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Abstract: Light fidelity (Li-Fi) can be defined as a type of wireless technology that sends data via light waves through 

LED light bulbs. Light fidelity (Li-Fi) offers high-speed data transmission capabilities and a large unlicensed 

bandwidth, making it a promising technology for the future. However, factors including interference, wall reflection, 

and blocking may cause the quality of a light fidelity (Li-Fi) channel to vary from one part of a room to another. 

Another type of wireless communication technology that offers broad coverage and slow transmission rates is wireless 

fidelity (Wi-Fi). Since the electromagnetic spectrums regarding such two technologies do not overlap, there is a 

possibility for building a hybrid Wi-Fi and Li-Fi network that provides seamless and high throughput global 

communication. One wireless fidelity access point (Wi-Fi AP) and four light fidelity access points (Li-Fi Aps) make 

up the downlink hybrid system we discuss in this work. Finding an access point (AP) assignment method that will 

increase long-term system throughput at the same time as still guaranteeing users' pleasure and fairness is challenging. 

Thus, the authors suggest using a reinforcement learning (RL) algorithm. The algorithm aims to balance the load of 

multiple access points (APs) by considering both the LiFi and Wi-Fi channels. The results obtained using MATLAB 

code for a hybrid system based on reinforcement learning (RL) and a standard solution set size (SSS) access technology 

called TDMA. The system was evaluated in terms of throughput and user satisfaction for 5 users. According to the 

results, the RL-based hybrid system achieved a throughput of up to 210 Mbps and an SSS of 180 Mbps. Additionally, 

the user satisfaction was reported to be 100%. 

Keywords: Time division multiplexing (TDM), Complementary cumulative distribution function (CCDF), Random 

waypoint (RWP), Light fidelity (Li-Fi), Wireless fidelity (Wi-Fi). 

 

 

1. Introduction  

Machine learning (ML) known as reinforcement 

learning (RL) is concerned with teaching 

autonomous agents to respond in response to 

incentives and punishments. Positive outcomes from 

using RL in areas such as network optimization, 

traffic engineering, and resource allocation have been 

observed recently. Hybrid Li-Fi and Wi-Fi networks, 

which are quickly gaining popularity as significant 

technology, combine the advantages of the two to 

enable quick wireless data transfer. While Wi-Fi 

offers moderate data rates and near-universal 

coverage, Li-Fi employs LED light bulbs to transmit 

data using light waves. Nevertheless, interference, 

reflected signals from walls, and obstructions can all 

cause the Li-Fi channel's quality to fluctuate. When 

operating a hybrid network, it is essential to distribute 

traffic evenly across all of the APs so that you can 

maintain a constant and high data rate for your users. 

As a result of their ability to adapt to their 

surroundings, RL-based load-balancing algorithms 

have garnered a lot of interest for use in this scenario. 

We provide an RL-based load balancing 

technique about a down-link hybrid system with one 

Wi-Fi AP and four Li-Fi APs in this paper. The 

objective is to increase overall system throughput in 

a manner that is fair to and well-liked by all users. 

The suggested approach considers both Wi-Fi and Li-

Fi channels, considering each channel's properties 

and the load on each one of the access points for 

making intelligent decisions regarding AP 

assignments. Signal-strength method, iterative 

optimization, and exhaustive search are just a few of 

the cutting-edge benchmark methods we compare the 

suggested RL-based algorithm against. As an 
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example, we test the proposed method using the 

random waypoint model in non-uniform as well as 

uniform user distribution. According to the results, 

the proposed RL-based algorithm is frequently better 

than benchmark methods, making it a great option for 

load balancing in hybrid Wi-Fi Li-Fi networks. We 

believe that the proposed approach will work well for 

load balancing in scenarios, in which the Li-Fi 

channel's quality varies for a number of different 

causes. 

Due to the rising demand for wireless data, Cisco 

projects that by the year of 2022, monthly global 

mobile data traffic will reach a staggering 396 

Exabytes (396billion GB). Seven times as many were 

found in 2018 as in 2017 [1]. Visible light 

communication (VLC) for interior spaces is being 

investigated by academic and commercial 

researchers to help address the rising demand for 

wireless data. VLC has various benefits over 

conventional RF communication, including a wider 

range of usable frequencies, the ability to reuse 

existing infrastructure, and a higher level of security. 

In addition to being less disruptive to other electronic 

equipment, VLC also does not pose any health risks 

[2, 3]. Additionally, VLC is considered a safer 

alternative as it does not pose any health hazards and 

does not interfere with other electro-magnetic 

devices [4].VLC relies on both direct detection (DD) 

and intensity modulation (IM) to function. 

Modulating the light signal's intensity allows for the 

transmission of data, and at the receiving end, 

fluctuations in the received intensity are detected and 

encoded. LEDs are used by VLC to transport data, 

and a photodetector (PD) is used to convert received 

optical signal back to electrical signal. Overall, VLC 

shows promise as a technology to fulfil the future 

data needs because to its capacity to deliver high-

speed and secure communication for indoor 

environments. LiFi makes use of VLC's physical 

layer as a means of communication. It's made such 

that high-velocity, fully-networked, two-way 

wireless communication is possible. LiFi, in essence, 

is a wireless networking capability [5, 6]. provided by 

extending point-to-point VLC. Several researchers 

have found that well-designed hybrid LiFi and Wi-Fi 

network can provide increased data speeds, better 

outage efficiency, and happier users [7, 8]. Finding 

the optimal AP homework assignment has been the 

subject of numerous studies. Strategies for hybrid 

LiFi and Wi-Fi networks, which are outlined below.  

The issue, is the challenges that numerous. Here 

is a brief description of the potential drawbacks 

associated with each technique: Fuzzy logic may 

struggle to adapt to dynamic and changing 

environments as it relies on predefined fuzzy rule 

sets,difficulty in rule design: Constructing accurate 

and comprehensive fuzzy rule sets can be challenging 

and time-consuming, lack of optimization, and fuzzy 

logic may not inherently optimize system 

performance or learning. RL method: Exploration-

exploitation trade-off: RL methods often face the 

challenge of balancing exploration (searching for 

optimal actions) and exploitation (taking advantage 

of known good actions) to maximize performance, 

and High computational complexity: RL algorithms 

can be computationally demanding and may require 

extensive training time and computational 

resources.By highlighting these drawbacks, can 

emphasize the unique features and potential 

advantages of proposed approach for improving 

performance in hybrid systems based on 

reinforcement learning. 

1.1 Related work 

Studies have shown that reinforcement learning 

(RL) algorithms have great potential in improving the 

performance of wireless networks, particularly in 

terms of optimizing resource allocation and load 

balancing. Yet, little research has been done on 

particularly using RL algorithms in hybrid LiFi as 

well as Wi-Fi networks. One research suggested an 

access point (AP) assignment optimization genetic 

algorithm as a load balancing approach for hybrid 

LiFi and WiFi network. The algorithm aims to 

balance the load across different APs while 

maximizing the network capacity and ensuring user 

fairness. With regard to a hybrid LiFi and Wi-Fi 

network, a different study suggested a dynamic 

programming solution for load balancing. The 

method models the network and chooses the best AP 

assignment plan using Markov decision process 

(MDP). There is related work on using reinforcement 

learning (RL) algorithms for optimizing resource 

allocation and load balancing in wireless networks, 

but there is limited work specifically on applying RL 

to hybrid LiFi and WiFi networks. There are work 

that apply RL algorithms in cellular and Wi-Fi 

networks, among other kinds of wireless networks. 

