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Abstract: In medical analysis, early detection and diagnosis of cerebral palsy (CP) are highly helpful in stimulating 

brain cells and alleviating the adverse impacts of the disease. In the detection of CP, diagnostic tools such as magnetic 

resonance imaging (MRI) and general movements assessment (GMA) have emerged. In the past years, most studies 

have focused on GMA-based CP detection based on the different pose estimation methods. Amongst, the part affinity 

field (PAF) or OpenPose was one of the well-known methods for estimating the skeletal images from the RGB-D 

videos of infant general movements, which was used for CP detection. But, the estimated skeletal images were very 

few and it was difficult to annotate a large infant movement dataset. Therefore, in this article, a pose sequence-aware 

generative adversarial network (PS-GAN)-based data augmentation method is proposed that creates high-quality 

skeleton images for CP detection. First, long-range dependencies in continuous frames are acquired by self-attention 

and the dense graph is pruned to achieve efficient training. Then, spatial joints and temporal characteristics are encoded 

into the PS-GAN using the graph convolutional network (GCN) to map noises to high-quality skeleton images. Besides, 

the PS-GAN structure selection problem is defined as a Markov decision process (MDP) and solved using the new 

reinforcement learning (RL) to choose the optimal PS-GAN structure, which achieves effective generation. Further, 

the created skeleton images are used to train the convolutional neural network (CNN) with a softmax classifier and 

detect CP. At last, an extensive experiment is conducted on the MINI-RGBD, babyPose and motion infant analysis 

(MIA) databases. The results show that the PS-GAN-CNN achieves 92.2%, 92.5% and 92% accuracy for MINI-RGBD, 

babyPose and MIA databases in contrast with the PredictMed, fully connected network (FCNet), CNN-long short-

term memory (LSTM) and knowledge-based recurrent neural network (KBRNN) methods. 

Keywords: Cerebral palsy, General movement assessment, RGB-D videos, GAN, GCN, Markov decision process, 

Softmax. 

 

 

1. Introduction 

Cerebral Palsy (CP) is a group of disorders 

affecting 17 million individuals globally, primarily in 

preterm infants. It is caused by brain damage that 

impairs muscle control, affecting motion, pose, 

communication, and lifestyles. Preterm infants are 

more prevalent, with 32.4 cases per 1000 born 

prematurely and 70.6 cases per 1000 born 

exceedingly prematurely [1-3]. One-third of 

pregnancies with severe preterm births are impaired, 

increasing the risk of severe impairment [4]. Early 

detection and diagnosis of kids with CP using 

diagnostic tools like GMA and MRI is crucial. Early 

treatments aim to maximize infant brain adaptability, 

minimizing symptoms and damage [5-7].  

Early interventions are challenging and time-

consuming. Primary prevention techniques include 

two primary processes pose estimation and GMA. 

1.1 Pose estimation 

Infant pose estimation is divided into two types: 

RGB-based and depth information-based. Deep 

learning models like CNN and depth information are 

used for predicting 2D poses [8]. However, applying 

Kinect for motions is complex if the foreground and 

background are quite analogous, like a new-born in a 

prostrate position. A learning-free model-based 
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recursive matching (MRM) scheme is developed for 

estimating infant poses in prostrate positions [9], but 

its computational effectiveness is low. 

1.2 General movement assessment 

The GMA is a cost-efficient and reliable method 

used to detect irregular movement patterns in infants 

during growth phases [10-11]. It involves skilled 

professionals examining videos of infants, detecting 

fidgety movements between 9 and 20 weeks 

postpartum. But this method requires experienced 

professionals' effort, making it unaffordable for many 

infants. Automated detection schemes are needed to 

analyze infant movements in videos [12]. Academics 

are analyzing automated GMA schemes for CP 

diagnosis using machine learning models. These 

schemes predict new-borns based on GMA motion 

forms. Healthy newborns have more complications, 

while atypical ones are tedious [13]. The natural 

motion of the entire body remains synchronized in 

healthy brain development, but management is 

affected by muscle retraction and leisure [14]. 

To tackle the challenges in both pose estimation 

and GMA schemes, Wu et al. [15] developed a new 

scheme to predict CP in new-borns earlier from RGB-

D videos. They combined RGB photos and depth 

details to obtain 3D coordinates of the newborn in the 

prostrate position, instead of 2D coordinates. The part 

affinity field (PAF) scheme was used to estimate 

infant 2D movement. The 3D coordinates of the 

newborn's joints were obtained after 2D coordinate 

conversion and orientation, along with related depth 

photos. The intricacy of joint motion and correlations 

among distinct joints were studied. A full assessment 

index was calculated to quantify and diagnose the 

infant's CP risk based on GMA. However, the 

estimated skeleton images using the PAF were very 

few and it was difficult to annotate a large infant 

movement dataset. So, many variants of GAN models 

are applied [16], but they have a few shortcomings, 

such as that (i) spatial correlation among joints and 

temporal characteristics along constant frames are 

not discovered and (ii) an expensive pre-learning 

stage is needed to obtain intra-frame constraints.  

