
Received: July 16, 2023. Revised: August 6, 2023. 649

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

Performance Analysis of Multi-Threaded Distributed Evolutionary Algorithms

for Image-Processing Applications

Raghul S1 Jeyakumar G1*

1Department of Computer Science and Engineering, Amrita School of Computing,

Coimbatore Amrita Vishwa Vidyapeetham, India.
*Corresponding author’s Email: g_jeyakumar@cb.amrita.edu

Abstract: Evolutionary algorithms (EAs) in the repository of the evolutionary computing (EC) paradigm are

simplistic and stochastic in nature. The desirable characteristic of adaptive simplicity has sustained research

community’s rampant curiosity in EAs. Distributed evolutionary algorithmic (DEA) framework is an instinctive

extension of EAs. This paper summarizes the design and implementation of a multi-threaded DEA (MTDEA)

framework. Empirical analysis between a traditional DEA framework and a simulated MTDEA is presented. The

MTDEA framework was outfitted with three plug-in algorithms to handle commonly occurring faults in distributed

environments. The propriety of the MTDEA framework was validated in two customary applications - Image

thresholding and Image reproduction. The thresholding and reproduction problems were addressed by incorporation

of the differential evolution (DE) and genetic algorithm (GA) methods respectively, into the MTDEA framework. The

performances of DE and GA routines were compared with their sequential counterpart frameworks. The MTDEA

framework was evaluated for reliability and scalability on a high-performance computing (HPC) system.

Keywords: Differential evolution, Distributed frameworks, Evolutionary algorithms, Fault tolerant, Genetic

algorithm, Image reproduction, Image segmentation.

1. Introduction

Motivated by their metaheuristic characteristics,

evolutionary algorithms (EAs) have drawn the

attention of researchers around the world, to solve

optimization problems across diverse domains. EAs

utilize naturally evoked mechanisms to tackle

optimization problems through processes that mimic

living organisms' natural behaviors. Given a specific

optimization problem, EAs generate a random

solution space at the outset, followed by iterative

generation of new solutions from existing solutions,

as well as searches for optimal solutions.

Nevertheless, EAs search-based problem-solving

methodology has certain limitations such as

convergence towards local minima and restricting the

search space towards the local optima, which renders

them ineffective in taking on complex multi-

objective optimization problems with higher

dimensions [1].

Pursuant to a decade of active research attempts to

overcome EA’s drawbacks, the evolutionary

computing (EC) research community has been

looking into parallel and distributed computational

approaches. Unification of EAs into parallel and

distributed computing (DC) systems has been

propitious in preference to sequential methods,

towards solving complex optimization problems.

Recent times have witnessed unabated

exponential advancements in the application of image

processing techniques in the domains of science and

technology. The broad range of appliances include

remote sensing, medical imaging, acoustic imaging,

and biometric identification. Development of

algorithmic frameworks producing optimal solutions

with minimal computation complexity, for image

processing, is in high demand in the distribution

communication-based industry. Population-tweaked

EAs, marshalled by their parallel and distributed

extensions, have been remarkably sought after

Received: July 16, 2023. Revised: August 6, 2023. 650

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

investigative avenues for image processing problems.

This paper zeroed in on two everyday image

processing applications - image segmentation and

image reproduction - using distributed evolutionary

computing (DEC) frameworks.

Image thresholding is a kind of image

segmentation that segregates an ambient scenario into

background and foreground images. Image

thresholding tasks play crucial roles in image

processing routines, there exist various image

thresholding techniques [2] in the literature. The

typical Otsu method [3] processes a simple image to

provide the required segmented image, except when

Otsu is exposed to an image with minimal signal-to-

noise ratio. Otsu being highly sensitive to noisy

images, image segmentation is preceded by image-

smoothening. Albeit the ‘2D (two-dimension)

maximum between cluster variance’ [4] scheme does

the job, the time complexity of implementing the

algorithm increases proportionately. Published

literature is rife with diverse EA-based image

thresholding approaches. Differential Evolution (DE)

is one of the EAs well known for its simple stochastic

nature. Proficient DE has a proven track-record

dealing with demanding image processing encounters.

The evolutionary nature of the DE algorithm can be

exploited for threshold selection for a given set of

noisy input images. Decomposition of input image

into sub-images that are segregated via DE-based

thresholding modulates peculiar over-segmentation

to provide the pertinent resultant image.

Commonplace image reproduction and

enhancement processes are intended to create a copy

of a given image, with a picture quality same as the

original, or superior to it. Genetic Algorithm (GA), a

member of the EA family, has been actively adopted

by researchers for these processes [5].

This paper zeroes in on the design of pertinent

DEC frameworks to solve the dual problems of image

segmentation and image reproduction, A

multithreaded differential evolution algorithm

(MTDEA) framework was implemented as a base

platform, involving the algorithmic strategy

presented in [6]. Incorporation of three plug-in

algorithms [7] capacitated MTDEA’s resilience to

three commonly occurring faults in DC scenarios.

The proffered MTDEA framework was validated

empirically, via a benchmarked study. MTDEA’s

effectiveness in tackling image segmentation and

image reproduction problems were then studied,

incorporating DE and GA algorithms, respectively.

Further, to test the framework’s complexity, the

image of size 1.5 GB from European Southern

Observatory (ESO) website was taken as sample and

tested. The average execution time is taken as a

crucial performance metrics to provide the

comparison between the sequential model and the

MTDEA model. The MTDEA model outperformed

the traditional sequential model serving the targeted

goal of decreased execution time devoid of

sacrificing to the solution quality.

The remaining parts of this paper are organized as

follows – Section 2 presents an algorithmic summary

of EAs employed in this investigation, Section 3

covers a review of related works, Section 4 details the

MTDEA framework, Section 5 presents the design of

experiments for the appraisal of the MTDEA

frameworks, followed by discussion of the results,

Section 6 reports on solving image processing

problems using the MTDEA frameworks. Section 7

presents the performance of the MTDEA framework

in an HPC system. Finally, Section 8 includes closing

remarks as a conclusion, highlighting future

directions.

1.2 Notations used in the work

Variables Description

NP Population size

D Dimension

Cr Crossover rate

F Mutation factor

𝑋𝑖,𝐺 Candidate vector

𝑉𝑖,𝐺 Mutant vector

𝑈𝑖,𝐺 Trial vector

t Threshold value

L Level of grey color present

𝑤𝑖 Number of pixels present

𝑢𝑖 Average value of pixels present

𝑤𝑛(𝑖) Number of pixels in the category

𝑢𝑛(𝑖)
Average value of pixels in the

category

f Threshold fluctuation factor

2. Evolutionary algorithms in the

experiments

This work primarily evaluated the propriety of

unifying different EAs with the base MTDEA

framework, to assess their applicability to various

image processing problems. DE and GA were the

algorithms considered for the experiments to solve

the image segmentation and image reproduction

problems, respectively. Skeletal views of these

algorithms are presented in this section.

2.1 Differential evolution (DE) algorithm

The DE algorithm, which was introduced to the

EC research community, has proven to be a highly

Received: July 16, 2023. Revised: August 6, 2023. 651

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

stochastic mechanism for real parametric

optimization [8]. DE’s effectiveness has been ratified

by its application to numerous benchmarking and

optimization problems in the real world.

Fundamentally, DE is a population-centric

optimization algorithm that utilizes different

variations and selection mechanisms, similar to other

EAs like estimation of distribution algorithms,

evolution strategies and genetic algorithms. However,

DE’s unique characteristic of innate Differential

Mutation distinguishes it from other EAs. DE’s

differential mutation operator aggregates the scaled

difference of two solution vectors to another vector,

to generate a mutant vector as an interim solution

vector. DE then employs a recombination mechanism

between the interim and its mutant vectors, to evoke a

target vector. Next, a selection mechanism is

employed to designate the survivor for the next

generation, by comparing the interim vector and the

trial vector.

