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Abstract: The study introduces the learning automata-based AODV (LA-AODV) protocol to enhance vehicle-to-

vehicle (V2V) communication in dynamic vehicular Ad-hoc networks (VANETs). Existing routing protocols, such as 

Ad-hoc on-demand distance vector (AODV) protocols, face significant challenges, including low data transfer rates, 

higher delay times, lower throughput, and data congestion resulting from rapidly changing network topologies. LA-

AODV addresses these issues by optimizing the quality of service (QoS) through the real-time selection of relay nodes 

based on vehicle speed, distance, and actual position parameters. Simulations were conducted at the Gadjah Mada 

university (UGM) roundabout in Yogyakarta, Indonesia, using SUMO and NS3 simulators. LA-AODV outperforms 

AODV with Packet Delivery Ratios ranging from 95% to 99% and Average Throughputs between 36.90 Kbps and 

56.50 Kbps. Although LA-AODV exhibits slightly higher End-to-End Delays, it effectively mitigates Packet Loss 

Ratios ranging from 1% to 4%. These enhancements optimize routing decisions, reduce communication overhead, and 

enhance network resource utilization. 
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1. Introduction 

The conventional AODV protocol suffers from 

excessive information flow and reduced inter-vehicle 

communication responsiveness in VANETs [1, 2]. 

The drawback of AODV is primarily due to 

suboptimal relay node selection caused by dynamic 

vehicle quantity fluctuations on busy roads [3]. 

Several drawbacks contribute to these limitations. 

Firstly, AODV employs a reactive routing approach, 

which leads to increased control message exchange 

[4] and longer route setup times in dense networks [5, 

6]. Secondly, periodic route maintenance in AODV 

consumes network resources despite no active data 

transmission, resulting in unnecessary control 

message exchanges and increased network overhead 

[7]. AODV routing decisions do not adapt to real-

time information like vehicle speed and acceleration, 

causing suboptimal relay node selection and 

degraded QoS performances [8]. These limitations 

hinder the overall efficiency and responsiveness of 

V2V communication systems in VANETs [9]. 

Several studies address the challenges 

encountered in the AODV routing protocol to support 

V2V communication, such as implementing 

prediction node trends on AODV [10] and [11], 

mobility and detection aware AODV (MDA-

AODV)[12], flooding-awareness-AODV (FLOW-

AODV) that achieves better packet delivery ratio and 

average delay compared to standard AODV [13], 

Cluster-based communication approach by applying 

learning automata-assisted prediction [14], channel 

reservation method using learning automata concept 

for handoff calls in VANET environment [15], and 
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multipath routing strategy using PSO, leap-frog 

algorithm, and learning automata to ensure channel 

availability for V2V communication in VANET [16] 

improve reinforcement learning. Although their 

study did not focus on VANET or network scenarios, 

it hinted at the possibility of its application in those 

contexts. 

This study develop A new method called LA-

AODV to improve vehicle-to-vehicle 

communication. This technique combines the 

learning automata (LA) method with the AODV 

routing protocol to address the challenges 

encountered in V2V communication. The main 

objective of LA-AODV is to optimize the selection 

of relay nodes, which enhances the effectiveness of 

V2V communication. LA-AODV achieves this by 

utilizing real-time information on vehicle positions, 

speeds, and accelerations to predict and select more 

responsive relay node clusters in dynamic traffic 

scenarios.  

The problem statement of the study is to improve 

QoS in V2V communication in dynamic VANETs by 

assessing QoS parameters like PDR, throughput, 

delay, and jitter performances to enhance relay node 

selection, alleviate information overload, and prevent 

accidents in dynamic traffic situations. We used NS-

3 simulations to evaluate the LA-AODV approach's 

effectiveness compared to standard AODV for traffic 

management. 

The study includes related works in section 2, the 

research design in section 3, the proposed approach 

in section 4, and the comparison between LA-AODV 

and AODV in the results and discussion of section 5. 

The conclusion is in section 6.  

2. Related works 

DDSLA-RPL [17] uses learning automata to 

adjust parameter weights and improve network 

service quality and node lifespan. DDSLA-RP is 

more precise and adaptable, but it still needs 

improvement in various situations. The choice of 

technique should consider the specific characteristics 

of the network and the limitations of fuzzy, K-means, 

and C-means clustering. DP-AODV and LA-AODV 

are routing protocols for vehicular communication 

networks. DP-AODV dynamically adjusts power, 

while LA-AODV uses machine learning to select 

intelligent relay nodes for optimized QoS parameters 

and communication efficiency. 

Extensive experiments have shown that the 

benefits of AODV outweigh its drawbacks. By 

adjusting the default settings, the AODV routing 

protocol can be optimized to determine appropriate 

V2V communication ranges, minimize delays in 

intra-vehicle communication, and incorporate real-

world measurements. The impact of route request 

parameters, such as RREQ_RETRIES and 

MAX_RREQ_TIMEOUT, on AODV compared to 

OLSR must be understood. AODV achieves an 

average packet delivery ratio (PDR) of 84.6% in 

mobile node scenarios, outperforming OLSR. It also 

shows higher throughput and lower packet loss rates 

(10.4% compared to OLSR's 19.50%). However, 

AODV has longer delays (0.1722ms) than OLSR 

(0.022ms) [7]. AODV suits mobile node scenarios 

despite different simulation environments of 

MANET; extensive experiments are necessary to 

improve performance in V2V communication 

systems in VANET [18,19].  