These studies demonstrate the potential of RL in 

improving network performance, user satisfaction, 

and resource utilization. Particle swarm optimization 

(PSO) was used by the authors of. to suggest an 

approach for regulating mobility and distributing 

resources in indoor VLC networks [9, 10]. Those 

methods' significant computational complexity 

results from the fact that each time-step an 

optimization issue should be addressed to implement 

them. 

Other research has also used FL to allocate APs 
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to participants. FL-based dynamic load balancing 

technique was presented by [11] to reduce impacts of 

handover, which would lessen the influence of 

handoffs. In the case when determining whether or 

not a handover is required, this technique takes the 

user's selected data rate and transfer speed into 

account. Users moving quickly or experiencing 

temporary shadowing effects will have better APs 

assigned to them based on the speed data provided by 

FL. The plan also stops handoffs from happening in 

a ping-pong pattern. Another research suggested a 

two-step AP selection technique in to address this 

issue. With regard to the first stage, FL is utilized to 

allocate users to Wi-Fi access points, and in 2nd stage, 

the rest of the users are allocated to Li-Fi network. 

This approach required substantially less work to 

attain the same throughput as the optimization-based 

approach. 

The viability of applying ML to address the 

problem of AP assignment in Li-Fi/Wi-Fi hybrid 

networks has been investigated in various research. 

As an illustration, the authors of introduced the 

concepts of responsive association (RA), which 

classifies users depending on their present geo-

locations as well as queue backlog states, and 

anticipatory association (AA), which takes into 

account their time-varying geo-locations and shifting 

queue backlog states. The authors shared their 

findings regarding the compromise between latency 

and throughput. Reinforcement learning with 

knowledge transfer was proposed as the basis for a 

network selection algorithm by the authors of [12, 13]. 

Context information and the stationary distribution 

law regarding network load are utilized for aiding in 

the construction of algorithm to satisfy the traffic's 

asymmetric uplink and downlink performance needs. 

Reward function, which is a function related to the 

instantaneous downlink and uplink throughput, rather 

than other QoS factors like user fairness and 

satisfaction, was the only one examined in this paper. 

Multi-armed bandit algorithm is used by the authors 

of [14] to present AP selection approaches. Decision 

probability distributions are updated with use of 

"exponential weight values for explorations and 

exploitations of the "algorithm and "exponentially 

weighted algorithm with the linear programming" 

algorithm. The approach that has been employed in 

the suggested study differs from earlier works since 

TRPO is utilized in place of Q-Learning with 

knowledge transfer in the present study. Along with 

evaluating user satisfaction and fairness, our study 

also aims to improve the parameter. The suggested 

technique varies from the existing work in that it uses 

multi-agent learning rather than single-agent 

luminance descent-based learning. 

Li-Fi technology has been refined and advanced 

through numerous scholarly and global research 

projects. The efficiency, availability, security, and 

safety of light fidelity turn today's telecommunication 

into tomorrow's visible light communication as new 

wireless communication technology advances to use 

LED. 

The current radio frequency (RF) networks are 

under threat from the growing number of mobile 

devices. To reduce the spatial variation in data rate, a 

hybrid radio frequency/visible light communications 

(HLRN) network (HLRN) is suggested, which 

provides a higher system throughput than 

independent radio frequency (RF) or visible light 

communications (VLC) networks. The primary issue 

with hybrid networks is load balancing, which 

degrades network speed. As a result, in order to 

address this issue, the load balancing (LB) schemes 

in HLRNs are examined with an emphasis on the 

users' AP assignment. In that case, it is discovered 

that effective spectrum sensing—which uses five 

technologies split into three stages—is necessary to 

prevent the incorrect holes in the band from being 

detected. These technologies are received signal 

strength (RSS), particle swarm optimization (PSO), 

and deep learning techniques. Convolutional, feed 

forward neural network (FFNN) [28].  

We developed a RL technique for load balancing 

in a network which integrates Wi-Fi and Li-Fi as a 

result of the research's findings. Our method succeeds 

in a number of established categories, including 

average network performance, user satisfaction, 

fairness, and outage resilience. To improve user 

happiness and network equity, we have developed a 

reward mechanism for the RL algorithm that 

maximizes long-term average network throughput. 

We compare our results to the most effective iterative 

optimization, best available signal strength strategy 

(SSS), and exhaustive search. Results are shown with 

regard to typical network speed, computer 

complexity, user satisfaction, fairness, and how 

frequently capacity outages occur. We have also 

considered two different user behavior models: 

hotspot random waypoint (HRWP) and random 

waypoint (RWP) for demonstrating the adaptability 

of our proposed RL technique. 

Our main contributions are summarized in the 

following way: 

 

• For the hybrid LiFi and WiFi networks, we 

presented RL-based technique of dynamic 

load balancing. 

• We have designed a reward function that 

aims to improve both long-term network 

throughput and users' satisfaction and 
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fairness. 

• We have contrasted our suggested approach 

with leading-edge approaches and reported 

the findings in terms of several performance 

metrics. 

• To show how flexible our proposed approach 

is, we've taken into account two scenarios, 

each with its own model of user behaviour. 

 

The remainder of this essay has been organized in 

the following manner: We analyze system model in 

sections 2 and 3, we present our suggested RL-based 

load balancing approaches. Part 4 presents the 

evaluation and discussion of the performance, and 

section 5 wraps up the study. 

2. System model  

The hybrid LiFi and WiFi network that supports 

numerous users for indoor communication is the 

main topic of this article. Four LiFi APs and one Wi-

Fi AP, which are restricted to smaller attocell zones, 

make up the network. Nu and NAP, which stand for 

total number of the users and APs, respectively, serve 

as the system's representations. Consider a typical 

room with the dimensions 5 x 5 x 3 m3, where the 

WiFi AP is placed in the middle in order to cover the 

entire area. A central unit (CU) connected to LiFi as 

well as Wi-Fi APs makes the load balancing 

decisions. CU has access to the accurate feedback 

data required to decide how to distribute the load. In 

the overlapping attocell areas, optical interference 

may occur due to the reuse of the same modulation 

bandwidth by all LiFi APs. 

The interference has been treated as background 

noise in this study. Users are evenly spread over the 

area and move around according to random way-

point and hotspot random way-point models. Stream 

high-definition videos online, clients require greater 

data rates that have been simulated as poisson process 

with a parameter that has been set to the value of 

50Mbps. In the presented study, multiple user 

connections to a single AP are made possible by the 

use of time-division multiple access (TDMA), and 

users are only able to connect to one AP (either the 

Wi-Fi AP or the LiFi AP) at a time. Resources are 

distributed via a round-robin approach. 