DE is a search-based algorithm that explores the

search space of the targeted optimization problem

using various sampling methods, by the randomized

selection from a population size of NP vectors with D

dimensions. NP as an initial population, and each

individual within it is a candidate solution (𝑋𝑖,𝐺) as

denoted in Eq. (1),

𝑿𝒊,𝑮 = {xi,G
1 , . . . , xi,G

D } i = i, … , 𝑵𝑷. (1)

The original (initial) population is set to cover the

given search space efficiently, by random generation

of vectors throughout the search space. An iterative

process is launched once the initial population is

ready to generate new populations, until the

termination condition is satisfied. At every iteration

(generation), a new mutant vector (𝑉𝑖,𝐺) is generated,

as shown in Eq. (2),

𝑽𝒊,𝑮 = {vi,G
1 , . . . , vi,G

D } i = i, … , 𝑵𝑷. (2)

for each individual (the target vector, Xi,G) present in

the current population. Diverse mutation strategies

proposed in the public domain, such as DE/rand/1,

DE/best/1 and DE/current-to-best. [9, 10, 11], differ

in the manner by which the mutant vectors are

generated. Subsequent to mutation, the crossover

(which may be binomial or exponential) is performed

between the mutant vector, 𝑽𝒊,𝑮, and the target vector,

𝑿𝒊,𝑮, to produce the trial vector (𝑼𝒊,𝑮) as shown in Eq.

(3),

𝑼𝒊,𝑮 = {𝑢𝑖,𝐺
1 , . . . , 𝑢𝑖,𝐺

𝐷 } (3)

DE’s desirable traits of ease of implementation,

algorithmic simplicity, and fast convergence have

captivated the research community. Over the past two

decades, active research in fortification of the DE

algorithm have yielded numerous DE variants.

Selection of an appropriate DE variant for a specific

optimization problem continues to pose an arduous

exercise for the research community, few of the

investigation attempts in this direction have been

summarised in [12].

2.2 Genetic algorithm

J. H. Holland brought to light the significant

concept of utilizing GA to solve optimization

problems, in 1970 [13]. Since then, GA has

galvanized the global research community to take on

optimization problems in scientific and engineering

domains. GA has not been touted as a mathematically

sound algorithm, as the retrieved optimum solution is

evolved in each generation, without rigorous

mathematical formulation, unlike conventional

gradient-type optimization. GA functions effectively

with all types of solution representations. A

population pool comprised of solution vectors is

initialized at random, and then updated, iteratively. In

every iteration of the genetic process, a new solution

vector is generated from the vectors that were present

in the previous generation. This evolutionary process

can be effective only if a specific selection routine is

chosen to select the parents with the best fitness. GA

embodies a variety of mutation and recombination

operators to produce offspring. This process of

evolution or gene manipulation is anticipated to

produce better children that survive in subsequent

generations, imitative of the concept of survival-of-

the-fittest. The procedure to find the best candidate is

repeated until the termination condition is satisfied.

3. Related works

This section reviews works reported in the

published domain apropos of the parallel and DC

nature of EAs, which afford meaningful insights into

the image segmentation and image reproduction

algorithms.

Bharathi et al., [14] provided a comprehensive

survey on EAs and their applications. Incorporation

of EAs in parallel and DC frameworks have turned in

effective performance in the manipulation of run-of-

the-mill sequential use cases. Load distribution and

high computation speed can be accomplished by

parallel processing and distribution of` the tasks

among various computing elements. The island,

hierarchical, Master-Slave, Cellular, pool, multi-

agent, and Co-evolution are few examples of the

Received: July 16, 2023. Revised: August 6, 2023. 652

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

widely employed parallel and distributed

evolutionary models [15]. The authors in [16]

proposed an agent-based approach, which can solve

an optimization problem by decomposing it into

constituent sub-problems. These agents (master and

slaves) are organized into groups at the first level of

the agent-based approach, prior to initiation of the

optimization process. Said et al., [17] proposed a

hybridized approach, combining GA with an

estimation of distributions. In this hybrid framework,

the master node exploits the search space, whereas

the slave nodes perform specific proportionate

functions required for the intended optimization.

A collective communication-based approach was

proposed by Abdoun et al., [18]; communications

between master and slave nodes take place via

message passing in java (MPJ) express. Abdoun’s

team utilized an Ant Colony Optimization Algorithm

to address the optimization problem. Similarly,

Depolli et al., proposed an asynchronous master-

slave, user-defined, framework to solve time-

intensive multi-objective optimization problems [19],

where the settings and input parameters are

formulated based on the targeted optimization

problem. Utilizing partitioned global space address

(PGAS) for connecting computers as a cluster in a

virtual distributed form, a high level of parallelism

was achieved in [19]. Lin et al., [20] put forth a

parallel GA (PGA), where every node computes the

initial population and shares the best candidate with

all the extant nodes, creating multiple work areas.

The authors in [21] used the PGA concept of [20] to

take on non-linear optimization problems.

In [22], the author proposed utilization of shared

storage space and centralized load-balancing

principles, to solve multi-objective optimization

problems. Zhan et al., [23] submitted a heterogeneous

EA approach with a double-layer architecture; an EA

is equipped in the first layer; the cloud paradigm is

introduced in the second layer, to provide distributed

environment. Similarly, Supriya et al., proposed a

Bayesian learning approach [24] and demonstrated

dynamic resource provisioning, for cloud-based

applications. Cao et al., introduced a distributed

parallel cooperative co-evolutionary multi-objective

evolutionary algorithm (DPCCMOEA), to solve

large-scale optimization problems [25].

DPCCMOEA decomposes the original large-scale

problems into sub-problems and introduces a two-

layer message-passing architecture that evolve

around the sub-problems. This approach works on the

principles of the decision variable analysis (DVA)

strategy. Karthi’s team conducted a detailed

performance analysis of GA for functional

optimization in a multi-core platform [26].

Albeit multiple pieces of published literature

advocate the advantage of parallel and distributed

systems, competition-based [27] and Divide-

conquer-based [28] methods have also aroused keen

interest among researchers. These popular schemes

are generally used to tackle optimization problems.

EAs are widely combined to address diverse

image processing applications. Michal et al., utilizing

GA, submitted a fast-robotic pencil drawing

application [29]. Sun, Yu, et al., [30] propounded an

image registration technique with the DE algorithm.

Liu et al, recommended a collaborative dragonfly

algorithm with a novel communication strategy, for

the segmentation of multi-thresholding color images

[31]. Meesala et al., proffered a feature-based

emotion detection in social media, using multi-

objective EAs [32]. Luo’s group recommended a

Whale Optimization Algorithm to reduce noise

present in an image [33].

Image segmentation is crucial in medical image

processing and related domains. Cuckoo search,

incorporated with Masi entropy and DE mutation,

was presented to handle multi-level image

segmentation scenarios [34]. Akshay et al., [35]

suggested an image segmentation technique via an

artificial bee colony algorithm, manipulating gray

level co-occurrence matrix (GLCM) features, for

categorization of fruit images. Sun’s team [36]

recommended an adaptive bi-mutation-based DE

algorithm for image segmentation, outfitted with the

opposite learning strategy, to improve the quality of

the initial population. In the same probe, Sun’s team

proposed a threshold-value-Jia based mutation

strategy, to enhance the explorative capability of the

algorithm. Bhandari presented a novel fast multi-

level thresholding beta-DE algorithm, for

segmentation of color images [37]. The author

calculated the optimum threshold by maximizing the

Kapur and Tsallis entropy [38], a thresholding

function incorporated within the beta-DE algorithm.

Tarkhaneh and his team [39] proposed an adaptive

DE algorithm for optimal multi-level thresholding,

for the segmentation of MRI images of brain scans.

The authors compared the proposed algorithm against

the native DE algorithm on three DE benchmark

algorithms, with T2-weighted MRI brain images.

