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Abstract: The number of vehicles traveling between cities has increased significantly with the acceleration of 

urbanization. This has resulted in several traffic-related issues, including traffic congestion and the need to collect 

information on the number and variety of vehicles on the road. In this study, we propose you only look once (YOLO) 

artificial real-time intelligent analysis (ARIA) based intelligent traffic monitoring system. YOLO is an algorithm that 

is capable of detecting objects in images and recordings. We improved YOLO’s feature extraction capabilities to 

improve its vehicle detection accuracy. In addition, we proposed detection models with C3X (convolution neural 

network) module in the backbone of YOLO. In our experiments, the proposed system attained 99,1% accuracy with 

98,3% precision and 98,4% recall on datasets obtained from the CCTV monitoring portal of the semarang city 

government. In addition, the proposed system has a higher average precision than other vehicle detection and 

classification methods. Considering the current environmental conditions, the proposed system can classify vehicles 

in real-time. This makes it a valuable planning and traffic-management instrument. 

Keywords: Intelligent traffic monitoring system, Object detection, Object classification, You look only once (YOLO), 

Convolution neural network. 

 

 

1. Introduction 

Road traffic monitoring is an important area of 

study. It can help us comprehend current traffic 

conditions and provide traffic management agencies 

with actionable data. This information can enhance 

the quality of life for individuals [1] during holidays, 

for instance, traffic volume data can be used to direct 

vehicles away from congested areas by suggesting 

alternate routes. When heavy trucks routinely use a 

road, roadside warnings can be installed to notify 

vehicles and prevent accidents. In addition, the 

detection of a vehicle can be used to identify and 

monitor criminal [2] these applications all rely on 

data gathered by a road monitoring system. 

Consequently, numerous researchers have devised 

various methods for detecting and classifying 

vehicles [3].  

The detection of vehicles using conventional 

methods can be categorized into two main groups: 

static-based methods[4-10]and dynamic-based 

methods [11, 12]The generation of vehicle prediction 

frames in static-based approaches involves the 

utilization of sliding windows or shape feature 

comparison. These frames are subsequently validated 

by considering the information stored within them. 

Furthermore, dynamic-based approaches employ the 

dynamic attributes of a mobile entity in order to 

recover the entity's outline from the captured image. 

The subsequent examples pertain to methods that are 

based on static principles. In their study, Mohamed et 

al (2015) employed Haar-like characteristics to 

extract vehicle geometry data, which were 

subsequently utilized as input for an artificial neural 

network in order to perform classification [13]. In 

their study, Wen et al (2015) employed Haar-like 

features to extract edge and structural vehicle features 

[9] these features were subsequently inputted into 
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AdaBoost to effectively identify and retain relevant 

features. The features that have undergone filtering 

were next subjected to classification using a support 

vector machine (SVM). In their respective studies, 

Sun et al (2002) [7] and David & Athira (2014) [5] 

employed Gabor filters as a means to extract vehicle 

attributes, which were subsequently utilized as input 

for a support vector machine (SVM) model. The 

primary objective of this approach was to ascertain 

the presence or absence of a vehicle within a picture. 

The two-step vehicle detection system developed by 

Wei et al (2019) serves as an illustrative instance of a 

dynamic-based approach [14]. Initially, the 

researchers employed Haar-like features and 

AdaBoost algorithm to detect and isolate the region 

of interest that contains vehicles. The region was 

subsequently subjected to reclassification through the 

utilization of the histogram of oriented gradients 

(HOG) technique, as outlined by Bougharriou et al., 

(2017) [4] in conjunction with a support vector 

machine (SVM). The experimental results indicated 

that their approach showed improved skills in 

detecting vehicles. In their study, Yan et al (2016) 

developed a vehicle identification system that 

employed car shadows to determine the borders of 

vehicles [10] this approach exemplifies the utilization 

of dynamic-based methods. The histogram of 

oriented gradients (HOG) method was subsequently 

employed to extract features from the boundaries. 

These extracted features were then utilized as input 

for both an AdaBoost classifier and an SVM classifier 

to perform validation. Nevertheless, this method 

possesses a limitation whereby the presence of two 

obstructing vehicles results in their amalgamation 

into a singular entity due to the interconnectedness of 

their shadows. This phenomenon reduces the impact 

of detection. 

Seenouvong et al (2016) [15] introduced a vehicle 

recognition and counting method based on dynamic 

features. The researchers employed background 

removal to derive a discernible map from a provided 

image, which was subsequently utilized to segment 

the related foreground image. Subsequently, a range 

of morphological operations was employed to obtain 

the contour and bounding box of a mobile entity, 

identify mobile vehicles, and quantify the number of 

vehicles traversing a designated region. The 

conventional approaches employed for vehicle 

detection, which rely on either static or dynamic 

attributes, exhibit certain constraints. The utilization 

of these techniques necessitates the extraction of 

features by human means, a process that is both labor-

intensive and prone to generating superficial features 

that fail to sufficiently capture the essence of vehicle 

modifications. Furthermore, the utilization of 

dynamic feature approaches can prove to be intricate 

and result in suboptimal outcomes when confronted 

with significant alterations in the background. Deep 

learning approaches have gradually replaced 

traditional methods due to their ability to 

autonomously acquire features from data and their 

increased robustness against variations in 

background and lighting conditions. 

The previous models have demonstrated notable 

advantages in terms of achieving high accuracy and 

localization in object recognition. However, these 

models also exhibit certain limitations, such as the 

need for more intricate training procedures and a 

relatively slower operational speed. This is 

particularly evident when considering real-time 

object detection in a singular event [16] when it 

comes to categorizing object detection models, 

certain models such as you only look once (YOLO) 

developed by Redmon (2016) [17] and C.M. Liu and 

Juang (2021) [18], as well as the single shot MultiBox 

detector (SSD), demonstrate superior performance 

compared to other models. This is achieved by 

directly incorporating regression techniques into the 

object detection process, leading to enhanced 

operational speed. Nevertheless, the single shot 

MultiBox detector (SSD) fails to account for the 

interdependencies among many scales, hence 

resulting in constraints when it comes to detecting 

diminutive entities. Conversely, the you only look 

once (YOLO) algorithm exhibits superior aptitude in 

acquiring knowledge of shared attributes and exhibits 

enhanced operational velocity [19, 20] nevertheless, 

both solid state drive (SSD) and you only look once 

(YOLO) encounter challenges when it comes to 

effectively processing intricate graphical regions and 

exhibiting elevated identification mistakes for things 

that are visually identical. Moreover, the 

categorization of certain vehicles may not be totally 

precise because of minor biases that impact the 

confidence ratings in object detection [21]. Even with 

the progress in object detection techniques, a 

substantial challenge persists in balancing detection 

precision with computational efficiency. 