To tackle these problems, this study proposes the 

PS-GAN-based data augmentation method to create 

a large dataset and solve the class imbalance problem 

for CP detection. 

1.3 Major contributions 

The major aim of this study is to synthesize high-

quality skeleton images with labels. In this PS-GAN, 

self-attention is used to obtain long-range 

dependencies in continuous frames and train to prune 

the dense graph for effective learning. Also, the GCN 

is used to encode the spatial joints and temporal 

characteristics into the prediction. According to this, 

the PS-GAN converts noises into high-quality 

skeleton images. Additionally, the best PS-GAN 

structure is explored by the new RL, in which the PS-

GAN structure search problem is formulated as an 

MDP for structural sampling. This allows the 

efficient utilization of images created by past 

experiences. Moreover, the new large dataset is 

acquired from the created skeleton images, which are 

split into learning and test datasets. The learning 

dataset is fed to the CNN with a softmax classifier to 

learn the skeleton features for CP and the trained 

classifier is later used to detect CP from the test 

images. Thus, the accuracy of recognizing CP is 

increased by augmenting the number of skeleton 

images of high quality. 

The rest of the article is structured as follows: 

section 2 reviews the studies focused on CP detection 

and diagnosis. Section 3 explains the PS-GAN-CNN 

method and Section 4 clarifies its performance. 

Section 5 concludes the study and gives future work. 

2. Literature survey 

A logistic regression-based framework called 

PredictMed [17] was developed for predicting health 

conditions in children with CP. It uses a brute-force 

algorithm for feature reduction and logistic 

regression for health condition prediction. However, 

overfitting is addressed due to limited samples and 

lengthy computation time. 

An FCNet [18] was designed for classifying 

atypical infant body movements depending on the 

pose characteristics such as the histograms of joint 

angle and histograms of joint dislocation from the 

video sequences. However, the number of videos in 

the MINI-RGBD database was not sufficient, which 

differs from the real-time dataset for achieving 

efficient performance. So, a set of enhanced 

characteristics and a concatenation model [19] were 

developed for CP classification using a novel video 

database. But, the class imbalance problem was 

addressed and this model relied on the efficiency of 

the posture prediction. 

A novel spatio-temporal attention-based model 

(STAM) was developed [20] to analyze fidgety 

movements for CP detection. It retrieves individual 

postures and models infant movements using the 

Spatio-temporal GCN (ST-GCN). The model then 

chooses body parts with discriminatory data for 

predicting CP. However, it relies on precision and 

requires annotated data, which can be difficult to 

obtain. 
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A new CNN-LSTM [21] model was presented for 

automatically classifying infant body movements 

associated with CP by extracting pose characteristics 

from RGB video frames. But, the manual annotations 

take a long time and it needs more video frames to 

solve overfitting during training. A deep CNN-based 

image segmentation framework [22] was integrated 

with 3D cranial magnetic resonance imaging for 

diagnosing children with CP. However, the number 

of samples was insufficient to achieve the highest 

efficiency. 

A new Shallow multilayer neural network 

(SMNN) [23] was presented to classify an age-related 

movement pattern and the fidgety movements for CP 

detection. But, it needs a large database to enhance 

accuracy. A modified AlexNet [24] was presented for 

classifying CP from functional magnetic resonance 

images. But the dataset was extremely inadequate. A 

KBRNN was developed [25] using a CP information 

graph for domain understanding. An evolution 

scheme extracted knowledge, embedded it into 

tensors, and fed it into an RNN to learn correlation 

between signs and disorders from electronic medical 

records during CP diagnosis. However, lower 

annotated samples impacted learning performance. 

3. Proposed methodology 

In this section, the PS-GAN-CNN is explained 

briefly for CP detection and diagnosis. Fig. 1 portrays 

a pipeline of the presented study. 

Table 1 lists the notations used in this study. 

3.1 Dataset details 

In this study, three most well-known publicly 

available infant motion analysis datasets are used: 

1. MINI-RGBD dataset [26-27]: The corpus of 

12 RBG-D video sequences from 6 months 

old is an open source dataset for infant CP, 

providing accurate silhouette, texture, and 

motion. It anonymizes information by 

substituting unprocessed frames with 

machine-processed frames, and labels videos 

 

 
Figure. 1 Pipeline of the presented study 

Table 1. Lists of notations 

Notations Explanation 

𝑥  Skeleton image 

𝒢 Skeleton generator 

𝒟𝑓 Frame-based discriminator 

𝑇 Frame (pose sequence) length 

𝑁  Number of joints 

𝑧 Gaussian random noise 

𝑦 One-hot tag (i.e., label) 

