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Abstract: In this research, we propose an advanced hybrid precoding design for massive MIMO systems. Our 

approach integrates two innovative strategies: employing low-resolution ADCs and DACs with non-uniform 

quantization (NniQ) and implementing dynamic hybrid relay reconfigurable intelligent surfaces (DHRR-RIS). We 

utilize an iterative alternating minimization algorithm to improve spectral and energy efficiency in the first strategy. 

The second approach integrates DHRR-RIS with machine learning techniques, including adaptive back propagation 

neural network (ABPNN) for channel estimation, deep deterministic policy gradient (DDPG) algorithm for hybrid 

precoding and combining, fire hawk optimization (FHO) for DHRR-RIS, and enhanced fuzzy C-means (EFCM) for 

data clustering. These methodologies significantly enhance bit error rate (BER) and weighted sum rate (WSR) 

compared to traditional uniform quantization (UniQ) methods. Our results show that combining low-resolution 

ADCs/DACs with NniQ and DHRR-RIS, further optimized by machine learning, effectively reduces hardware 

complexity and power usage while markedly improving BER and WSR, offering a promising direction for efficient 

massive MIMO system development. 

Keywords: Low-resolution DACs/ADCs, Quantization, Hybrid precoder, Reconfigurable intelligent surfaces, 

Machine learning and deep learning algorithms, Massive MIMO systems. 

 

 

1. Introduction 

Massive multiple-input, multiple-output (MIMO) 

technology has become a cornerstone for next-

generation wireless communication networks. The 

ability of these systems to transmit and receive 

multiple data streams simultaneously enables high 

SE, low latency, and robust communications, 

meeting the demands of societal needs [1]. However, 

the implementation of massive MIMO systems as 

shown in Fig. 1 faces significant challenges, 

particularly in the design of efficient hybrid 

precoders. 

Traditionally, fully digital precoding techniques 

have been employed to optimize the performance of 

massive MIMO systems [2]. However, these 

approaches often require high-resolution 

ADCs/DACs, leading to increased hardware 

complexity and power consumption [3, 4]. We 

employed a low-resolution ADCs/DACs with NUQ 

and iterative alternating minimization algorithm to 

achieve a fine balance between SE and EE, thereby 

reducing both hardware complexity and power 

consumption. Additionally, RIS are introduced as a 

potential solution to some inherent challenges in 

massive MIMO systems. RIS, involving smart 

surfaces capable of controllable passive reflection of 

electromagnetic waves, can significantly enhance the 

wireless communication landscape [5, 6]. Our 

research further incorporates DHRR-RIS alongside 

4-bit ADCs/DACs. 

We employed machine learning algorithms, 

namely the ABPNN for pilot and channel state 

information (CSI) optimization, the DDPG for hybrid 

precoder optimization at the base station (BS), and 

the FHO algorithm for DHRR-RIS configuration,  
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Figure. 1 Block diagram of massive MIMO system 

 
Table 1. Notations 

Notation Description 

NniQ Non-Uniform Quantization 

UniQ Uniform Quantization 

𝑞 DAC Resolution 

𝑏 ADC Resolution 

𝑥 Transmitted Data 

𝑦 Received data 

𝑄𝑁𝑛𝑖𝑄(𝐷) Non-Uniform Quantization Process 

𝑃 Transmitter Power 

𝑏 Distortion factor of DAC 

𝜏 Total Reflection Coefficient 

𝛾 Total Reflection Coefficient Matrix  

𝛼 Passive element coefficient Matrix 

𝑆 Transmitted Signal vector 

𝜔 Channel Gain 

𝑁𝐵𝑆, 𝑀𝐵𝑆 Number of Base Station Antennas 

𝑁𝑈𝑇 , 𝑀𝑈𝑇  Number of receiving antennas 

𝑎 Distortion induced by ADC 

𝐻 Channel Matrix 

𝛽 Active element coefficient Matrix 

ℂ Complex Number 

MSE Mean Square Error 

B Bandwidth 

𝐹 
Product of Analog and Digital precoder 

Matrices 

 

aiming to improve performance metrics such as WSR 

and BER. The objective of this paper is to integrate 

these technological advancements in the design and 

optimization of hybrid precoders for massive MIMO 

systems, presenting a holistic approach to address 

current challenges in the field.  

