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Abstract: Amniotic fluid is known to play a crucial role in nurturing fetal growth and development during pregnancy 

by protecting the fetus from shocks, impacts, and pressure on the abdomen of the mother. One of the parameters often 

examined by obstetricians regarding amniotic fluid is the volume, which should match the pregnancy stage. 

Investigations focused on identifying amniotic fluid volume has continued to evolve. Previous examinations used 

image processing techniques for the single deep pocket method implementation but the results achieved were deemed 

improvable. Therefore, this study aimed to attain higher identification outcomes than previous examinations by using 

a model comprising a convolutional neural network (CNN) (feature extractor), chi-square (feature selection), safe level 

synthetic minority over-sampling technique (SMOTE) (data oversampling), and XGBoost (classifier). The proposed 

model was comprehensively tested with an analysis of feature selection and oversampling effects. Based on a 5-fold 

cross-validation examination, the proposed model demonstrated superior accuracy performance compared to previous 

studies, achieving 96.5% accuracy. 
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1. Introduction 

The objective of amniotic fluid examinations is to 

diagnose the volume and turbidity levels during 

pregnancy. This fluid serves to protect the fetus from 

impacts against the uterine wall and pressure on the 

umbilical cord in case of contractions [1. 2]. The 

volume increases with the progress of the pregnancy 

reaching approximately ± 50 ml, ± 350-400 ml, and 

1000 ml at 12 weeks, 20 weeks, and 35-38 weeks 

respectively [3]. The method used to measure 

amniotic fluid volume (AFV) involves the single 

deepest vertical (SDP) technique with accuracy 

depending on the experience and technical expertise 

of the operator. To categorize the volume of amniotic 

fluid, the doctor marks the length of the single deep 

pocket (SDP) by drawing a line between two 

vertically aligned points, originating from the fluid 

pocket and intersecting with the uterus [4. 5]. Based 

on the indicated length of SDP, the volume is 

categorized into 3 classes namely normal, 

oligohydramnios (reduced), and polyhydramnios 

(excessive). Oligohydramnios contributes to 

perinatal morbidity, including an increased risk of 

cesarean delivery due to fetal distress, low Apgar 

scores, neonatal intensive care unit admissions, low 

birth weight, and meconium aspiration syndrome [6]. 

Meanwhile, polyhydramnios can lead to fetal 

structural abnormalities, genetic disorders, fetal 

anemia, placental tumors, multiple pregnancies, and 

maternal diabetes, which is mostly idiopathic [7]. 

Considering these anomalies, a tool capable of 

accurately measuring amniotic fluid volume is 

needed.  

Antenatal AFV estimation is a fundamental 

measurement required during antenatal ultrasound 

examinations [6]. Two-dimensional amniotic fluid 
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ultrasound images (US) are essential non-radiation 

imaging techniques utilized for detecting and 

categorizing amniotic fluid volume. Ayu et al., 

classified amniotic fluid conditions into 6 classes 

namely oligohydramnios clear, oligohydramnios 

echogenic, polyhydramnios clear, polyhydramnios 

echogenic, normal clear, and normal echogenic [5]. 

The analysis used a classification model that 

combined rule-based and random forest methods. 

The rule-based method was employed to classify 

AFV based on SDP features, while random forest was 

predicated on first order statistical (FOS) and gray 

level co-occurrence matrix (GLCM) features, with an 

accuracy performance of 90.52% [5]. This study 

stated that there were still shortcomings in detecting 

amniotic volume, which was greatly influenced by 

segmentation results. Images with high noise levels 

and obstacles will result in poor segmentation results. 

Moreover, Ayu et al. categorized amniotic fluid 

conditions based on the single deep pocket method 

and texture features (FOS and GLCM) into 6 classes 

using SVM (RBF kernel) with an accuracy 

performance of 81.4% [8]. Namun hasil ini masih 

dirasa kurang optimal karena pada kelas minoritas 

hasil akurasi masih rendah.  

Further studies including [9], classified AFV into 

2 classes (normal and abnormal) based on transfer 

learning with MobileNet, achieving an accuracy of 

0.94. However, multiclass classification was not 

implemented in the current study due to the small 

number of patients with oligohydramnios and 

polyhydramnios. 

The examination published by [10] employed 

fuzzy techniques to measure and divide AFV into 

oligohydramnios, borderline, normal, and 

polyhydramnios, with an accuracy of 0.925. However, 

the proposed work did not work for high-risk patients. 

