21 13 

Network 

lifetime 

(%) 

67.5 76.4 87.5 97.6 

 
 

DDPG and proposed RLTARP. X axis and Y axis 

shows that number of nodes and the values obtained 

in percentage respectively. When com-pared, 

existing DroneCOCoNet, MDP and DDPG methods 

achieve 67.5%, 76.4% and 87.5% of network 

lifetime while the proposed RLTARP method 

achieves 97.6% of network lifetime which is 30.1% 

better than DroneCOCoNet, 11.2% better than MDP 

and 10.1% better than DDPG method. 

5. Conclusion 

Owing to new hardware and software, the use of 

communications technology in precision farming 

has grown quickly. Additionally, many advanced 
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methods are indeed being created more and more in 

various fields to enhance and improve agriculture 

operations. Particularly remarkable is the apparent 

advantage of UAV utilization in recent research of 

precision farming. Additionally, it is a sector that is 

constantly developing new inventions and is 

evolving quickly. In order to quickly respond to 

changes in network topology, this reinforcement 

learning-based topology-aware routing protocol with 

priority scheduling (RLTARP) esti-mates the link 

duration and dynamically modifies the hello interval 

and link holding time. A routing protocol's 

performance might be enhanced by multi-path-based 

load balancing. The proposed RLTARP is compared 

with three state of art methods and hence it produces 

46.34% of packet delivery ratio, 67.49% of end to 

end delay, 16.45% of routing overhead, 13% of 

energy consumption and 97.6% of network lifetime. 

In our upcoming work, we'll take multi-path-based 

load balancing into account when we create the 

routing protocol. 
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