𝑜𝑇−1  Results of RNN model 

𝐻  Input vector for self-attention unit 

ℎ𝑡  Hidden state vector at interval 𝑡 

𝐻𝑖𝑛   Output of attention layer 

𝑆𝑚𝑎𝑠𝑘 Attention score matrix 

�̃�𝑠 
Adjacency matrix of an entire 

image 

𝐻(1), … , 𝐻(5) Hidden state output vectors 

𝑘𝑓𝑟𝑎𝑚𝑒  Number of selected frames 

ℒ Objective function 

𝑝(𝑥) Ground truth distribution 

𝑝(𝑧) Normal Gaussian distribution  

𝐺 Undirected graph 

𝑉 Node set 

𝐴 

Adjacent matrix of the intra-frame 

created based on the skeleton 

structure 

𝐼 Self-association 

�̅� 
Intra-frame adjacency matrix after 

adding self-association 

𝑊𝑞 ,𝑊𝑘 ,𝑊𝑣 Prediction weights 

𝑆 Attention score 

𝑠𝑚,𝑛 
𝑛𝑡ℎ frame’s guidance on the 𝑚𝑡ℎ 

frame 

𝐷𝑖𝑖 Diagonal node degree matrix 

𝑟(𝑠, 𝑎) Remuneration value 

𝑃(𝑠′|𝑠, 𝑎) Switch probability 

𝜌(𝑠)  Primary structure 

𝑎  Agent’s action 

𝑅𝑡(𝑠, 𝑎)  New reward function 

𝛼  Tradeoff variable 

𝐽(𝜋)  
Objective function of off-policy RL 

system 

𝐼𝑆𝑓𝑖𝑛𝑎𝑙 , 𝐹𝐼𝐷𝑓𝑖𝑛𝑎𝑙   Final scores of the whole structure 

𝐽(𝑄)  Fitness function of critic network 

𝑄𝑡𝑎𝑟𝑔𝑒𝑡   Approximation target for 𝑄 

𝑓𝜃  
Input vector containing Gaussian 

noise 

𝐵  Memory buffer 

𝛽  Positive Lagrange multiplier 

 
using the GMA scheme, determining the 

incidence of nervous motions. 

2. BabyPose dataset [28]: The data includes 16 

depth videos of preterm children's motion in  
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 (a)  

 
(b) 

Figure. 2: (a) Generator network and (b) Discriminator 

network 

 
NICUs, with 1000 frames per video and 

annotated with limb-joint positions for 12 

joints: shoulder, elbow, wrist, hip, knee, and 

ankle. 

3. Motion infant analysis (MIA) dataset [29]: It 

comprises the state vector and timestamp, 

derived from depth measurements from an 

RGB-D sensor situated perpendicularly 

above the child lying in a supine position on 

the crib, typically 70 cm away. 
Once dataset is acquired, OpenPose or PAF is 

used to predict the newborn 2D motion, which is 

infant pose skeleton images. Those skeleton images 

are given as input to the PS-GAN for augmenting the 

number of infant skeleton images. 

3.2 Pose sequence-aware GAN for high-quality 

skeleton generation 

In the PS-GAN-based data augmentation method, 

the GCN is integrated to encode the rich structural 

data to minimize computational complexity by 

utilizing self-attention to train a skeleton graph. The 

structure of PS-GAN comprises a skeleton generator 

𝒢 (see Fig. 2 (a)) and a frame-based discriminator 𝒟𝑓 

(see Fig. 2 (b)). 

Generator: 

Consider the frame (pose sequence) length is 𝑇. 

The skeleton generator is initiated by an RNN with  

 

 
Figure. 3 Overview of self-attention graph convolution 

layer 

 

an input at every interval as the fusion of Gaussian 

random noise 𝑧  and an entrenched category 

interpretation of a tag 𝑦. The results of the RNN are 

represented as [𝑜0, 𝑜1, … , 𝑜𝑇−1]. Assume outputting 

residuals rather than the accurate coordinates of 

various joints, i.e. 𝑐0 = 𝑜0, 𝑐1 = 𝑜1 + 𝑐0, … , 𝑐𝑇−1 =
𝑜𝑇−1 + 𝑐𝑇−2. The RNN result is passed via 3 linear 

transformations before providing the input to the 

GCN layer. 

Graph convolutional layer: 

The major layer of this PS-GAN is the self-

attention-based graph convolution as shown in Fig. 3. 

The input of this layer is denoted as a feature vector 

𝐻 ∈ ℝ𝑇×𝑁. Using a self-attention unit, the outcome 

is a novel interpretation 𝐻𝑖𝑛 ∈ ℝ
𝑇×𝑁×1 and a trained 

covered attention score matrix 𝑆𝑚𝑎𝑠𝑘 ∈ ℝ
𝑇×𝑇. After 

this unit, 5 graph convolutional units are performed, 

wherein all layers take the final layer’s hidden state 

vector and covered adjacency matrix �̃�𝑠 as the input. 

The hidden states that are outcomes of the 5 

graph convolutional units, are represented as 𝐻(1) ∈

ℝ𝑇×𝑁×32 , 𝐻(2) ∈ ℝ𝑇×𝑁×64 , 𝐻(3) ∈ ℝ𝑇×𝑁×64 , 

𝐻(4) ∈ ℝ𝑇×𝑁×128  and 𝐻(5) ∈ ℝ𝑇×𝑁×128 , 

correspondingly. Also, the ResNet approach is 

employed on all 2 graph convolutional units, i.e. the 

outcome of the initial graph convolutional layer is 

added to the 3rd graph convolutional layer and the 
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outcome of the 3rd graph convolutional layer to the 

last outcome. 