Several studies related to 2D amniotic fluid 

images focused on the segmentation process, for 

instance, a previous study by [6] employed a deep 

learning model called AF-Net, an extended version of 

U-Net. The proposed method combined various ideas, 

including dilated convolutions, multiscale side-input, 

and side-output layers, using a dataset of 435 

ultrasound images and 5-fold cross-validation. The 

performance, as measured by the dice similarity 

coefficient (DSC), was 0.877. Another study [11] 

implemented a deep learning (DL) network 

comprising AF-Net and an auxiliary network, which 

used a dataset of 2380 ultrasound images, achieving 

a DSC performance of 0.8559. Furthermore, [12] 

performed segmentation on 50 datasets using the 

proposed pixel classification method and achieved a 

DSC performance of 0.814 by comparing local 

window techniques. A previous study [13] also 

proposed pixel classification with a specified window 

size limit and in combination with several feature 

extractions such as gray-level, gray-level-local 

variance, and distance angle pixel to identify the 

amniotic fluid area, yielding a DSC performance of 

0.876. Another investigation related to amniotic fluid 

ultrasound image segmentation [1] used the U-Net 

method and tuned hyperparameters. The best U-Net 

segmentation performance was obtained by 

combining RMSprop optimizer parameters, a binary 

entropy loss function, a learning rate of 0.00001, and 

33 epochs, with a DSC performance of 0.88. 

Based on the related studies concerning AF 

images and amniotic fluids volume classification, the 

previous results have not reached their maximum 

performance. Most previous research still relies on 

object segmentation results to detect amniotic 

volume. Images with high noise and obstacles 

sometimes make the region of interest (ROI) less 

precise. This result measures the deepest area invalid 

and different from the doctor's results. Apart from 

that, the condition of small datasets and imbalanced 

data is one of the problems in the learning process of 

the classifier used. 

Therefore, the novelty of this study proposed a 

model for classifying AFV by applying feature 

extraction using the pre-trained deep learning model 

ResNet101. The application of this method for 

feature extraction is yet to be carried out on 2D 

amniotic fluid image objects. The influence of noise 

and obstruction can be reduced by using a CNN 

architecture to obtain features that differentiate 

amniotic volume.  

Furthermore, to reduce the dimensions of features 

that are too high from the feature extraction results 

and prevent the curse of dimensionality from 

occurring. Chi-square was employed to select 

relevant features for AFV, and then oversampling 

was performed with safe-level SMOTE using k-NN 

rules to classify extracted feature pools and generate 

new samples [14].  

This simplifies the architecture and reduces 

processing complexity for small datasets. It is 

efficient for small-dimensional datasets due to the 

nonparametric nature and sample classification based 

on K-NN votes. The classification method utilized a 

boosting approach using XGBoost [15], which was 

considered a highly effective technique for medical 

image classification [15-17]. 

The remaining part of this research is organized 

as follows. Section II explains data and method, 

provides data acquisition and details the proposed 

method/model. Section III contains experimental 

results in an analysis of the proposed method, and 

section IV concludes the research. 
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                                      (a)                                                    (b)                                                      (c)   

Figure. 1 Amniotic fluid USG image: (a) Normal, (b) Oligohydrmanios, and (c) Poligohydramnios 

 

 
Figure. 2 Pre-trained network concept for amniotic fluid classification 

 

2. Data and method 

2.1 Data acquisition 

This study, 130 amniotic fluid images were 

obtained in collaboration with an obstetrics and 

gynaecology doctor in Kasih Medika Bali Clinic, 

Denpasar, Indonesia. All data were acquired using an 

ultrasound machine with Accuvix XG and 

Transducer specifications, operating at a frequency of 

3.5 Hz, lateral resolution of 3 mm, and saved in .jpg 

format, while the image size was 800 x 600 pixels. 

Additionally, the data used excluded data included 

those from pregnant women with obesity, single 

pregnancies, and gestational ages over 13 weeks. Fig. 

1 shows amniotic fluid USG images categorized into 

three volume classes.  

2.2 Extraction of image feature from the deep 

residual network architecture 

Feature extraction was carried out using the pre-

trained ResNet-101 model, which involved adapting 

a previously developed CNN architecture to a new 

dataset. The architecture consisted of 101 weighted 

layers, concluding with a global average pooling 

layer and a 1000-way fully connected layer with 

softmax classification (He et al., 2016). ResNet-101 

was pre-trained using ImageNet, and the initial 

weights were used as the starting point of 

classification. Fig. 2 illustrates the steps of the pre-

trained network model for classifying different types 

of amniotic fluid. 
ResNet introduced the concept of shortcut 

connections, where the features from the previous 

layer were added to the output of the current layer. 

This approach minimized the loss of important 

features during convolution. Generally, ResNet-101 

consisted of 5 stages of convolution processes 

followed by average pooling, feature selection using 

chi-square, oversampling with the safe level SMOTE 

method, and ending with a fully connected layer as 

the prediction layer. In this study, the fully connected 

neural network was replaced with a classifier using 

XGBoost to focus on learning from the minority data 

in the amniotic fluid dataset. Fig. 3 illustrates the 

architecture of the pre-trained network model 

(ResNet-101) for AFV classification. 

