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Abstract: Evolutionary algorithms (EAs) in the repository of the evolutionary computing (EC) paradigm are 

simplistic and stochastic in nature. The desirable characteristic of adaptive simplicity has sustained research 

community’s rampant curiosity in EAs. Distributed evolutionary algorithmic (DEA) framework is an instinctive 

extension of EAs. This paper summarizes the design and implementation of a multi-threaded DEA (MTDEA) 

framework. Empirical analysis between a traditional DEA framework and a simulated MTDEA is presented. The 

MTDEA framework was outfitted with three plug-in algorithms to handle commonly occurring faults in distributed 

environments. The propriety of the MTDEA framework was validated in two customary applications - Image 

thresholding and Image reproduction. The thresholding and reproduction problems were addressed by incorporation 

of the differential evolution (DE) and genetic algorithm (GA) methods respectively, into the MTDEA framework. The 

performances of DE and GA routines were compared with their sequential counterpart frameworks. The MTDEA 

framework was evaluated for reliability and scalability on a high-performance computing (HPC) system.  

Keywords: Differential evolution, Distributed frameworks, Evolutionary algorithms, Fault tolerant, Genetic 

algorithm, Image reproduction, Image segmentation. 

 

 

1. Introduction 

Motivated by their metaheuristic characteristics, 

evolutionary algorithms (EAs) have drawn the 

attention of researchers around the world, to solve 

optimization problems across diverse domains.  EAs 

utilize naturally evoked mechanisms to tackle 

optimization problems through processes that mimic 

living organisms' natural behaviors. Given a specific 

optimization problem, EAs generate a random 

solution space at the outset, followed by iterative 

generation of new solutions from existing solutions, 

as well as searches for optimal solutions. 

Nevertheless, EAs search-based problem-solving 

methodology has certain limitations such as 

convergence towards local minima and restricting the 

search space towards the local optima, which renders 

them ineffective in taking on complex multi-

objective optimization problems with higher 

dimensions [1]. 

Pursuant to a decade of active research attempts to 

overcome EA’s drawbacks, the evolutionary 

computing (EC) research community has been 

looking into parallel and distributed computational 

approaches. Unification of EAs into parallel and 

distributed computing (DC) systems has been 

propitious in preference to sequential methods, 

towards solving complex optimization problems.  

Recent times have witnessed unabated 

exponential advancements in the application of image 

processing techniques in the domains of science and 

technology. The broad range of appliances include 

remote sensing, medical imaging, acoustic imaging, 

and biometric identification. Development of 

algorithmic frameworks producing optimal solutions 

with minimal computation complexity, for image 

processing, is in high demand in the distribution 

communication-based industry. Population-tweaked 

EAs, marshalled by their parallel and distributed 

extensions, have been remarkably sought after 
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investigative avenues for image processing problems. 

This paper zeroed in on two everyday image 

processing applications - image segmentation and 

image reproduction - using distributed evolutionary 

computing (DEC) frameworks.  

Image thresholding is a kind of image 

segmentation that segregates an ambient scenario into 

background and foreground images. Image 

thresholding tasks play crucial roles in image 

processing routines, there exist various image 

thresholding techniques [2] in the literature.  The 

typical Otsu method [3] processes a simple image to 

provide the required segmented image, except when 

Otsu is exposed to an image with minimal signal-to-

noise ratio. Otsu being highly sensitive to noisy 

images, image segmentation is preceded by image-

smoothening. Albeit the ‘2D (two-dimension) 

maximum between cluster variance’ [4] scheme does 

the job, the time complexity of implementing the 

algorithm increases proportionately. Published 

literature is rife with diverse EA-based image 

thresholding approaches. Differential Evolution (DE) 

is one of the EAs well known for its simple stochastic 

nature. Proficient DE has a proven track-record 

dealing with demanding image processing encounters. 

The evolutionary nature of the DE algorithm can be 

exploited for threshold selection for a given set of 

noisy input images. Decomposition of input image 

into sub-images that are segregated via DE-based 

thresholding modulates peculiar over-segmentation 

to provide the pertinent resultant image. 

Commonplace image reproduction and 

enhancement processes are intended to create a copy 

of a given image, with a picture quality same as the 

original, or superior to it. Genetic Algorithm (GA), a 

member of the EA family, has been actively adopted 

by researchers for these processes [5].   

This paper zeroes in on the design of pertinent 

DEC frameworks to solve the dual problems of image 

segmentation and image reproduction, A 

multithreaded differential evolution algorithm 

(MTDEA) framework was implemented as a base 

platform, involving the algorithmic strategy 

presented in [6]. Incorporation of three plug-in 

algorithms [7] capacitated MTDEA’s resilience to 

three commonly occurring faults in DC scenarios. 

The proffered MTDEA framework was validated 

empirically, via a benchmarked study. MTDEA’s 

effectiveness in tackling image segmentation and 

image reproduction problems were then studied, 

incorporating DE and GA algorithms, respectively. 

Further, to test the framework’s complexity, the 

image of size 1.5 GB from European Southern 

Observatory (ESO) website was taken as sample and 

tested. The average execution time is taken as a 

crucial performance metrics to provide the 

comparison between the sequential model and the 

MTDEA model.  The MTDEA model outperformed 

the traditional sequential model serving the targeted 

goal of decreased execution time devoid of 

sacrificing to the solution quality. 

The remaining parts of this paper are organized as 

follows – Section 2 presents an algorithmic summary 

of EAs employed in this investigation, Section 3 

covers a review of related works, Section 4 details the 

MTDEA framework, Section 5 presents the design of 

experiments for the appraisal of the MTDEA 

frameworks, followed by discussion of the results, 

Section 6 reports on solving image processing 

problems using the MTDEA frameworks. Section 7 

presents the performance of the MTDEA framework 

in an HPC system. Finally, Section 8 includes closing 

remarks as a conclusion, highlighting future 

directions.  