 

A. LiFi channel model 

The behavior of the light signal conveyed 

between photodetector receiver and LED light source 

is described mathematically by the LiFi channel 

model. The channel model accounts for a number of 

variables, including the separation between the 

receiver and transmitter, the presence of obstructions  
 

 
Figure. 1 Diagram of hybrid LiFi Wi-Fi network 

 

In light's path, the angle at which it is incident, and 

the characteristics of light source and receiver, such 

as their field of vision and spectrum sensitivity. The 

channel model is frequently represented 

mathematically as an equation that connects the 

received optical power to transmitted optical power 

and other system variables like the receiver field of 

view, the transmission distance, and the medium's 

extinction coefficient (i.e., the attenuation of the light 

signal caused by scattering and absorption by the 

medium). There are several types of channel models 

used in LiFi systems, such as the Lambertian channel 

model, the log-normal channel model, and the Ricean 

channel model, each with its own assumptions and 

parameters. The choice of channel model depends on 

the specific application and the characteristics of the 

LiFi system. 

The optical channel of LiFi is composed of two 

parts, which are non-line-of-sight (NLOS) 

component and the line-of-sight (LOS) component. 

The channel gain of a LOS component [8] can be 

expressed as follows: 

 

𝐻𝐿𝑂𝑆 =  
(𝑚 + 1)𝐴𝑃𝐷

2𝜋𝑑2  𝑐𝑜𝑠(𝜑)𝑔𝑓 𝑔𝑐(𝜓) 𝑐𝑜𝑠(𝜓)   (1) 

 

It is possible to repeat the formula "in which APD 

represents PD’s physical area, m denotes Lambertian 

order related to the transmitter, d represents a 

distance between the user and LiFi AP, gf represents 

optical filter gain, and gc represents optical 

concentrator" as: 

 

𝑓(𝑥) = {
𝑛2

𝑠𝑖𝑛2(𝜓)
 , 0 ≤  𝜓 ≤  𝛹

0, 𝜓 >  𝛹 
                      (2) 

 

The channel gain for the NLOS component can 

be defined as [10, 15], where Ψ represents the semi-

angle of the field of view (FOV) of PD, and n denotes 

the reflective index.  
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Table 1. Channel parameters of LiFi 

Parameters of the 

Channel 

Symbols Values 

Responsivity RPD 0.53 

A/W 

Reflection coefficient ρ 0.8 

Transmit optical 

power per 

LiFi AP 

Popt 3 Watt 

Band-width/LiFi AP BLiFi 40MHz 

PSD of the Li-Fi noise NLiFi 10−21A2 

Height difference 

between user and AP 

h 2m 

PD Area APD 1 cm2 

Gain of optical filter gf 1 

Half intensity radiation 

angle 

θ1/2 60o 

PD Field of View 

(FOV) 

Ψ 60o 

 

 

𝐻𝑁𝐿𝑂𝑆  =
𝜌𝐴𝑃𝐷𝑒𝑗2𝜋𝑓∆𝑇

𝐴𝑟𝑜𝑜𝑚(1 − 𝜌)(1 + 𝑗 
𝑓

𝑓𝑐
)
              (3) 

 

In this work, we have used a channel model that 

takes into account the delay (∆T) between diffused 

signals and line-of-sight (LOS), the room area (Aroom), 

and cut-off frequency (fc), along with the reflectivity 

(ρ) of the walls. Although our model can incorporate 

non-constant reflectivity from various surfaces, for 

simplicity, we assumed a constant reflectivity for the 

reflecting surfaces in this study. However, it should 

be noted that this simplification does not alter the 

conclusions of our research [16]. 

The optical channel can be divided into two 

components, namely HLOS and HNLOS, which 

together make up the complete optical channel H Li-

Fi. The parameters of simulation that have been 

utilized for the Li=Fi channel have been provided in 

Table 1. SNR of the user µ, who is connected to the 

LiFi access point α, may be denoted as SNRµ, α and 

is given by the following expression. 

 

𝑆𝑁𝑅µ,𝛼 =  
(𝐻𝐿𝑖𝐹𝑖(µ,𝛼)𝑃𝑜𝑝𝑡𝑅)

2

𝑁𝐿𝑖𝐹𝑖𝐵𝐿𝑖𝐹𝑖
                      (4) 

 

SNR, for a user who is connected to a LiFi AP 

depends on several factors, including the AP's and the 

user's channel gain, the user's PD responsivity R, LiFi 

noise power spectral density (PSD) HLiFi, and optical 

power transmitted, the AP's band-width, or BLiFi. Any 

signal received from a different LiFi AP will be 

perceived as interference since each LiFi AP reuses 

the same frequency. Thus, the notation SINR 

indicates the user's signal-to-interference-noise ratio  
 

Table 2. Channel parameters of Wi-Fi 

Channel 

Parameters 

Symbols Values 

Transmit Power PWi-Fi 20 dBm 

Shadowing loss XSF 3dB 

Bandwidth per 

Wi-Fi AP 

BWi-Fi 20MHz 

PSD of noise NWi-Fi -174dBm/Hz 

Breakpoint 

distance 

dBP 5cm 

Central carrier 

frequency 

fc 2.4 GHz 

 

 

(SINR) while connected to a LiFi AP and is equal to. 

The SINR for user µ who is connected to Li-FiAP 

α is hence referred to as SINRµ and is calculated as 

follows: 

 

𝑆𝑁𝑅µ,𝛼 =  
(𝐻𝐿𝑖𝐹𝑖(µ,𝛼)𝑃𝑜𝑝𝑡𝑅)

2

𝑁𝐿𝑖𝐹𝑖𝐵𝐿𝑖𝐹𝑖+ 𝑃𝛽∈𝐴𝑃(𝐻𝐿𝑖𝐹𝑖(µ,𝛼)𝑃𝑜𝑝𝑡𝑅)
2

 
      (5) 

 

HLiFi (µ, β) represents the gain of the channel 

between the user µ and interfering LiFi APs β. The 

capacity lower bound is utilized for calculating the 

possible data rates between the Li-Fi AP α and the 

user µ and presents the next results: 

 

𝑟µ,𝛼 =
𝐵

2
𝑙𝑜𝑔2( 1 + (

6

𝜋𝑒
) 𝑆𝐼𝑁𝑅µ,𝛼)               (6) 

 

B. Wi-Fi channel model 

Here WiFi channel can be given as: 

 

𝐺µ,𝛼(𝑓) = √10−
𝐿(𝑑)

10  ℎ𝑟                              (7) 

 

The equation, where f stands for the carrier 

frequency, represents both large-scale fading loss L 

(d) as well as small-scale fading gain hr (in dB). 