In today's context, the significance of object 

detection spans various domains, from security 

oversight to vehicular automation. Yet, the 

paramount challenge has always been to elevate 

detection fidelity while curtailing both training and 

inference durations. However, the primary challenge 

in object detection is how to enhance detection 

accuracy while minimizing training and inference 

time. Addressing this challenge, this research 

introduces a novel method that leverages a unique 

combination of regular convolution and cross 

convolution, promising an innovative approach to 
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object detection. 

The key feature of this method is the utilization 

of convolution three times in the neck section to 

extract image dataset features. This process ensures 

the deep extraction of characteristics from each 

labeled object, offering a significant advantage in 

detection quality. Furthermore, in the cross-

convolution process, the image data is divided into 

two parts. While one part undergoes three 

convolutions, the second part is processed directly to 

the final section. These two parts are then combined, 

ensuring the integration of rich and efficient image 

feature information. This novel methodological 

approach, characterized by its unique feature 

extraction process, is designed to offer significant 

advancements in the field of object detection. 

The main advantage of this approach is speed. In 

our experiments, the proposed method demonstrated 

faster detection speeds during training, recognizing 

and classifying vehicle objects more quickly 

compared to popular methods such as Yolov5x, 

Yolov5l, Yolov5m, Yolov5s, and Yolov5n. This 

speed enhancement is a testament to the efficiency of 

the proposed method, positioning it as a superior 

alternative in the realm of object detection. 

Harnessing the core tenets of object detection and 

responding to the highlighted issues, we put forth a 

novel model, Yolo-ARIA was proposed, based on 

Yolov5 optimization, to achieve a better balance 

between two tasks, there are detection and 

classification, to obtain better performance results for 

vehicle detection based on vision and classification 

than the cutting-edge models used for the same 

purpose. Yolo-ARIA will implement Jia et al (2023) 

[22] and Liu et al (2023) [23] research that improved 

Yolov5 algorithm. However, these methods have 

limitations, such as the need for manual feature 

extraction and the inability to describe the changes in 

vehicle features effectively. Recently, techniques for 

deep learning have been devised to overcome these 

limitations. Deep learning techniques are capable of 

automatically extracting features from images and 

learning the evolution of vehicle features. As a 

consequence, the creation of a new model, Yolo-

ARIA, is anticipated to strike a healthy equilibrium 

between two tasks, namely detection and 

classification. 

2. Related work 

In many fields, deep learning has been used to 

attain success in recent years. Convolutional neural 

networks (CNN) have significantly enhanced the 

accuracy of image recognition compared to 

traditional methods that require manual feature 

extraction. Earlier CNN models, such as LeNet [24], 

were utilized to identify handwritten numerals. Later 

models, such as AlexNet [25] enhanced the accuracy 

of image recognition by utilizing ReLU activation 

functions and dropout layers to prevent overfitting 

and by enhancing the model architecture. GoogLeNet 

[26] utilized multiple filters of varying sizes to extract 

features and enrich feature data. VGG-16 and VGG-

19 [27] utilized multiple small convolution kernels to 

execute operations, demonstrating that increasing the 

model's depth can enhance its precision. ResNet [28] 

utilized residual blocks to solve the problem of 

gradient disappearance and the inability to converge 

caused by an excessively deep network. MobileNet 

[29] utilized deep separable convolution to extract 

fewer and more useful features, thereby reducing the 

number of redundant CNN model parameters. 

Prior research has focused on enhancing CNN's 

ability to describe features so that they can be applied 

to more complex problems, such as object detection. 

Utilizing region-based CNN (R-CNN) [14, 30-

32]models is an approach to object detection. The 

choice of which method to employ is dependent on 

the application at hand. 

YOLOv5 is a singular-stage object identification 

model that comprises four distinct components, 

namely input, backbone, neck, and head. In contrast 

to the original YOLOv4 network architecture, 

YOLOv5 incorporates the Focus module [33] which 

serves to augment the model's feature extraction 

capabilities. Additionally, the model incorporates the 

upgraded cross-stage partial network (CSPNet) as its 

underlying architecture, hence enhancing the 

effectiveness of the model. To enhance the 

effectiveness of the multi-scale feature fusion process, 

an additional layer called the path aggregation 

network (PANet) is incorporated, which operates in a 

bottom-up manner and is based on the feature 

pyramid structure (FPN). The primary function of the 

input layer is to acquire image data and convert it into 

a suitable format that can be processed by the neural 

network. The backbone is a critical element within 

the network architecture, as it assumes the primary 

responsibility of extracting features from images. The 

YOLOv5 model utilizes the expanded CSPNet as its 

underlying architecture, which is a lightweight and 

efficient network that can effectively extract picture 

information across several dimensions. The neck 

plays a crucial role in integrating the retrieved 

features from the backbone and transmitting them to 

the skull. The inclusion of the PANet layer within the 

neck component serves to enhance the efficacy of the 

multiscale feature fusion process, as proposed by 

Wang et al [32]. The primary responsibility of the 

head is to accurately anticipate the spatial limits and 



Received:  October 15, 2023.     Revised: November 8, 2023.                                                                                          431 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.38 

 

categorical designations of the things present within 

the visual. 

The object identification approaches possess 

certain limitations. Specifically, two-stage object 

detection methods exhibit good classification 

accuracy; however, the detection speed is impeded 

due to the large amount of network parameters. 

Furthermore, it is worth noting that one-stage object 

detection approaches have a higher real-time 

detection rate compared to two-stage methods, albeit 

at the expense of reduced accuracy. Furthermore, in 

order to augment the quantity of object categories, it 

becomes imperative to do a comprehensive 

reconfiguration of the complete network. This 

process is not only time-consuming but also 

diminishes the method's scalability. In summary, the 

existing techniques for object detection exhibit 

diverse tradeoffs between accuracy and performance. 