1.2 Notations used in the work  

Variables Description 

NP Population size 

D Dimension 

Cr Crossover rate 

F Mutation factor 

𝑋𝑖,𝐺 Candidate vector 

𝑉𝑖,𝐺 Mutant vector 

𝑈𝑖,𝐺 Trial vector 

t Threshold value 

L Level of grey color present 

𝑤𝑖 Number of pixels present 

𝑢𝑖 Average value of pixels present  

𝑤𝑛(𝑖) Number of pixels in the category 

𝑢𝑛(𝑖) 
Average value of pixels in the 

category 

f Threshold fluctuation factor 

2. Evolutionary algorithms in the 

experiments  

This work primarily evaluated the propriety of 

unifying different EAs with the base MTDEA 

framework, to assess their applicability to various 

image processing problems. DE and GA were the 

algorithms considered for the experiments to solve 

the image segmentation and image reproduction 

problems, respectively. Skeletal views of these 

algorithms are presented in this section.  

2.1 Differential evolution (DE) algorithm  

The DE algorithm, which was introduced to the 

EC research community, has proven to be a highly 
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stochastic mechanism for real parametric 

optimization [8]. DE’s effectiveness has been ratified 

by its application to numerous benchmarking and 

optimization problems in the real world. 

Fundamentally, DE is a population-centric 

optimization algorithm that utilizes different 

variations and selection mechanisms, similar to other 

EAs like estimation of distribution algorithms, 

evolution strategies and genetic algorithms. However, 

DE’s unique characteristic of innate Differential 

Mutation distinguishes it from other EAs. DE’s 

differential mutation operator aggregates the scaled 

difference of two solution vectors to another vector, 

to generate a mutant vector as an interim solution 

vector. DE then employs a recombination mechanism 

between the interim and its mutant vectors, to evoke a 

target vector. Next, a selection mechanism is 

employed to designate the survivor for the next 

generation, by comparing the interim vector and the 

trial vector. 

DE is a search-based algorithm that explores the 

search space of the targeted optimization problem 

using various sampling methods, by the randomized 

selection from a population size of NP vectors with D 

dimensions. NP as an initial population, and each 

individual within it is a candidate solution (𝑋𝑖,𝐺) as 

denoted in Eq. (1), 

 

𝑿𝒊,𝑮 =  {xi,G
1 , . . . , xi,G

D } i = i, … , 𝑵𝑷.               (1) 

 

The original (initial) population is set to cover the 

given search space efficiently, by random generation 

of vectors throughout the search space. An iterative 

process is launched once the initial population is 

ready to generate new populations, until the 

termination condition is satisfied. At every iteration 

(generation), a new mutant vector (𝑉𝑖,𝐺) is generated, 

as shown in Eq. (2), 

 

𝑽𝒊,𝑮 =  {vi,G
1 , . . . , vi,G

D } i = i, … , 𝑵𝑷.               (2) 

 

for each individual (the target vector, Xi,G) present in 

the current population. Diverse mutation strategies 

proposed in the public domain, such as DE/rand/1, 

DE/best/1 and DE/current-to-best. [9, 10, 11], differ 

in the manner by which the mutant vectors are 

generated. Subsequent to mutation, the crossover 

(which may be binomial or exponential) is performed 

between the mutant vector, 𝑽𝒊,𝑮, and the target vector, 

𝑿𝒊,𝑮, to produce the trial vector (𝑼𝒊,𝑮) as shown in Eq. 

(3), 

 

𝑼𝒊,𝑮 =  {𝑢𝑖,𝐺
1 , . . . , 𝑢𝑖,𝐺

𝐷 }        (3)  

 

DE’s desirable traits of ease of implementation, 

algorithmic simplicity, and fast convergence have 

captivated the research community. Over the past two 

decades, active research in fortification of the DE 

algorithm have yielded numerous DE variants. 

Selection of an appropriate DE variant for a specific 

optimization problem continues to pose an arduous 

exercise for the research community, few of the 

investigation attempts in this direction have been 

summarised in [12].  

2.2 Genetic algorithm  

J. H. Holland brought to light the significant 

concept of utilizing GA to solve optimization 

problems, in 1970 [13]. Since then, GA has 

galvanized the global research community to take on 

optimization problems in scientific and engineering 

domains. GA has not been touted as a mathematically 

sound algorithm, as the retrieved optimum solution is 

evolved in each generation, without rigorous 

mathematical formulation, unlike conventional 

gradient-type optimization. GA functions effectively 

with all types of solution representations. A 

population pool comprised of solution vectors is 

initialized at random, and then updated, iteratively. In 

every iteration of the genetic process, a new solution 

vector is generated from the vectors that were present 

in the previous generation. This evolutionary process 

can be effective only if a specific selection routine is 

chosen to select the parents with the best fitness. GA 

embodies a variety of mutation and recombination 

operators to produce offspring. This process of 

evolution or gene manipulation is anticipated to 

produce better children that survive in subsequent 

generations, imitative of the concept of survival-of-

the-fittest. The procedure to find the best candidate is 

repeated until the termination condition is satisfied.  

3. Related works  

This section reviews works reported in the 

published domain apropos of the parallel and DC 

nature of EAs, which afford meaningful insights into 

the image segmentation and image reproduction 

algorithms.  

Bharathi et al., [14] provided a comprehensive 

survey on EAs and their applications. Incorporation 

of EAs in parallel and DC frameworks have turned in 

effective performance in the manipulation of run-of-

the-mill sequential use cases. Load distribution and 

high computation speed can be accomplished by 

parallel processing and distribution of` the tasks 

among various computing elements. The island, 

hierarchical, Master-Slave, Cellular, pool, multi-

agent, and Co-evolution are few examples of the 
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widely employed parallel and distributed 

evolutionary models [15]. The authors in [16] 

proposed an agent-based approach, which can solve 

an optimization problem by decomposing it into 

constituent sub-problems. These agents (master and 

slaves) are organized into groups at the first level of 

the agent-based approach, prior to initiation of the 

optimization process. Said et al., [17] proposed a 

hybridized approach, combining GA with an 

estimation of distributions. In this hybrid framework, 

the master node exploits the search space, whereas 

the slave nodes perform specific proportionate 

functions required for the intended optimization.  

A collective communication-based approach was 

proposed by Abdoun et al., [18]; communications 

between master and slave nodes take place via 

message passing in java (MPJ) express. Abdoun’s 

team utilized an Ant Colony Optimization Algorithm 

to address the optimization problem. Similarly, 

Depolli et al., proposed an asynchronous master-

slave, user-defined, framework to solve time-

intensive multi-objective optimization problems [19], 

where the settings and input parameters are 

formulated based on the targeted optimization 

problem. Utilizing partitioned global space address 

(PGAS) for connecting computers as a cluster in a 

virtual distributed form, a high level of parallelism 

was achieved in [19]. Lin et al., [20] put forth a 

parallel GA (PGA), where every node computes the 

initial population and shares the best candidate with 

all the extant nodes, creating multiple work areas. 