High-density nodes and high mobility in 

vehicular networks can cause packet congestion, loss, 

power wastage, and disrupted paths. DP-AODV [20] 

dynamically adjusts transmission power to optimize 

QoS parameters and improve network performance. 

Another protocol, LA-AODV, selects relay nodes 

based on real-time vehicle parameters to achieve the 

same objective. However, both routing protocols aim 

to optimize quality of service (QoS) parameters and 

improve communication efficiency in dynamic 

vehicular network. Prediction based approach in 

routing protocols optimizes relay node cluster 

selection during request and reply packet exchanges 

[21].  

MAODV-ACO [22] is an ant colony 

optimization-based method that enhances the packet 

delivery ratio (PDR) and minimizes delay, ensuring 

secure data transmission over a mobile Ad hoc 

network. Compared to other routing protocols, the 

PDR of MAODV-ACO is significantly high at 

99.66% for 100 nodes. However, further 

improvements and comparisons with alternative 

optimization algorithms are necessary to enhance 

MAODV's overall efficiency. However, further 

improvements and comparisons with alternative 

optimization algorithms are essential to enhance the 

MAODV's overall efficiency, adaptability, 

optimization potential, and trade-offs between 

adaptability and security is crucial before 

determining whether LA-AODV is a suitable 

alternative to improve MAODV. 

3. Research design 

The research design comprises several vital 

phases. Initially, the study identifies critical issues in 

contemporary vehicle communication systems. 

These issues encompass challenges related to 

network instability, data congestion, and  
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Figure. 1 The process structure of research design 

 

 
Table 1. V2V communication simulation parameter setup 

No Parameter Value(s) 

1 Total number of 

actual Nodes 

(vehicles) 

Random, based on Poisson 

distribution 

2 Simulation time (s) 300, 400,500, 600, and 700 seconds 

3 Traffic Scenario 

• Freeflow (prob 0.55)* 

• steady flow (prob 0.33) *,  

• traffic jam (prob 0.1) * 

*Based on Poisson Distribution 

4 Route Selection Random route selection 

5 Node Speed Random speed 

6 Initial node position random position 

7 Node Movement All moving nodes 

8 Data Packets 

Configuration 

Real time traffic data packets from 

UGM traffic maps 

9 Type of protocol AODV dan LA-AODV 

10 Type of traffic Passenger cars only, Left-hand drive. 

11 Performances 

Matrix (QoS) 

PDR, end to end delay, average 

throughput, Packet loss ratio, end to 

end Jitter 

12 LA-AODV 

parameter Setup 

fs : 0.4 ;  fa : 0.3 ;  fd : 0.3 ;  α: 1;  

Reward : 1; Penalty : 0 

 

communication delays. Subsequently, the research 

proceeds to develop a comprehensive model and 

simulation design. This design aims to replicate real-

world scenarios accurately. Fig. 1 describes the 

research design. 

The simulation environment is pivotal in this 

research framework, as shown in Fig. 1. Linux 

Ubuntu 20.02 is the chosen operating system for 

simulations, providing a stable and reliable 

foundation for the experiments. During the 

simulation phase, data collection is a critical aspect. 

They are involved in generating XML trace files 

while executing NS3 simulations. These trace files 

are instrumental in capturing essential connectivity 

data between vehicle nodes. 

Following data collection, the research 

transitions into the data analysis phase. Here, the 

collected data is meticulously scrutinized and 

assessed to evaluate the performance of LA-AODV 

in the context of V2V communication. The research 

design comprises several vital phases. Initially, the 

study identifies critical issues in contemporary 

vehicle communication systems. These issues 

encompass challenges related to network instability, 

data congestion, and communication delays. 

Subsequently, the research proceeds to develop a 

comprehensive model and simulation design. This 

Design aims to replicate real-world scenarios 

accurately.  

Two primary tools are employed to achieve this: 

SUMO (Simulation of urban mobility) for traffic 

modeling and NS3 for communication modeling. 

This study employs various analytical metrics to 

compare its  

3.1 The simulation environment  

We conducted an assessment of our V2V 

communication model using software tools. 

Specifically, we used SUMO-GUI [23] to build 

complex traffic system models incorporating 

passenger-vehicle interaction in various traffic 

scenarios. To ensure a comprehensive evaluation of 

our communication protocols, we also utilized NS3 

v3.35, a discrete-event simulator known for its 

proficiency in model the network communication[24]. 

To seamlessly integrate mobility and communication 

aspects, we coupled SUMO with NS3, bridging the 

gap between traffic model and network 

communication simulations.  

3.2 Simulation setup 

The simulation assesses a range of traffic 

scenarios across different time intervals. These 

scenarios include Freeflow, Steady flow, and Traffic 

Jam. Table 1 shows Simulation parameter setup used 

in this study. 
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Figure 2. The process structure of LA-AODV Model and the simulation design. 

 

Table 1 simulates real-world vehicular 

communication scenarios with varying parameters. 

Performance evaluation measure with simulation 

times ranging from 300 to 700 seconds. Traffic 

scenarios are unpredictable and include free flow 

(0.55), steady flow (0.33), and traffic jams (0.1). We 

simulate three traffic scenarios, free flow, steady flow, 

and traffic jams, to evaluate the LA-AODV protocol's 

performance in real-world traffic conditions. By 

simulating realistic vehicle movement and using real-

time traffic data packets, we assess the protocol's 

efficiency using metrics such as Packet Delivery 

Ratio, delay, throughput, loss ratio, and Jitter. Our 

analysis provides insights into protocol effectiveness 

in dynamic and unpredictable traffic. 