Two-step methods exhibit greater precision, albeit at 

a slower pace. One-step procedures exhibit higher 

speed but lower precision. When the quantity of 

object categories is augmented, both approaches 

necessitate the complete retraining of the network, 

resulting in a time-intensive process and a decrease 

in the method's scalability [3]. 

Recently, cross convolution neural network [34] 

has been used an improvement to the YOLOv5s 

object detection algorithm. Several changes to the 

algorithm, including A cross-convolution feature 

strengthening connection method that shortens the 

path of information propagation and improves the 

semantic information between feature pyramids. A 

new enhanced feature concat module that enhances 

the fusion of features at the same scale. As is well-

known, the backbone of a CNN generates its features. 

These features are then continuously refined through 

different convolutional layers. As a result, the 

backbone contains the richest representation of 

features. This study utilizes the feature information 

contained in the backbone. Here is the Eq. (1) [34]: 

 

F =Foriginal  +FCCFSCA    (1) 

 

where F represents the features of the input, 

Foriginal represents the features of the input of the 

original network, and FCCFSC represents the features 

of the same scale between the input backbone and 

neck.  

Cross convolutional neural network [35] is a 

popular approach for image classification. Cross 

convolution, which can be used to reduce the number 

of parameters in a CNN without sacrificing 

performance. Cross convolution is based on the 

principle of target calibration in the YOLO algorithm 

and the transformation function. It generalizes  
 

 
(a)                (b)                (c)            (d) 

Figure. 1 Design process of cross convolution kernel [35] 

 

convolution, reducing the volume of the model while 

still capturing high-dimensional features. 

Comprehensive analysis shows that at present the 

structure of odd x odd is widely used, which the 3x3 

convolution kernel has irreplaceable role. As shown 

in Fig. 1 (a) is the standard 3x3 convolution kernel 

shape.   

According to the illustration in Fig. 1 (b), the 

positioning of the center black dot within the new 

convolution kernel is deemed insignificant. To clarify, 

the black dot's position might be substituted with the 

numerical value of zero, indicating that there is no 

requirement for the acquisition of these particular 

values. In Fig. 1 (c), the authors do not effectively 

minimize the network parameters. Consequently, the 

paper proceeds to simplify the network architecture 

and introduces a novel convolution kernel in Fig. 1 

(d). This kernel closely resembles the "+" symbol in 

Chinese characters and is referred to as the cross-

convolution kernel. The utilization of cross-

convolution kernels is a potential and novel strategy 

for effectively decreasing the parameter count within 

convolutional neural networks (CNNs). This has the 

potential to enhance computational efficiency and 

facilitate the deployment of convolutional neural 

networks (CNNs) on mobile devices.  

There exists prior research about cross-

convolutional techniques. In 2020, Arohan conducted 

a review of convolutional neural networks. Efforts 

have been made to enhance the level of efficiency and 

accuracy in various domains, with notable 

applications including object detection, digit 

recognition, and image recognition [36] In the study 

conducted by Valsesia (2020) [37], a convolutional 

approach was employed to assess the qualitative and 

quantitative outcomes of image denoising. In a study 

conducted by Peng Li (2019) [38] the objective was 

to enhance the accuracy of recognition [38] In a study 

conducted by Zeng Yu (2018) [39], the utilization of 

cross convolutional techniques was explored as a 

means to enhance the convergence rate of 

classification [39]. Verma (2018) employs the 

utilization of a specific method to detect the 

interrelationship categorization that exists between 

human entities [40]. However, more research is 

needed to evaluate the performance of the cross-

convolution kernel on a wider range of tasks [35]. 

This research created an intelligent traffic 
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monitoring system that can employ a modified 

version of the YOLOv5 object detection model to 

accomplish real-time detection and enhance detection 

efficiency. The principal innovation of this technique 

are using the cross convolution module (C3X) 

[35]which has split into the backbone will improve 

the ability of classify and detection of vehicles. This 

paper proposes a new method for detecting vehicles 

that is more accurate and robust than existing 

methods. By automatically detecting vehicles, this 

method can be used to intelligent traffic monitoring 

systems. 

The subsequent sections of this work are 

structured in the following manner: Section 3 

principle and method improvement. The 

experimental findings and analysis of the proposed 

methodology are elaborated upon in section 4. In 

section 5, we provide a summary of our findings and 

propose potential avenues for future research. 

3. Principle and method improvement 

3.1 YOLOv5 for principle of detection algorithm 

YOLOv5 represents the most recent iteration of 

the YOLO object detection system. The product is 

available in four distinct sizes, namely small (s), 

medium (m), large (l), and extra-large (x), each 

exhibiting variations in the quantity of parameters 

they possess. The YOLOv5 architecture comprises 

four primary components, including the input, 

backbone, neck, and prediction modules [41] During 

the input phase, YOLOv5 employs a data 

augmentation technique known as Mosaic. The 

approach presented in this study has resemblance to 

the CutMix technique, albeit incorporating other 

functionalities such as adaptive anchor box 

computation and adaptive picture scaling. The 

Mosaic technique is the process of combining 

disparate pictures that vary in scale and placement. 

This practice contributes to enhancing the diversity 

of the training dataset, hence increasing the model's 

resilience to various image categories. 

The core architecture of YOLOv5 has a focus 

mechanism for direct processing of input photos. 

Subsequently, a sequence of convolutional spatial 

pyramid (CSP) blocks is implemented with the 

intention of enhancing the network's ability to fuse 

features. The neck of YOLOv5 incorporates a feature 

pyramid network (FPN) and a path aggregation 

network (PAN) to effectively integrate features 

derived from various levels of the backbone [42]. 

This approach enhances the model's capacity to 

accurately identify items across various scales. 

The prediction component of YOLOv5 employs 

a generalized IoU (GIoU) loss function to facilitate 

the training process of the model for bounding box 

prediction. The generalized intersection over union 

(GIoU) loss function exhibits greater robustness 

compared to the conventional intersection over union 

(IoU) loss. Its utilization contributes to the 

enhancement of the model's predictive accuracy. 

During the post-processing phase, YOLOv5 employs 

a weighted non-maximum suppression (NMS) 

technique to eliminate redundant bounding boxes. 