The authors in [21] used the PGA concept of [20] to 

take on non-linear optimization problems.  

In [22], the author proposed utilization of shared 

storage space and centralized load-balancing 

principles, to solve multi-objective optimization 

problems. Zhan et al., [23] submitted a heterogeneous 

EA approach with a double-layer architecture; an EA 

is equipped in the first layer; the cloud paradigm is 

introduced in the second layer, to provide distributed 

environment. Similarly, Supriya et al., proposed a 

Bayesian learning approach [24] and demonstrated 

dynamic resource provisioning, for cloud-based 

applications. Cao et al., introduced a distributed 

parallel cooperative co-evolutionary multi-objective 

evolutionary algorithm (DPCCMOEA), to solve 

large-scale optimization problems [25]. 

DPCCMOEA decomposes the original large-scale 

problems into sub-problems and introduces a two-

layer message-passing architecture that evolve 

around the sub-problems. This approach works on the 

principles of the decision variable analysis (DVA) 

strategy. Karthi’s team conducted a detailed 

performance analysis of GA for functional 

optimization in a multi-core platform [26].  

Albeit multiple pieces of published literature 

advocate the advantage of parallel and distributed 

systems, competition-based [27] and Divide-

conquer-based [28] methods have also aroused keen 

interest among researchers. These popular schemes 

are generally used to tackle optimization problems. 

EAs are widely combined to address diverse 

image processing applications. Michal et al., utilizing 

GA, submitted a fast-robotic pencil drawing 

application [29]. Sun, Yu, et al., [30] propounded an 

image registration technique with the DE algorithm. 

Liu et al, recommended a collaborative dragonfly 

algorithm with a novel communication strategy, for 

the segmentation of multi-thresholding color images 

[31]. Meesala et al., proffered a feature-based 

emotion detection in social media, using multi-

objective EAs [32]. Luo’s group recommended a 

Whale Optimization Algorithm to reduce noise 

present in an image [33].  

Image segmentation is crucial in medical image 

processing and related domains. Cuckoo search, 

incorporated with Masi entropy and DE mutation, 

was presented to handle multi-level image 

segmentation scenarios [34].  Akshay et al., [35] 

suggested an image segmentation technique via an 

artificial bee colony algorithm, manipulating gray 

level co-occurrence matrix (GLCM) features, for 

categorization of fruit images. Sun’s team [36] 

recommended an adaptive bi-mutation-based DE 

algorithm for image segmentation, outfitted with the 

opposite learning strategy, to improve the quality of 

the initial population. In the same probe, Sun’s team 

proposed a threshold-value-Jia based mutation 

strategy, to enhance the explorative capability of the 

algorithm. Bhandari presented a novel fast multi-

level thresholding beta-DE algorithm, for 

segmentation of color images [37]. The author 

calculated the optimum threshold by maximizing the 

Kapur and Tsallis entropy [38], a thresholding 

function incorporated within the beta-DE algorithm. 

Tarkhaneh and his team [39] proposed an adaptive 

DE algorithm for optimal multi-level thresholding, 

for the segmentation of MRI images of brain scans. 

The authors compared the proposed algorithm against 

the native DE algorithm on three DE benchmark 

algorithms, with T2-weighted MRI brain images. 

Jia’s group [40] proposed a new hybrid algorithm, 

blending the grasshopper optimization algorithm 

with DE, for segmentation of multi-level satellite 

images.   

Similar to image segmentation, literature is rife 

with numerous studies that manage problems apropos 

of image reproduction and image enhancement. 

 



Received:  July 16, 2023.     Revised: August 6, 2023.                                                                                                      653 

 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.55 

 

Table 1. Algorithmic description of the MTDEA 

framework 

In Master node 

 

Create Initial population - pop( ). 

Based upon the number of nodes decompose 

the pop( ). 

Send the decomposed population to the 

corresponding nodes. 

After every iteration receives the best candidate 

from all nodes. 

Compare and update the best candidate until 

termination condition is satisfied. 

 

In slave node 

 

Receive the population from master node -

Pop_1( ). 

Decompose the Pop_1( ) based on the number 

of threads. 

Send the decomposed population to the 

corresponding threads . 

After every iteration - compare the best 

candidates between the threads. 

If (iteration count / mf  == 0)       

// mf - migration frequency  

 send the best candidate to (n+1)th node. 

 

In Threads 

 

Receive sub-population from the corresponding 

slave node. 

Implement the specified EA for the population.  

After every iteration send the best candidate to 

the slave node.  

 

 

Kishore’s team proposed a GA-based scheme to 

regenerate images from shrunk scaled images, using 

bit data count [41]. Kishore et al., asserted that their 

algorithm could be applied to recover error bits 

within any data block. Shrivastava et al., [42], 

proposed a GA-evoked image-enhancement 

technique, in which de-noising of the image was 

accomplished by reduction of the mean noise present 

in the targeted image. GA-based image segmentation 

and reconstruction was implemented in [43]; its 

author crafted a GA scheme to extract a mask that 

removed and reconstructed the segmented image, 

from the original image. Similarly, Hashemi et al., 

[44] proposed a GA application for enhancement of 

an image, using the intensity value and the number of 

edges, as fitness measures, for each chromosome.  

On appreciation of the imperative of parallel and 

distributed facets of conventional EAs, and the 

relevance of algorithmic frameworks for the handling 

of complex image processing problems, the objective 

of this paper is to elucidate, implement, and validate 

the propriety of MTDEA frameworks for image 

processing applications. Multithreaded distributed 

differential evolution (MTDDE) and multithreaded 

distributed genetic algorithm (MTDGA) were the two 

frameworks assessed in this work. 

4. MTDEA framework   

Computation time and computational resources 

assume a vital role in the management of intricate 

real-world problems. Building an asynchronous 

multi-threaded MTDEA model over the distributed 

master-slave model is one of the key contributions of 

this investigation. This framework expands DEA 

framework to its multithreaded version, in which 

each computing element in the distributed framework 

is endowed with multiple threads (threads are the 

simplest flow of activities that can be executed in a 

process) to reinforce the computational power. The 

suggested framework utilized the “multiprocessing” 

library to provide process-based parallelism; this 

package supports a spawning process via an 

application programming interface (API). The goal of 

the recommended MTDEA framework is to diminish 

computational time without detriment to the solution 

quality.  