Efficient vehicular communication depends on 

three crucial factors: speed (fs), acceleration (fa), and 

distance (fd). Each factor has its importance, where a 

higher value of speed fs prioritizes speed.  The fa 

emphasizes acceleration, and fd emphasizes distance. 

LA-AODV sets the learning rate parameter (α) to 1 

to make optimal routing decisions. The system 

rewards favorable decisions with 1, while suboptimal 

selections are penalized with 0. To calculate the 

likelihood of a vehicle's appearance occurring a 

certain number of times within a set time frame in 

various traffic scenarios, Eq. (1) presents the Poisson 

distribution formula. 

 

𝑃(𝑋 = 𝑘) =
𝑒−𝜆∗𝜆−𝑘

𝑘!
                                     (1) 

 

The poisson distribution denoted in Eq. (1) tracks 

the number of cars passing through a particular point. 

The formula utilizes e, which represents Euler's 

number (approximately 2.71), and λ, the average rate 

of events occurring during the given period. The 

factorial k! is also employed, representing the product 

of all positive integers from 1 to k. In simulations, the 

Poisson distribution predicts the likelihood of 

observing several vehicles passing a location based 

on the average event rate λ. 

3.3. Simulation model and traffic observation,  

We created a comprehensive model and 

simulation that explains the proposed LA-AODV 

approach. The simulation covers various scenarios, 

environmental settings, traffic patterns, and the 

implementation of the LA-AODV protocol. Refer to 

Fig. 2 for further details on the design. 

Fig. 2 provides an overview of the modeling and 

simulation process. The modeling process 

commences with visual observations of the natural 

system to be modeled. The aim is to identify the 

system's characteristics, operational rules, and 

potential issues to formulate system requirements. 

Subsequently, a model and simulation design are 

developed to represent the observations of the natural  
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Figure. 3 The network map of the UGM roundabout and 

the surrounding area represents the real-world situation 

 

system. The next step involves testing the proposed 

model, necessitating simulations that examine the 

proposed model based on traffic data adjusted to real-

world scenarios. Following this, a final validation is 

conducted to ensure that the model and data 

accurately and appropriately represent the critical 

aspects of the system. 

3.3.1. Traffic observation 

The UGM roundabout consists of four lanes for 

two-way traffic, allowing vehicles to enter and exit 

the roundabout and make a U-turn. While navigating 

the roundabout, following the "give way to the right" 

rule and completing a full circle is essential. However, 

the study neglected to account for potential obstacles, 

such as pedestrians, parked vehicles, and motorized 

vehicles entering or exiting side roads, as illustrated 

in Fig. 3. 

In Fig. 3, traffic from the roundabout faces a 

traffic light-controlled intersection on Terban Road, 

200m away. Vehicles entering or exiting Mirota 

Kampus may face obstructions at the entrance of 

SMK BOPKRI 1 and SMP BOPKRI 3 on Jl. Terban. 

The road narrows to one lane as it joins the 

roundabout. The flow from Terban Road to Colombo 

Road is denser than in other directions, and parked 

vehicles/offices may obstruct Jl. Colombo. Cik Di 

Tiro road may also face obstructions from parked 

two-wheelers, pedestrian crossings, and rickshaws—

lastly, Jl. Pancasila may have congestion during 

events. To minimize collision risks at the UGM 

roundabout, coordinate vehicle movements by 

regulating speed,    maintaining a safe distance, and 

precise vehicle positioning. Equipped vehicles can 

exchange real-time information to adapt to dynamic 

traffic conditions. 

4. Proposed approach 

LA-AODV model has three components: input 

parameters, model, and output components. Input 

parameters include velocity, acceleration, 

coordinates, and time to predict current and future 

vehicle positions. The model calculates the 

communication quality index with neighbor vehicles 

to select relay nodes based on communication 

stability with neighboring cars. 

The LA-AODV routing protocol actively chooses 

relay nodes with a Total weighted ratio (TWR) score 

between 0.6 and 1, as these nodes guarantee stable 

communication. Nodes having a TWR below 0.6 get 

excluded from consideration. We consistently assign 

a reward value of 1 to promote the selection of relay 

nodes with TWR between 0.6 and 1, ensuring that 

these selected relay nodes positively enhance the 

protocol's performance and reliability. LA-AODV 

protocol ensures accurate car parts estimation and 

informed routing decisions in vehicular 

communication networks by predicting vehicles' 

current and future positions based on their speed and 

relative position and determining actual positions 

using velocity and acceleration parameters, as stated 

in Eq. (2). 

 

𝐼𝑁𝐼𝑇𝑝𝑜𝑠𝑖 = ∑ 𝑎𝑐𝑡𝑢𝑎𝑙𝑝𝑜𝑠𝑥
, 𝑎𝑐𝑡𝑢𝑎𝑙𝑝𝑜𝑠𝑦

, 𝑣𝑖
𝑖≤𝑁
𝑖=1   (2) 

 

The LA-AODV protocol relies on Eq. (2) to 

accurately route and position vehicles within a 

vehicular communication network. This equation 

factors in various variables, including the x and y 

position of vehicle i (represented by 𝐼𝑁𝐼𝑇𝑝𝑜𝑠𝑖), the 

speed of the car (vi), the number of vehicles within 

transmission range (N), and the specific node or 

vehicle under reference (i) to determine proximity. 