Discriminator: 

The frame-based discriminator 𝒟𝑓  arbitrarily 

chooses frames (𝑘𝑓𝑟𝑎𝑚𝑒) of a given image and the 

related tags as the input. The discriminator outcome 

is either real or fake. The conditional GAN objective 

function is formulated as: 

 

ℒ =  min
𝒢
 max
𝒟𝑓
 𝔼𝑥~𝑝(𝑥)[log𝒟𝑓(𝑥|𝑦)]      

+𝔼𝑧~𝑝(𝑧) [𝑙𝑜𝑔 (1 − 𝒟𝑓(𝒢(𝑧|𝑦)))]   (1) 

 

In Eq. (1), 𝑝(𝑥) is the ground truth distribution, 

𝑝(𝑧) defines the normal Gaussian distribution and 𝑦 

denotes the 1-hot tag. 

3.2.1. Skeleton graph generation 

Typically, the skeleton image is defined by 2D or 

3D coordinates of the infant’s joints in all frames. The 

inter-frame activity is the fixed skeleton in spatial 

region, whereas the inter-frame activity is the motion 

in temporal region. To obtain the temporal 

relationship, a connected graph is built for a complete 

skeleton image and an inter-frame association is 

learned by implementing self-attention training. An 

undirected graph 𝐺 = (𝑉, 𝐸) is built on a complete 

skeleton image of 𝑇  frames, all comprise 𝑁  joints. 

The node set 𝑉 = {𝑣𝑡𝑖|𝑡 = 0,… , 𝑇 − 1, 𝑖 = 1,… ,𝑁} 
comprises each joint of a skeleton image. 

3.2.2. Executing self-attention-based GCN 

Assume each joint in a skeleton image with a 2D 

adjacent matrix having row and column dimension 

𝑁 ∗ 𝑇 . Initially, 𝐴 ∈ ℝ𝑁×𝑁  is used to represent the 

adjacent matrix of the intra-frame that is created 

based on the structure of a skeleton. Once self-

associations 𝐼  are added, the intra-frame adjacency 

matrix can be �̅� = 𝐴 + 𝐼 . After that, an initial 

adjacency matrix of an entire image is represented as: 

 

�̃� = (

�̅�
𝐼
⋮
𝐼

 

𝐼
�̅�
⋮
𝐼

 

⋯
⋯
⋱
⋯

 

𝐼
𝐼
⋮
�̅�

)

(𝑁∗𝑇)×(𝑁∗𝑇)

    (2) 

 

In Eq. (2), 𝐼 is utilized to define linking all nodes 

with each related node in the temporal region, 

(𝑁 ∗ 𝑇) × (𝑁 ∗ 𝑇) defines �̃� is a 2D matrix with both 

row and column dimension 𝑁 ∗ 𝑇 , where 𝑁  and 𝑇 

are integers, ∗  is a multiplication process. The 

adjacency matrix �̃�  defines all nodes in a single 

frame are linked to the respected node in the temporal 

region. Simultaneously, it links to the nearby nodes 

in the spatial region coded by �̅�. 

After, self-attention is used to prune the skeleton 

graph for learning a group of attention scores coding 

the importance of all frames with respect to the 

present frame and merely selecting the top-K frames 

in the temporal region. The self-attention unit input is 

denoted by 𝐻 ≜ {ℎ0, ℎ1, … , ℎ𝑇−1}, where ℎ𝑡 ∈ ℝ
𝑁 is 

the hidden state vector at interval 𝑡  with 𝑁  nodes. 

Based on this, 𝑄, 𝐾 and 𝑉 are defined in Eq. (3), 

 

𝑄 = 𝑊𝑞𝐻,𝐾 = 𝑊𝑘𝐻, 𝑉 = 𝑊𝑣𝐻   (3) 

 

In Eq. (3), 𝑊𝑞 ,𝑊𝑘 and 𝑊𝑣 are prediction weights. 

The attention score 𝑆 ∈ ℝ𝑇×𝑇  and the attention 

layer’s output 𝐻𝑖𝑛 are computed in Eq. (4): 

 

𝑆 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾⊤); 𝐻𝑖𝑛 = 𝑆𝑉   (4) 

 

In the task of skeleton generation, 𝑆 is modified 

as a covered attention 𝑆𝑚𝑎𝑠𝑘 that avoids the present 

frame from joining to successive frames. 

 

𝑆𝑚𝑎𝑠𝑘 = (

𝑠0,0
𝑠1,0
⋮

𝑠𝑇−1,0

  

0
𝑠1,1
⋮

𝑠𝑇−1,1

  

⋯
⋯
⋱
⋯

  

0
0
⋮

𝑠𝑇−1,𝑇−1

)

𝑇×𝑇

  (5) 

 

In Eq. (5), the element 𝑠𝑚,𝑛  is the 𝑛𝑡ℎ  frame’s 

guidance on the 𝑚𝑡ℎ frame and values in the upper 

triangle are equivalent to zero. To implement the 

pruning, the top-𝐾 scores are chosen in all rows of 

the 𝑆𝑚𝑎𝑠𝑘  and another element is assigned as zero. 