The MTDEA is a highly distributive, fault-

tolerant framework that employs an island-based 

dispensed model. This island model originated from 

the concepts of natural evolution, which tend to 

systematize the original population spread 

throughout the search space. Generally, the number 

of islands in island models, is user-specified, where 

the initial population is segregated into sub-

populations. Each island contains a sub-population to 

ensure the principle of simultaneous exploration of 

various landscapes. Significantly, within each island, 

the MTDEA framework attempts to sustain high 

population diversity. In the notion of attaining 

anticipated behavior, the best candidate from one 

island is exchanged with the best of other islands, at 

a specific frequency (Migration Frequency (MF)) 

[45]. The process of exchanging the best candidates 

is termed Migration. Among the various migration 

topologies present, best candidates can be chosen by 

the algorithmic flow of the targeted optimization 

problem. Table 1. presents an algorithmic description 

of the MTDEA framework.  

The MTDEA framework follows a traditional 

master-slave architecture for its processing. In the 

master node, the initial population is generated; based 

on the number of slave nodes, the initial population is 

distributed in such a way that all the slave nodes have 

an equal number of candidates. Every slave node 

present in a MTDEA framework is an island. 
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Figure. 1 General architecture of the MTDEA framework 

 

 

Each slave node receives a sub-population. 

Furthermore, the decomposition of the sub-

population takes place and sent to the respective 

threads. The number of threads on an island is user-

specified, and each thread consist of an EA implied 

to it. In the MTDEA framework, the threads are 

administered by the corresponding slaves. Every 

thread runs the implied EA in a parallel standpoint 

maintaining the synchronization.  

In the implementation part, the threads are 

designated to run in a multi-threaded mode using the 

concurrent.futures.ThreadPoolExecutor( ) API. In 

this function, concurrent.futures module offers a 

high-level interface for execution of threads in a 

parallel fashion. The ThreadPoolExecutor class has 

methods to generate pool of threads and to execute 

them asynchronously. Fig. 1 presents a general 

architecture of the MTDEA framework. 

The MTDEA framework is customizable and 

scalable based on the natural behavior of a given 

optimization problem. The acronym MTDDE 

denotes the MTDEA framework in which the DE 

algorithm is placed in the slave nodes, with their 

corresponding threads; MTDGA is the MTDEA 

framework with GA in the slave nodes with their 

threads. To provide load balancing between the 

threads of a corresponding slave node, the initial 

population of the slave node is decomposed equally 

based on the number of threads present in the slave 

node, the initial population of the slave node is 

decomposed equally based on the number of threads 

present in the slave node. During every generation, 

the main objective of each thread is to find the 

optimal solution for the given sub-population and 

report the best candidate to the slave. During a 

specific frequency of generations, the slave nodes are 

permitted to migrate their best candidates to the 

neighboring islands, demonstrating a strict migration 

topology. In the MTDEA framework, ring topology 

is deployed to maintain a highly cooperative 

evolutionary environment. 

4.1 Fault-tolerant MTDEA framework  

In continuation of the design of MTDDE and 

MTDGA frameworks, experiments were carried out 

to furnish the MTDDE framework with add fault-

tolerant mechanisms. Albeit parallel and or DC 

systems are employed to work out large-scale 

optimization problems, the probability of fault-

occurrence is higher in these systems. The ability of 

a framework to deliver its designated functionality 

despite errors/faults that occur in hardware or 

software sub-systems is termed fault tolerance [46]. 

Commonly occurring faults in distributed systems are 

node failure and link failure. ‘n-version, epidemic, 

rejuvenation, and addition of checkpoints’ are a 

sample of the fault tolerant strategies employed for 

distributed systems [47, 48, 49]. These types of 

counter-algorithms handle fault instances at the price 

of increased time complexity of the algorithms.  

Since user-level failure mitigation proposals (ULFM) 

are implicit in the message-passing interface (MPI) 

forum, this work explores the efficiency of simple 

plug-in algorithms that overcome commonly 

occurring faults. 
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Table 2. MOV and Aet for DDE and MTDDE 

  
f1 f2 

DDE MTDDE DDE MTDDE 

MOV 7.75E-14 3.31E-14 5.82E-14 6.16E-14 

Aet (s) 1.634 1.188 1.402 0.68 

f3 f4 
 DDE MTDDE DDE MTDDE 

MOV 1.3E-05 1.3E-05 1.84E-13 0.00 

Aet (s) 86.594 83.8 8.4 2.417 

 

As delineated in [7], three fault-tolerant 

algorithms are plugged into the MTDDE framework 

to manage the reported faults, such as – ‘Single-Node 

failure,’ ‘Multi-Node failure,’ and ‘Communication-

Link failure’. The ‘Single-Node failure’ is handled by 

the addition of a backup node for each slave node. 

The slave nodes share their population with the 

backup nodes, after every generation. The MTTDE 

framework uses a concurrent.futures.shutdown( ) 

method, in which the user specifies the wait time. In 

case of no response from a slave node within this 

specified wait period, the MTDDE framework shuts 

down that particular node, assuming there may be a 

fault in the node. The framework initiates a backup 

node and starts the communication between the 

neighboring nodes and the respective slave node.  

In a highly distributed data processing 

environment, where number of computational nodes 

are high, there is an increased likelihood of a fault 

event observed as concurrent failure of multiple 

nodes. After every successive generation, the slave 

nodes are programmed to regularly send the best 

candidates to the master node. A master node 

persistently monitors its slave nodes. If a slave node 

does not send its best candidate for a certain period of 

time, which is user specified, the master node 

assumes the corresponding slave node is in a dead 

state. Master node initiates the shutdown( ) method 

for the dead node. The best candidates received from 

inactive slave nodes are pooled into a new population 

within the master node, and the DE algorithm is 

initiated. Finally, at the end of the process, the master 

node compares the final optimal solution received 

from the active nodes with its self-processed optimal 

solution to dispense the global optimum solution.  

In the MTDDE framework, communications 

between the slave nodes are established by the MPI. 

There is a strong possibility of communication failure 

arising due to the natural negotiating process of the 

MPI. To confront the situation, a trigger is 

customized in all the slave nodes, such that if MPI 

provides negative acknowledgment when 

communicating with the nth node, the trigger is proved. 