Next, the LA-AODV protocol utilizes two equations 

in vehicular communication networks to determine 

vehicle proximity and future positions. These 

equations consider factors such as vehicle speed, the 

number of vehicles within transmission range, and 

elapsed time to make informed routing decisions that 

prevent road accidents, as stated in Eq. (3) and Eq. 

(4). 

 

𝑝𝑟𝑒𝑑𝑝𝑜𝑠𝑥
= ∑ (𝑎𝑐𝑡𝑢𝑎𝑙𝑝𝑜𝑠𝑥

+ (𝑣𝑡 . 𝑡) +𝑖≤𝑁,𝑡≤𝐾
𝑖=1,𝑡=1

(
1

2
(∆𝑣)) ∗ 2)    (3) 

 

𝑝𝑟𝑒𝑑𝑝𝑜𝑠𝑦
= ∑ (𝑎𝑐𝑡𝑢𝑎𝑙𝑝𝑜𝑠𝑦

+ (𝑣𝑡. 𝑡) +𝑖≤𝑁,𝑡≤𝐾
𝑖=1,𝑡=1

(
1

2
(∆𝑣)) ∗ 2)    (4) 

 

Where: 
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   ∆𝑣𝑥 = (𝑣𝑡 − 𝑣𝑡−1) , at the beginning of iteration 

𝑣𝑡−1 = 0, 

   ∆𝑣𝑦 = (𝑣𝑡 − 𝑣𝑡−1) ,at the beginning of iteration 

𝑣𝑡−1 = 0 

   And  

                t : Prediction time, where t = 1, 2, 3, ..., 

and t < K, 

              K   : Maximum iteration, 

               i   : vehicle i, 

               N : Total number of vehicles within the 

transmission range,      

        𝑣𝑡   : Vehicle speed at time t. 

 

Eq. (3) is used to predict a vehicle's position on 

the x-axis at a specific time (t), while Eq. (4) takes 

into account the vehicle's status, speed, nearby 

vehicles, and iteration time to predict its position on 

the y-axis. Accurate positioning is essential for 

efficient communication, and variables t and K ensure 

precise predictions within the maximum iteration 

time. These equations are utilized by LA-AODV to 

predict vehicle positions, leading to improved 

efficiency of the vehicular communication network. 

Vehicles multicast to exchange data, determining 

their minimum predicted position. This data updates 

routing tables to determine the vehicle's state with 

minimum distance and speed, using Eq. (5). 

 

𝑝𝑟𝑒𝑑_𝑎𝑐𝑐𝑥𝑦 = √(|∆𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑥 −  ∆𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑦|)                  

(5) 

 

Where:  

 

∆𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑥 =  (𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑥+1  − 𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑥) (6) 

 

 ∆𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑦 =  (𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑦+1  −  𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑦) (7) 

 

Eq. (5) calculates the prediction of vehicle 

positions( 𝑝𝑟𝑒𝑑_𝑎𝑐𝑐𝑥𝑦 ), considering the changes 

along the x and y axes. This calculation method 

utilizes ∆𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑥 and ∆𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑦 values, which 

are derived from Eq. (6) and Eq. (7). In Eq. (5), the 

predicted position change along the x-axis is actively 

determined by subtracting the expected position at 

time t + 1 (𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑥+1) from the actual prediction 

of the vehicle's position at time t (pred_posx). 

Similarly, Eq. (5), calculates the movement along the 

y-axis, where the predicted position along the y-axis 

is based on 𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑦+1  subtracted from 

𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑦  as state in Eq. (7). The variable 

𝑝𝑟𝑒𝑑_𝑎𝑐𝑐𝑥𝑦 predicts the positions of nearby vehicles 

over a specific timeframe, considering their expected 

x and y coordinates at two points.  

Eq. (8) Using the Euclidean Distance equation to 

find the minimum value to compare vehicle 

movement optimally changes along the x and y axes 

for each vehicle over two prediction time intervals.  

 

 𝑝𝑟𝑒𝑑𝑎𝑐𝑐𝑥𝑦
=  

𝑀𝐼𝑁 (∑ √
(|𝑝𝑟𝑒𝑑𝑝𝑜𝑠𝑥+1

 − 𝑝𝑟𝑒𝑑𝑝𝑜𝑠𝑥
|)

2
−

 (|𝑝𝑟𝑒𝑑_𝑝𝑜𝑠𝑦+1  −  𝑝𝑟𝑒𝑑𝑝𝑜𝑠𝑦
|)

2
𝑖≤𝑁,𝑡≤𝐾
𝑖=1,   𝑡=1 )

(8) 
  

Eq. (8) forecasts and compares the vehicle 

positions to make informed routing decisions. By 

actively calculating changes in coordinates and 

passively evaluating their Euclidean distance, this 

equation identifies the most efficient routing 

conditions for responsive vehicle communication. 

After calculating expected positions, the next step is 

to assess communication reliability with the next-hop 

node before selecting relay nodes. The 

communication stability index calculation between 

node i and node j denote in Eq. (9). 