Observe that, when the total non-zero elements in a 

few rows is smaller than 𝐾, each non-zero element 

can be maintained. Eventually, the adjacent matrix is 

created as Eq. (6): 

 

�̃�𝑠 = 𝑆𝑚𝑎𝑠𝑘⊙ �̃� ≜ 

(

 

𝑠0,0 ∗ �̅�

𝑠1,0 ∗ 𝐼
⋮

𝑠𝑇−1,0 ∗ 𝐼

  

0
𝑠1,1 ∗ �̅�

⋮
𝑠𝑇−1,1 ∗ 𝐼

  

⋯
⋯
⋱
⋯

  

0
0
⋮

𝑠𝑇−1,𝑇−1 ∗ �̅�)

 

(𝑁∗𝑇)×(𝑁∗𝑇)

  

(6) 

 

The self-attention-based graph convolutional unit 

(afore activation) result is, 

 

𝐻(1) = 𝐷−1�̃�𝑠𝐻𝑖𝑛𝑊    (7) 

 

In Eq. (7), 𝐷𝑖𝑖 = ∑ �̃�𝑠
𝑖𝑗

𝑗  is the diagonal node 

degree matrix for regularizing �̃�𝑠, 𝐻
(1) indicates the 
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hidden state next to the initial graph convolutional 

layer in Fig. 3. The graph convolution process is 

performed in Eq. (7) utilizing alike �̃�𝑠  for 5 times. 

The outcome of the 5th graph convolutional unit is 

𝐻(5) . Following a linear unit, the outcome of the 

generator is obtained, which is a created skeleton 

image 𝑥 ∈ ℝ𝑇×𝑁. 

For training the PS-GAN, the skeleton sequence 

length is set at 25. The 𝒟𝑓  arbitrarily chooses 20 

frames from each created skeleton image and 

learning images as the input. The self-attention graph 

convolution layer chooses the first 5 earlier frames to 

build �̃�𝑠. The learning and testing batch sizes are set 

to 100 and 500, respectively and the training rate is 

set to 0.001. Conversely, the design of good GCN 

structures for GANs takes more time, effort and 

domain knowledge, i.e., designing complex 

generators or discriminator backbones to well create 

high-resolution images.  

To solve this problem, an effective automated 

structure search model for PS-GAN is highly 

essential. From this perspective, the RL-based GCN 

structure search model is proposed to find the best 

network structure of the PS-GAN. 

3.3 Reinforcement learning for PS-GAN structure 

search 

The goal is to improve training task speed by 

using step-wise sampling instead of whole trajectory-

based sampling and utilizing historical knowledge 

from previous strategies. To accomplish this, the PS-

GAN structure search problem is formulated as an 

MDP and solved using off-policy RL. 

3.3.1. Problem formation 

The PS-GAN structure search problem is an 

MDP using state-based sampling to improve training 

and reduce stemming from whole structures, making 

it easier to learn strategies using off-policy data. 

An MDP is defined as a tuple (𝑆, 𝐴, 𝑟, 𝑃, 𝜌) , 

where 𝑆  denotes the group of states that can 

accurately define the current structure (like the 

configuration, the efficiency of the structures, etc.), 𝐴 

denotes the group of actions that signifies the 

structure of the successive cell, 𝑟(𝑠, 𝑎) denotes the 

remuneration value utilized to describe how good the 

structure is, 𝑃(𝑠′|𝑠, 𝑎) denotes the switch probability 

specifying the learning task and 𝜌(𝑠)  denotes the 

primary structure. A cell is defined as a structural 

block used for exploration in a single epoch. 

This problem formulation allows us to potentially 

create a new global optimizer through collective 

remuneration deprived of the complexity of 

determining remuneration across the complete 

trajectory simultaneously. 

3.3.2. Off-policy RL solver 

The off-policy RL is combined in the PS-GAN 

structure search using the MDP formulation. To 

construct the off-policy solver, the state, reward and 

action are designed for satisfying the requirements of 

the PS-GAN structure model and the MDP. 

1. State: MDP needs a state interpretation that 

will accurately define the present system up to the 

present epoch. It wishes to be robust in the learning 

process to avoid totaling high differences in the 

policy system's learning. The robustness constraint is 

significant because the policy system depends on it to 

configure the successive cells. An advanced state 

interpretation is proposed for the PS-GAN structure 

search to enhance the generation efficiency of 

intermediate RGB results for all structure cells. For a 

constant batch of input noise, the mean outcome of 

all cells is adopted as the advanced state 

interpretation. This interpretation is downsampled to 

carry out a fixed dimension across multiple cells. 

Additionally, network performance and the number 

of units are used to obtain additional data regarding 

the state. To abridge, the configured state 𝑠 
comprises the depth, performance of the present 

structure and advanced state interpretation. 