If the trigger is evoked, the sending node starts 

communication with the (n+1)th node, neglecting the 

presence of the nth node. This is how the plugged-in 

algorithm handles the ‘Communication-Link failure’ 

fault. 

5. Empirical validation of the MTDEA 

framework 

The initial part of the experiment is framed to 

compare the performance of the MTDDE framework 

(the MTDEA framework incorporated with the DE) 

with the conventional distributed differential 

evolution (DDE) framework [50]. The experimental 

setup is noted below: 

Laptop PC (MacBook Pro - 2019) with  

memory (8 GB 2133 MHz LPDDR3),  

graphics card (Intel Iris Plus Graphics 1536 MB), and 

processor (Quad-Core Intel Core i5-1.4 GHz).  

MTDDE framework threads were customized 

DE/best/1/bin variant. The control parameter set up 

with similar values for both DDE and MTDDE 

frameworks 

Population Size (NP) = 60,  

Crossover rate (Cr) = 0.5,  

Scaling factor = 0.2,  

Dimension (D) = 30,  

maximum number of generation (Max_Gen) 

= 3000,  

number of runs (nr) = 30,  

migration frequency (mf) = 45  

migration topology (mt) = ‘Ring Topology’.   

The termination criteria of this framework 

are fixed to a minimal value of 1 × 10−12.  

Following four benchmarking functions are 

added in the experimental setup.  

f1 - Schwefel’s Function 1.2,  

f2 - Rosenbrock’s Function,  

f3 - Generalized Schwefel’s Function, and  

f4 - Ackley’s Function [49, 51]  

The performance metrics used to compare the 

frameworks are average execution time (Aet) and 

mean objective value (MOV). The experiments were 

repeated for different dimensions (D = 100, 500, and 

1000) to test the MTDDE framework's fault-tolerant 

capability.  

Table 2 presents the MOV and Aet values for 30 

independent comparative runs of the DDE and 

MTDDE framework.  

These results make plain that the Aet values of the 

MTDDE framework outperform the counterpart 

DDE variants for all the benchmarked functions,  

fx [x = 1,2,3,4]. MOV metrics reveal that the MTDDE 

outperforms DDE functions f1 and f4. Their 

performances are similar to the Generalized 
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Schwefel’s Function (f3). However, the DDE variants 

overran MTDDE for function f2.  

This simple study demonstrated that 

multithreaded versions of the DDE frameworks 

arrive at a faster convergence, ensued by their 

massive parallel configuration. This comparative 

study substantiated that the fault-tolerant strategies 

bestowed on MTDDE facilitate the framework’s 

resilience, - despite the simulated fault conditions, 

forestalling computational overheads or degradation 

of quality. The efficiency of the MTDEA framework 

was validated in terms of serving the goal of reducing 

the execution time without sacrificing the solution 

quality.  

6. Performance analysis - MTDEA image-

processing 

The MTDDE and the MTDGA frameworks were 

capacitated to resolve image segmentation and image 

reproduction problems, respectively. This section 

demonstrates the MTDEA framework's prospects in 

dealing with image segmentation and image 

reproduction.   

6.1 Image segmentation  

The process by which a graphical image is 

partitioned into its constituent subgroups (image 

segments) is termed as image segmentation. These 

segments modulate the complexity of a targeted 

image, to simplify subsequent processing and 

analysis. The segmentation process allocates labels 

for every pixel in the image; pixels belonging to same 

segment possess a unique label. 

6.1.1. Background study  

Published literature is abuzz with schemes for 

image segmentation. A traditional straightforward 

technique is Otsu’s method [3]. Conventional Otsu 

technique delivers an acceptable segmentation if the 

image is free of noise. Otsu helps in the selection of 

threshold values, a major challenge posed by image 

segmentation. The basic idea behind the Otsu method 

is to divide the image into two categories, A0 and A1, 

based on the threshold value (t). A0 contains pixel 

values ranging from [0 to t], and A1 has pixel values 

ranging from [(t+1) to (L-1)], where L is the level of 

grey color present in the targeted image. Otsu is 

calculated between the categories using the formula 

given in Eq. (4). 

 

𝜎(𝑡)2 =  𝑤1(𝑡)𝑤2(𝑡)(𝑢1(𝑡) − 𝑢2(𝑡))2        (4) 

 

where, 𝑤𝑖(𝑡) represents the number of pixels present 

in A0 and A1 and 𝑢𝑖(𝑡) represents the average value 

 
Table 3. Algorithmic description of selecting threshold 

based on DE 

Step – 1 : Image pre-processing: Convert RGB image 

into grey scale image 

Step – 2 : Population initialization and calculate fitness 

of each individual 

Step – 3 : Customized Mutation strategy          

//explained in section 2.1 

Step – 4 : Customized Crossover strategy        

//explained in section 2.1 

Step – 5 : Selection operation : Comparing the trail 

vector and test vector, candidate with higher 

fitness is selected for forth-coming 

generation 

Step – 6 : Check for termination condition 

             If termination condition == true: 

 

                                    Move to step (7) 

            Else: 

                        

                                    Move to step (3) 

  

Step – 7 : The best candidate’s threshold value is 

mapped in-between the range [0 to 255] 

  

Step – 8 :  Search based on [ t-f  to t+f ] will produce 

optimal threshold value 

  

Step – 9 : Based on the optimal threshold value 

obtained, each pixel is segregated into 

foreground and background pixel and the 

final image is produced  

 

 

for all pixels present in A0 and A1. The value of t can 

range from [0 to (L-1)]; the general principle of the 

Otsu method relies on calculating the variance. 

Variance is the optimum threshold that can be 

obtained for a given image. Based on the value of the 

variance, each pixel is segregated into the foreground 

and background pixels. 

6.1.2. DE for image segmentation  

As part of the pre-processing in image 

segmentation, the original image is transformed into 

a grayscale image. The value of each pixel in the 

grayscale image ranges between 0 and 255. The gene 

values in the candidates of DE’s randomly generated 

population range from [0.1 to 0.9], to evade the 

cumulative value of the pixel divided by zero.  

The fitness function stated in [52], presented in Eq. 

(5), is used to evaluate the candidates of DE’s 

population, generated at random. 