2.3 Chi-square feature selection method 

The Chi-square numerical test was used to 

measure the deviation from the expected distribution 

by considering independent features that were not  
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Figure. 3 Proposed pre-trained network (ResNet-101) model for amniotic fluid volume classification 

 

dependent on the class values. The chi-square value 

was calculated using metrics such as true positive 

(𝑡𝑝, ), false positive (𝑓𝑝 ), true negative (𝑡𝑛 ), false 

negative (𝑓𝑛 ), the probability of the total positive 

cases (𝑃𝑝𝑜𝑠), and the probability of the total negative 

cases(𝑃𝑛𝑒𝑔) [18], shown in Eq. (1). 

 

 Chi-square_metric = t (𝑡𝑝,(𝑡𝑝  +  𝑓𝑝)𝑃𝑝𝑜𝑠) +

𝑡(𝑓𝑛,(𝑓𝑛 + 𝑡𝑛  )𝑃𝑝𝑜𝑠) + 𝑡(𝑓𝑝,(𝑡𝑝  + 𝑓𝑝  ) 𝑃𝑛𝑒𝑔 ) + 
𝑡(𝑓𝑛,(𝑓𝑛  +  𝑡𝑛  ) 𝑃𝑛𝑒𝑔          (1) 

 

Where t (count, expert) = (count-expect)² / expect. 

2.4 Safe level SMOTE 

Safe-level SMOTE represented an oversampling 

method derived from the traditional approach which 

had significant drawbacks such as overly noisy 

samples, and blindly generalizing the minority class 

regionwithout including the majority [19]. This 

causes overgeneralization problems and increases the 

possibility of the newly synthesized sample 

overlapping with the majority class. The safe-level 

SMOTE method assigned each positive instance to a 

safe level before creating a synthetic instance. Every 

synthetic instance was positioned closer to the 

greatest safety level, and this improved the 

performance prediction of the classifier in the 

minority class [20]. Furthermore, safe-level SMOTE 

applied k-NN rules to classify pool extracted features 

to generate new samples. This has the advantage of 

simplifying the architecture and reducing processing 

complexity for small data sets. The nonparametric 

nature and the sample classification through K-NN 

voting [14] contributes to its effectiveness. The steps 

taken in the Safe-level SMOTE method based on k-

NN involve two main processes, as follows [20]: 

 

A. Determine the criteria area to generate the 

synthetic data 

1. Calculate the distance between instances of the 

minority class in the training set (𝑝) and their nearest 

neighbors ( 𝑛)  using Euclidean distance, 𝑑(𝑥, 𝑦) =

√∑ (𝑥𝑖 −𝑧
𝑖=1 𝑦𝑖)² .Where 𝑥, 𝑦  represents the two 

points in Euclidean 𝑧  -space, 𝑥𝑖 , 𝑦𝑖  stands for the 

Euclidean vector starting from the origin of the space 

(initial point), and 𝑧 is the 𝑧 –space.  

2. Execute the K-NN method with a value of 𝑘 = 

5. Illustration of Safe-Level SMOTE using nearest 

neighbors with 𝑘 of 5. 

3. Randomly select one of the 𝑘  nearest 

neighbors 𝑛 obtained from the minority class. 

4. Recalculate the distance between and its 

neighbor 𝑘 using the same Euclidean distance. 

5. Randomly select one of the 𝑘  nearest 

neighbors 𝑛 obtained from the minority class. 

6. Calculate the safe level for 𝑝 and 𝑛, 𝑆𝑙𝑝  and 

𝑆𝑙𝑛 using Eqs. (2) and (3). 

 

𝑠𝑎𝑓𝑒 𝑙𝑒𝑣𝑒𝑙 𝑎𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑝, 𝑠𝑙𝑝 =

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑘 −
𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑓𝑜𝑟 𝑝                                         (2) 
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Table 1. Rule of synthesis minority instance in safe-level SMOTE [20] 

Case 𝒔𝒍_𝒓𝒂𝒕𝒊𝒐 𝒔𝒍𝒑 Synthesis at a 

range between 𝒑 

and 𝒏, gap 

Description 

1 = ∞ 0 

Do not produce a 

positive synthetic 

instance 

Both 𝑝 and 𝑛 instances are noise 

  0 ≠ 𝑔𝑎𝑝 = 0 

The instance is noise, therefore, synthesis is close as possible to 

the location of the 𝑝 instance, and the synthetic data will be 

generated far from 𝑛 by duplicating 𝑝 

2 =1  0 ≤  gap  ≤1 

The safe level of 𝑝 instance is the same as with 𝑛 instance. The 

synthetic data will be generated along the line between 𝑝 and 𝑛 

because 𝑝 is as safe as 𝑛 

3 >1  
0 ≤  gap  ≤ 

1/sl_ratio 

The p instance is safer than the 𝑛 instances, hence, synthesis is 

closer to the 𝑝 position. The synthetic data will be generated 

closer to 𝑝 at a distance [0.1/SLR] 