2. Action: The policy system determines the 

subsequent action for the current state that codes the 

data for earlier layers. It defines the structure of a 

single cell. For instance, when the search space is 

followed based on the AutoGAN, the action can 

include skip connections, upsampling processes, 

shortcut connections, various kinds of convolution 

units and the regularization unit. This is described 

by 𝑎 = [𝑐𝑜𝑛𝑣, 𝑛𝑜𝑟𝑚, 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒, 𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡, 𝑠𝑘𝑖𝑝] . 

The agent's action outcome can be performed by a 

softmax categorizer decoding into a process. For an 

effective off-policy scheme, an equivalent search 

space called AutoGAN is used, which refers to the 

search for generator and the discriminator structure is 

pre-configured and emerges as the generator. 

3. Remuneration: It is designed for efficiency 

enhancement after inserting additional cells. The 

Inception Score (IS) and Frchet Inception Distance 

(FID) are used as measures of network efficiency. 

Because the IS value is tolerant and the FID value is 

degressive, the new reward function is formulated as: 

 

𝑅𝑡(𝑠, 𝑎) = 𝐼𝑆(𝑡) − 𝐼𝑆(𝑡 − 1) + 

𝛼(𝐹𝐼𝐷(𝑡 − 1) − 𝐹𝐼𝐷(𝑡))  (8) 
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Figure. 4 Overview of off-policy RL model for PS-GAN structure search 

 

In Eq. (8), 𝛼 is a variable to balance the tradeoff 

between the 2 measures. By applying the 

performance enhancement in all steps, the RL will 

increase the expected sum of rewards over the whole 

trajectory. This allows us to target the promising 

global best structure with the maximum reward: 

 

𝐽(𝜋) = ∑ 𝔼(𝑠𝑡,𝑎𝑡)~𝑝(𝜋)𝑅(𝑠𝑡 , 𝑎𝑡)𝑡=0     

= 𝔼𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒~𝑝(𝜋)𝐼𝑆𝑓𝑖𝑛𝑎𝑙 − 𝛼𝐹𝐼𝐷𝑓𝑖𝑛𝑎𝑙    (9) 

 

In Eq. (9), 𝐼𝑆𝑓𝑖𝑛𝑎𝑙  and 𝐹𝐼𝐷𝑓𝑖𝑛𝑎𝑙  are the final 

scores of the whole structure. After designing the 

state, reward and action, the off-the-shelf soft actor-

critic RL scheme is applied depending on the 

maximum entropy RL model as the training 

algorithm. The actor intends at increasing expected 

reward and entropy. This maximizes learning 

stability and search ability during learning. 

For the training of the critic, the fitness function 

is described by 

 

𝐽(𝑄) = 𝔼(𝑠,𝑎)~𝐵 [
1

2
(𝑄(𝑠, 𝑎) − 𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎))

2
]  

 (10) 

In Eq. (10), 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 is the approximation target 

for 𝑄: 

 

𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛾𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠
′𝑓(𝜖, 𝑠′))  

   (11) 

 

The fitness function of the policy system is 

provided as: 

 

𝐽(𝜋) =  

𝔼𝐵 [𝛽[log(𝜋𝜃(𝑓𝜃(𝜖, 𝑠)|𝑠)) − 𝑄(𝑠, 𝑓𝜃(𝜖, 𝑠))]] (12) 

 

In Eq. (12), 𝜋𝜃 is parameterized by the GCN 𝑓𝜃, 

𝜖 defines an input vector containing Gaussian noise, 

𝐵 = {(𝑠, 𝑎, 𝑠′, 𝑟)} defines the restate buffer to store 

the MDP tuples and 𝛽 defines the positive Lagrange 

multiplier to control the relative significance of the 

policy entropy. 

Fig. 4 illustrates an overview of the off-policy RL 

model for the PS-GAN structure search. The whole 

procedure involves 5 tasks: (i) the agent recognizes 

the present state (𝑠𝑡)  denoted by 𝑠 =
[𝐷𝑒𝑝𝑡ℎ, 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒, 𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑎𝑡𝑒] , (ii) 

the agent creates a result 𝑎𝑡 on how to configure the 

cell extra to earlier cells based on the state data, 

whereas 𝑎𝑡  comprises the skip connection, 

upsampling processes, shortcut connections, various 

kinds of convolution units and a regularization unit, 

(iii) gradually learn the novel structure, get 

remuneration 𝑟𝑡  and novel state 𝑠𝑡+1  data and then 

repeat it, (iv) store the off-policy memory tuple 
[𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1] into the memory buffer 𝐵 and (v) test 

a batch of information from 𝐵 to update the policy 

system. 

3.3.3. Execution of RL-based PS-GAN 

1. Agent learning: As the GCN structure search 

problem is reformulated as a multi-phase MDP, the 

agent can create many results in a trajectory 𝜏 =
[(𝑠1, 𝑎1),… , (𝑠𝑛, 𝑎𝑛)] . In all steps, the agent can 

gather this experience [𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1] in the 𝐵. After 

obtaining the minimum memory size threshold, the 

agent is modified by the Adam optimization, which 

uses the fitness function given in Eq. (12), via 

sampling a batch of information from 𝐵  in an off-

policy manner. The whole search contains 2 intervals: 

the search interval and the exploitation interval. 