 

𝑐𝑜𝑠 𝑡 (𝑖) =  𝑤1(𝑖)𝑤2(𝑖)(𝑢1(𝑖) − 𝑢2(𝑖))2       (5) 
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where, i represents a random vector from the 

population range [0.1 to 0.9], 𝑤𝑛(𝑖)  represents 

number of pixels in the category (foreground and 

background) 𝑢𝑛(𝑖) represents the average value of 

pixels in the category. 

As part of the mutation strategy, two vectors are 

selected at random, from the initial population, and 

their difference is computed. The mutated vector is 

obtained by accumulating the candidate with the 

result.  

Apropos of the crossover strategy, a vector is 

chosen at random from the DE population, such that 

the selected vector's fitness is not lesser than the 

target vector; this random vector acts as a cross-

cutting object. Implementing a crossover strategy in 

this fashion affirms convergence rate and population 

diversity. After n iterations, DE finds the optimal 

threshold value (t). The search operator focuses on 

the search space within the specified range of [(t – f) 

to (t + f)] in successive iterations, where f is the 

threshold fluctuation factor. Table 3 presents an 

algorithmic description of selecting a threshold based 

on DE. 

6.1.3. MTDDE for image segmentation  

In MTDDE, the master node converts the 

received original image into a greyscale image. Next, 

the master node decomposes the greyscale image into 

equal number of vertical or horizontal slices. The 

number of slices equals the number of slave nodes 

present in the model. Each slave node maintains its 

threads and provides coordination between the 

threads present in the corresponding slave node. The 

slave node is responsible for further decomposition of 

the image into equal halves based on the number of 

threads present. Each thread is comprised of a DE 

algorithm incorporated within it; based on the given 

slice of image, each thread starts to produce the 

population, at random, and proceeds to discover the 

optimum threshold value (t) for the given image slice. 

The settings of the algorithm are as follows: 

population size (NP) is 5,  

crossover factor (Cr) is 0.3, and  

mutation factor (F) is fixed at 0.5.  

Maximum number of iterations is set in the range 

of (10 to 20) generations (to avoid over-segmentation 

issues, which generally varies from image to image). 

With the required parameters, each thread 

derives the optimal threshold value, which is used to 

segment the sliced image received from the slave 

node. The segmented image slice is passed to the 

slave along with the optimal threshold value (t). 

During the process of migration (of best candidates), 

the threshold value of t from each slave node is 

exchanged with the neighboring slave. Each slave 

node updates the ‘t’ received from its threads after 

every independent run. The migration topology used 

is the ring topology. As the underlying concept of the 

MTDDE framework is to decompose an original 

image into smaller regions, based on the region of 

interest, the optimal threshold is calculated using DE 

algorithm, which enables image segmentation. When 

the maximum number of iterations is reached, the 

slave node collects the segmented images from the 

threads and merges them into a final segmented 

image. The master node collects the final segmented 

images from the slave nodes, and combines them to 

produce the final segmented image as an output. This 

approach of decomposing the image into smaller 

regions and segmenting based on the region of 

interest, has proven to yield enhanced segmentation 

quality, besides conserved execution time. One of the 

observed limitations of the MTDDE framework is 

over-segmentation that ensues from decomposition 

of the original image into smaller slices; hence, 

during the image decomposition process, a 

reasonable size for slicing should be fixed. Fig. 3 

depicts working of the MTDDE framework, 

containing 1 master node, 1 slave node, and 3 threads. 

A sample image was retrieved from the human 

recognition dataset from the Kaggle repository, for 

comparative empirical analysis between sequential 

DE (SDE)-based image segmentation and the 

MTDDE framework-based image segmentation. To 

achieve a reasonable analytical study, both these 

models were customized with the same parametric 

values. The resultant output images of these models 

are depicted in Fig. 2. The SDE algorithm and 

MTDDE framework were deployed for 10 

independent runs, and their performance is presented 

in Table 4. The results are comprised of the optimal 

threshold achieved by both models, and the 

corresponding execution times.  
NOTE: SET – sequential execution time, DET – distributed 

execution time, in Table 4. 

6.2 Image reproduction 

Image reproduction is an iterative process of 

reconstructing an original image from its pixel values. 

It enhances an image to provide a better image for a 

specific application. There are different techniques to 

reproduce an image from its original version; one of 

the popular techniques is by finding similarity 

measures after every iteration. This process is widely 

used in reverse imaging, image restoration, and 

medical images. 
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Figure 2. Resultant output images of image segmentation 

 

 
Figure 3. General workflow of MTDDE framework for image segmentation 

 
Table 4. Comparative empirical analysis of SDE and MTDDE 

Runs 

Optimal 

Threshold  

by SDE 

SET 

(s) 

Optimal 

Threshold  

by MTDDE 

DET 

(s) 

1 168.71 0.64 147.56 0.27 

2 169.36 0.63 165.84 0.26 

3 169.10 0.61 166.87 0.28 

4 169.21 0.63 165.47 0.25 

5 167.81 0.59 166.37 0.25 

6 169.48 0.63 166.92 0.25 

7 169.31 0.59 166.91 0.26 

8 168.57 0.63 170.03 0.29 

9 168.83 0.63 167.02 0.29 

10 168.06 0.62 166.86 0.3 

Avg 168.84 0.62 164.99 0.27 
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6.2.1. Image reproduction library 

GA for reproducing images (GARI) is a Python 

project using the PyGAD library [52] to reproduce 

the original input images. GARI is an inbuilt library; 

hence customization of the algorithmic parameters is 

not required, unlike other EAs. 

6.2.2. GA (through GARI library) for image 

reproduction 

Evolving pixels serve act as a basic principle for 

image reproduction using a GA. As a first step, an 

input image is preprocessed to be converted into a 1D 

(1-dimensional) vector. Initial_population( ) function 

in the GARI library creates a random population [53]. 

The fitness function is designed in such a way that it 

accepts two arguments, representing candidate 

solutions and their corresponding indices, to return 

the fitness value. The fitness value is fetched, by 

accumulation of the sum of the absolute differences 

between the gene values within the original and 

reproduced candidates. Candidates are sorted based 

on their fitness values, and the candidates with the 

best fitness are selected as parent. Among the 

(crossover and mutation) variation operations, the 

crossover( ) function is invoked for carrying out the 

crossover operation.  

The crossover( ) function requires three 

arguments - input image shape (img_shape), number 

of offspring to return (n_individuals), and the best 

performing candidates in the previous generation. 