Jia’s group [40] proposed a new hybrid algorithm,

blending the grasshopper optimization algorithm

with DE, for segmentation of multi-level satellite

images.

Similar to image segmentation, literature is rife

with numerous studies that manage problems apropos

of image reproduction and image enhancement.

Received: July 16, 2023. Revised: August 6, 2023. 653

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

Table 1. Algorithmic description of the MTDEA

framework

In Master node

Create Initial population - pop().

Based upon the number of nodes decompose

the pop().

Send the decomposed population to the

corresponding nodes.

After every iteration receives the best candidate

from all nodes.

Compare and update the best candidate until

termination condition is satisfied.

In slave node

Receive the population from master node -

Pop_1().

Decompose the Pop_1() based on the number

of threads.

Send the decomposed population to the

corresponding threads .

After every iteration - compare the best

candidates between the threads.

If (iteration count / mf == 0)

// mf - migration frequency

 send the best candidate to (n+1)th node.

In Threads

Receive sub-population from the corresponding

slave node.

Implement the specified EA for the population.

After every iteration send the best candidate to

the slave node.

Kishore’s team proposed a GA-based scheme to

regenerate images from shrunk scaled images, using

bit data count [41]. Kishore et al., asserted that their

algorithm could be applied to recover error bits

within any data block. Shrivastava et al., [42],

proposed a GA-evoked image-enhancement

technique, in which de-noising of the image was

accomplished by reduction of the mean noise present

in the targeted image. GA-based image segmentation

and reconstruction was implemented in [43]; its

author crafted a GA scheme to extract a mask that

removed and reconstructed the segmented image,

from the original image. Similarly, Hashemi et al.,

[44] proposed a GA application for enhancement of

an image, using the intensity value and the number of

edges, as fitness measures, for each chromosome.

On appreciation of the imperative of parallel and

distributed facets of conventional EAs, and the

relevance of algorithmic frameworks for the handling

of complex image processing problems, the objective

of this paper is to elucidate, implement, and validate

the propriety of MTDEA frameworks for image

processing applications. Multithreaded distributed

differential evolution (MTDDE) and multithreaded

distributed genetic algorithm (MTDGA) were the two

frameworks assessed in this work.

4. MTDEA framework

Computation time and computational resources

assume a vital role in the management of intricate

real-world problems. Building an asynchronous

multi-threaded MTDEA model over the distributed

master-slave model is one of the key contributions of

this investigation. This framework expands DEA

framework to its multithreaded version, in which

each computing element in the distributed framework

is endowed with multiple threads (threads are the

simplest flow of activities that can be executed in a

process) to reinforce the computational power. The

suggested framework utilized the “multiprocessing”

library to provide process-based parallelism; this

package supports a spawning process via an

application programming interface (API). The goal of

the recommended MTDEA framework is to diminish

computational time without detriment to the solution

quality.

The MTDEA is a highly distributive, fault-

tolerant framework that employs an island-based

dispensed model. This island model originated from

the concepts of natural evolution, which tend to

systematize the original population spread

throughout the search space. Generally, the number

of islands in island models, is user-specified, where

the initial population is segregated into sub-

populations. Each island contains a sub-population to

ensure the principle of simultaneous exploration of

various landscapes. Significantly, within each island,

the MTDEA framework attempts to sustain high

population diversity. In the notion of attaining

anticipated behavior, the best candidate from one

island is exchanged with the best of other islands, at

a specific frequency (Migration Frequency (MF))

[45]. The process of exchanging the best candidates

is termed Migration. Among the various migration

topologies present, best candidates can be chosen by

the algorithmic flow of the targeted optimization

problem. Table 1. presents an algorithmic description

of the MTDEA framework.

The MTDEA framework follows a traditional

master-slave architecture for its processing. In the

master node, the initial population is generated; based

on the number of slave nodes, the initial population is

distributed in such a way that all the slave nodes have

an equal number of candidates. Every slave node

present in a MTDEA framework is an island.

Received: July 16, 2023. Revised: August 6, 2023. 654

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

Figure. 1 General architecture of the MTDEA framework

Each slave node receives a sub-population.

Furthermore, the decomposition of the sub-

population takes place and sent to the respective

threads. The number of threads on an island is user-

specified, and each thread consist of an EA implied

to it. In the MTDEA framework, the threads are

administered by the corresponding slaves. Every

thread runs the implied EA in a parallel standpoint

maintaining the synchronization.

In the implementation part, the threads are

designated to run in a multi-threaded mode using the

concurrent.futures.ThreadPoolExecutor() API. In

this function, concurrent.futures module offers a

high-level interface for execution of threads in a

parallel fashion. The ThreadPoolExecutor class has

methods to generate pool of threads and to execute

them asynchronously. Fig. 1 presents a general

architecture of the MTDEA framework.

The MTDEA framework is customizable and

scalable based on the natural behavior of a given

optimization problem. The acronym MTDDE

denotes the MTDEA framework in which the DE

algorithm is placed in the slave nodes, with their

corresponding threads; MTDGA is the MTDEA

framework with GA in the slave nodes with their

threads. To provide load balancing between the

threads of a corresponding slave node, the initial

population of the slave node is decomposed equally

based on the number of threads present in the slave

node, the initial population of the slave node is

decomposed equally based on the number of threads

present in the slave node. During every generation,

the main objective of each thread is to find the

optimal solution for the given sub-population and

report the best candidate to the slave. During a

specific frequency of generations, the slave nodes are

permitted to migrate their best candidates to the

neighboring islands, demonstrating a strict migration

topology. In the MTDEA framework, ring topology

is deployed to maintain a highly cooperative

evolutionary environment.

4.1 Fault-tolerant MTDEA framework

In continuation of the design of MTDDE and

MTDGA frameworks, experiments were carried out

to furnish the MTDDE framework with add fault-

tolerant mechanisms. Albeit parallel and or DC

systems are employed to work out large-scale

optimization problems, the probability of fault-

occurrence is higher in these systems. The ability of

a framework to deliver its designated functionality

despite errors/faults that occur in hardware or

software sub-systems is termed fault tolerance [46].

Commonly occurring faults in distributed systems are

node failure and link failure. ‘n-version, epidemic,

rejuvenation, and addition of checkpoints’ are a

sample of the fault tolerant strategies employed for

distributed systems [47, 48, 49]. These types of

counter-algorithms handle fault instances at the price

of increased time complexity of the algorithms.

Since user-level failure mitigation proposals (ULFM)

are implicit in the message-passing interface (MPI)

forum, this work explores the efficiency of simple

plug-in algorithms that overcome commonly

occurring faults.

Received: July 16, 2023. Revised: August 6, 2023. 655

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

Table 2. MOV and Aet for DDE and MTDDE

f1 f2

DDE MTDDE DDE MTDDE

MOV 7.75E-14 3.31E-14 5.82E-14 6.16E-14

Aet (s) 1.634 1.188 1.402 0.68

f3 f4
 DDE MTDDE DDE MTDDE

MOV 1.3E-05 1.3E-05 1.84E-13 0.00

Aet (s) 86.594 83.8 8.4 2.417

As delineated in [7], three fault-tolerant

algorithms are plugged into the MTDDE framework

to manage the reported faults, such as – ‘Single-Node

failure,’ ‘Multi-Node failure,’ and ‘Communication-

Link failure’. The ‘Single-Node failure’ is handled by

the addition of a backup node for each slave node.

The slave nodes share their population with the

backup nodes, after every generation. The MTTDE

framework uses a concurrent.futures.shutdown()

method, in which the user specifies the wait time. In

case of no response from a slave node within this

specified wait period, the MTDDE framework shuts

down that particular node, assuming there may be a

fault in the node. The framework initiates a backup

node and starts the communication between the

neighboring nodes and the respective slave node.