With a mean value of the power of 2.46 dB, 

small-scale fading gain hr follows independent 

identical Rayleigh distributions, while L (d) [17] can 

be determined by: 

 

𝐿(𝑑) =  

{
𝐿𝐹𝑆(𝑑)  + 𝑋𝑆𝐹 , 𝑑 <  𝑑𝐵𝑃

𝐿𝐹𝑆(𝑑𝐵𝑃)  +  35𝑙𝑜𝑔(
𝑑

𝑑𝐵𝑃
)  + 𝑋𝑆𝐹 , 𝑑 ≥  𝑑𝐵𝑃

   (8) 

 

LFS stands for the free space loss, whereas d 

stands for the separation distance. The shadowing 

loss is represented by XSF, while the breakpoint 

distance is marked by dBP. LFS (d) = 20log10 (d) + 

20log10 (f) 147.5dB, in which f is the frequency, 
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yields the free space loss. Wi-Fi channel parameters 

that have been used in the simulation have been listed 

in Table 2. A user (µ) connecting to a Wi-Fi access 

point's SNR could be expressed as follows: 

 

𝑆𝑁𝑅µ,𝛼(𝑓) =  
|𝐺µ,𝛼|

2
 (𝑓)𝑃𝑇

𝑁𝑊𝑖𝐹𝑖𝐵𝑊𝑖𝐹𝑖
,                    (9) 

 

The transmitted power is denoted by PT, the noise 

PSD in the WiFi link is represented by NWi-Fi, and the 

bandwidth of the Wi-Fi access point is denoted by 

BWi-Fi. The gain G (µ, α) (f) is determined with the use 

of Eq. (7). There won't be any interference because 

there is only one WiFi access point in the system, and 

Eq. (9) states that SNIR for the Wi-Fi access point 

will be equal to SNR. Using Shannon's capacity 

formula, the attainable data rate between the Wi-Fi 

access point and the user is calculated, giving the next 

statement: 

 

𝑟µ,𝛼 =  𝐵 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅µ,𝛼)                      (10) 

 

C. Random waypoint mobility model 

The majority of mobility research employs a a 

random waypoint (RWP) paradigm. In this scenario, 

the user chooses a location at random and proceeds 

towards it at a steady rate. When the final objective 

has been reached, the user chooses a new location and 

proceeds in that direction. Nevertheless, it's also 

important to think about the existence of hotspots 

within a room, which are areas where people 

concentrate with a high probability. For instance, 

people may cluster near LEDs to overall lighting 

quality. 

To generate attraction nodes, the authors of [18], 

present a variant of the random waypoint model in 

which the distribution of final stops can be altered. Xa, 

min, ya, max,, and ya, min determine the region of attraction 

point Aa, whereas the intensity is expressed by. 

The given distribution for destination s points (xd, 

yd) is as follows: 

 

𝑓(𝑥𝑑 , 𝑦𝑑) =
1

𝐴𝑟𝑜𝑜𝑚+ (𝜉 − 1)𝐴𝑎
 × [(𝑢(𝑥𝑑  + 𝑥𝑚) −

𝑢(𝑥 𝑑  − 𝑥𝑚))(𝑢(𝑦𝑑  + 𝑦𝑚)  −  𝑢(𝑦 𝑑  −  𝑦𝑚)) +
 (𝜉 −  1)(𝑢(𝑥 𝑑  −  𝑥𝑎 𝑚𝑎𝑥)  −  𝑢(𝑥𝑑  − 𝑥 𝑎  𝑚𝑖𝑛))   

(𝑢(𝑦𝑑  − 𝑦 𝑎  𝑚𝑎𝑥)  −  𝑢(𝑦 𝑑  −  𝑦 𝑎  𝑚𝑖𝑛))    (11) 

 

The attraction point area is denoted by Aa and is 

defined by the conditions xa, min ≤ x ≤ ya, max and ya, min 

≤ y ≤ ya, max, while the intensity is represented by ξ. 

In our experiment, we used a value of ξ = 200 and 

an area of Aa = 0.25 𝑚2  to create four hotspots 

centered on four LEDs placed across the room. We've 

also built in a pause allowing users to rest at a hotspot  
 

 
Figure. 2 Pattern of distribution of 100 nodes inside a 

room for the modified random way-point model 

 

 
Figure. 3 Hybrid LiFi WiFi 

 

for a certain amount of time before proceeding to a 

new location. In this paper, we'll refer to this specific 

mobility model as the HRWP. Based on the foregoing 

requirements for the HRWP model, the placement of 

100 nodes in the room is shown in Fig. 2. 

3. Suggested load balancing method 

A. Reinforcement-learning (RL) approach 

An agent interacts with the environment 

continuously to observe its state and carry out actions 

as a response to such observations. This significant 

ML method is shown in Fig. 3 as RL. An RL agent 

can map states to the distribution of probabilities over 

the actions for the maximization of the cumulative 

reward. In the lack of information on MDP, one can 

consider RL to be a stochastically ideal solution to the 

MDP. According to the standard formulation of MDP, 

an agent is in state st ∈ S at time step t ≥ 0, performs 

an action at ∈ A, receives instantaneous reward at rt 

= r (st, at) R, and then switches to state st+1P (.|st, at) 

S. 

The formula for the policy is π: S → P (A), where 

P (A) stands for the the set of the distributions over 
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action space A [21]. According to policy π, the 

reduced cumulative award is: 

 

𝜂(𝜋) =  𝐸 𝑠0,𝑎0, . . . [∑ 𝛾𝑡  𝑟(𝑠𝑡 , 𝑎𝑡) ],∞
𝑡=0 𝑠𝑜 ∼  𝜌𝑜(𝑠𝑜),  

 𝑎𝑡  ∼  𝜋(𝑎𝑡|𝑠𝑡), 𝑠𝑡+1  ∼  𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)    (12) 

 

The emphasis on immediate benefits is 

determined by the discount factor γ ∈ (0, 1), with 

lower values of factor giving greater weight to 

immediate rewards. RL objective is identifying 

optimum policy, π*, which maximizes η (π), where: 

 

𝜋∗  =  𝑎𝑟𝑔 _𝑚𝑎𝑥 (𝜂(𝜋))                         (13) 

 

We used infinite-horizon discounted MDP, 

defined as (S, A, P, r, ρ0, γ), to represent the given 

hybrid LiFi WiFi network AP assignment problem. 

 

• To represent the assignment of Aps in a hybrid 

LiFi/Wi-Fi network, infinite-horizon discounted 

MDP with the parameters (S, A, P, r, 0) was used. 

S represents a set of the continuous states 

including the SNR of all users from all APs, denoted 

as a matrix S, current load on every [Nu × NAP], the 

dimensions of LAP are [NAP] in length US is [NU] in 

width and height. As a result, the number of variables 

or features that are considered in the data point space.  

[Nu x NAP + Nu x NAP]. 

• APs are represented by the discrete actions in a 

finite set denoted by A. Thus, [NU] is the correct value 

for the size of the discrete action space. 

• The reward function, specified by r: S × A → R, 

is defined as (rµ, a Kµ, a)/ Rµ, in which rµ, a denotes 

achievable data rate between the user and AP in 

accordance with Eqs. (6) and (10), R denotes the 

needed data rate related to the user, and Kµ,a denotes 

time slot allocation between the user and the AP in 

accordance with Eqs. (6) and (10). 

 

𝑘µ,𝛼  =
1

∑ 𝑔µ,𝛼 𝑎
,                                 (14) 

 

• If user is connected to AP, then the 

corresponding binary variable will have a value of 1, 

and if they are not, then the value will be 0. 