4 < 1  
(1- sl_ratio) ≤ gap 

≤ 1 

The 𝑛 instance is safer than the 𝑝 instance, therefore, synthesis 

is closer to the n position. The synthetic data will be generated 

closer to n at a distance [1-SLR,1] 

 

 

𝑠𝑎𝑓𝑒 𝑙𝑒𝑣𝑒𝑙 𝑎𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑛, 𝑠𝑙𝑛 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑘 −
𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑓𝑜𝑟 𝑛                                         (3) 

 

7. Calculate the safe-level ratio for p and n based 

on Eq. (4), then the ratio was categorized into four 

cases such as  𝑠𝑙_𝑟𝑎𝑡𝑖𝑜 =∞, 𝑠𝑙_𝑟𝑎𝑡𝑖𝑜 = 1, 𝑠𝑙_𝑟𝑎𝑡𝑖𝑜 < 

1, and 𝑠𝑙_𝑟𝑎𝑡𝑖𝑜 > 1. Each range𝑠𝑙_𝑟𝑎𝑡𝑖𝑜 determines 

the 'gap' location range, enabling the synthesis of new 

samples. After determining the case for each positive 

instance, new synthetic instances (𝑠𝑖) were generated 

in coordinates 𝑠𝑖 as represented by Eq. (5), where pi 

represents the coordinate of the chosen positive 

instance. The gap value was calculated based on the 

corresponding positive instance case, as determined 

by the safe-level ratio. The variable 𝑑𝑖𝑓𝑓 represents 

the distance between instance 𝑝  and the selected 

nearest neighbor  𝑛 . However, synthetic minority 

instances were not generated when the safe-level 

ratio was infinity and the safe level of instance 𝑝 was 

zero. 

 
𝑠𝑎𝑓𝑒 − 𝑙𝑒𝑣𝑒𝑙𝑟𝑎𝑡𝑖𝑜, 𝑠𝑙𝑟𝑎𝑡𝑖𝑜   =   𝑠𝑙𝑝/ 𝑠𝑙𝑛       (4) 

 
𝑠𝑖 = 𝑝𝑖 + (𝑔𝑎𝑝 𝑥 𝑑𝑖𝑓𝑓)                          (5) 

 
B. Generate the synthetic dataset based on a safe 

level SMOTE. 

Generate synthetic data based on safe-level ratios, 

the rules outlined in Table 1 were followed [20]. 

1. Determine the difference between p and n.  

2. Refer to the range of random numbers based on 

the safe level ratio (sl_ratio) obtained in Table 1. 

3. The difference obtained in Step 1 was 

multiplied by a random number obtained in Step 2.  

4. The result obtained from Step 3 was added to p 

to generate the new instances. 

5. The steps were repeated until the number of 

minority class observations was 

2.5 Classification with XG-Boost 

Extreme gradient boosting (XGBoost) is a 

relatively new and increasingly popular tree-based 

algorithm for data classification, which has proven to 

be a very effective method [16]. It is a highly scalable 

end-to-end tree-boosting system used in machine 

learning for classification and regression tasks [21]. 

This method can accept null values, scale imbalanced 

data, learn from previous mistakes, and fine-tune 

hyperparameters. Furthermore, the use of XGBoost 

improves the performance of weak learners in 

classification and regression tasks. When the 

previously predicted values for the data provided as 

input are considered, then this method can create a 

new tree to optimize the increased predictions 

generated. In the proposed model, the XGBoost 

classifier replaced the fully connected layer (FCL) in 

ResNet 101. This substitution arises from the use of 

non-medical related images in the original FCL 

classifier on the ImageNet dataset [15]. XGBoost 

uses an ensemble of 𝐾 classification and regression 

trees (CARTs), each of which has 𝐾𝐸
𝑖 |𝑖 ∈ 1 … 𝐾 

nodes. The final prediction is the sum of the 

prediction scores for each tree shown in Eq. (6)-(14) 

[22]. 
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𝑦̂1  = 𝜑 (𝑋𝑖)  =  ∑ 𝑓𝑘
𝐾
𝑘=1  (𝑋𝑖), 𝑓𝑘  ∈  𝐹,    (6) 

 

Where 𝑋𝑖 are members of the training set and 𝑦𝑖 

are the corresponding class labels, 𝑓𝑘 is the leaf score 

for the 𝑘𝑡ℎ tree and F is the set of all K scores for all 

CARTs. Regularization is applied to improve the 

final result: 