In a highly distributed data processing

environment, where number of computational nodes

are high, there is an increased likelihood of a fault

event observed as concurrent failure of multiple

nodes. After every successive generation, the slave

nodes are programmed to regularly send the best

candidates to the master node. A master node

persistently monitors its slave nodes. If a slave node

does not send its best candidate for a certain period of

time, which is user specified, the master node

assumes the corresponding slave node is in a dead

state. Master node initiates the shutdown() method

for the dead node. The best candidates received from

inactive slave nodes are pooled into a new population

within the master node, and the DE algorithm is

initiated. Finally, at the end of the process, the master

node compares the final optimal solution received

from the active nodes with its self-processed optimal

solution to dispense the global optimum solution.

In the MTDDE framework, communications

between the slave nodes are established by the MPI.

There is a strong possibility of communication failure

arising due to the natural negotiating process of the

MPI. To confront the situation, a trigger is

customized in all the slave nodes, such that if MPI

provides negative acknowledgment when

communicating with the nth node, the trigger is proved.

If the trigger is evoked, the sending node starts

communication with the (n+1)th node, neglecting the

presence of the nth node. This is how the plugged-in

algorithm handles the ‘Communication-Link failure’

fault.

5. Empirical validation of the MTDEA

framework

The initial part of the experiment is framed to

compare the performance of the MTDDE framework

(the MTDEA framework incorporated with the DE)

with the conventional distributed differential

evolution (DDE) framework [50]. The experimental

setup is noted below:

Laptop PC (MacBook Pro - 2019) with

memory (8 GB 2133 MHz LPDDR3),

graphics card (Intel Iris Plus Graphics 1536 MB), and

processor (Quad-Core Intel Core i5-1.4 GHz).

MTDDE framework threads were customized

DE/best/1/bin variant. The control parameter set up

with similar values for both DDE and MTDDE

frameworks

Population Size (NP) = 60,

Crossover rate (Cr) = 0.5,

Scaling factor = 0.2,

Dimension (D) = 30,

maximum number of generation (Max_Gen)

= 3000,

number of runs (nr) = 30,

migration frequency (mf) = 45

migration topology (mt) = ‘Ring Topology’.

The termination criteria of this framework

are fixed to a minimal value of 1 × 10−12.

Following four benchmarking functions are

added in the experimental setup.

f1 - Schwefel’s Function 1.2,

f2 - Rosenbrock’s Function,

f3 - Generalized Schwefel’s Function, and

f4 - Ackley’s Function [49, 51]

The performance metrics used to compare the

frameworks are average execution time (Aet) and

mean objective value (MOV). The experiments were

repeated for different dimensions (D = 100, 500, and

1000) to test the MTDDE framework's fault-tolerant

capability.

Table 2 presents the MOV and Aet values for 30

independent comparative runs of the DDE and

MTDDE framework.

These results make plain that the Aet values of the

MTDDE framework outperform the counterpart

DDE variants for all the benchmarked functions,

fx [x = 1,2,3,4]. MOV metrics reveal that the MTDDE

outperforms DDE functions f1 and f4. Their

performances are similar to the Generalized

Received: July 16, 2023. Revised: August 6, 2023. 656

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

Schwefel’s Function (f3). However, the DDE variants

overran MTDDE for function f2.

This simple study demonstrated that

multithreaded versions of the DDE frameworks

arrive at a faster convergence, ensued by their

massive parallel configuration. This comparative

study substantiated that the fault-tolerant strategies

bestowed on MTDDE facilitate the framework’s

resilience, - despite the simulated fault conditions,

forestalling computational overheads or degradation

of quality. The efficiency of the MTDEA framework

was validated in terms of serving the goal of reducing

the execution time without sacrificing the solution

quality.

6. Performance analysis - MTDEA image-

processing

The MTDDE and the MTDGA frameworks were

capacitated to resolve image segmentation and image

reproduction problems, respectively. This section

demonstrates the MTDEA framework's prospects in

dealing with image segmentation and image

reproduction.

6.1 Image segmentation

The process by which a graphical image is

partitioned into its constituent subgroups (image

segments) is termed as image segmentation. These

segments modulate the complexity of a targeted

image, to simplify subsequent processing and

analysis. The segmentation process allocates labels

for every pixel in the image; pixels belonging to same

segment possess a unique label.

6.1.1. Background study

Published literature is abuzz with schemes for

image segmentation. A traditional straightforward

technique is Otsu’s method [3]. Conventional Otsu

technique delivers an acceptable segmentation if the

image is free of noise. Otsu helps in the selection of

threshold values, a major challenge posed by image

segmentation. The basic idea behind the Otsu method

is to divide the image into two categories, A0 and A1,

based on the threshold value (t). A0 contains pixel

values ranging from [0 to t], and A1 has pixel values

ranging from [(t+1) to (L-1)], where L is the level of

grey color present in the targeted image. Otsu is

calculated between the categories using the formula

given in Eq. (4).

𝜎(𝑡)2 = 𝑤1(𝑡)𝑤2(𝑡)(𝑢1(𝑡) − 𝑢2(𝑡))2 (4)

where, 𝑤𝑖(𝑡) represents the number of pixels present

in A0 and A1 and 𝑢𝑖(𝑡) represents the average value

Table 3. Algorithmic description of selecting threshold

based on DE

Step – 1 : Image pre-processing: Convert RGB image

into grey scale image

Step – 2 : Population initialization and calculate fitness

of each individual

Step – 3 : Customized Mutation strategy

//explained in section 2.1

Step – 4 : Customized Crossover strategy

//explained in section 2.1

Step – 5 : Selection operation : Comparing the trail

vector and test vector, candidate with higher

fitness is selected for forth-coming

generation

Step – 6 : Check for termination condition

 If termination condition == true:

 Move to step (7)

 Else:

 Move to step (3)

Step – 7 : The best candidate’s threshold value is

mapped in-between the range [0 to 255]

Step – 8 : Search based on [t-f to t+f] will produce

optimal threshold value

Step – 9 : Based on the optimal threshold value

obtained, each pixel is segregated into

foreground and background pixel and the

final image is produced

for all pixels present in A0 and A1. The value of t can

range from [0 to (L-1)]; the general principle of the

Otsu method relies on calculating the variance.

Variance is the optimum threshold that can be

obtained for a given image. Based on the value of the

variance, each pixel is segregated into the foreground

and background pixels.

6.1.2. DE for image segmentation

As part of the pre-processing in image

segmentation, the original image is transformed into

a grayscale image. The value of each pixel in the

grayscale image ranges between 0 and 255. The gene

values in the candidates of DE’s randomly generated

population range from [0.1 to 0.9], to evade the

cumulative value of the pixel divided by zero.

The fitness function stated in [52], presented in Eq.

(5), is used to evaluate the candidates of DE’s

population, generated at random.

𝑐𝑜𝑠 𝑡 (𝑖) = 𝑤1(𝑖)𝑤2(𝑖)(𝑢1(𝑖) − 𝑢2(𝑖))2 (5)

Received: July 16, 2023. Revised: August 6, 2023. 657

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

where, i represents a random vector from the

population range [0.1 to 0.9], 𝑤𝑛(𝑖) represents

number of pixels in the category (foreground and

background) 𝑢𝑛(𝑖) represents the average value of

pixels in the category.

As part of the mutation strategy, two vectors are

selected at random, from the initial population, and

their difference is computed. The mutated vector is

obtained by accumulating the candidate with the

result.

Apropos of the crossover strategy, a vector is

chosen at random from the DE population, such that

the selected vector's fitness is not lesser than the

target vector; this random vector acts as a cross-

cutting object. Implementing a crossover strategy in

this fashion affirms convergence rate and population

diversity. After n iterations, DE finds the optimal

threshold value (t). The search operator focuses on

the search space within the specified range of [(t – f)

to (t + f)] in successive iterations, where f is the

threshold fluctuation factor. Table 3 presents an

algorithmic description of selecting a threshold based

on DE.