Throughput and user satisfaction are taken into 

account while designing the incentive function. In 

particular, it is defined by the time slot allocation 

(denoted by Kµ, a) between the AP and the user, the 

needed data rate of the user (denoted by), and the data 

rate of AP. 

• A concession factor of 0.9 has been established 

P: S x A x S → R, represent the distribution of 

transition probabilities, and ρ0: S → R represent the 

distribution of initial states sπ.  

In this research, an MLP with parameters was 

used as policy network for AP assignment problem. 

Thus, we can write the policy as (at|st;θ). state-action 

(Qπ), value function (Vπ), and advantage function 

( A): 

 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) =  𝐸𝑠𝑡+1,𝑎𝑡+1
, , . . . [∑ 𝛾𝑡∞

𝑙=0 𝑟(𝑠𝑡+1, 𝑎𝑡+1) ],  

𝑉𝜋(𝑠𝑡) = 𝐸𝑠𝑡+1,𝑎𝑡+1
, , . . . [∑ 𝛾𝑡∞

𝑙=0 𝑟(𝑠𝑡+1, 𝑎𝑡+1) ],   

𝐴𝜋(𝑠, 𝑎)  =  𝑄𝜋(𝑠, 𝑎)  −  𝑉𝜋(𝑠),  
𝑤ℎ𝑒𝑟𝑒   

𝑎𝑡 ∼ 𝜋(𝑎𝑡|𝑠𝑡; 𝜃), 𝑠𝑡+1 ∼ 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) 𝑓𝑜𝑟 𝑡 ≥ 0. 
(15) 

 

Trust region policy optimization (TRPO) can be 

defined as a gradient descent-based technique for 

scalable policy optimization, and it is used 

throughout the training process to optimise the policy 

parameter of the MLP and maximise the predicted 

discounted return. Policy gradient methods are more 

stable throughout training and don't require a model, 

in contrast to value iteration approaches [19-21]. 

Furthermore, given certain conditions. TRPO 

guarantees improvements that grow steadily over 

time. Specifically, TRPO algorithms use gradient 

descent to directly learn policy (a|s; θ), while 

confining update of to a fixed amount at each step, 

indicating that every update to the policy during each 

iteration of TRPO results in a superior policy. To do 

this, TRPO limits the size of each iterative update by 

considering the KL divergence between the current 

and target policies. In TRPO, the optimization 

problem is stated as: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸𝑠∼𝜌𝜃𝑜𝑙𝑑
, 𝑎 ∼ 𝑞 [

𝜋𝜃(𝑎|𝑠)

𝑞(𝑎|𝑠)
 𝑄𝜃𝑜𝑙𝑑  (𝑠, 𝑎)]  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   
𝐸𝑠∼𝜌𝜃𝑜𝑙𝑑

 [𝐷𝐾𝐿(𝜋𝜃𝑜𝑙𝑑
 (. |𝑠)||𝜋𝜃(. |𝑠))] ≤  𝛿   (16) 

 

This equation represents the optimization 

problem in TRPO, where δ is a parameter that can be 

adjusted. 

 

 
Figure. 4 Performance of RL with gamma values of 0.9 

(red) and 0.7 (blue) 
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In order to measure how well RL performs and 

how far it has come, we can look at how much on 

average we have gained across numerous episodes, 

discounted at various rates (gamma). In this case, we 

are contrasting the efficacy of RL with gamma values 

of 0.9 (red) and 0.7 (blue). 

The first algorithm (denoted *) π* θ (at|st). Lays 

out the procedures that must be followed to arrive at 

the best possible policy. A stochastic policy that is 

called π*(a|s; θ) is created when training is finished, 

and it assigns a distribution of probabilities between 

each one of the states and potential actions. This 

indicates that, given a certain situation, the policy 

gives a likelihood of choosing a specific course of 

action. As mentioned in algorithm 2, this policy could 

be applied in real-time applications for the prediction 

of proper AP assignments, calculating rewards, and 

determine subsequent state. RL-based systems often 

have a reduced computational complexity at run-time 

in comparison with optimization-based techniques. 

We developed an optimization problem with 

objective function that is identical to reward function 

of RL approach and reviewed alternative solutions 

that have been presented in section III-B for giving a 

fair comparison between the two methods. The 

analysis of RL algorithm's training and convergence 

performance will take place in the next section. 

 
1) Training performance and RL convergence  

The TRPO technique, which limits the policy to 

an acceptable area of trust to guarantee consistent 

learning, has been used in this research. Training 

results for 5 users have been presented to keep the 

presentation manageable, however, similar 

tendencies can be noticed for 10 users. The average 

reward earned during training with the RL algorithm 

is shown in Fig. 4 for a range of discount factors (γ). 

It appears that after a specific number of the episodes, 

mean reward that has been acquired by the algorithm 

converges for both values, but there is a large 

disparity between the average’s rewards obtained for 

different values. To be more precise, when γ = 0.9 is 

used, the average reward is around three times as high 

as when γ = 0.7 is used. Because of this, although it 

will take longer for the method to converge, γ = 0.9 

was selected for the simulation [22-24]. The 

convergence speed of the algorithm will be increased 

in future work by including the idea of knowledge 

transfer into the algorithm. Since TRPO is a model-

free algorithm, it can learn the best policy without 

making any assumptions about the surrounding 

environment (transition and reward functions). 

Consequently, TRPO has a higher sample complexity 

but requires less hyperparameter adjustment. 

Exploration in TRPO depends on both the beginning 

conditions and the training process, as it is an on-

policy approach that samples actions depending on 

the most recent version of its stochastic policy. When 

it comes to dealing with TRPO's complicated samples, 

many different approaches have been offered in the 

literature. However, the focus of this study is on RL-

based load balancing for hybrid LiFi Wi-Fi networks, 

hence the simplest TRPO form was investigated. The 

algorithm's performance and rate of convergence will 

be improved in future work by incorporating 

knowledge transfer [25]. 

 

B. Other load balancing method  

The aim of RL system that has been suggested in 

this work is consistent with the formulation of an 

optimization problem concerning AP assignment in 

hybrid LiFi Wi-Fi networks in the following way: 

 

𝑀𝑎𝑥𝑔µ,𝛼 𝑘µ,𝛼
= ∑ ∑ 𝑔µ,𝛼𝑙𝑜𝑔 (

𝑟µ,𝛼𝑘µ,𝛼

𝑅µ
)𝛼∈𝐴𝑃µ ∈ 𝑈   

𝑠. 𝑡. ∑ 𝑔µ,𝛼𝑘µ,𝛼 =  1 ∀𝛼 ∈  𝐴𝑃µ ∈ 𝑈       (17) 

 
∑ 𝑔µ,𝛼 =  1 ∀µ ∈  𝑈𝛼∈𝐴𝑃   

𝑔µ,𝛼 ∈ {0, 1}, 𝑘µ,𝛼 ∈  [0, 1], ∀µ∈ 𝑈, ∀𝛼∈ 𝐴𝑃 (18) 

 

R represents the needed data rate for the user, U 

denotes a set of users, AP represents a set of APs 

(which might contain Wi-Fi as well as LiFi APs), r 

denotes the achievable data rate between the user and 

AP, as specified by Eqs. (5) and (9), and AP and user 

have different achievable data rates. The optimization 

problem for the AP assignment in hybrid LiFi Wi-Fi 

networks is described in this formulation. If g, a = 1, 

then the user is connected to the AP; or else, they are 

not, according to the Boolean optimization variable g. 