The number of individuals (n_individuals) is kept as 

8 [55]. In the mutation operation, mutation( ), some 

genes in the chromosome are selected at random, and 

a random weight is added to the gene (similar to the 

adaptive mutation technique). The mutation( ) 

function receives the population returned by the 

crossover( ) function. The percentage of change in a 

chromosome is determined by the best candidate 

received from the previous generation. Once the 

variation operations are consummated, PyGAD.GA 

class instance is created. The flowchart of the GARI 

library workflow is depicted in Fig. 4. 

6.2.3. MTDGA for image reproduction 

In the MTDGA framework, the master node 

decomposes an original input image into smaller 

regions and disseminates them to all the slave nodes. 

On receipt of the images, the input image is further 

decomposed into smaller regions, which are sent to 

the threads that were incorporated within the GARI 

library. The image reproduction process is initiated in 

the threads, as soon as an input image is received. 

The further random population is generated, followed 

by variation operation; on completion of the latter, 

PyGAD.GA class instance is developed 

automatically. The spontaneous mutation employed 

with mutation_by_replacement = ‘True’. The 

parameters configured are range_of_pixel_values, 

init_range_high, init_range_low, 

random_mutation_max_val, and 

random_mutation_min_val in the PyGAD instance 

[54]. The image pixel value is kept in the range [0 - 

255], and random_mutation_max_val and 

init_range_high are set to 255. The 

random_mutation_min_val and init_range_low are 

fixed to 0. The execution of the instance is initiated 

with run( ) method.  

The working of MTDGA is similar to the MTDDE 

framework; when the thread reaches the maximum 

number of iterations, the reproduced image slices are 

sent to respective slave nodes.  On receipt of all 

resultant segments from the threads, the slave nodes 

recombine them in a specific order, prior to sending 

them to the master node. The master node, on receipt 

of all the resultant images from the slaves, produces 

the final image.  

The objective of testing the MTDGA framework 

for image reproduction is to reproduce an image with 

quality similar to the original image and minimize the 

process execution time. A detailed performance 

analysis was carried out, between the sequential GA 

and the MTDGA framework, on reproduction of the 

original image. The performance metrics taken into 

consideration were – peak signal-to-noise ratio 

(PSNR), structural similarity index metrics (SSIM), 

mean square error (MSE), and execution time (ET). 

Table 5 displays the performance of sequential GA 

for 10,000 generations.  

Table 6 depicts the performance of the MTDGA 

framework for 10,000 generations with horizontal and 

vertical slicing, for comprehension of their impact on 

the performance of the MTDGA framework. Results 

in Table 6 attest that performance of the MTDGA 

framework is immune to the slicing styles. 

Comparison of the performances of the MTDGA 

framework (Table 6) with the sequential GA (Table 5) 

justify that the quality of the image (in terms of PSNR 

and SSIM values) reproduced by the MTDGA 

framework is much preferred. Besides, MTDGA has 

less MSE score compared to sequential GA, which 

reaffirms that image reproduction quality is enhanced 

using the MTDGA framework. Furthermore, the 

MTDGA framework has taken only a third of the 

execution time (ET) incurred by the sequential GA 

model.  
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Figure. 4 Flowchart of the GARI library 

 
Table 5. Performance of sequential GA for image 

reproduction 

Run PSNR MSE SSIM 
ET 

(s) 

1 7.11 105.64 0.0196 24.80 

2 7.11 105.21 0.0211 23.64 

3 7.12 105.35 0.0234 23.81 

4 7.10 105.46 0.0228 23.72 

5 7.14 105.38 0.0206 23.71 

6 7.11 105.24 0.0233 23.81 

7 7.14 104.87 0.0231 23.97 

8 7.11 105.59 0.0208 23.90 

9 7.13 105.10 0.0230 23.7 3 

10 7.11 104.89 0.0224 23.72 

Average 7.12 105.27 0.0220 23.88 

 

Table 7 shows the average comparative 

performance values for 10 independent runs of these 2 

models, when exposed to increased number of 

generations (20 000, 30 000, 40 000, and 50 000). 

Table 7 also proves that MTDGA provides a better-

reproduced image with minimal execution time, as the 

number of generations increases. The method of 

decomposing the image into smaller regions and 

iterating, until the termination condition is satisfied, is 

the reason behind increase in quality of the solution 

afforded by the recommended MTDGA framework. 

Figure 5 illustrates the evolutionary process of 

enhanced image reproduction quality with higher 

numbers of generations.  

 

7. Experimentation of MTDEA on HPC 

The MTDEA framework was deployed on a 140 

core-HPC system, configured with 1 TB RAM, 21 

TB storage and Red Hat Linux (6.10 version) 

operating system, to explore scalability of the 

MTDEA framework. The “eso1242a” test image was 

downloaded from European Southern Observatory 

(ESO) website [56].  This website acts as a repository 

that contains images of celestial objects with high 

definition. The size of this image was 1.5 GB (giga-

pixels). The performances of MTDDE and MTDGA 

frameworks were evaluated on the HPC system. The 

experimental setup followed in previous experiments 

(Section 6.1) was followed for the current experiment 

on HPC. 

7.1 MTDDE on HPC 

Table 8 presents a comparative analysis of the 

sequential and multi-threaded execution options, 

employed on the HPC system noted in section 6.1. 

The SET and DET, in Table 8, respectively represent 

sequential and distributed execution times. To 

provide clear analysis, optimum threshold achieved 

for each slice of image in MTDDE framework is 

displayed. AOT refers to average value of the optimal 

thresholds achieved for the segmented image slices 

by MTDDE framework. The results advocate that 

MTDDE framework incorporated in HPC 

environment is efficient and scalable for image 

processing applications with larger image size (giga-

byte images). 
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Figure 5. The evolutionary process of image reproduction using MTDGA framework 