 

𝐿 (𝜑) ∑ 𝑙𝑖  (𝑦̂𝑖 , 𝑦𝑖)  +  ∑ 𝛺𝑘  (𝑓𝑘)       (7) 

 

The first term, l, represents the differentiable loss 

function, which measures the difference between 

target yi and the prediction 𝑦̂𝑖 . The second term 

avoids overfitting:  𝛺 penalizes the complexity of the 

model: 

 

𝛺 (𝑓)  =  𝛾𝑇 +
1

2
 𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1        (8) 

 

Where 𝛾, 𝜆  are constants controlling the 

regularization degree, T is the number of leaves in the 

tree and w is the weight of each leaf. Gradient 

boosting (GB) is effective in regression and 

classification problems. It was used with the loss 

function, extended by a second-order Taylor 

expansion, with the constant term removed to 

produce a simplified objective at step t, as follows: 

Where 𝑙𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗} denote the instance set 

of leaf t, and 

 

𝐿̃(𝑡) = ∑ [g𝑖𝑓𝑖(𝑋𝑖) +
1

2
ℎ𝑖𝑓𝑖

2(𝑋𝑖)]𝑛
𝑖=1 + 𝛺(𝑓𝑡) =

∑ [g𝑖𝑓𝑖 (𝑋𝑖) +
1

2
ℎ𝑖𝑓𝑖

2(𝑋𝑖)]𝑛
𝑖=1 + 𝛾𝑇 +

1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1 =  

∑ [(∑ g𝑖𝑖∈𝐼𝑗
) 𝑤𝑗 +

1

2
(∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑗

) 𝑤𝑗
2] + 𝛾𝑇𝑇

𝑗=1   (9) 

 

𝑔𝑖 =
𝜕𝑙 (𝑦̂𝑖

(𝑡−1)
,𝑦𝑖)

𝜕𝑦̂
𝑖
(𝑡−1)                 (10) 

 

ℎ𝑖 =
𝜕2𝑙(𝑦̂1

(𝑡−1)
,𝑦𝑖)

𝜕 (𝑦̂
𝑖
(𝑡−1)

)
2                    (11) 

 

Are first and second order gradient statistics of 

the loss function. The optimal weight 𝑤𝑗
∗of leaf j and 

the quality of a tree structure q, for a given tree 

structure 𝑞(𝑥𝑖) can be computed: 

 

𝑤𝑗
∗ = −

∑ g𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖+𝜆′
𝑖∈𝐼𝑖

                        (12) 

 

𝐿̃(𝑡)(𝑞) = − 
1

2
∑

(∑ g1𝑖∈𝐼𝑖
)

2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑖

+ 𝛾𝑇𝑇
𝑗=1                (13) 

 

In practice, the evaluating for split candidates by 

utilized the score in the instance sets of left 𝐼𝐿  and 

right 𝐼𝑅 nodes after the split, where I = 𝐼𝑅  ∪  𝐼𝐿 then 

the loss reduction after the split is: 

 

𝐿 𝑠𝑝𝑙𝑖𝑡 =
1

2
[

(∑ g𝑖𝑖∈𝐼𝐿
)

2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝐿

+
(∑ g𝑖𝑖∈𝐼𝑅

)
2

∑ g𝑖 + 𝜆𝑖∈𝐼𝑅

+
(∑ g𝑖𝑖∈𝐼 )2

∑ ℎ𝑖+𝜆𝑖∈𝐼
] − 𝛾 

(14) 

2.6 Evaluation and validation performance 

To evaluate the performance of the classifier, this 

study used a multiclass confusion matrix. Typically, 

the minority and majority class labels were set as 

positive and negative respectively. Performance 

validation for classification involved four 

variables namely accuracy, precision, recall, and 

F1-score. Meanwhile, parameters for measuring the 

performance of AFV classification employed 

accuracy, precision, and recall, as indicated in Eqs. 

(15)-(17) [12].  

 

Accuracy =
TP + TN

TP + FP + TN + FN
                  (15) 

 

Precision =
TP

TP + FP
                       (16) 

 

Recall =
TP

TP + FN
                                (17) 

 

TP is true positive (a positive label predicted as 

an actual label), FP is false positive (a negative label 

but predicted as a positive label), TN is true negative 

(negative data that is predicted correctly), and FN is 

false negative (a positive label but predicted as a 

negative label). 

3. Result and discussion 

3.1 Experimental setting 

The feature extraction results from amniotic fluid 

images yielded data with 2048 dimensions. The 

experiments were conducted using k-fold cross-

validation, with k set to 5. Before experimentation, 

the data was divided into training and testing sets at a 

ratio of 70:30. Testing was then carried out with two 

observations using non-feature-selected data and 

applying feature selection. The experiments 

compared the results of previous state-of-the-art 

methods in oversampling development, such as 

adaptive synthetic oversampling (ADAYSN) [23], 

borderline-SMOTE [24], and safe-level SMOTE [14]. 