The optimization variable defines allocating time 

slots to users who are all linked to AP. This 

optimization problem represents a MINLP (i.e. 

mixed integer nonlinear programming) problem with 

intractable mathematics, hence there isn't a closed-

form solution available. By figuring out how to solve 

the MINLP problem that is specified by Eq. (13), 

there are three different approaches to optimize AP 

assignment in a hybrid LiFi Wi-Fi network. 

Exhaustive search: 

Through systematically listing all alternative 

actions for specified objective function and after that 

choosing the action that best satisfies the objective 

function, the approach obtains the optimal 

performance, yet at a high complexity cost. The room 

dimension in this scenario limits the number of users 

and APs, which keeps the computing complexity 

under control. Exhaustive searches use the goal 

function of Eq. (13) to determine a performance 

upper bound. 
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Iterative algorithm: Iterative algorithms could 

be used to tackle the optimization problem stated by 

Eq. (11). With the use of Lagrangian dual 

decomposition on the objective function, the optimal 

g value, a could be determined as follows: 

 

 𝑔µ,𝑎  = {

1, 𝛼 =  𝑎𝑟𝑔𝑚𝑎𝑥 (𝑙𝑜𝑔 (
𝑟 µ,𝛼

𝑑 µ
)

− 𝜆µ −  𝜔𝛼)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

         (19) 

 

Following a similar procedure as described [25], 

the process of AP assignment and resource allocation 

has been carried out by calculating the Lagrangian 

multipliers λµ and ωa and using them to determine the 

optimal value ofgµ,a.  

RL-based approach: The suggested RL-based 

method immediately learns the optimal policy 

without assessing a model of the environment, which 

makes tuning the hyperparameters fairly simple. 

Through sampling actions following the most recent 

iteration of its stochastic policy, which is dependent 

on the initial conditions as well as training procedure, 

the RL algorithm explores the action space 

throughout training. The RL-based method offers a 

computationally effective solution while having a 

higher sample complexity. 

Signal strength strategy (SSS): is a technique 

used to enhance the AP selection process in a network 

that combines LiFi and Wi-Fi. Due to differences 

between LiFi and Wi-Fi in terms of bandwidth and 

receiver noise, received signal intensity alone is not 

sufficient to determine the quality of the channel. Due 

to its importance, the signal-to-noise ratio (SNR) is 

the criterion relied upon by SSS. Assuming a set of 

access points (APs) consisting of one Wi-Fi AP and 

four LiFi APs, the SSS approach defines the objective 

function for a particular user as optimising the SNR 

between that user and the AP of interest, with the 

caveat that the AP of interest must be included in the 

set of APs. 

 

𝑚𝑎𝑥
𝛼

𝑆𝑁𝑅µ,𝛼   𝑠. 𝑡 𝛼 ∈  𝐴𝑃                            (20) 

 

SNR value between user µ and AP α, which are 

estimated sing Eqs. (9) & (4) for Wi-Fi and Li-Fi APs, 

respectively, is denoted by SNRµ,α. 

4. Evaluation and discussion of performance 

As shown in Fig. 1, we have selected a standard 

indoor space with dimensions of 5 x 5 x 3 meters, 

where a single Wi-Fi AP provides full coverage and 

four LiFi APs provide partial coverage. While our 

work can be scaled to accommodate more APs and  
 

Table 3. Parameters of system  

System Parameter Value 

User Speed 1m/sec 

Multiple access 

technology 

TDMA 

Requested data rate, Rµ Poisson with 

50Mbps 

Policy  MLP, 2 layers of 64 

Episode length, E 1,000 

Gym environment Li-Fi Wi-Fi network 

Discount factor, γ 0.90 

Maximum KL 

divergence, δ 

0.010 

Number of APs 4LiFi + 1Wi-Fi 

RL Algorithm TRPO 

Dimensions of the Room 5x5x3 m3 

No. of Users, Nu 5,10 

Wi-Fi AP location (2.5m, 2.5m) 

Li-Fi AP locations (±1.25m,±1.25m) 

User distribution Uniform 

Mobility Model RWP, HRWP 

 

 

users in a larger room, we chose a common situation 

to demonstrate the utility of RL in achieving an 

optimum AP selection policy for hybrid Li-Fi Wi-Fi 

networks and to offer an upper bound performance 

via exhaustive search. Here, it is assumed that all of 

the optical attocell utilise the same band-width, 

leading to interference that is merely dismissed as 

background noise in the overlapping regions. High 

data rates are anticipated for user access to HD videos, 

which is represented as a Poisson process at a rate of 

50 Mbps. We have evaluated two mobility models, 

RWP and HRWP, with users spread out evenly over 

the room, as detailed in section 2. C. To keep things 

straightforward, we've assumed that TDMA is 

utilised to handle multiple connections and that users 

can only connect to a single access point (either the 

LiFi AP or the Wi-Fi AP). 

The CU is equipped with an RL agent that 

determines load balancing decisions and can access 

both LiFi and Wi-Fi APs. In order to transmit the 

information of user states to the CU, it is assumed that 

a feedback link free of errors exists. The simulation 

was developed using Python 3.7, and Open AI Gym 

environment was created for the hybrid LiFi Wi-Fi 

network being studied [26]. The TRPO algorithm 

was implemented using the stable-baseline GitHub 

repository [27]. The reported results are an average 

higher than 200 episodes, and Table 3 summarizes 

system parameters that were considered for the 

simulations. 

We compared the suggested RL approach to 

others, including exhaustive optimization, iterative 
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optimization, and SSS approaches, to determine how 

well it performed. Several criteria were used to make 

this comparison, including computational complexity, 

average network performance, fairness, user 

happiness, and the probability of capacity outages 

[28]. 

 

A. Performance matrix  

The three performance measures are defined as 

follows: capacity outage probability, user satisfaction, 

and fairness. 

 

• The satisfaction of a user, denoted by Sµ,a, has 

been calculated as ratio of the achieved data 

rate for that user to required data rate, and can 

be represented as: 

 

𝑆µ,𝑎 = 𝑚𝑖𝑛{1,
𝑘µ,𝛼𝑟µ,𝛼

𝑅µ
 }                    (21) 

 

Here, Rµ denotes the demanded data rate by the 

user µ, modeled as Poisson process. The upper limit 

regarding user satisfaction has been 1, specifying that 

the user had accomplished their needed data rate. 

 

• For fairness, Jain’s fairness index [29] has 

been utilized.  

 
Table 4. Computational complexity 

Scheme Complexity 

SSS O(NU NAP) 

Iterative O(NU NAP l) 

RL O(Nu
2 NAP + NU

2 + NU 

NAP) 

Exhaustive O((NAP)Nu) 

 

 

 
Figure. 5 Comparison of the computational complexity of 

various schemes 

According to, it is possible to calculate the user 

fairness index. 