6.1.3. MTDDE for image segmentation

In MTDDE, the master node converts the

received original image into a greyscale image. Next,

the master node decomposes the greyscale image into

equal number of vertical or horizontal slices. The

number of slices equals the number of slave nodes

present in the model. Each slave node maintains its

threads and provides coordination between the

threads present in the corresponding slave node. The

slave node is responsible for further decomposition of

the image into equal halves based on the number of

threads present. Each thread is comprised of a DE

algorithm incorporated within it; based on the given

slice of image, each thread starts to produce the

population, at random, and proceeds to discover the

optimum threshold value (t) for the given image slice.

The settings of the algorithm are as follows:

population size (NP) is 5,

crossover factor (Cr) is 0.3, and

mutation factor (F) is fixed at 0.5.

Maximum number of iterations is set in the range

of (10 to 20) generations (to avoid over-segmentation

issues, which generally varies from image to image).

With the required parameters, each thread

derives the optimal threshold value, which is used to

segment the sliced image received from the slave

node. The segmented image slice is passed to the

slave along with the optimal threshold value (t).

During the process of migration (of best candidates),

the threshold value of t from each slave node is

exchanged with the neighboring slave. Each slave

node updates the ‘t’ received from its threads after

every independent run. The migration topology used

is the ring topology. As the underlying concept of the

MTDDE framework is to decompose an original

image into smaller regions, based on the region of

interest, the optimal threshold is calculated using DE

algorithm, which enables image segmentation. When

the maximum number of iterations is reached, the

slave node collects the segmented images from the

threads and merges them into a final segmented

image. The master node collects the final segmented

images from the slave nodes, and combines them to

produce the final segmented image as an output. This

approach of decomposing the image into smaller

regions and segmenting based on the region of

interest, has proven to yield enhanced segmentation

quality, besides conserved execution time. One of the

observed limitations of the MTDDE framework is

over-segmentation that ensues from decomposition

of the original image into smaller slices; hence,

during the image decomposition process, a

reasonable size for slicing should be fixed. Fig. 3

depicts working of the MTDDE framework,

containing 1 master node, 1 slave node, and 3 threads.

A sample image was retrieved from the human

recognition dataset from the Kaggle repository, for

comparative empirical analysis between sequential

DE (SDE)-based image segmentation and the

MTDDE framework-based image segmentation. To

achieve a reasonable analytical study, both these

models were customized with the same parametric

values. The resultant output images of these models

are depicted in Fig. 2. The SDE algorithm and

MTDDE framework were deployed for 10

independent runs, and their performance is presented

in Table 4. The results are comprised of the optimal

threshold achieved by both models, and the

corresponding execution times.
NOTE: SET – sequential execution time, DET – distributed

execution time, in Table 4.

6.2 Image reproduction

Image reproduction is an iterative process of

reconstructing an original image from its pixel values.

It enhances an image to provide a better image for a

specific application. There are different techniques to

reproduce an image from its original version; one of

the popular techniques is by finding similarity

measures after every iteration. This process is widely

used in reverse imaging, image restoration, and

medical images.

Received: July 16, 2023. Revised: August 6, 2023. 658

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

Figure 2. Resultant output images of image segmentation

Figure 3. General workflow of MTDDE framework for image segmentation

Table 4. Comparative empirical analysis of SDE and MTDDE

Runs

Optimal

Threshold

by SDE

SET

(s)

Optimal

Threshold

by MTDDE

DET

(s)

1 168.71 0.64 147.56 0.27

2 169.36 0.63 165.84 0.26

3 169.10 0.61 166.87 0.28

4 169.21 0.63 165.47 0.25

5 167.81 0.59 166.37 0.25

6 169.48 0.63 166.92 0.25

7 169.31 0.59 166.91 0.26

8 168.57 0.63 170.03 0.29

9 168.83 0.63 167.02 0.29

10 168.06 0.62 166.86 0.3

Avg 168.84 0.62 164.99 0.27

Received: July 16, 2023. Revised: August 6, 2023. 659

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

6.2.1. Image reproduction library

GA for reproducing images (GARI) is a Python

project using the PyGAD library [52] to reproduce

the original input images. GARI is an inbuilt library;

hence customization of the algorithmic parameters is

not required, unlike other EAs.

6.2.2. GA (through GARI library) for image

reproduction

Evolving pixels serve act as a basic principle for

image reproduction using a GA. As a first step, an

input image is preprocessed to be converted into a 1D

(1-dimensional) vector. Initial_population() function

in the GARI library creates a random population [53].

The fitness function is designed in such a way that it

accepts two arguments, representing candidate

solutions and their corresponding indices, to return

the fitness value. The fitness value is fetched, by

accumulation of the sum of the absolute differences

between the gene values within the original and

reproduced candidates. Candidates are sorted based

on their fitness values, and the candidates with the

best fitness are selected as parent. Among the

(crossover and mutation) variation operations, the

crossover() function is invoked for carrying out the

crossover operation.

The crossover() function requires three

arguments - input image shape (img_shape), number

of offspring to return (n_individuals), and the best

performing candidates in the previous generation.

The number of individuals (n_individuals) is kept as

8 [55]. In the mutation operation, mutation(), some

genes in the chromosome are selected at random, and

a random weight is added to the gene (similar to the

adaptive mutation technique). The mutation()

function receives the population returned by the

crossover() function. The percentage of change in a

chromosome is determined by the best candidate

received from the previous generation. Once the

variation operations are consummated, PyGAD.GA

class instance is created. The flowchart of the GARI

library workflow is depicted in Fig. 4.

6.2.3. MTDGA for image reproduction

In the MTDGA framework, the master node

decomposes an original input image into smaller

regions and disseminates them to all the slave nodes.

On receipt of the images, the input image is further

decomposed into smaller regions, which are sent to

the threads that were incorporated within the GARI

library. The image reproduction process is initiated in

the threads, as soon as an input image is received.

The further random population is generated, followed

by variation operation; on completion of the latter,

PyGAD.GA class instance is developed

automatically. The spontaneous mutation employed

with mutation_by_replacement = ‘True’. The

parameters configured are range_of_pixel_values,

init_range_high, init_range_low,

random_mutation_max_val, and

random_mutation_min_val in the PyGAD instance

[54]. The image pixel value is kept in the range [0 -

255], and random_mutation_max_val and

init_range_high are set to 255. The

random_mutation_min_val and init_range_low are

fixed to 0. The execution of the instance is initiated

with run() method.

The working of MTDGA is similar to the MTDDE

framework; when the thread reaches the maximum

number of iterations, the reproduced image slices are

sent to respective slave nodes. On receipt of all

resultant segments from the threads, the slave nodes

recombine them in a specific order, prior to sending

them to the master node. The master node, on receipt

of all the resultant images from the slaves, produces

the final image.

The objective of testing the MTDGA framework

for image reproduction is to reproduce an image with

quality similar to the original image and minimize the

process execution time. A detailed performance

analysis was carried out, between the sequential GA

and the MTDGA framework, on reproduction of the

original image. The performance metrics taken into

consideration were – peak signal-to-noise ratio

(PSNR), structural similarity index metrics (SSIM),

mean square error (MSE), and execution time (ET).

Table 5 displays the performance of sequential GA

for 10,000 generations.

Table 6 depicts the performance of the MTDGA

framework for 10,000 generations with horizontal and

vertical slicing, for comprehension of their impact on

the performance of the MTDGA framework. Results

in Table 6 attest that performance of the MTDGA

framework is immune to the slicing styles.

Comparison of the performances of the MTDGA

framework (Table 6) with the sequential GA (Table 5)

justify that the quality of the image (in terms of PSNR

and SSIM values) reproduced by the MTDGA

framework is much preferred. Besides, MTDGA has

less MSE score compared to sequential GA, which

reaffirms that image reproduction quality is enhanced

using the MTDGA framework. Furthermore, the

MTDGA framework has taken only a third of the

execution time (ET) incurred by the sequential GA

model.