This aids in enhancing the accuracy of the model's 

prognostications. In general, YOLOv5 represents a 

cutting-edge object identification method that 

demonstrates a commendable equilibrium between 

precision and computational efficiency. This 

technology demonstrates suitability for a diverse 

range of real-time object identification applications, 

including but not limited to self-driving vehicles, 

video surveillance systems, and augmented reality 

platforms [43]. 

3.2 Method improvement of YOLO-ARIA 

YOLO-artificial real-time intelligent analysis 

(ARIA) represents the fifth iteration of the YOLO 

(you only look once) framework. The YOLO-ARIA 

network architecture consists of three main 

components: Backbone, neck, and head. YOLO-

ARIA architecture shown in the Fig. 2. 

YOLO-ARIA is a lightweight variant of the 

YOLO algorithm for detecting objects. It extracts 

object characteristics using convolutional and 

maximum pooling layers. Additionally, modify 

model C3X layers and modify C3 layers are utilized 

to extract feature information. This enables YOLOv5 

to detect objects more quickly than other YOLO and 

SSD techniques. However, its simplified network 

architecture also results in less accurate detection. To 

enhance the detection accuracy of YOLOv5, the 

YOLO-ARIA variant was created. The network 

architecture of Yolo-ARIA is depicted in Fig. 2. 

Yolo-ARIA has modify of module C3-2 and 

additionally C3X module, to make good accuration 

and increase speed of detection vehicles. With the 

new modification of YOLO-ARIA has three outputs 

to predicts using three scales, then make this enables 

to detect vehicles with greater precision than default 

of YOLOv5. YOLO-ARIA is use to detect and 

classification vehicles. It has been trained on a 

database of images of vehicles and can detect 

vehicles in real time.  

The algorithm presented in this study has been 

enhanced by employed various variants:  

1. Modify module C3 into C3-2, the stages of 

C3-2 module as follows:  
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Figure. 2 Architecture Yolo-ARIA 

 

a. Initialize the C3-2 module, 

b. Calculate the hidden channels, 

c. First convolution layer, 

d. Second convolution layer, 

e. Third convolution layer, 

f. Create a sequence of Bottleneck 

layers without shortcut connections, 

g. Forward pass through the C3 module, 

h. Apply the first convolution and pass 

it through Bottleneck layers, 

i. Apply the second convolution, 

j. Concatenate the outputs of the first 

and second convolutions, 

k. Pass the concatenated output through 

the third convolution, 

l. return final_output. 

2. Change the number of process convolutional 

C3 module into six times, also change the C3 

module into nine times in the next steps. 

3. Inserting a C3X module at the end of the 

backbone, the stages for C3X module as 

follows: 

a. Inherit from the base class C3, 

b. Calculate hidden channels, 

c. Replace the Bottleneck layers with 

CrossConv layers. 

4. Combining C3-2 modules in the neck of 

YOLO-ARIA and change the number of 

convolutional become nine times, and  

5. Substituting the number convolutional of C3 

with the numbers 6 in the neck part of Yolo-

Aria as depicted in Fig. 2 

Both diagrams, namely C3 and C3-2, exhibit a 

high degree of similarity in terms of their structures. 

Both architectures consist of three intricate levels that 

are divided by two Bottleneck layers. The 

distinguishing factor lies in the manner in which the 

Bottleneck layer establishes a relationship between 

the input and output. In both instances, a 

concatenation layer (Concat) is employed to merge 

the outputs from two distinct pathways before to 

generating the ultimate output. However, inside the 

C3 architecture, there exists a shortcut link that 

facilitates the direct passage of the original input via 

multiple layers of bottleneck. In the case of C3-2, 

when the criterion shortcut=False is applied, there is 

an absence of shortcut connections between the levels. 

The primary distinction between the two can be 

identified as follows. 

The class structure of C3X incorporates the 
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utilization of the cross-convolution layer. The cross-

convolution layers serve as a replacement for the 

Bottleneck layer within the C3 module. The inputs 

undergo a first transit via the convolutional layers 

before proceeding to a sequence of cross convolution 

layers. Subsequently, the output generated by the 

cross-convolution operation is merged with the 

outputs originating from the preceding convoluted 

layer, culminating in the production of the ultimate 

output. The use of the cross-convolution layer in 

place of the bottleneck layer inside the C3X 

framework introduces architectural differences that 

have the potential to yield diverse outcomes in the 

context of image processing jobs. This enables the 

conduction of studies involving various layers to 

enhance the performance of the tissue in specific 

tasks. 

3.3 Detection of vehicles 

Using a single image, the YOLO object detection 

method can be used to identify vehicles and their 

locations. In genuine traffic applications, however, an 

input stream of image frames is provided. Different 

image frames detect vehicles independently, so the 

same vehicle may be counted multiple times, which 

would result in inaccurate data. 

To prevent double counting, the system correlates 

and matches vehicles detected in various image 

frames using an object counting method. This is 

accomplished by integrating a popular and effective 

monitoring algorithm. Tracker is an algorithmic 

extension of the simple online and realtime tracking 

algorithm [44, 45] during real-time, CCTV-based 

video detection, the tracker is utilized to counteract a 

number of undesirable factors that can result from 

various camera motions. The framework's detection 

aspect is responsible for detecting vehicle objects that 

appear within a single frame. By designating a unique 

and distinguishable identifier for each tracking 

element, the tracking method follows currently 

monitored vehicle objects. Each tracking element is 

also assigned a bounding box containing the object's 

associated ID. 

3.4 Classification of vehicles 

The YOLO object detection method can be 

employed to accurately recognize and segment cars 

inside a picture. In this study, the analysis of the 

segmented vehicle picture is conducted through the 

utilization of a convolutional neural network (CNN). 

The primary objective of this analysis is to extract 

supplementary vehicle-related information, including 

its specific type. The process involves CNN 

extracting relevant picture properties, subsequently 

compressing them, and ultimately classifying the 

vehicle. The researchers developed an innovative 

distance metric by considering the external 

characteristics of the item, intending to enhance the 

existing methodology. The proposed approach 

involves the development and implementation of a 

deep-learning object detector that exhibits a high 

level of precision and recall. Subsequently, the final 

classification layer is eliminated. Classical 

architecture exhibits a substantial accumulation that 

gives rise to a distinctive feature vector, therefore 

enabling its classification. The feature vector 

provided serves as the "appearance descriptor" for the 

object under consideration, specifically a vehicle in 

this particular instance. After integrating this tracker 

into the algorithms, the three object detectors 

underwent training, validation, and evaluation using 

a diverse set of traffic surveillance photos and videos 

that encompassed different degrees of illumination 

and weather conditions. The researchers 

subsequently ascertained the system that could 

accurately assign a specific label to each image, 

considering its designated class. 