Additionally, this study compared the results with 

previous examinations related to amniotic fluid 

classification with the proposed model. 
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Table 2. Performance metrics on amniotic fluid testing data without feature selection step 

Metric 

Performance 
None 

XGboost-

SMOTE 

XGboost-

ADAYSN 

XGboost-

Borderline 

XGboost-

Safelevel 

Accuracy 58.2 90.7 81.5 96.3 88.2 

Precision 60.1 91.2 83.2 96.2 87.9 

Recall 59.3 90.7 81.2 96.2 88.2 

F1-Measure 59.2 91.4 82.1 95.4 88.1 

 

 

Table 3. Performance metrics on amniotic fluid testing data with feature selection step 

Metric 

Performance 

None 

Oversampling 

+ Selection 

Feature 

XGboost-

Selection 

Feature+SMOTE 

XGboost-Selection 

Feature+ADAYSN 

XGboost-Selection 

Feature+Borderline 

XGboost-

Selection 

Feature+Safe-

level 

Accuracy 65.2 92.1 86.2 93.5 96.5 

Precision 64.3 92.5 86.2 93.2 96.3 

Recall 65.3 92.6 86.2 93.1 97.3 

F1-Measure 66.1 91.2 86.2 93.3 96.4 

 

 

Table 4. Comparison of classification results with previous state-of-the-art models 

Authors Object Class Methods 
Accuracy 

% 

Precision  

% 

Recall

% 

F1-

Measure 

% 

Ayu et 

al[5] 

Volume 

Amniotic 

Fluid 

Normal,  

Oligo, Poligo 
SDP 76.9 76.8 76.9 77.1 

 

khan et 

al[9] 

Volume 

Amniotic 

Fluid 

Abnormal and 

Normal 
MobileNet 94 96 94 95 

Ayu et 

al[8] 

Volume and 

Echogenicity 

Normal Echogenic, 

Normal clear, 

Oligohydramnios 

echogenic, 

Oligohydramnios 

normal, 

Polyhydramnios 

normal 

GLCM, 

FOS, and 

SDP 

feature 

81.4 80.8 81.8 81 

Amuthad

evi et al 

[10] 

Volume 

Amniotic 

Fluid 

oligohydramnios, 

borderline, normal, 

and hydramnios 

fuzzy logic 

algorithm 
92.5  -  -  - 

Propose

d Model 

Volume 

Amniotic 

Fluid 

Normal, 

Oligohydramnios, 

Poligohydramnios 

CNN 

Feature 

extractor, 

Chi-

Square 

selection 

feature, 

Safe Level 

SMOTE, 

and 

XGBoost 

96.5 96.3 97.3 96.4 

 

 

3.2 Experiment on amniotic volume classification 

The first experiment analyzed the performance of 

feature-extracted data without selection as shown in 

Table 2. In this test, the amniotic fluid data had a 

dimensionality of 2048 and was evaluated using four 

oversampling methods. The results indicated that 

without feature selection, the XGBoost model had the 

lowest performance, achieving an accuracy of 58.2%, 
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precision of 60.2%, recall of 59.3%, and an F1-

Measure of 59.2%. The best result from this test was 

obtained with the combination of XGBoost and 

Borderline-SMOTE, yielding an accuracy of 96.3%, 

as well as precision, recall, and F1-Measure of 96.2%, 

96.2%, and 95.4% respectively. These results showed 

that the Borderline-SMOTE approach of filtering 

data samples for creating synthetic data assisted the 

XGBoost algorithm in finding its optimal decision 

boundary. However, the high dimensionality affected 

the computational time.The next experiment assessed 

the impact of adding feature selection using the Chi-

Square method. Feature selection involved selecting 

the top 5 features with the best chi-values from the 

2048-dimensional data. Table 3 shows the results of 

XGBoost performance when combining feature 

selection and oversampling.  

The results indicated a significant improvement 

in performance for each model with improved 

accuracy, precision, recall, and F1-measure of 7%, 

4.2%, 6%, and 6.9% for the non-oversampled testing 

data. The most substantial performance enhancement 

occurred with the Safe-Level SMOTE oversampling 

method, resulting in values of 8.3%, 8.4%, 9.1%, and 

8.3% respectively. These results showed that the 

effectiveness of feature selection using Chi-Square 

and the Safe-Level SMOTE oversampling method 

yielded a machine learning model capable of 

classifying amniotic fluid data with optimal 

performance. The challenges posed by imbalanced 

data were mitigated through the implementation of 

oversampling methods that exhibited greater 

resilience to noisy data conditions and overlapping 

region classes. 