Received: July 16, 2023. Revised: August 6, 2023. 660

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

Figure. 4 Flowchart of the GARI library

Table 5. Performance of sequential GA for image

reproduction

Run PSNR MSE SSIM
ET

(s)

1 7.11 105.64 0.0196 24.80

2 7.11 105.21 0.0211 23.64

3 7.12 105.35 0.0234 23.81

4 7.10 105.46 0.0228 23.72

5 7.14 105.38 0.0206 23.71

6 7.11 105.24 0.0233 23.81

7 7.14 104.87 0.0231 23.97

8 7.11 105.59 0.0208 23.90

9 7.13 105.10 0.0230 23.7 3

10 7.11 104.89 0.0224 23.72

Average 7.12 105.27 0.0220 23.88

Table 7 shows the average comparative

performance values for 10 independent runs of these 2

models, when exposed to increased number of

generations (20 000, 30 000, 40 000, and 50 000).

Table 7 also proves that MTDGA provides a better-

reproduced image with minimal execution time, as the

number of generations increases. The method of

decomposing the image into smaller regions and

iterating, until the termination condition is satisfied, is

the reason behind increase in quality of the solution

afforded by the recommended MTDGA framework.

Figure 5 illustrates the evolutionary process of

enhanced image reproduction quality with higher

numbers of generations.

7. Experimentation of MTDEA on HPC

The MTDEA framework was deployed on a 140

core-HPC system, configured with 1 TB RAM, 21

TB storage and Red Hat Linux (6.10 version)

operating system, to explore scalability of the

MTDEA framework. The “eso1242a” test image was

downloaded from European Southern Observatory

(ESO) website [56]. This website acts as a repository

that contains images of celestial objects with high

definition. The size of this image was 1.5 GB (giga-

pixels). The performances of MTDDE and MTDGA

frameworks were evaluated on the HPC system. The

experimental setup followed in previous experiments

(Section 6.1) was followed for the current experiment

on HPC.

7.1 MTDDE on HPC

Table 8 presents a comparative analysis of the

sequential and multi-threaded execution options,

employed on the HPC system noted in section 6.1.

The SET and DET, in Table 8, respectively represent

sequential and distributed execution times. To

provide clear analysis, optimum threshold achieved

for each slice of image in MTDDE framework is

displayed. AOT refers to average value of the optimal

thresholds achieved for the segmented image slices

by MTDDE framework. The results advocate that

MTDDE framework incorporated in HPC

environment is efficient and scalable for image

processing applications with larger image size (giga-

byte images).

Received: July 16, 2023. Revised: August 6, 2023. 661

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

Figure 5. The evolutionary process of image reproduction using MTDGA framework

Table 6. Performance of MTDGA framework for image reproduction

Run

Vertical slicing of image Horizontal splicing of image

PSNR MSE SSIM ET PSNR MSE SSIM ET

1 7.70 104.76 0.0327 8.75 7.78 104.37 0.0352 8.54

2 7.71 104.60 0.0327 8.78 7.78 104.34 0.0348 8.66

3 7.72 104.90 0.0332 8.79 7.80 104.21 0.0354 8.63

4 7.75 104.79 0.0360 8.73 7.82 104.48 0.0379 8.61

5 7.74 104.41 0.0354 8.77 7.77 104.58 0.0346 8.69

6 7.70 104.79 0.0351 8.73 7.78 104.19 0.0360 8.70

7 7.74 104.98 0.0337 8.69 7.78 105.11 0.0384 8.64

8 7.72 104.80 0.0335 8.89 7.78 104.47 0.0359 8.77

9 7.74 104.67 0.0351 8.77 7.79 104.58 0.0342 8.72

10 7.73 105.04 0.0355 8.85 7.77 104.95 0.0361 8.63

Average 7.72 104.77 0.0343 8.77 7.78 104.53 0.0358 8.66

Table 7. Overall performance comparison of GA vs. MTDGA

Number of

Generations

Sequential GA MTDGA

PSNR MSE SSIM ET PSNR MSE SSIM ET

20 000 7.202 104.873 0.029 34.16 8.403 103.703 0.048 19.20

30 000 7.264 105.110 0.030 50.12 8.574 103.603 0.057 27.25

40 000 7.291 104.651 0.031 68.16 8.636 103.391 0.057 36.78

50 000 7.303 105.576 0.031 83.59 8.675 103.162 0.057 45.62

7.2 MTDGA on HPC

To study the performance of MTDGA on the

HPC system, the same test image, but, with a lesser

quality (33.6 MB) was chosen. This experiment was

aimed to study how well the MTDGA framework

performs when exposed to an HPC system. As the

MTDGA framework took around 70 hours to process

1.5 GB image and 22 hours to process an image size

of 236.2 MB, to simplify the experiment, an image of

33.6 MB size was chosen. Table 9 depicts the

performance comparison between sequential GA and

MTDGA in the HPC system. The results in Table 9

are an average of 10 runs, to overcome the

randomization error.

Received: July 16, 2023. Revised: August 6, 2023. 662

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

Table 8. Performance comparison of sequential DE vs. MTDDE in HPC

Runs

Optimal

threshold

by SDE

SET

(s)

Optimal threshold by

MTDDE, for each slice of

the image

AOT
DET

(s)

1 84.16 1931.00 102.06 109.12 56.58 89.26 1098.74

2 83.66 2032.21 101.89 105.63 57.65 88.39 1072.79

3 85.68 2020.60 106.08 106.84 57.87 90.26 1062.18

4 85.37 2067.82 102.42 107.12 58.46 89.33 1081.87

5 82.35 1989.95 101.83 106.88 58.14 88.95 1095.60

6 83.61 2021.50 101.62 105.77 58.26 88.55 1056.71

7 83.98 2007.96 103.21 104.75 56.84 88.26 1051.07

8 84.08 2072.28 101.56 107.45 57.89 88.97 991.09

9 86.45 2089.67 103.74 107.35 57.65 89.58 1007.89

10 83.69 1947.16 102.43 105.86 57.97 88.76 1033.57

AVG 84.30 2018.01 89.03 1055.15

Table 9. Performance comparison of Sequential GA vs. MTDGA on HPC

Number of

Generations

Sequential GA MTDGA

PSNR MSE SSIM
ET

(s)
PSNR MSE SSIM

ET

(s)

10000 7.92 105.49 0.0071 561.73 7.86 105.40 0.0063 310.22

20000 7.90 105.43 0.0067 735.65 7.81 105.33 0.0058 635.74

30000 7.88 105.46 0.0066 1163.97 7.80 105.32 0.0057 955.22

40000 7.90 105.46 0.0068 1430.56 7.80 105.25 0.0055 1317.61

50000 7.88 105.43 0.0064 2822.56 7.79 105.26 0.0055 1695.30

Table 10. The algorithmic structure of each node in the framework

a For i number of runs

1 For j number of generations

a For k number of candidates

1 For d dimensions

a Perform mutation (d steps)

2 Perform crossover (assume 1 step)

3 Perform selection (assume 1 step)

b End of k loop.

4 Perform migration (assume 3 steps)

2 End of j loop

b End of i loop

Results in Tables 8 and 9 affirm that the MTDEA

framework performs with minimal execution time

without compromising the solution quality on the

HPC system. Testing the frameworks on HPC system

asserts, that MTDEA is scalable and reliable, in

highly distributed computing environment.

8. Time complexity analysis

This section details the time complexity of the

MTDEA framework. The parameters used in the

MTDEA framework were the maximum number of

runs (i), the maximum number of generations (j), the

number of candidates (k), and problem dimension (d).