 
Table 6. Performance of MTDGA framework for image reproduction 

Run 

Vertical slicing of image Horizontal splicing of image 

PSNR MSE SSIM ET PSNR MSE SSIM ET 

1 7.70 104.76 0.0327 8.75 7.78 104.37 0.0352 8.54 

2 7.71 104.60 0.0327 8.78 7.78 104.34 0.0348 8.66 

3 7.72 104.90 0.0332 8.79 7.80 104.21 0.0354 8.63 

4 7.75 104.79 0.0360 8.73 7.82 104.48 0.0379 8.61 

5 7.74 104.41 0.0354 8.77 7.77 104.58 0.0346 8.69 

6 7.70 104.79 0.0351 8.73 7.78 104.19 0.0360 8.70 

7 7.74 104.98 0.0337 8.69 7.78 105.11 0.0384 8.64 

8 7.72 104.80 0.0335 8.89 7.78 104.47 0.0359 8.77 

9 7.74 104.67 0.0351 8.77 7.79 104.58 0.0342 8.72 

10 7.73 105.04 0.0355 8.85 7.77 104.95 0.0361 8.63 

Average 7.72 104.77 0.0343 8.77 7.78 104.53 0.0358 8.66 

 
Table 7. Overall performance comparison of GA vs. MTDGA 

Number of 

Generations 

Sequential GA  MTDGA 

PSNR MSE SSIM ET  PSNR MSE SSIM ET 

20 000 7.202 104.873 0.029 34.16 8.403 103.703 0.048 19.20 

30 000  7.264 105.110 0.030 50.12 8.574 103.603 0.057 27.25 

40 000 7.291 104.651 0.031 68.16 8.636 103.391 0.057 36.78 

50 000  7.303 105.576 0.031 83.59 8.675 103.162 0.057 45.62 

 

7.2 MTDGA on HPC 

To study the performance of MTDGA on the 

HPC system, the same test image, but, with a lesser 

quality (33.6 MB) was chosen. This experiment was 

aimed to study how well the MTDGA framework 

performs when exposed to an HPC system. As the 

MTDGA framework took around 70 hours to process 

1.5 GB image and 22 hours to process an image size 

of 236.2 MB, to simplify the experiment, an image of 

33.6 MB size was chosen. Table 9 depicts the 

performance comparison between sequential GA and 

MTDGA in the HPC system.  The results in Table 9 

are an average of 10 runs, to overcome the 

randomization error. 
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Table 8. Performance comparison of sequential DE vs. MTDDE in HPC 

Runs 

Optimal 

threshold 

by SDE 

SET 

(s) 

Optimal threshold by 

MTDDE, for each slice of 

the image 

AOT 
DET 

(s) 

1 84.16 1931.00 102.06 109.12 56.58 89.26 1098.74 

2 83.66 2032.21 101.89 105.63 57.65 88.39 1072.79 

3 85.68 2020.60 106.08 106.84 57.87 90.26 1062.18 

4 85.37 2067.82 102.42 107.12 58.46 89.33 1081.87 

5 82.35 1989.95 101.83 106.88 58.14 88.95 1095.60 

6 83.61 2021.50 101.62 105.77 58.26 88.55 1056.71 

7 83.98 2007.96 103.21 104.75 56.84 88.26 1051.07 

8 84.08 2072.28 101.56 107.45 57.89 88.97 991.09 

9 86.45 2089.67 103.74 107.35 57.65 89.58 1007.89 

10 83.69 1947.16 102.43 105.86 57.97 88.76 1033.57 

AVG 84.30 2018.01    89.03 1055.15 

 

Table 9. Performance comparison of Sequential GA vs. MTDGA on HPC 

Number of 

Generations 

Sequential GA  MTDGA 

PSNR MSE SSIM 
ET 

(s) 
PSNR MSE SSIM 

ET 

(s) 

10000 7.92 105.49 0.0071 561.73 7.86 105.40 0.0063 310.22 

20000 7.90 105.43 0.0067 735.65 7.81 105.33 0.0058 635.74 

30000  7.88 105.46 0.0066 1163.97 7.80 105.32 0.0057 955.22 

40000 7.90 105.46 0.0068 1430.56 7.80 105.25 0.0055 1317.61 

50000  7.88 105.43 0.0064 2822.56 7.79 105.26 0.0055 1695.30 

 
Table 10. The algorithmic structure of each node in the framework 

a For i number of runs 

1  For j number of generations  

a For k number of candidates  

1 For d dimensions  

a Perform mutation (d steps) 

2  Perform crossover (assume 1 step) 

3 Perform selection (assume 1 step) 

b  End of k loop.  

4 Perform migration (assume 3 steps)  

2 End of j loop 

b  End of i loop 

 
Results in Tables 8 and 9 affirm that the MTDEA 

framework performs with minimal execution time 

without compromising the solution quality on the 

HPC system. Testing the frameworks on HPC system 

asserts, that MTDEA is scalable and reliable, in 

highly distributed computing environment. 

8. Time complexity analysis  

This section details the time complexity of the 

MTDEA framework. The parameters used in the 

MTDEA framework were the maximum number of 

runs (i), the maximum number of generations (j), the 

number of candidates (k), and problem dimension (d). 

The algorithmic structure of a single node in the 

MTDEA framework is shown in Table 10.  In the case 

of the MTDEA framework (with 3 slave nodes and 2 

master node), the estimated time complexity is in the 

order of 4 * (i * j * (k * (d + 2) + 3)). The time 

complexity of the MTDEA framework is in O (i * j * 

k * d), which is similar to the time complexity of the 

conventional DE algorithm [57], irrespective of the 

number of nodes utilized in a parallel fashion. 

9. Conclusions 

This paper demonstrated the propriety of a fault 

tolerant multi-threaded distributed evolutionary 

algorithm framework (MTDEA) to handle 

benchmarked image processing problems. The major 



Received:  July 16, 2023.     Revised: August 6, 2023.                                                                                                      663 

 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.55 

 

contribution of this study is the performance 

comparison of image processing applications on 

MTDEA frameworks with conventional computing 

and HPC system. The MTDEA framework, stacked 

against traditional differential evolutionary (DE) 

models, was shown to be effective, reliable, and 

exhibit faster process-execution times, devoid of any 

detriment to image quality. The proffered MTDEA 

framework, embodying synergistic blend of 

distributed computing, multi-threading, and 

evolutionary algorithm, exhibited strong potential to 

provide promising solutions to different problems. 

The advocated MTDEA framework was a simulation 

model that can be conveniently upgraded and 

customized in a highly distributed computing, as 

evidenced by its validation on a high-performance 

computing system. 

Despite the credible reassuring performance of the 

MTDEA framework, the notable limitation of over-

segmentation of images needs to be addressed 

Besides, MTDEA's performance needs to be 

validated on a larger image dataset. Future research 

will focus on implementing the MTDEA framework 

in a highly distributed dynamic computing 

environment.  
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