 

𝜂 =
(∑ 𝑆µ,𝛼𝑈 )

2

𝑁𝑈 ∑ (𝑆µ,𝛼)
2

𝑈

                                           (22) 

 

Nu represents the number of users  

 

• The probability of capacity outage may be 

expressed by the following equation: 

 

𝛷 =  𝑃𝑟(𝑘µ,𝛼 𝑟µ,𝛼 <  𝑅𝑜)                           (23) 

 

The symbol "Ro" represents the average required 

throughput threshold value. 

 

B. Complexity analysis  

The Big-O notation is used here to quantify 

complexity because it establishes a ceiling for 

performance independent of hardware. The SSS 

method has a complexity of [30]. Because it selects 

AP with maximum SNR value out of all of the 

accessible APs (NAP) Exhaustive search, the 

optimization method that relies on it, is 

computationally intensive because it investigates 

every conceivable pairing of users and APs, with a 

complexity of O ((NAP) NU). The complexity of an 

iteratively-solved optimization issue is estimated as 

O (NAP NU l), where I is the number of iterations 

needed to converge. The computational cost of the 

RL training phase is O (n2), where n is the number of 

states in MDP (n). To be clear, this is only the one-

time investment required for training. 

 
Table 5. Fairness  

𝑵
𝒖
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5
 116.23 174.04 239.90 218.81 

1 0
 73.12 98.72 138.41 110.69 

 

Table 6. Average throughput of the network (Mbps) 

𝑵
𝒖
 

S
S
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It
er
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e 
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x
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R
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5
 0.9998 0.9999 1.0000 1.000 

1
0
 0.9568 0.9743 0.9872 0.9727 
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The optimal strategy, here in the form of MLP, 

affects the complexity of the RL algorithm under 

real-time conditions. Part III lays out the parameters 

that govern the complexity of the system, including 

the size of the observation and action spaces. Because 

of this, RL has a complexity of O (Nu
2 NAP + NU

2 

+ NU NAP). The complexity of exhaustive 

optimization grows exponentially with the number of 

users, while complexity of SSS grows linearly. For 

RL, the difficulty scales quadratic ally with the 

number of users, while for the iterative approaches, 

the complexity scales linearly with I. Table 4 shows 

that RL has a significantly reduced complexity 

compared to exhaustive and iterative optimization. In 

Fig. 5 we illustrate the computational complexity of 

those approaches for varying numbers of users, 

considering that I = 30, as can be seen in the graph, 

RL has a lower complexity than both exhaustive and 

iterative approaches. 

 

C. Number of users effect  

Table 5 displays the typical throughput of a 

network with varying user loads. For a network with 

five users, the average throughput increases by 

49.74% when using the iterative optimization-based 

AP assignment scheme instead of the standard 

solution set size (SSS). Moreover, RL and exhaustive 

optimization produce even more substantial 

improvements in average network throughput, with 

increases of 88.26% and 106.41% above SSS, 

respectively. For 10 users, both RL and exhaustive 

search outperform SSS by a significant margin, 

increasing average network throughput by 51.37 and 

89.29%, respectively. Given that the average network 

throughput improvement over SSS for the iterative 

approach is only 34.24 percent, it is clear that RL is 

capable of providing a far larger improvement in 

throughput. It's important to remember that as the 

number of the users grows, network's performance 

saturates, limiting benefits that may be gained from 

using various load balancing techniques. 

Table 6 displays the results of Eq. (17)'s 

calculations of Jain's fairness index for a range of user 

counts and load balancing strategies. When there are 

five users, the fairness value for all of the schemes is 

very near to 1. SSS, on the other hand, can only 

achieve fairness of 0.96 with 10 users, whereas RL 

and optimization both reach fairness of 0.97 in this 

scenario. Extensive optimization yielded the best 

possible fairness index of 0.97. Although the Jain's 

fairness index and the average network throughput 

present an overarching picture of the performance of 

the network, the CCDF of user happiness and the 

probability of capacity outage at a given throughput 

is supplied to shed light on how well these strategies  
 

 
Figure. 6 User satisfaction: Nu=5 (dashed lines) and 

Nu=10 (solid lines) 

 

 
Figure. 7 Capacity outage probabilities: Nu=5 (dashed 

lines) and Nu=10 (solid lines) 

 

are implemented. 

Fig. 6 shows the CCDF (i.e. complementary 

cumulative distribution function) of user satisfaction 

for varying load balancing schemes and user counts. 

The happiness index is determined by solving for Eq. 

16. With less than 40% and 25% of users being 

entirely satisfied for 5 and 10 users, respectively, the 

data show that the SSS-based system gives the worst 

customer satisfaction. For 5 users, the satisfaction 

percentage for the iterative optimization strategy is 

over 85%, but with 10 users, it declines dramatically 

to around 30%. Whereas, roughly 98% and 96% of 5 

users are completely satisfied with the exhaustive 

optimization and RL techniques, respectively. With 

ten users, however, those percentages drop to about 

45 and 40, respectively. Consequently, it can be 

stated that RL delivers close enough speed, while the 

exhaustive search approach provides the largest 

percentage of full user satisfaction. Also, it is seen 

that as the number of users grows, level of 

satisfaction decreases across the board. 
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Table 7. Avg. network throughput (Mbps) 
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Table 8. Fairness 
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Depending on the load balancing scheme and the 

number of users, the probability of a capacity outage 

for a throughput threshold of Ro is shown in Fig. 7. 

For 5 users, the average network throughput for 

exhaustive search and RL can reach up to 210 Mbps 

and 180 Mbps, respectively, when the system permits 

10% of users to be in capacity outage. SSS shows the 

lowest throughput value of roughly 40 Mbps, while 

the iterative method performs poorly with a 

throughput value of less than 100 Mbps. Whenever 

the chance of a capacity outage rises above 0.6, the 

benefits of using RL or thorough optimization are 

nearly the same. In addition, the throughput value 

drops drastically for a given capacity outage 

probability when the number of the users rises from 

5 to 10. Exhaustive search delivers the best potential 

throughput for a given probability of capacity outage, 

with RL coming in a close second. Lastly, when the 

number of the users grows, performance of all of the 

schemes degrades, while RL's performance is quite 

near to that of exhaustive search. 

 

D. Mobility model effect  

We also considered how specific user activities, 

such as the four attraction points around the 4 LEDs 

in the HRWP mobility model, would have an impact  
 

 
Figure. 8 User satisfaction: with RWP (solid lines) and 

HRWP (dashed lines) 

 

 
Figure. 9 Capacity outage probability: with RWP (solid 

lines) and HRWP (dashed lines) 

 

on the outcomes throughout this analysis. Table7 

displays the typical network throughput for five users 

using 2 mobility models. The two mobility models 

displayed the same overall performance trends, with 

exhaustive optimization, succeeded by RL and 

iterative optimization, increasing average network 

throughput the greatest in comparison to the SSS 

method. Jain's fairness index for five users across 

various mobility scenarios is shown in Table 8. It is 

evident that all plans for both forms of mobility 

achieved complete fairness (η = 1) for a group of 5 

users. 