4. Experiment and discussion 

The experimental procedure shown in Fig. 3 

consisted of three primary stages: dataset 

construction, model training, and target detection-

classification vehicles. Initially, a bespoke dataset 

was generated through the collection and subsequent 

preprocessing of photographs. Subsequently, we 

proceeded to train a YOLO-ARIA model by making 

appropriate adjustments to the parameters. 

Ultimately, the trained model was employed to 

identify diminutive entities, and then, a comparative 

analysis was conducted with alternative 

methodologies. 

4.1 Dataset 

The utilized dataset comprises the closed-circuit 

television (CCTV) public site CCTV monitoring 

semarang city. The data was collected on September 

21, 2022, at 09:48 a.m. using 1042 images. 

Additionally, data was collected during the nighttime 

on October 4, 2022, at 18:37 p.m. using 973 images. 

Please find the link to the dataset provided here 

dataset-yolo-aria. Another dataset, referred to as the 

VOC dataset with 12032 images, was also included 

in the analysis. The dataset utilized in this study 

comprises a total of 14,047 photographs. The VOC 

dataset is extensively utilized for the purpose of 

training and assessing deep learning models in the 

domains of object recognition (e.g., YOLO, Faster R-

CNN, and SSD), instance segmentation (e.g., Mask  
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Figure. 3 Flowchart of data construction, model training and target detection-classification vehicles 

 

R-CNN), and image classification. The dataset 

possesses a wide range of object categories, a 

substantial quantity of annotated photos, and defined 

assessment measures, rendering it a crucial asset for 

both computer vision academics and practitioners 

[46]. 

The photos are partitioned into training, 

validation, and testing sets at a ratio of 7:2:1 in a 

random manner. In order to address the issue of 

sample imbalance and enhance the realism of the 

dataset, three image are employed on each group with 

different techniques of Yolo algorithm. These 

techniques include Yolov5x, Yolov5l, Yolov5m, 

Yolov5s, Yolov5n and Yolo-ARIA. The dataset has 

been annotated in the YOLO format using the 

LabelImg software. In order to enhance the 

assessment of the detection efficacy of objects under 

conditions of visibility of day and night, the dataset 

has been annotated with four distinct groups, namely 

car, box car, motorcycle, and truck for dataset of 

closed circuit television (CCTV) public site CCTV 

monitoring semarang city. And for the VOC dataset 

have 20 groups, namely aeroplane, bicycle, bird, boat, 

bottle, bus, car, cat, chair, cow, dining table, dog, 

horse, motorbike, person, potted plant, sheep, sofa, 

train, and tv monitor The annotations for the closed 

circuit television (CCTV) public site CCTV 

monitoring semarang city are stored in roboflow 

using format Yolov5 Pytorch, and VOC dataset using 

VOC.yaml in link VOC dataset. 

The bounding box mark tool (Chen et al., 2023) 

was utilized to generate a bounding box for each sign. 

The labeling technique is conducted individually for 

every class. A single image has the potential to be 

assigned several marks. In the detection phase, a 

singular class detector model was employed, with 

each class label being linked to an individual training 

model. The return values of the bounding box 

labeling tool consist of object coordinates in the form 

of x1, x2, y1, y2. The coordinates of the items differ 

from the input value of Yolo. In contrast, the Yolo 

input value encompasses the coordinates of the center 

point, width, and height (x, y, w, h). Consequently, 

the system is required to adapt the bounding box 

coordinates within the Yolo input format. The 

alteration technique is centered on the utilization Eqs. 

(2-7) [47]. 

 

𝑑𝑤 =  1/𝑊   (2) 

 

x =
(𝑥1+𝑥2)

2
× 𝑑𝑤   (3) 

 

𝑑ℎ =  1/𝐻   (4) 

 

y =
(𝑦1+𝑦2)

2
× 𝑑ℎ  (5) 

 

𝑤 =  (𝑥2 −  𝑥1)  ×  𝑑𝑤  (6) 

 

ℎ =  (𝑦2 − 𝑦1)  ×  𝑑ℎ  (7) 

 

The dimensions of an image can be described as 

follows: H represents the image height, dh represents 

the absolute image height, W represents the image 

width, and dw represents the absolute image width. 

This implies that the permissible values for the 

dimensions of the picture, represented as dw and dh, 

can vary from 0.0 to 1.0 in floating-point format. 

4.2 Network training 

The experimental development platform for 

network training utilizes Google Colaboration Pro+ 

with the spesification graphics processing unit (GPU) 

utilized in system is the NVIDIA A100-SXM4-40GB, 

RAM 40.5GB, the current version of Python is  
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Table 1. Hyperparameter of the model 

Hyperparameter Description Value 

lr0 Initial learning rate 0.01 

lrf Learning rate at the end of 

training 

0.01 

momentum Momentum term used in the 

optimizer 

0.937 

weight_decay Weight decay term used in 

the optimizer 

0.0005 

warmup_epochs Number of epochs during 

which the learning rate is 

gradually increased 

3 

warmup_momentum Momentum term used 

during warmup 

0.8 

warmup_bias_lr Learning rate used for the 

bias terms during warmup 

0.1 

box Scale factor for the 

bounding boxes 

0.05 

cls Scale factor for the 

classification scores 

0.5 

cls_pw Weight of the classification 

loss 

1 

obj Scale factor for the 

objectness scores 

1 

obj_pw Weight of the objectness 

loss 

1 

iou_t IoU threshold for the non-

maximum suppression 

0.2 

anchor_t Anchor threshold for the 

non-maximum suppression 

4 

fl_gamma Gamma parameter for the 

focal loss 

0 

hsv_h Hue jitter range 0.015 

hsv_s Saturation jitter range 0.7 

hsv_v Value jitter range 0.4 

degrees Rotation range 0 

translate Translation range 0.1 

scale Scaling range 0.5 

shear Shear range 0 

perspective Perspective range 0 

flipud Probability of flipping the 

image vertically 

0 

fliplr Probability of flipping the 

image horizontally 

0.5 

mosaic Probability of applying 

mosaic augmentation 

1 

mixup Probability of applying 

mixup augmentation 

0 

copy_paste Probability of applying 

copy-paste augmentation 

0 

 

 

3.10.12, The experimental framework employed in 

this study is PyTorch version 2.0.1 which is a deep 

learning platform. The current version of CUDA is 

11.8 and script python YOLOv5 v7.0-215-ga6659d0. 