During the search interval, the agent can sample a 
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promising structure. During the exploitation interval, 

the agent can select the optimal structure to rapidly 

improve the strategy. The search interval continues 

for 70% of epochs and the exploitation considers 30% 

of epochs. After attaining the memory threshold, for 

all search steps, the strategy can be modified. For all 

exploitation steps, the strategy can be modified 10 

times to converge rapidly. 

2. Proxy procedure: An advanced proxy 

procedure efficiently gathers remunerations by 

training a cell trajectory for a single iteration and 

calculating the remuneration for the new cell. The 

weight of the GCN is reassigned after completing the 

structure trajectory design to estimate the Q-value of 

all state-action pairs. The training procedure for RL-

based PS-GAN is presented below. 

Algorithm for RL-based PS-GAN structure 

search 

Input: hyperparameters, learning rates 𝛼𝜙𝑄 , 𝛼𝜃 

Output: Optimal PS-GAN structure 

1. Initialize a Q-system 𝑄(𝑠, 𝑎)  and policy 

system 𝜋(𝑎|𝑠) with variables 𝜙𝑄 , 𝜃  and the 

Lagrange multipliers 𝛽 in a random manner; 

2. Initialize the variables of target systems with 

�̅�𝑄 ← 𝜙𝑄 , �̅� ← 𝜃; 

3. 𝒇𝒐𝒓(𝑎𝑙𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)  
4.      Reassign the weight and cells of PS-

GAN; 

5.      𝒇𝒐𝒓(𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠) 
6.         𝒊𝒇(𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛) 
7.  Sample 𝑎𝑡  from 𝜋(𝑠) , insert the 

respected cell to the PS-GAN; 

8.         𝒆𝒍𝒔𝒆 𝒊𝒇(𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛) 
9.  Select the optimal 𝑎𝑡 from 𝜋(𝑠) and 

the respected cell to the PS-GAN; 

10.         𝒆𝒏𝒅 𝒊𝒇 

11.         Gradually train the PS-GAN; 

12.         Note 𝑠𝑡+1, 𝑟𝑡  and accumulate 

(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝐵; 

13.      𝒆𝒏𝒅 𝒇𝒐𝒓 

14.      𝒇𝒐𝒓(𝑎𝑙𝑙 𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑒𝑝𝑠) 
15.         Sample mini-batches of alterations from 

𝐵 and modify 𝑄 and 𝜋 with gradients; 

16.         Adjust the target systems with soft 

substitution: 

17.         �̅�𝑄 ← 𝜏𝜙𝑄 + (1 − 𝜏)�̅�𝑄; 

18.         �̅� ← 𝜏𝜃 + (1 − 𝜏)�̅�; 

19.      𝒆𝒏𝒅 𝒇𝒐𝒓 

20. 𝒆𝒏𝒅 𝒇𝒐𝒓  

Thus, the optimal PS-GAN structure is trained to 

create high-quality skeleton images, which are fed to 

a CNN with a softmax classifier. The trained model 

classifies test video sequences into CP and healthy 

infants for earlier diagnosis. 

4. Experimental result 

The efficiency of the PS-GAN-CNN is assessed 

by implementing it in Python 3.7.8. A comparative 

analysis is conducted between the proposed and 

methods such as PredictMed [17], FCNet [18], CNN-

LSTM [21] and KBRNN [25]. For this purpose, all 

these methods and proposed PS-GAN-CNN are 

implemented and tested for the given MINI-RGBD, 

babyPose and MIA datasets, which helps to 

comprehend the successfulness of the PS-GAN-CNN 

method. Table 2 lists the parameter settings for 

existing and proposed methods. 

The performance measures are described below. 

• Accuracy: It is the proportion of 

appropriately detected CP skeleton images over the 

total images tested. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
   (13) 

 

In Eq. (13), TP is the number of healthy images 

detected as healthy, TN is the number of CP images 

detected as CP, FP is the number of CP images  

 
Table 2. Parameter settings for proposed and existing 

methods 

Algorithms Parameters Range 

PredictMed [17] 

Maximum number of 

iterations 
200 

Probability threshold 0.5 

FCNet [18] 

Learning rate 0.0005 

Number of epochs 4000 

Batch size 3 

Dropout rate 0.5 

CNN-LSTM [21] 

Training rate 0.001 

Dropout rate 0.5 

Number of epochs 100 

Batch size 20 

Optimizer Adam 

KBRNN [25] 

Learning rate 0.001 

Number of hidden states 100 

Number of epochs 150 

Batch size 25 

Dropout rate 0.2 

Optimizer Adam 

Proposed PS-

GAN-CNN 

Learning rate 0.001 

Batch size 64 

Number of epochs 120 

Momentum 0.99 

Dropout rate 0.5 

Weight decay 0.0005 
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Figure. 5 Performance analysis for proposed and existing 

CP detection methods using MINI-RGBD dataset 

 

 
Figure. 6 Performance analysis for proposed and existing 

CP detection methods using babyPose dataset 

 

detected as healthy and FN is the number of healthy 

images detected as CP. 