 

  𝑐𝑜𝑚𝑚_𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑖𝑛𝑑𝑒𝑥𝑖𝑗 = |( 
𝑝𝑟𝑒𝑑_𝑎𝑐𝑐

𝑥𝑦

𝑀𝑎𝑥𝑟𝑎𝑑
)|       (9) 

 

Where: 

 

𝑐𝑜𝑚𝑚_𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑖𝑛𝑑𝑒𝑥𝑖𝑗 = {
𝑠𝑡𝑎𝑏𝑙𝑒, 𝑖𝑓 ≤ 1
𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒, 𝑖𝑓 > 1

} 

 

The LA-AODV protocol includes Eq. (9), which 

introduces the communication stability index 

𝑐𝑜𝑚𝑚_𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑖𝑛𝑑𝑒𝑥𝑖𝑗. This metric is crucial in 

assessing communication stability between nodes, 

specifically i and j. To calculate this index, the total 

predicted positions of neighboring vehicles 

(represented by 𝑝𝑟𝑒𝑑_𝑎𝑐𝑐𝑥𝑦 ) are divided by the 

maximum communication radius (𝑀𝑎𝑥𝑟𝑎𝑑), which 

covers an area of 50 grids in width and length, set at 

2500 grid units. When the 

𝑐𝑜𝑚𝑚_𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑖𝑛𝑑𝑒𝑥𝑖𝑗 ≤ 1 value is one or lower, 

it means that the communication environment 

between nodes 'i' and 'j' is stable. On the other hand, 

when the value is higher than 1, it suggests an 

unstable communication scenario. 

Upon assessing the communication quality 

between node 'i' and its neighboring vehicles, based 

on their distance for two prediction time intervals, 't' 

and 't+1', the subsequent phase entails assigning a 

weight to each vehicle. This weight is determined by 

factoring in variables such as the vehicle's speed, 

acceleration, position, and the outcome of the 
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communication quality calculation for node 'i', as 

defined by Eq (10). 

 

𝑇𝑊𝑅𝑖 = ∑ ((𝑓𝑠 ∗ (|𝑠𝑛 − 𝑠𝑑|)) + (𝑓𝑎 ∗𝑖 𝑡𝑜 𝑁
𝑖=1

(|𝑎𝑛 − 𝑎𝑑|)) + (𝑓𝑑 ∗ (|𝑑𝑛 − 𝑑𝑑|)) + (𝑓𝑞 ∗

(𝑐𝑜𝑚𝑚_𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑖)))             (10) 

 

Where:     

 0.6 >= TWR >= 1, Optimal, and TWR <= 0.59, 

suboptimal. 

 

The LA-AODV protocol utilizes Eq. (10) to 

compute the Total Weight Route (TWR), a critical 

measure for evaluating the route's standard. TWR 

considers multiple factors such as speed, distance, 

acceleration, and communication quality, each 

assigned a weight factor equal to 1 as defined by Eq. 

(11). 

 
𝑤𝑡𝑜𝑡𝑎𝑙 =  𝑓𝑠+𝑓𝑎+𝑓𝑑+𝑓𝑞 = 1                         (11)  

 

Eq. (11) combines multiple factors by assigning 

specific weights to each parameter to create a 

balanced evaluation of all parameters. LA-AODV 

protocol uses this mechanism to ensure that speed, 

distance, acceleration, and communication quality 

are all considered while selecting the best route. This 

results in an effective routing mechanism for 

vehicular communication. TWR is a crucial criterion 

for routing decisions within the protocol, providing a 

comprehensive assessment of route quality.  

The FSA machine activates the learning rate (α) 

upon reaching its final decision state. Subsequently, 

the source node notifies neighboring nodes that it has 

been selected as a relay node, providing them with 

associated reward and penalty information. In this 

study, we utilized the LRI algorithm[25] as the 

learning rate (α), which assigns rewards or penalties 

to each decision made specified in Eq. (12). 

 

𝛼𝑡+1 =  

{
𝑄 (𝑡),    𝛼𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 1, 𝑟𝑒𝑤𝑎𝑟𝑑

       𝑄(𝑡)  + 1, 𝛼𝑖𝑔𝑛𝑜𝑟𝑒 = 0,    𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡
}   (12) 

 

Eq. (12) of the LRI algorithm adjusts the learning 

rate (α) based on past experiences. Rewards set the 

learning rate to 1, while penalties reduce it to 0. The 

value of the fine-tunes variable of the algorithm's 

learning rate is related to its decision-making abilities. 

Equation 13 illustrates adding value 'a' to 

𝑇𝑊𝑅𝑢𝑝𝑑𝑎𝑡𝑒 in the prediction iteration (t+1). 

 

    𝑇𝑊𝑅𝑢𝑝𝑑𝑎𝑡𝑒 =  ∑ (𝑇𝑊𝑅𝑖 +  𝛼)𝑖≤𝑁,𝑡≤𝐾
𝑖=1,   𝑡=1        (13) 

 

Eq. (13) updates the TWR value, enabling 

continuous fine-tuning and adjustment of TWR 

values for various vehicles or modes using the 

learning rate α. TWR values adapt to changing 

network conditions and routing decisions, resulting in 

dynamic and responsive routing decisions during the 

simulation. Ultimately, this improves communication 

and routing performance within the vehicular 

network. The value of α is critical in shaping the 

TWR values and routing decisions throughout the 

maximum simulation K. 

4.1 Quality of services performances matrix  

The study will compare the effectiveness of LA-

AODV, a newly proposed routing model, to the 

previous AODV routing method using analytical 

metrics. These metrics include Flood ID, PDR, PLR, 

Throughput, Delay, and Jitter, which will evaluate 

LA-AODV's capability to meet dynamic traffic 

demands and determine the quality of V2V 

communication service. 

4.1.1. Packet delivery ratio  

Packet delivery ratio (PDR) It is defined as the 

number of packets successfully received by the total 

number of packets sent in a unit time interval [26]. 

The PDR calculation is defined in Eq. (14). 