Table 1 presents an outline of the essential 

hyperparameters required for network training. Prior 

to commencing the training process, purposeful 

adjustments are made to these parameters in order to 

optimize the effectiveness of the model and mitigate 

the potential for overfitting. As an example, the batch 

size has been set to 16, the learning rate has been 

fixed at 0.01, the number of iterations has been 

constrained to 100, and the Adam optimizer has been 

employed. Every individual entry within Table 1 

fulfills a distinct and specific purpose. For example, 

the initial learning rate (lr0) determines the rate at 

which the model learns. A higher learning rate (lr0) 

can accelerate the convergence process, but it may 

also increase the risk of overfitting. In contrast, the 

final learning rate (lrf) has a significant role in 

shaping the learning trajectory during the later stages 

of training, where a lower lrf can effectively prevent 

overfitting. The momentum factor is a crucial 

determinant of the update frequency of the learning 

rate throughout each epoch. A higher momentum 

value leads to less frequent updates, whereas a lower 

momentum value results in more frequent updates. 

It is crucial to thoroughly understand and 

carefully adjust these hyperparameters as they 

significantly influence the dataset's ability to detect 

and classify. During the training period, 

hyperparameters were manually selected to optimize 

the model. Our selections have been grounded in 

thorough examination, recognizing the potential for 

even minor adjustments to significantly influence the 

results. The systematic approach employed in this 

process ensures that our model undergoes thorough 

training, so positioning it to achieve optimal 

performance. 

Prior to network training, the hyperparameter is 

configured to optimize the model's performance and 

mitigate the risk of overfitting. The number of 

iterations was set to 100, and the Adam optimizer was 

employed. According to the data presented in Tables 

2 and 4, it is evident that the value of the loss function 

exhibits a significant decrease during the initial 0 to 

40 iterations, followed by a gradual decline in the 

subsequent 40 to 80 iterations. Following the  
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Table 2. The mAP comparison of different methods through different epochs 

Model Epoch=0 Epoch=20 Epoch=40 Epoch=50 Epoch=60 Epoch=80 Epoch=100 

YOLO-ARIA 0.004298 0.91161 0.97412 0.99121 0.99308 0.98855 0.99161 

Yolov5x 0.0019022 0.87665 0.98353 0.98925 0.99155 0.98981 0.9914 

Yolov5l 0.0029256 0.9363 0.9815 0.98525 0.98839 0.98855 0.98923 

Yolov5m 0.0040827 0.81562 0.98504 0.98894 0.99225 0.99174 0.99045 

Yolov5s 0.0039138 0.90867 0.98278 0.98902 0.99047 0.99189 0.99239 

Yolov5n 0.0035396 0.83096 0.90727 0.96576 0.97812 0.97998 0.98575 

 

 

 
Figure. 4 The variations mAP accross different models and epochs 

 

conclusion of the epoch 80, the depreciation value 

demonstrates a tendency towards stability, ultimately 

leading to the model's optimal state. 

4.3 Evaluation indicators 

The researchers used the category with the 

highest model output value (top-1) as the 

classification result when evaluating the model's 

output results. Then, accuracy was used as the 

evaluation metric. The Eq. (8) for calculating 

precision is as follows [3]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
  (8) 

 

True positive, false positive, true negative, and 

false negative are abbreviated as TP, FP, TN, and FN, 

respectively. In addition, the mean average precision 

(mAP) Eq. (9), precision Eq. (10), and recall Eq. (11) 

were utilized to assess the efficacy of various object 

detection models. The following are the formulas for 

calculating this Eqs. (8-11) indicators [48]: 

 

𝑚𝐴𝑃 =  
∑𝑘=𝑛

𝑘=1 𝐴𝑃𝑘

𝑛
  (9) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (10) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (11) 

 

Yolo loss function based on [47] shown Eq. (12). 

 

Yolo Loss Function =𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 −𝐵

𝑗=0
𝑠2

𝑖=0

𝑥𝑖)2 +  (y − �̂�𝑖)2] + 𝝀𝒄𝒐𝒐𝒓𝒅 ∑ ∑ 𝕝𝒊𝒋
𝒐𝒃𝒋

[(√𝒘𝒊 −𝑩
𝒋=𝟎

𝒔𝟐

𝒊=𝟎

√�̂�𝒊)
𝟐

+  (√𝒉𝒊 − √�̂�𝒊)

𝟐

] + ∑ ∑ 𝕝𝒊𝒋
𝒐𝒃𝒋

(𝑪𝒊 −𝑩
𝒋=𝟎

𝒔𝟐

𝒊=𝟎

�̂�𝒊)
𝟐

+ 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

(𝐶𝑖 − �̂�𝑖)
2𝐵

𝑗=0
𝑠2

𝑖=0 +

∑ 𝕝𝑖
𝑜𝑏𝑗 ∑ (𝑝𝑖(c) − �̂�𝑖(𝑐))2

𝑐𝜖𝑐𝑙𝑎𝑠𝑠𝑒𝑠
𝑠2

𝑖=0                (12) 

 

The term 𝑙𝑖𝑗
𝑜𝑏𝑗

 is used to indicate the presence of 

an object in cell i, whereas 𝑗𝑡ℎ  bounding box  
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Table 3. Experiment training result 

Model Class Images Instances Precission Recall mAP Epoch Times Layers GFLOPs 

Yolov5x all 100 1042 0.979 0.984 0.99 100 1h 13s 322 203.8 

Yolov5l all 100 1042 0.985 0.984 0.992 100 33m 34s 267 107.7 

Yolov5m all 100 1042 0.975 0.981 0.993 100 21m 45s 212 47.9 

Yolov5s all 100 1042 0.984 0.979 0.993 100 13 m 47s 157 15.8 

Yolo-ARIA all 100 1042 0.99 0.98 0.993 100 12 m 28s 172 16.6 

Yolov5n all 100 1042 0.981 0.967 0.992 100 12 m 11s 157 4.1 

 