The algorithmic structure of a single node in the

MTDEA framework is shown in Table 10. In the case

of the MTDEA framework (with 3 slave nodes and 2

master node), the estimated time complexity is in the

order of 4 * (i * j * (k * (d + 2) + 3)). The time

complexity of the MTDEA framework is in O (i * j *

k * d), which is similar to the time complexity of the

conventional DE algorithm [57], irrespective of the

number of nodes utilized in a parallel fashion.

9. Conclusions

This paper demonstrated the propriety of a fault

tolerant multi-threaded distributed evolutionary

algorithm framework (MTDEA) to handle

benchmarked image processing problems. The major

Received: July 16, 2023. Revised: August 6, 2023. 663

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

contribution of this study is the performance

comparison of image processing applications on

MTDEA frameworks with conventional computing

and HPC system. The MTDEA framework, stacked

against traditional differential evolutionary (DE)

models, was shown to be effective, reliable, and

exhibit faster process-execution times, devoid of any

detriment to image quality. The proffered MTDEA

framework, embodying synergistic blend of

distributed computing, multi-threading, and

evolutionary algorithm, exhibited strong potential to

provide promising solutions to different problems.

The advocated MTDEA framework was a simulation

model that can be conveniently upgraded and

customized in a highly distributed computing, as

evidenced by its validation on a high-performance

computing system.

Despite the credible reassuring performance of the

MTDEA framework, the notable limitation of over-

segmentation of images needs to be addressed

Besides, MTDEA's performance needs to be

validated on a larger image dataset. Future research

will focus on implementing the MTDEA framework

in a highly distributed dynamic computing

environment.

Conflicts of interest

No conflicts of interest to the best of our

knowledge.

Anthors contributions

This work represents the findings of the

scholar(Author-1) during his Ph.D. process and

(Author-2) is the mentor of his (Author-1) Ph.D.

programme.

References

[1] P. Yang, K. Tang, and X. Yao, “A Parallel

Divide-and-Conquer-Based Evolutionary

Algorithm for Large-Scale Optimization”,

International Journal of IEEE Access, Vol. 7,

pp. 163105-163118, 2019.

[2] Y. Bo, “Image Segmentation of the Genetic

Algorithms on the Base of Otsu”, Journal of

Natural Science of Hunan Normal University,

pp. 32-36, 2003.

[3] N. Otsu, “A Threshold Selection Method from

Gray-Level Histograms”, International Journal

of IEEE Transactions on Systems, Man, and

Cybernetics, Vol. 9, No. 1, pp. 62-66, 1979.

[4] J. L. Fan, X. F. Zhang, and Z. Feng, “Three-

dimension maximum between-cluster variance

image segmentation method based on chaotic

optimization”, In: Proc. of International Conf.

on Virtual Systems and Multimedia, 2006.

[5] C. Arif, S. Harsh, S. Hrutuja, J. Dheeraj, and G.

Shiwani, “Reproducing Images using Genetic

Algorithm”, International Research Journal of

Engineering and Technology (IRJET), Vol. 8,

No. 4, 2021.

[6] S. Raghul and G. Jeyakumar, “A Distributed

Multithreaded Evolutionary Computing Frame

Work using Differential Evolution Algorithm”,

In: Proc. of International Conf. on Inventive

Computation Technologies (ICICT), pp. 1145-

1151, 2021.

[7] S. Raghul and G. Jeyakumar, “Investigations on

Distributed Differential Evolution Framework

with Fault Tolerance Mechanisms”, In Book:

Differential Evolution: From Theory to

Practice. Studies in Computational Intelligence,

pp. 175-196, 2022.

[8] R. Storn and K. Price, “Differential evolution—

a simple and efficient adaptive scheme for global

optimization over continuous spaces”, In:

Technical Report-95-012, ICSI, 1995.

[9] E. M. Montes, J. V. Reyes, and A. Coello, “A

comparative study of differential evolution

variants for global optimization”, In: Proc. of

International Conf. on Genetic and Evolutionary

Computation, pp 485–492, 2006.

[10] K. Price, R. M. Storn, and J. A. Lampinen,

“Differential evolution: a practical approach to

global optimization”, In Book: Springer Science

& Business Media, 2006.

[11] K. V. Price, “An introduction to differential

evolution”, In Book: New ideas in Optimization,

pp. 79–108, 1999.

[12] A. K. Qin, V. L. Huang, & P. N. Suganthan,

“Differential evolution algorithm with strategy

adaptation for global numerical optimization”,

Journal of IEEE transactions on Evolutionary

Computation, Vol. 13, No. 2, pp. 398-417, 2009.

[13] J. H. Holland, “Adaption in Natural and

Artificial Systems”, In Book: Control, and

Artificial Intelligence, 1975.

[14] A. P. Bharathi, D. R. Pallavi, M. Ramachandran,

K. Ramu, and C. Sivaji, “A Study on

Evolutionary Algorithms and Its Applications”,

In Book: Electrical and Automation

Engineering, REST Publisher, Vol. 1, No. 1,

2022.
[15] J. Yue, C. W. Neng, Z. Z. Hui, Z. Jun, L. Yun,

and Z. Qingfu, “Distributed evolutionary
algorithms and their models: A survey of the
state-of-the-art”, International Journal of
Applied Soft Computing, Vol. 36, pp. 286-300,
2015.

Received: July 16, 2023. Revised: August 6, 2023. 664

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

[16] Y. Zheng, X. Xu, S. Chen and W. Wang,
“Distributed agent based cooperative differential
evolution: A master-slave model”, In: Proc. of
International Conf. on Cloud Computing and
Intelligence Systems, pp. 376-380, 2012.

[17] S. M. Said and M. Nakamura, “Parallel
Enhanced Hybrid Evolutionary Algorithm for
Continuous Function Optimization”, In: Proc. of
International Conf. on P2P, Parallel, Grid,
Cloud and Internet Computing, pp. 125-131,
2012.

[18] O. Abdoun, Y. Moumen and F. Abdoun,
“Parallel evolutionary computation to solve
combinatorial optimization problem”, In: Proc.
of International Conf. on Electrical and
Information Technologies (ICEIT), pp. 1-6,
2017.

[19] M. Depolli, R. Trobec and B. Filipič,
“Asynchronous Master-Slave Parallelization of
Differential Evolution for Multi-Objective
Optimization”, International Journal of
Evolutionary Computation, Vol. 21, No. 2, pp.
261-291, 2013.

[20] C. Lin, J. Liu, H. Yao, C. Chu and C. Yang,
“Performance Evaluation of Parallel Genetic
Algorithm Using Single Program Multiple Data
Technique”, In: Proc. of International Conf. on
Trustworthy Systems and Their Applications, pp.
135-140, 2015.

[21] A.T. A. Oqaily and G. Shakah, “Solving Non-
Linear Optimization Problems Using Parallel
Genetic Algorithm”, In: Proc. of International
Conf. on Computer Science and Information
Technology (CSIT), pp. 103-106, 2018.

[22] K. I. Abuzanouneh, “Parallel and Distributed
Genetic Algorithm with Multiple-Objectives to
Improve and Develop of Evolutionary
Algorithm”, International Journal of Advanced
Computer Science and Applications, Vol. 7, No.
5, 2016.

[23] Z. H. Zhan, X. F. Liu, H. Zhang, Z. Yu, J. Weng,
Y. Li, T. Gu, and J. Zhang, “Cloudde: A
heterogeneous differential evolution algorithm
and its distributed cloud version”, Journal of
IEEE Transactions on Parallel Distributed
Systems, Vol. 28, No. 3, pp. 704–716, 2017.

[24] R. Panwar and M. Supriya. “Dynamic resource

provisioning for service-based cloud

applications: A Bayesian learning approach”,

International Journal of Parallel and

Distributed Computing, Vol. 168, pp 90-107,

2022.
[25] B. Cao, J. Zhao, Z. Lv and X. Liu, “A

Distributed Parallel Cooperative Coevolutionary
Multiobjective Evolutionary Algorithm for
Large-Scale Optimization”, Journal of IEEE
Transactions on Industrial Informatics, Vol. 13,
No. 4, pp. 2030-2038, 2017.