The ROC (receiver operating characteristic) 

value was also measured to assess the impact of 

adding oversampling and feature selection steps to 

the proposed model. Fig. 4 illustrates the ROC curve 

results for each tested model. Based on the ROC 

measurement results, the models with the addition of 

oversampling and Chi-Square feature selection steps 

showed significantly improved performance 

compared to the data without these methods.  This 

demonstrated the enhanced capability of the 

XGBoost model when supplied with synthetic data 

and feature dimensions derived based on relevance 

and correlation with the class label. The ROC values 

for each class in the depicted figures were all above 

0.85 and even reached the maximum point of 1.00 for 

class 2 (oligohydramnios). In contrast, without 

oversampling and feature selection, the performance 

for each class only achieved values of 0.52, 0.62, and 

0.54 for class 0 (normal), 1 (polyhydramnios), and 2 

(oligohydramnios) respectively. The ROC curve 

shows a graphical representation of the relationship 

between sensitivity and 1-specificity. In medical 

studies involving ultrasonography images of 

amniotic fluids, the ROC curve is widely used to 

illustrate diagnostic accuracy and determine the 

optimal cut-off value. Diagnostic accuracy was 

derived from the area under the ROC curve, and the 

optimal cut-off was utilized to identify positive and 

negative conditions in diagnosis. Finally, the 

proposed model was compared with previous 

detection models for AFV, as shown in Table 4.  

The comparison we present in Table 4 is by 

comparing previous studies related to the 

classification of amniotic fluids for level of 

echogenicity and volume. In our previous research 

[5], we proposed the single deep pocket method to 

find the deepest line of the amniotic sac. This line 

search is based on the constituent pixel points 

vertically without being cut off by other objects. This 

study classifies amniotic fluid into three classes, 

namely normal, oligo, and poligo. The dataset used is 

still the same as in the current research. This study 

classifies amniotic fluid into three classes, namely 

normal, oligo, and poligo. The dataset used is still the 

same as in the current research. From the analysis 

results, this method is still vulnerable and very 

dependent on the results of the segmentation of the 

amniotic fluid. When the segmentation results are not 

good, it will have a big impact on decreasing the 

model's accuracy. Then, our research continued by 

developing a classification into six classes consisting 

of echogenicity level and amniotic fluid volume [8]. 

In this study, we propose a texture feature 

extraction method using the gray level co-occurrence 

metrics (GLCM) and first order statistics (FOS) 

methods to obtain the characteristics of amniotic fluid. 

Amniotic fluid turbidity is divided into two levels, 

namely echogenic and clear. Echogenic conditions 

give rise to a grainy texture and a higher grey level, 

whereas clear levels tend to be darker. This turbidity 

classification model and volume classification [5] in 

previous research were then combined with a rule-

based method for each output produced from the two 

models so that there were six labels, namely normal 

echogenic, normal clear, oligohydramnios echogenic, 

oligohydramnios normal, and polyhydramnios 

normal. This research achieved an accuracy value of 

81.4%, precision of 80.8%, recall of 81.8%, and F1-

Measure of 81%. 

We tried to find other studies that also used 

amniotic fluids as a research object. Khan et al. [9] 

conducted research by classifying amniotic fluids 

into two classes, abnormal and normal; this labelling 

is more general compared to our previous research 

and the proposed model in the current research. The 

dataset used consisted of 166 US images of pregnant  
 



Received:  August 27, 2023.     Revised: October 30, 2023.                                                                                              259 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.24 

 

 
                                                 (a)                                                                                              (b)  

 
                                                 (c)                                                                                              (d)  

 
(e) 

Figure. 4 ROC curve for: (a) None oversampling and feature selection, (b) Borderline oversampling and chi-square 

feature selection, (c) ADAYSN oversampling and chi-square feature selection, (d) Safe-level SMOTE oversampling and 

chi-square feature selection, and (e) SMOTE oversampling and chi-square feature selection 

 

women. Dataset obtained from US images from King 

Fahd Hospital of the University (KFHU) and Elite 

Clinic in Dammam, KSA. The US device used to 

collect the images was the GE Voluson P6, and we 

collected 166 US images, among which 100 cases 

belonged to normal AF levels and 66 cases belonged 

to abnormal AF levels. The dataset access resource is 

closed and not to be shared with the public. Five 

transfer learning models, namely, Xception, 

Densenet, InceptionResNet, MobileNet, and ResNet, 

were applied to obtain the characteristics of normal 

and abnormal amniotic US images. From the test 

results, the MobileNet architecture produces the best 

performance, namely with an accuracy of 94%, 

precision of 96%, recall of 94% and F1-Measure of 

95%.  