Table 4. Experiment testing result 

Model Class Images Instances Precission Recall mAP 

Yolov5x all 100 1042 0.985 0.798 0.82 

Yolov5l all 100 1042 0.975 0.727 0.745 

Yolov5m all 100 1042 0.981 0.981 0.992 

Yolov5s all 100 1042 0.973 0.702 0.723 

Yolo-ARIA all 100 1042 0.983 0.984 0.991 

Yolov5n all 100 1042 0.883 0.672 0.685 

 

Table 5. Experiment training result of poor visibility conditions 

Model Class Images Instances Precission Recall mAP Epoch Times Layers GFLOPs 

Yolov5x all 200 973 0.864 0.982 0.955 100 16 m 37s 322 203.8 

Yolov5l all 200 973 0.853 0.984 0.966 100 12 m 13s 267 107.7 

Yolov5m all 200 973 0.809 0.948 0.974 100 9 m 40s 212 47.9 

Yolov5s all 200 973 0.856 0.655 0.972 100 7 m 59s 157 15.8 

Yolo-ARIA all 200 973 0.882 0.655 0.949 100 8 m 17s 172 16.6 

Yolov5n all 200 973 0.965 0.633 0.938 100 7 m 38s 157 4.1 

 

Table 6. Experiment testing result of poor visibility conditions 

Model Class Images Instances Precission Recall mAP 

Yolov5x all 200 973 0.864 0.982 0.955 

Yolov5l all 200 973 0.853 0.984 0.966 

Yolov5m all 200 973 0.81 0.948 0.974 

Yolov5s all 200 973 0.856 0.655 0.972 

Yolo-ARIA all 200 973 0.882 0.654 0.948 

Yolov5n all 200 973 0.965 0.633 0.946 

 

 

predictor in cell indicates the responsibility of 

predicting the bounding box. Subsequently, 

(𝑥
^

, 𝑦
^

, 𝑤
^

, ℎ
^

, 𝑐
^
, 𝑎𝑛𝑑𝑝

^

)  are the anticipated bounding 

box's center coordinates, width, height, confidence, 

and category probability serve as their 

representations. The symbols lacking a cusp are 

indeed authentic designations. In addition, our 

research establishes the value of 𝜆𝑐𝑜𝑜𝑟𝑑  as 0.5, 

signifying that the impact of width and height 

mistakes on the calculation is reduced. Subsequently, 

the parameter  𝜆𝑐𝑜𝑜𝑟𝑑  = 0.5 is incorporated in order 

to mitigate the impact of several grids without objects 

on the loss function. 

4.4 Comparative experiments 

To enhance the validation of the detection 

capabilities of the YOLO-ARIA algorithm described 

in this study, a comparative analysis was conducted 

with several one-stage object detection methods, 

including Yolov5x, Yolov5l, Yolov5m, YOLOv5s, 

and Yolov5n [49]. 

In the training phase, Fig. 4 illustrates the 

comparison of the mean average precision (mAP) 

curve, between our technique and other methods over 

a span of about 100 epochs. According to the data 

presented in Table 2, it can be observed that the mean 

average precision (mAP) exhibits a significant rise 

during the initial 80 epochs, followed by a tendency 

to stabilize once the epoch count reaches 100. 

Throughout the training and testing phase, our 

technique continuously outperforms other methods in 

terms of detection accuracy, as evidenced by the 

superior curve of the YOLO-ARIA network. In 

addition, the enhanced model demonstrates a more 

gradual and consistent trajectory, indicating 

enhanced stability in experiment testing result shown 

in Table 4. The achieved training phase mean 

Average Precision (mAP) of our proposed technique  
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Table 7. Experiment training result of VOC dataset 

Model Class Images Instances Precission Recall mAP Epoch Times Layers GFLOPs 

Yolov5x all 4952 12032 0.81 0.782 0.843 100 6h 55min 56s 322 204.2 

Yolov5l all 4952 12032 0.8 0.771 0.829 100 4h 51min 57s 267 108 

Yolov5m all 4952 12032 0.772 0.756 0.804 100 3h 45min 1s 212 48.1 

Yolov5s all 4952 12032 0.729 0.701 0.746 100 3h 49s 157 15.9 

Yolo-ARIA all 4952 12032 0.739 0.697 0.754 100 3h 4min 15s 172 16.8 

Yolov5n all 4952 12032 0.659 0.622 0.654 100 2h 49min 28s 157 4.2 

 

Table 8. Experiment testing result of VOC dataset 

Model Class Images Instances Precission Recall mAP 

Yolov5x all 200 973 0.864 0.982 0.955 

Yolov5l all 200 973 0.853 0.984 0.966 

Yolov5m all 200 973 0.81 0.948 0.974 

Yolov5s all 200 973 0.856 0.655 0.972 

Yolo-ARIA all 200 973 0.882 0.654 0.948 

Yolov5n all 200 973 0.965 0.633 0.946 

 

 

 
Figure. 5 Detection vehicles YOLO-ARIA in low light 

 

is 0.993, equal with the mAP of 0.99 obtained by the 

original YOLOv5x model. The achieved testing 

phase mean Average Precision (mAP) of our 

proposed technique is 0.991, surpassing the mAP of 

0.82 obtained by the original YOLOv5x model. This 

improvement amounts to an estimated rise of 1%, 

providing evidence for the enhanced performance of 

the YOLO-ARIA. 

To assess the detection capabilities of the YOLO-

ARIA algorithm described in this research, a 

comparative experiment was undertaken using a 

custom dataset comprising diverse scenarios 
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characterized by poor visibility conditions and using 

VOC dataset. The performance of YOLO-ARIA was 

evaluated in comparison to YOLOv5x, YOLOv5l, 

YOLOv5m, YOLOv5s, and YOLOv5n. In the 

identical experimental setting, the speed times that 

exhibit the most favorable training outcome are 

preserved as the speed times in other models.  

The evaluation metrics employed for comparative 

trials encompass precision (P), recall (R), mean 

average precision (mAP), number of layers, and 

GFLOPs values. The optimization of our approach in 

terms of detection performance is demonstrated in 

Tables 5 and 6. In comparison to Yolov5x, the mean 

average precision (mAP) of detection exhibits a 

notable same value but YOLO-ARIA is superior in 

detection speed and a small number of training layers. 