 

   𝑃𝐷𝑅 =  
𝐷𝑎𝑡𝑎𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝐷𝑎𝑡𝑎𝑠𝑒𝑛𝑡
                           (14) 

 
Eq. (14) determines the PDR value by dividing 

the amount of data received by a destination node 

(𝐷𝑎𝑡𝑎𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑) by the amount of data sent by a source 

node (𝐷𝑎𝑡𝑎𝑠𝑒𝑛𝑡). An optimal ratio is achieved when 

the data received is equal to the data sent. A higher 

PDR ratio indicates better network performance and 

the success rate of the routing protocol used. 

4.1.2. Packet loss ratio (PLR) 

Packet loss rate (PLR) is a metric used to measure 

the number of packets not delivered successfully 

compared to the total number sent within a 

communication network. PLR determined in Eq. (15). 

 

        𝑃𝐿𝑅 =  
𝐷𝑎𝑡𝑎𝑙𝑜𝑠𝑠

𝑇𝑜𝑡𝑎𝑙𝐷𝑎𝑡𝑎𝑠𝑒𝑛𝑡
                        (15) 

 

Eq. (15) emphasizes maintaining a low PLR for 

secure and effective V2V communication. A high 

PLR can pose safety risks, traffic congestion, and loss 
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of driver confidence, underscoring the importance of 

reliable V2V communication protocols[27]. 

4.1.3. Average end-to-end delay  

Average end-to-end delay ( 𝑎𝑣𝑔_𝑑𝑒𝑙𝑎𝑦𝑖 ) 

represents the average time packets take to reach their 

destination[28]. Eq. (16) calculates the average delay 

for all packets that reach their destination. 

 

   𝑎𝑣𝑔_𝑑𝑒𝑙𝑎𝑦𝑖 =  ∑
𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑[i] – 𝑡𝑠𝑒𝑛𝑡[𝑖]]

𝑝𝑎𝑐𝑘𝑒𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟
𝑛
𝑖=0      (16) 

 

Eq. (16) calculates the average delay experienced 

by each packet in reaching its destination. By 

summing up the differences between the time a 

packet is received by node i ( 𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑[𝑖] ) and the 

time it was sent by the same node (𝑡𝑠𝑒𝑛𝑡[𝑖] ), this 

formula computes the average delay (𝑎𝑣𝑔_𝑑𝑒𝑙𝑎𝑦𝑖) of 

all successfully delivered packets (𝑝𝑎𝑐𝑘𝑒𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟  

r). It divides it by the total number of such packages 

(n).  

4.1.4. Average Throughput 

Average Throughput (avg_throughput) is 

calculated by dividing the total number of 

successfully received packets by the destination 

device during a specific interval by the interval 

duration as shown in Eq. (17). 

 

avg_tℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
     (17) 

 

Eq. (17) calculates the average throughput, a 

crucial metric for assessing network performance. It 

is determined by dividing the number of data packets 

sent by the time taken for transmission. Higher values 

indicate efficient transfer, while lower values are 

associated with slower rates [29]. 

4.1.5. End-to-end jitter 

End-to-end jitter refers to the variation in delay 

caused by the queue length during data processing 

and the reassembly of data packets at the end of 

transmission due to previous failures. The end-to-end 

jitter delay is stated in Eq. (18). 

 

      𝑗𝑖𝑡𝑡𝑒𝑟 =
𝐷𝑒𝑙𝑎𝑦 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

(𝑛−1)
                      (18) 

 

Eq. (18) measures delay time deviation in a 

network. It is calculated by taking the difference 

between the maximum and minimum delay values 

and dividing that difference by the number of delay  

 

 
Figure. 4 AODV and LA-AODV Flod ID comparison 

across the 300 to 700-second timeframe in V2V 

communication scenarios 

 

samples minus one (n-1). Jitter evaluates data 

transmission consistency in a network. 

5. Result and discussion 

In this study, we evaluate the QoS parameters in 

V2V communication by comparing LA-AODV with 

a customized standard AODV module from NS3. We 

customized the AODV module to match the specific 

traffic scenarios in our study and compared its 

simulation results with those of LA-AODV. We 

chose this approach because our research utilizes 

real-world traffic scenarios (UGM Traffic) specific to 

our study rather than conforming to scenarios in 

previous studies. However, we still adhere to the 

established principles from prior research. We are 

looking at key metrics like the Packet Loss Ratio, 

Packet Delivery Ratio, Average Throughput, end-to-

end delay, and end-to-end jitter. Fig. 4 illustrates the 

trends in the Total Flod ID for the 300-700 second 

period in V2V communication scenarios. 

Fig. 4 data consistently show that AODV has a 

lower Total Flod ID than LA-AODV over all time 

intervals. Prove that AODV generates fewer routing 

control messages, resulting in lower overhead on the 

V2V communication network than LA-AODV. 

AODV is the best choice for minimizing control 

message overhead in safety-critical V2V applications. 

LA-AODV generates more routing control 

messages than AODV due to its adaptive 

mechanisms for selecting relay nodes based on real-

time traffic conditions. The situation makes LA-

AODV adaptable and responsive in V2V 

communication, justifying its slightly higher routing 

overhead in rapidly changing traffic dynamics. While 

AODV minimizes overhead and ensures stable 

communication, LA-AODV enhances adaptability, 

particularly in dynamic traffic scenarios. 