[26] D. N. Harini and R. Karthi, “Performance

analysis of genetic algorithm for function

optimization in multicore platform using DEAP”,

In: Proc. of International Conf. on Soft

Computing and Signal Processing, pp. 269-279,

2022.
[27] Y. Ge, W. Yu, Z. Zhan and J. Zhang,

“Competition-Based Distributed Differential
Evolution”, In: Proc. of IEEE Congress on
Evolutionary Computation (CEC) Conf., pp. 1-
8, 2018.

[28] P. Yang, K. Tang and X. Yao, “A Parallel
Divide-and-Conquer-Based Evolutionary
Algorithm for Large-Scale Optimization”,
Journal of IEEE Access, Vol. 7, pp. 163105-
163118, 2019.

[29] M. Adamik, J. Goga, J. Pavlovicova, A. Babinec
and I. Sekaj, “Fast robotic pencil drawing based
on image evolution by means of genetic
algorithm”, International Journal of Robotics
and Autonomous Systems, Vol. 148, 2022.

[30] Y. Sun, Y. Li, Y. Yang and H. Yue, “Differential
evolution algorithm with population knowledge
fusion strategy for image registration”,
International Journal of Complex & Intelligent
Systems, Vol. 8, No. 2, pp. 835-850, 2022.

[31] F. F. Liu, S. C. Chu, X. Wang and J. S. Pan, “A
collaborative dragonfly algorithm with novel
communication strategy and application for
multi-thresholding color image segmentation”,
Journal of Internet Technology, Vol. 23, No. 1,
pp. 45-62, 2022.

[32] S. R. Meesala and S. Subramanian, “Feature
based opinion analysis on social media tweets
with association rule mining and multi‐objective
evolutionary algorithms”, International Journal
of Concurrency and Computation: Practice and
Experience, Vol. 34, No. 3, p. 6586, 2022.

[33] J. Luo, F. He, H. Li, X. T. Zeng and Y. Liang,
“A novel whale optimization algorithm with
filtering disturbance and nonlinear step”,
International Journal of Bio-Inspired
Computation, Vol. 20, No. 2, pp. 71-81, 2022.

[34] S. Ray, S. Parai and A. Das “Cuckoo search with
differential evolution mutation and Masi entropy
for multi-level image segmentation”,
International Journal of Multimedia Tools and
Applications, Vol. 81, pp. 4073–4117, 2022.

[35] S. Akshay and S. Deepika, “Categorization of

Fruit images using Artificial Bee Colony

Algorithm based on GLCM features”, In: Proc.

of International Conf. On Electronic Systems

and Intelligent Computing (ICESIC), pp. 46-51,

2022.
[36] Y. Sun and Y. Yang, “An Adaptive Bi-

Mutation-Based Differential Evolution
Algorithm for Multi-Threshold Image

Received: July 16, 2023. Revised: August 6, 2023. 665

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.55

Segmentation”, International Journal of Applied
Sciences, Vol. 12, No. 11, p. 5759, 2022.

[37] A. K. Bhandari, “A novel beta differential
evolution algorithm-based fast multilevel
thresholding for color image segmentation”,
International Journal of Neural computing and
applications, Vol. 32, No. 9, 2020.

[38] A. Sharma, R. Chaturvedi, S. Kumar, and U. K.
Dwivedi, “Multi-level image thresholding based
on Kapur and Tsallis entropy using firefly
algorithm”, Journal of Interdisciplinary
Mathematics, Vol. 23, No. 2, pp. 563-571, 2020.

[39] O. Tarkhaneh, and S. Haifeng, “An adaptive
differential evolution algorithm to optimal
multi-level thresholding for MRI brain image
segmentation”, Journal of Expert Systems with
Applications, 2019.

[40] H. Jia, L. Chunbo and O. Diego, “Hybrid
grasshopper optimization algorithm and
differential evolution for multilevel satellite
image segmentation”, International Journal of
Remote Sensing, Vol. 11, No. 9, 2019.

[41] K. D. Gupta, and S. Sajib, “A genetic algorithm
approach to regenerate image from a reduce
scaled image using bit data count”, Journal of
Broad Research in Artificial Intelligence and
Neuroscience, Vol. 9, No. 2, pp. 34-44, 2018.

[42] S. Shivangini and U. Arvind, “Image
Enhancement Using Genetic Algorithm”,
International Journal of Engineering and
Technology (IJERT), 2014.

[43] I. Aravind, C. Chandra, M. Guruprasad, P. S.
Dev and R. D. Samuel, “Implementation of
image segmentation and reconstruction using
genetic algorithms”, In: Proc. of International
Conf. on Industrial Technology, pp. 970-975,
2002.

[44] S. Hashemi, S. Kiani, N. Noroozi and M. E.
Moghaddam, “An Image Enhancement Method
Based on Genetic Algorithm”, In: Proc. of
International Conf. on Digital Image
Processing, pp. 167-171, 2009.

[45] J. I. Hidalgo, J. Lanchares, F. F. D. Vega, and

Lombrana, “Is the island model fault tolerant?”,

In: Proc. of the 9th Annual Conf. Companion on

Genetic and Evolutionary Computation, pp.

2737-2744, 2007.

[46] W. Gropp and E. Lusk, “Fault Tolerance in MPI

Programs”, In: Proc. of International Conf. on

Cluster Computing and Grid Systems, 2002.

[47] J. B. M. Litzkow, T. Tannenbaum and M. Livny,

“Checkpoint and migration of unix processes in

the condor distributed processing system”,

Technical Report 1346 at University of

Wisconsin Madison Computer Sciences, 1997.

[48] D. Anderson, “BOINC: a system for public-

resource computing and storage”, In: Proc. of

Fifth IEEE/ACM International Workshop on

Grid Computing, pp 4-10, 2004.

[49] M. Jelasity, M. Preuss, M. V. Steen and B.

Paechter, “Maintaining Connectivity in a

Scalable and Robust Distributed Environment”,

In: Proc. of the Second IEEE/ACM International

Symposium on Cluster Computing and the Grid

(CCGrid2002), 2002.

[50] G. Jeyakumar and C. S. Velayutham,

“Distributed mixed variant differential evolution

algorithms for unconstrained global

optimization”, International Journal of Memetic

Computing, Vol. 5, pp. 275–293, 2013.

[51] P. J. Ballester, J. Stephenson, J. N. Carter and K.

Gallagher, “Real-parameter optimization

performance study on the CEC-2005 benchmark

with SPC-PNX”, In: Proc. of IEEE Congress on

Evolutionary Computation, Vol. 1, pp. 498-505,

2005.

[52] X. Yao, Y. Liu, K. H. Liang, and G. G. Lin, “Fast

evolutionary algorithms”, In: Proc. of

International Conf. on Advances in Evolutionary

Computing: Theory and Applications, pp. 45-94,

2003.

[53] P. Zhenkui, Z. Yanli and L. Zhen, “Image

segmentation based on Differential Evolution

algorithm”, In: Proc. of International Conf. on

Image Analysis and Signal Processing, pp. 48-

51, 2009.
[54] Dana, “Machine learning optimization using

genetic algorithm”, Architect and Industrial
Engineer: Udemy Instructor, 2017.

[55] T. Wu, “Image-Guided Rendering with an

Evolutionary Algorithm Based on Cloud

Model”, International Journal of Computational

Intelligence and Neuroscience, 2018.

[56] European Southern Observatory. Available at:

https://www.eso.org/public/

[57] D. M. Dhanalakshmy, G. Jeyakumar, and C. S.

Velayutham, “Empirical investigations on

evolution strategies to self-adapt the mutation

and crossover parameters of differential

evolution algorithm”, International Journal of

Intelligent Systems Technologies and

Applications, Vol. 20, No. 2, pp. 103-125, 2021.