Specifically, the speed detection has demonstrated a 

noteworthy improvement of 50%. Additionally, the 

giga floating point operations per second (GFLOPs) 

have shown a substantial decrease of 50% than 

Yolov5x. GFLOPS is often used to measure the 

performance of a graphical processing unit (GPU) 

and a central processing unit (CPU) in the context of 

graphic processing, image processing or model 

training YOLO. In the interim, there has been a 

noteworthy reduction of 50% in the number of layers 

than Yolov5x. By having a smaller GFLOPS value 

compared to YOLOv5x, as well as a small number of 

layers as well, YOLO-ARIA still has the same mean 

average precision value of 0.85 with Yolov5x. Of the 

smaller layer number and smaller value of GflOPS, 

this is the advantage of its detection speed that 

increases by 50% than Yolov 5x. 

In comparison to VOC dataset the initial YOLO-

ARIA model, there is an observed rise of 50% in 

speed detection training times and reduction 50% in 

using layers network training. Furthermore, the mean  

 

 

 
Figure. 6 Detection vehicles Yolov5x in low light 
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Figure. 7 Detection vehicles Yolov5x in high light 

 

 
Figure. 8 Detection vehicles YOLO-ARIA in high light 

 

average precision (mAP) has shown equal with the 

Yolov5x, estimation in 0.8. Additionally, In the 

interim, there has been a reduction of 8% in the 

quantity of GFLOPs, leading to a significant decrease 

of 50% in the size of the layers network. However, 

except for a minor decline in recall value, all other 

evaluation metrics demonstrate progress. 

Based on an evaluation of the intricacy of each 

model and the obtained detection outcomes, a general 

inference can be drawn that YOLO-ARIA exhibits  
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Figure. 9 Detection vehicles Yolov5x in VOC datasets 

 

 

 
Figure. 10 Detection vehicles YOLO-ARIA in VOC datasets 
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superior performance in comparison to the several 

one-stage object detection methods, including 

Yolov5x, Yolov5l, Yolov5m, YOLOv5s, and 

Yolov5n. 

4.5 Ablation experiments and result discussions 

To assess the impact of each suggested module on 

network optimization, this part utilizes ablation 

experiments for the purpose of verification. 

The respective functionalities of each module are 

presented in Tables 5 and 6. When comparing with 

YOLOv5x, it is observed that employing model 

Yolov5x with C3 module in the backbone part, equal 

values with the YOLO-ARIA using the C3X, which 

is implementation of cross convolution neural 

network in the part of backbone YOLO, that is 0.95 

of mean average precision. Although, YOLO-ARIA 

has decrease in the recall values than Yolov5x but has 

increase in the speed of detection for timing. 

To evaluate the visual efficacy of our technique, 

we conducted a comparison examination of the 

detection capabilities between the original YOLOv5 

model and our improved method, YOLO-ARIA. A 

selection of photos randomly chosen from the dataset 

for the specific purpose of evaluating detection 

performance. The Yolo-ARIA algorithm exhibits a 

heightened level of certainty, approximately 1%, in 

effectively identifying various objects such as autos, 

motorbikes, and trucks. This is illustrated in Fig. 5 

additionally, Fig. 6 provides an account of the 

outcomes derived from the detection and 

classification procedures performed on nighttime 

datasets characterized by diminished levels of 

illumination. Nevertheless, YOLO-ARIA exhibits a 

minor limitation in accurately recognizing objects of 

trucks, leading to lower recall results in comparison 

to YOLOv5x. The outcomes obtained from applying 

YOLO-ARIA to well-illuminated conditions, as 

depicted in Figs. 7 and 8, exhibit identical detection 

and classification outcomes to Yolov5x. Additionally, 

the researchers present the results achieved utilizing 

the VOC datasets, which are illustrated in Figs. 9 and 

10. Utilizing the aforementioned dataset, The 

YOLOv5x model demonstrates a modest advantage 

in the detection of tiny objects. 

The YOLO-ARIA method, as proposed, 

demonstrates a high level of efficacy in efficiently 

tackling the inherent difficulty of detecting 

diminutive targets under conditions of limited sight. 

The implementation of this approach leads in a 

notable decrease in instances of missed detections 

and a reduction in errors, hence enhancing the 

accuracy and dependability of the target detection 

outcomes. 

5. Conclusion 

This study aims to tackle the obstacles associated 

with achieving a more optimal equilibrium between 

two fundamental objectives, namely detection and 

classification. The objective is to enhance the 

performance outcomes in the domain of vehicle 

detection. To this end, we introduce YOLO-ARIA, a 

novel approach that seeks to enhance the efficiency 

and accuracy of detection by leveraging advanced 

techniques. The primary contributions of this 

research article encompass: The incorporation of 

C3X at the input side enables enhanced adaptability 

to target features and improved performance in 

detection. The integration of the C3-2 module into the 

backbone and neck of the YOLO-ARIA model 

enhances the model's capacity to efficiently 

recognize targets in situations with limited visibility. 

The network utilizes a convolutional network for the 

purpose of feature extraction, as opposed to 

employing fully linked layers. Additionally, it 

incorporates the detection and classification of 

automobiles. 

A dataset was generated comprising a range of 

situations with low visibility conditions, which was 

utilized for both training the model and conducting 

performance testing. The experimental findings 

indicate that our proposed strategy yields substantial 

enhancements when compared to the original 

YOLOv5. The mean average precision (mAP) has 

experienced a notable improvement of 8.3%, while 

the speed detection has exhibited a significant 

enhancement of 50%. Furthermore, there has been a 

50% reduction in the number of layers in the network, 

leading to a significant 50% fall in the number of 

GFLOPs. In contrast to previous models that have 

been developed in recent years, the YOLO-ARIA 

model exhibits some advantages in terms of mean 

average precision (mAP), speed of detection, number 

of layers, and GFLOPs value. 

Nevertheless, it is important to acknowledge that 

the strategy provided in this article does possess 

certain limitations in our future study. The presence 

of overlapping between small light sources and the 

detection targets may result in a reduction in the 

accuracy of the algorithm's detection capabilities. 

Additional research and development are required in 

order to devise methodologies that can accurately 

distinguish between minuscule sources of light and 

genuine detection targets. 
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