• Precision: In Eq. (14), it measures the 

properly detected skeleton images at TP and FP rates. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (14) 

 

• Recall: In Eq. (15), it measures the fraction 

of skeleton images that are properly detected at TP 

and FN rates. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (15) 

 

• F-score (𝐹): It is computed in Eq. (16), 

 

𝐹 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
              (16) 

 

Fig. 5 depicts the effectiveness of various 

methods on the MINI-RGBD database for detecting 

and diagnosing CP. It observes that the accuracy of  

 

 

 
Figure. 7 Performance analysis for proposed and existing 

CP detection methods using MIA dataset 

 

the PS-GAN-CNN method is higher than the other 

existing methods due to the use of self-attention GCN 

with off-policy RL for choosing the optimal structure 

of PS-GAN, which can generate more high-quality 

skeleton images for the classification process. From 

this scrutiny, it is addressed that the accuracy of the 

PS-GAN-CNN method is 11.22% superior to the 

PredictMed, 7.84% superior to the FCNet, 4.77% 

superior to the CNN-LSTM and 2.79% superior to 

the KBRNN methods. The precision of the PS-GAN-

CNN method is 12.4%, 7.8%, 4.9% and 3.5% greater 

than the PredictMed, FCNet, CNN-LSTM and 

KBRNN methods, respectively. The recall of the PS-

GAN-CNN method is 11.9%, 8.5%, 4.9% and 3.1% 

better than the PredictMed, FCNet, CNN-LSTM and 

KBRNN methods, respectively. As well, the f-score 

of the PS-GAN-CNN is 12.2%, 8.1%, 4.9% and 3.3% 

superior to the PredictMed, FCNet, CNN-LSTM and 

KBRNN methods, respectively. 

Fig. 6 portrays the effectiveness of various 

methods on the babyPose database for detecting and 

diagnosing CP. It is observed that the accuracy of the 

PS-GAN-CNN method is improved by 11.31%, 

7.81%, 4.64% and 2.78% compared to the 

PredictMed, FCNet, CNN-LSTM and KBRNN 

methods. The precision of the PS-GAN-CNN method 

is 11.68%, 8.38%, 4.56% and 3.61% greater than the 

PredictMed, FCNet, CNN-LSTM and KBRNN 

methods, respectively. The recall of the PS-GAN-

CNN method is 11.22%, 7.84%, 4.77% and 3.02% 

better than the PredictMed, FCNet, CNN-LSTM and 

KBRNN methods, respectively. As well, the f-score 

of the PS-GAN-CNN is 11.38%, 8.11%, 4.66% and 

3.25% superior to the PredictMed, FCNet, CNN-

LSTM and KBRNN methods, respectively. 

Fig. 7 illustrates the effectiveness of various 

methods on the MIA database for detecting and 

diagnosing CP. It is observed that the accuracy of the 



Received:  June 6, 2023.     Revised: July 25, 2023.                                                                                                          521 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.44 

 

PS-GAN-CNN method is improved by 11.52%, 

8.49%, 4.55% and 2.91% compared to the 

PredictMed, FCNet, CNN-LSTM and KBRNN 

methods. The precision of the PS-GAN-CNN method 

is 12.08%, 8.86%, 4.48% and 2.94% greater than the 

PredictMed, FCNet, CNN-LSTM and KBRNN 

methods, respectively. The recall of the PS-GAN-

CNN method is 11.84%, 8.79%, 4.57% and 2.92% 

better than the PredictMed, FCNet, CNN-LSTM and 

KBRNN methods, respectively. As well, the f-score 

of the PS-GAN-CNN is 12.02%, 8.82%, 4.58% and 

2.93% superior to the PredictMed, FCNet, CNN-

LSTM and KBRNN methods, respectively. 

Thus, it is realized that the PS-GAN-CNN can 

augment the number of infant skeleton images for 

training and maximize the accuracy of detecting CP 

significantly. 

5. Conclusion 

This paper presents a PS-GAN-based data 

augmentation method for generating high-quality 

skeleton images and recognizing CP infants. The 

method uses self-attention and pruned dense graphs 

to train the PS-GAN, which encodes spatial joints and 

temporal properties. The off-policy RL-based model 

is used to choose the optimal structure for skeleton 

image generation. The generated images are then 

passed to a CNN with a softmax classifier for 

detecting CP. Finally, the test results proved that the 

PS-GAN-CNN on the MINI-RGBD, babyPose and 

MIA databases has an accuracy of 92.2%, 92.5% and 

92%, respectively in contrast with the PredictMed, 

FCNet, CNN-LSTM and KBRNN methods to 

identify CP from the infant's general movements. But 

the occlusions in video frames may impact the 

detection performance. Hence, the future work focus 

on handling occlusion problem in CP detection and 

increasing the accuracy efficiently. 
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