In addition, this research examined how different 

mobility models affected the overall system 

efficiency. Both the high-resolution wheeled 

platform (HRWP) and the reduced-complexity 

wheeled platform (RWP) mobility models were 

investigated. Table 7 provides a high-level overview 

of the average network throughput for 5 users across 

both models, revealing a consistent performance 

profile. The average network throughput was 
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improved the most from the SSS method by using the 

exhaustive optimization technique, followed by RL 

and iterative optimization. In Table 8, we can see that 

all five schemes achieved full fairness (η =1) for five 

users under the two models of mobility. 

Fig. 8 depicts the cumulative distribution function 

(CCDF) regarding user satisfaction for 5 users under 

both models of mobility, revealing that user 

satisfaction varies considerably between the two. 

Under HRWP, roughly 45% of SSS users may obtain 

100% satisfaction, while under RWP, that number 

drops to 35%. Users are somewhat more satisfied 

with HRWP after utilising exhaustive search. 

Additionally, RL provides HRWP performance that 

is on par with the iterative optimization method. 

Iterative optimization method just ensures 

UXSatisfaction for 90% of users, whereas RL 

guarantees 0.85 UXSatisfaction for all users across 

both mobility models. This indicates that with the 

iterative method, at least 10% of users never achieve 

the desired UXSatisfaction. Furthermore, in the 

HRWP paradigm, SSS can only guarantee user 

happiness for 70% of users. 

Fig. 9 shows the percentage of times a specific 

throughput Ro will suffer a capacity issue for five 

users using two distinct mobility models. It 

demonstrates that with exhaustive search, the 

throughput that can be achieved with a given capacity 

outage probability improves in the case of HRWP. 

The functionality of SSS is nearly identical between 

RWP and HRWP. The iterative algorithm and RL act 

comparably for the 2 models of mobility, with higher 

throughput being supported for smaller capacity 

outage probability values in RWP models and for 

larger outage probability values in HRWP models. 

The two mobility models' performance trends for the 

four load balancing techniques are stable, and RL 

provides resilience in the face of a variety of user 

activities. 

 

E. Discussion and comparison 
The outcomes of a hybrid system built on 

reinforcement learning (RL) and standard solution set 

size (SSS) access technology known as TDMA, as 

achieved through MATLAB code. Five users' 

throughput and user satisfaction scores were 

compared to the system. The RL-based hybrid system 

achieved an SSS of 180 Mbps and a throughput of up 

to 210 Mbps, according to the data. This shows that 

the system was able to deliver high data transfer rates 

while making effective use of the resources at hand. 

Furthermore, a 100% user satisfaction rate was 

obtained, indicating that the system either matched or 

beyond users' expectations in terms of functionality 

and level of service. Overall, the findings highlight  
 

Table 9. Comparison between the performance of the 

proposed hybrid system and the performance of the 

hybrid system in previous works 

Ref [17] [28] Proposed 

System 

Year 2019 2020 2023 

Algorithm Fuzzy 

Logic 

RL 

Method 

Reinforcement 

Learning (RL) 

standard 

solution set 

size (SSS) 

Access 

technology 

TDMA FDMA TDMA 

System 

method 

one 

Wi-Fi 

AP and 

a four 

Li-Fi 

APs. 

 

Hybrid 

Li-

Fi/Wi-Fi 

network 

with four 

Li-Fi 

APs and 

one Wi-

Fi AP 

Hybrid system 

Based on 

Reinforcement 

Learning 

Throughpu

t of 5 users 

 

95Mbp

s 

110.69 

Mbps 

175 

Mbps 

 

RL can reach 

up to 210 

Mbps and 180 

Mbps 

SSS 

User 

satisfaction 

…….. 70% 100% 

 

 

the effectiveness of the RL-based hybrid system with 

TDMA access technology in achieving high 

throughput, efficient resource allocation, and user 

satisfaction in a multi-user scenario. Table 9 shows 

the comparison between the performance of the 

proposed hybrid system and the performance of the 

hybrid system in previous works. 

5. Conclusion  

For hybrid LiFi-Wi-Fi networks, this article 

suggests a dynamic load balancing strategy based on 

RL. Throughput should be maximised on a long-term 

basis on a system-wide average, with QoS guarantees 

being a secondary concern. The TRPO method is 

used to train the RL to learn the best course of action 

for AP allocation in every given scenario. 

Simulations have demonstrated that the suggested 

approach is more effective than both approaches the 

standard SSS scheme and iterative algorithm. RL 

algorithm surpasses SSS and iterative methods in 

terms of throughput for 5 users in the RWP mobility 

model by 87.36% and 24.27%, respectively. The 

exhaustive optimization approach achieves the 

highest performance, but it is computationally 

intensive and therefore not applicable to most real-
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world situations. The RL scheme is as effective as the 

exhaustive search, but simpler, in terms of user 

happiness. Furthermore, the suggested RL scheme's 

performance tendencies are consistent across a wide 

range of mobility models, demonstrating its 

robustness. For improving the algorithm's rate of 

convergence and efficiency, it will be necessary to 

incorporate knowledge transfer into future projects. 
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List of notations 

Abbreviation Description 

HLOS Channel gain of the line-of-sight 

(LOS) component. 

m Path loss exponent. 

𝐴𝑃𝐷 Area of the photodetector. 

d Distance between the transmitter and 

receiver. 

φ Angle of arrival of the LOS 

component. 

gf  Gain factor associated with the 

frequency response. 

gc Gain factor associated with the 

coverage area. 

ψ Angle of departure of the LOS 

component. 

Ro 

 

the average required throughput 

threshold value. 

NLOS non-line-of-sight 

R data rate for the user 

TRPO 

 

Trust Region Policy 

Optimization 

SNR Signal-to-Noise Ratio 

𝐾𝜇,𝛼  denotes time slot allocation 

between the user and the AP 

LFS the free space loss 

fc cut-off frequency 

PSD power spectral density 

S(µ,a) satisfaction of a user 

n Refractive index of the medium. 

𝐻𝑁𝐿𝑂𝑆 Channel gain of the non-line-of-

sight (NLOS) component 

ρ Reflectance of the surrounding 

environment. 

A_PD Area of the photodetector. 

f Frequency of the signal 

∆T Delay spread 

A_room Area of the room or space 

fc Carrier frequency. 

G(µ,α)(f) The channel gain for WiFi 

µ Path loss exponent 

α Shadowing factor 

L(d) Path loss as a function of 

distance d 

HLiFi(µ,α) The complete optical channel 

for Li-Fi, consisting of the LOS 

(HLOS) and NLOS (HNLOS) 

components. 

Popt Optical power transmitted by 

the Li-Fi access point. 

𝑁LiFi Total noise power in the Li-Fi 

system. 

𝐵LiFi Bandwidth of the Li-Fi system. 

f(x𝑑, y𝑑) Distribution function for 

destination points (xd, yd). 

ξ Intensity parameter. 

A𝑎 Area of the attraction point. 

x𝑚 Half the length of the attraction 

point area in the x-direction. 

ym Half the length of the attraction 

point area in the y-direction. 

x a,min Minimum x-coordinate of the 

attraction point area. 

y a,min Minimum y-coordinate of the 

attraction point area. 
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