Next, we analyze the packet loss ratio (PLR) 

trends between 300 and 700 seconds in V2V  
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Figure. 5 PLR Comparison across the 300 to 700-second 

timeframe in V2V communication scenarios 

 

communication and compare AODV and LA-

AODV's ability to maintain data packet integrity. Fig. 

5 shows the PLR comparison results. 

Fig. 5 shows that AODV consistently had a 

higher Packet Loss Ratio than LA-AODV at all time 

intervals. While AODV had a packet loss ratio of 1% 

at 300 seconds, LA-AODV had a slightly better ratio 

of 2%. This trend continued at 400 seconds (AODV: 

1%, LA-AODV: 1.7%), 500 seconds (AODV: 4%, 

LA-AODV: 4%), 600 seconds (AODV: 1.3%, LA-

AODV: 1.7%), and 700 seconds (AODV: 4%, LA-

AODV: 4%). Although both protocols maintained 

relatively low packet loss ratios, LA-AODV held a 

slight advantage in preserving packet integrity. 

The insights from Fig. 4 highlight the 

significance of LA-AODV in V2V communication. 

LA-AODV is more reliable than AODV in 

preventing packet loss, which is crucial for scenarios 

where data integrity is paramount. It consistently 

maintains a lower Packet Loss Ratio than AODV, 

making it the preferred choice for such applications. 

However, AODV offers advantages such as lower 

routing overhead and enhanced adaptability. 

Therefore, choosing between AODV and LA-AODV 

should be a well-considered decision, aligning with 

the specific priorities and requirements of the V2V 

communication use case. 

Referring to Fig. 6, which represent the trends in 

packet delivery ratio (PDR) across the 300 to 700-

second timeframe in V2V communication scenarios. 

Fig. 6 shows that LA-AODV outperforms 

AODV in terms of PDR throughout the simulation, 

making it more efficient in transmitting data packets 

within V2V communication. Its sustained high PDR 

underscores LA-AODV's reliability, especially in 

safety-critical V2V applications where data integrity 

is priority. 

The results demonstrate that LA-AODV 

consistently outperforms AODV in terms of PDR at 

various time intervals: 300 seconds (LA-AODV:  

 

 
Figure. 6 PDR Comparison across the 300 to 700-

second timeframe in V2V communication scenarios 

 

97.0%, AODV: 98.0%), 400 seconds (LA-AODV: 

98.0%, AODV: 99.0%), 500 seconds (LA-AODV: 

95.0%, AODV: 96.0%), 600 seconds (LA-AODV: 

97.7%, AODV: 98.3%), and 700 seconds (LA-

AODV: 96.3%, AODV: 96.7%).  

In contrast, AODV exhibits a lower and 

relatively unstable PDR in Fig. 5, indicating that it 

may face difficulties in delivering data packets 

successfully, resulting in a lower success rate. 

Although AODV has the advantage of lower routing 

overhead and adaptability, its lower PDR indicates a 

potential trade-off between packet delivery success 

and other performance aspects in V2V 

communication scenarios. On the other hand, LA-

AODV prioritizes data integrity and completeness, 

ensuring successful data packet delivery. 

Next, we evaluated the performance based on the 

average throughput, which measures the average rate 

of successful data packet transmission in Kbps 

(Kilobits per second). Fig. 7 represents the result of 

average throughput through all simulation scenarios. 

Upon analyzing Fig. 7, it is apparent that LA-

AODV outperforms AODV in Average Throughput 

across all tested time intervals. LA-AODV delivers a 

much higher and more stable Average Throughput 

compared to AODV. AODV exhibits variable 

Average Throughput values across different time 

intervals. At 300 seconds, AODV achieves an 

Average Throughput of 33.09 Kbps, which remains 

steady at 400 seconds (33.09 Kbps) and gradually 

increases to 36.90 Kbps at 500 seconds. However, at 

600 seconds, there is a dip in Average Throughput to 

36.90 Kbps, followed by a subsequent increase to 

42.39 Kbps at 700 seconds. 

In contrast, LA-AODV displays a more stable 

and slightly higher Average Throughput performance. 

At 300 seconds, LA-AODV achieves an Average 

Throughput of 40.54 Kbps, which maintains 

consistency at 400 seconds (40.54 Kbps). As the  
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Figure. 7 Average throughput comparison results for all 

traffic scenarios within the simulation 

 

 
Figure. 8 The end to end delay comparison performance 

for all traffic scenarios 

 

simulation progresses, LA-AODV keeps its superior 

average throughput, reaching 43.76 Kbps at 500 

seconds and 48.82 Kbps at 600 seconds. At the final 

time interval of 700 seconds, LA-AODV boasts an 

impressive average throughput of 56.50 Kbps. 

LA-AODV's high average throughput is crucial 

for delivering data in V2V communication networks, 

particularly for high data throughput scenarios. In 

contrast, AODV's variable and lower average 

throughput make it less suitable for high data transfer 

rate applications. AODV works better for smooth or 

congested light traffic situations, while LA-AODV is 

a viable alternative for various traffic conditions. 

A detailed examination of end-to-end delay 

concerning Fig. 8 offers valuable insights into the 

performance of AODV and LA-AODV in vehicle-to-

vehicle (V2V) communication contexts. 

According to Fig. 8, AODV performs better than 

LA-AODV in achieving lower end-to-end delay 

values across different time intervals; at 300 seconds, 

AODV's end-to-end delay is 7.40E+10 ns, which  

 

 
Figure. 9 The end-to-end jitter comparison results for all 

traffic scenarios within the simulation time range of 300 

to 700 seconds 

 

remains stable at 400 seconds. It slightly increases to 

2.00E+11 ns at 500 seconds and gradually rises to 

2.49E+11 ns at 600 seconds, while at 700 seconds, it 

is 1.64E+11 ns.  