The next research that still uses amniotic fluids as 

an object is to use the fuzzy logic algorithm method 

[10]. This study classifies amniotic fluids into four 

classes, namely oligohydramnios, borderline, normal, 

and hydramnios, based on volume level. The dataset 

originates from 2D ultrasound images of pregnant 
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women (gestational age is 27 to 40 weeks), which are 

collected and stored in the database. The images are 

in the DICOM format, but the dataset access resource 

is closed and not to be shared with the public. The 

shape templates are to be developed with deformable 

methods. After feature extraction, the contour points 

were identified to find the AFI. Then, prediction will 

be done by creating a fuzzy inference mechanism. 

The results of the tests found that the percentage of 

classification by the proposed inference system 

ranges from 91 to 94%. The average is 92.5%. 

In the current study, classifying amniotic fluids is 

based on volume level, where the same cases and data 

are found in studies [5] and [8]. This method uses a 

pre-trained network Resnet 101 to extract features 

from images and replaces the neural network 

classifier with the XG-Boost algorithm. This method 

showed an increase in performance from previous 

research by achieving an accuracy value of 96.5%, 

precision of 96.3%, recall of 97.3%, and F1-Measure 

of 96.4%. These results show the effectiveness of 

using the XG-Boost method as a classifier and the 

effect of feature selection, as shown in Table 3 and 

Table 4, which reduces feature dimensions from 2048 

to 5. Also, creating synthetic data/data augmentation 

also increases model performance. More data makes 

it easier for models to learn patterns and be smarter at 

generalizing new data. 

4. Conclusion 

In conclusion, this study successfully developed 

a machine-learning model capable of identifying 

amniotic fluids based on ultrasonography images. 

Amniotic fluids a crucial role in fetal growth and 

development during pregnancy, and the focus of this 

study was to measure the volume parameter for 

identification. The proposed model suggested a 

classification method for AFV using a pre-trained 

deep-learning network as a feature extractor. The 

process was accompanied by feature selection using 

the Chi-Square method to obtain the top 5 features 

most relevant to the data label. For the imbalanced 

data issue, specifically in the oligohydramnios class, 

the Safe-Level SMOTE oversampling method was 

used to generate new synthetic data, ensuring that this 

class was not excluded from the learning process and 

enabling better learning of data patterns. XGBoost 

was proposed as the classifier offering a parallel tree 

boosting algorithm (also known as GBDT, GBM) 

that provided efficient and accurate solutions to 

various data science problems. The proposed model 

was tested using 5-fold cross-validation. The testing 

involved three schemes namely, using non-feature-

selected, and feature-selected data, as well as testing 

with oversampling methods. Furthermore, three 

oversampling methods were evaluated, including 

SMOTE, Borderline SMOTE, and Safe-Level 

SMOTE. The final testing phase compared the results 

with previous studies that utilized different 

approaches. Based on the conducted tests, the 

addition of oversampling and feature selection steps 

was found to improve the performance of the model. 

The impact of feature selection in reducing and 

selecting features was significant for the overall 

tested model. The handling of imbalanced data 

conditions through oversampling significantly 

enhanced performance, with precision, recall, and 

F1-measure improving alongside increased accuracy. 

The Safe-Level SMOTE oversampling method 

exhibited the highest performance enhancement 

among the oversampling methods. The use of sample 

data filtering effectively generated synthetic data that 

avoided overlapping with other class regions. The 

comparison of performance between this study and 

previous studies also indicated improvement. In this 

study, the characteristics of amniotic fluid were 

extracted using a CNN algorithm, ultimately 

achieving the highest accuracy performance of 

approximately 96.5%. 

Future studies on amniotic fluid should focus on 

detecting fluid turbidity and identifying small or 

opaque objects that may affect fetal health. The 

combination of amniotic fluid volume identification 

and pouch detection provides a unified approach that 

can assist obstetricians in diagnosing patients. 
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Notation list 

𝑝 : Minority class in trainning set 

𝑛 : Nearest neighbour 

𝑥, 𝑦 : Two points in euclidean 

distance 

𝑝𝑖 : coordinate of the chosen 

positive instance 

𝑠𝑖  new synthetic instances 

𝑠𝑙𝑝 : Safe-level ratio minority class 

in trainning set 

𝑠𝑙𝑛  Safe-level ratio nearest 

neighbour 

𝑑𝑖𝑓𝑓 : distance between instance 𝑝 

and the selected nearest 

neighbor 𝑛 

𝑋𝑖   :  members of the training set 

𝑦𝑖  : corresponding class labels 

𝑓𝑘 : leaf score for the 𝑘𝑡ℎ tree  

F : set of all K scores for all 

CARTs  

l  represents the differentiable 

loss function 

𝑦̂𝑖  : prediction 

𝛾, 𝜆 : constants controlling the 

regularization degree 

T : number of leaves 

𝑤𝑗
∗ : optimal weight 
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