In contrast, LA-AODV records consistently 

higher end-to-end delay values throughout the 

analyzed time intervals. At 300 seconds, LA-

AODV's end-to-end delay is notably higher at 

1.25E+11 ns, which remains consistent at 400 

seconds. As the simulation continues, LA-AODV's 

End-to-End Delay increases, reaching 2.79E+11 ns at 

500 seconds and 2.66E+11 ns at 600 seconds. At 700 

seconds, LA-AODV's end-to-end delay is 1.15E+11 

ns. 

The result shows that AODV consistently 

performs better than LA-AODV regarding End-to-

End Delay across all time intervals. AODV's ability 

to maintain lower delay values suggests its 

effectiveness in facilitating faster data packet 

transmission from source to destination within the 

V2V communication network. This advantage can be 

significant when reducing communication latency is 

crucial, such as real-time applications in V2V 

communication. On the other hand, LA-AODV 

exhibits higher and unstable end-to-end delay values, 

which may render it unsuitable for applications 

requiring minimal communication latency. 

End-to-end jitter Delay, measured in 

nanoseconds (ns), is critical in assessing the 

reliability and predictability of data packet 

transmission within a network. The end-to-end jitter 

comparison is shows in Fig. 9. 

Fig. 9 demonstrates a consistent trend throughout 

the evaluated time intervals: AODV consistently 

maintains lower End-to-End Jitter Delay values than 

LA-AODV. At 300 seconds, AODV records an End-

to-End Jitter Delay of 1.36E+10 ns, which remains 
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relatively stable at 400 seconds (1.36E+10 ns). There 

is a minor increase to 2.58E+10 ns at 500 seconds, 

followed by a gradual rise to 2.88E+10 ns at 600 

seconds. Finally, at 700 seconds, AODV reports an 

end-to-end jitter delay of 2.26E+10 ns. 

In contrast, LA-AODV consistently exhibits 

higher end-to-end jitter delay values across all time 

intervals. At 300 seconds, LA-AODV's end-to-end 

jitter delay is notably higher at 2.39E+10 ns, which 

maintains consistency at 400 seconds (2.39E+10 ns). 

As the simulation progresses, LA-AODV's End-to-

End Jitter Delay rises, reaching 3.15E+10 ns at 500 

seconds and increasing to 3.11E+10 ns at 600 

seconds. Finally, at 700 seconds, LA-AODV records 

an end-to-end jitter delay of 2.03E+10 ns. 

This comprehensive analysis reinforces that 

AODV consistently outperforms LA-AODV 

concerning end-to-end jitter delay. AODV's ability to 

maintain lower jitter values indicates its efficiency in 

delivering data packets with more consistent and 

predictable transmission times within the V2V 

communication network. The situation is particularly 

advantageous in applications where minimal 

communication jitter is imperative, ensuring that data 

packets are delivered precisely. Conversely, LA-

AODV exhibits higher and less predictable end-to-

end jitter delay values. While LA-AODV offers other 

advantages, such as adaptability and higher 

throughput, its higher jitter levels may pose 

challenges in scenarios where precise timing is 

essential. Hence, selecting AODV and LA-AODV 

should align with the specific jitter tolerance 

requirements and priorities of the V2V 

communication use case. 

6. Conclusion 

The comparison of AODV and LA-AODV 

performance across various QoS metrics provides 

valuable insights into their suitability for V2V 

communication in different scenarios. AODV 

exhibits a relatively high PDR ranging from 96.0% to 

99.0%, along with a packet loss ratio between 1.0% 

and 4.0%. Its Average Throughput ranges from 33.09 

Kbps to 42.39 Kbps. On the other hand, LA-AODV 

achieves PDR between 95.0% and 98.3%, with a 

packet loss ratio spanning 1.7% to 4.0%. It 

consistently outperforms AODV in Average 

Throughput, ranging from 40.54 Kbps to 56.50 Kbps. 

While LA-AODV demonstrates slightly lower PDR 

and a similar packet loss ratio, its superior average 

throughput makes it a favorable choice for 

applications that demand rapid and consistent data 

exchange.  

Overall, LA-AODV reduces packet loss and 

improves packet delivery success rates, making it an 

ideal choice for data-intensive applications that 

require reliable and fast data exchange. The decision 

between AODV and LA-AODV should be strategic, 

considering the specific characteristics and priorities 

of the given V2V communication scenario. 

The study enhances the AODV-based routing 

protocol for V2V communication in VANET by 

introducing LA-AODV, which outperforms the 

conventional AODV in achieving higher packet 

delivery ratios and improved average throughputs. 

When selecting between the two protocols, consider 

scenario characteristics. LA-AODV suits safety-

critical applications, while AODV is preferable when 

minimizing network control message overhead is the 

primary concern. The choice should be strategic to 

optimize network efficiency and reliability. 

Although we recognize the significance of 

benchmarking against the latest methods, our main 

focus was to evaluate LA-AODV's performance in 

specific and realistic situations. In future studies, 

comparisons with other established methods could be 

incorporated to gain a better understanding of LA-

AODV's strengths and limitations. Nonetheless, the 

approach we chose for our research objectives 

allowed us to gain a thorough understanding of LA-

AODV's performance in real-world V2V 

communication scenarios.  
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