The paper is organized as follows: Section 2 

offers a literature review, section 3 delineates the 

research contributions, section 4 describes the system 

model for hybrid precoding in massive MIMO 

systems, section 5 discusses problem formulation, 

section 6 presents simulation results, section 7 

analyses computational complexity, and section 8 

concludes the study. 

2. Literature review 

This literature review embarks on a meticulous 

exploration of prevailing research, systematically 

dissecting the various techniques and methodologies 

adopted by scholars in these realms.  

2.1 Quantization techniques in massive MIMO 

and mmWave systems 

This review delves into research on hybrid 

precoding, mmWave channels, expansive MIMO 

systems, and low-resolution ADCs and DACs, 

aiming to critically analyse their methodologies, 

strengths, and weaknesses, especially in the context 

of uniform and NniQ strategies. A notable 

observation is the limited research on NUQ's role 

with low-resolution ADCs/DACs, suggesting 

potential areas for system improvement.  

[7] discussed hybrid precoding in mmWave 

channels with a partially connected setup, while 

reducing hardware complexity, faces challenges in 

beamforming flexibility and spatial multiplexing 

capabilities The adaptation of DFT codebooks by the 

statistical correlation matrix may not always align 

with RF hardware constraints, necessitating 

additional processing like phase extraction 

techniques.[8] introduced a DFT codebook-based 

hybrid precoding for multiuser mmWave massive 

MIMO. This work depends on accurate CSI. [9] 

proposed a hybrid precoding method for massive 

MIMO systems with low-rank channels. But Due to 

the reduced rank of the channel matrix, the number of 

effectively distinguishable paths for data 

transmission is limited. [10] compared hybrid and 

full-digital beamforming in mmWave massive 

MIMO systems with low-resolution ADCs. Purely 

Worked on UniQ and not considered NniQ. [11] 

contributed to achievable rates for full-duplex 

massive MIMO with low-resolution ADCs/DACs, 

focusing on system performance. In contrast, our 

study provides a comprehensive evaluation 

incorporating quantization error, interference types, 

and highlights the advantages of power scaling and 

ADC/DAC resolution adjustments, emphasizing the 

relevance of low-resolution ADCs/DACs in FD 

massive MIMO systems. 

[12] investigated full-duplex massive MIMO 

systems with low-resolution ADCs/DACs. Further 

studies, such as those by [13-15], delved into various 

massive MIMO system aspects using low-resolution 

ADCs/DACs. [16] studied SE and EE optimization 

with low-precision ADCs. [17-19] examined secure 

transmission, downlink D2D analysis, and indoor 
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THz systems, respectively Specific to one-bit DACs. 

[20-22] investigated full-duplex massive MIMO 

cellular networks, multicast downlink, and mmWave 

systems, respectively. [23] focused on low-resolution 

ADC massive MIMO systems, emphasizing 

achievable rates and bit allocation. study in [24] 

introduced a learning-based method for one-bit 

ADCs in massive MIMO systems. [25] addressed the 

challenges in massive MIMO systems concerning 

low-resolution DACs and proposed a 1-bit downlink 

precoding algorithm with Inherent complexity, NP-

hard problem. 

Despite these insights, the benefits of NniQ 

remain unexplored. Introducing NniQ may offer 

enhanced noise reduction, improving SE and EE, 

potential hardware simplification and reduced power 

consumption due to optimized ADC/DAC resolution 

use.  

Our study aims in providing a comprehensive 

evaluation of quantization error and the advantages 

of power scaling in low-resolution ADCs/DACs 

systems. We identify the need for advanced 

quantization techniques that can optimize SE and EE, 

proposing NniQ as a solution to achieve noise 

reduction, hardware simplification, and reduced 

power consumption. 

2.2 RIS-assisted channel estimation & hybrid 

precoder design using machine learning 

algorithms 

In [26], a methodology employing deep learning 

for hybrid precoding in MIMO-oriented THz 

communication via RIS is put forward, wherein a 

phased array analog precoder is supplanted with RIS 

and analog beamforming is optimized via a 

concurrent deep neural network. Digital precoding 

optimization employs zero-forcing algorithms, but 

this work relies on sophisticated control for active 

elements and so power consumption. [27] presents a 

hybrid precoding structure for MIMO systems 

employing dual RIS, optimizing digital and analog 

precoders collectively at the transmitter and RIS 

through quadratically constrained quadratic 

programming and riemannian optimization 

algorithms, respectively but dependent on accurate 

CSI. [28] features hybrid precoder design using a 

deep reinforcement learning algorithm for THz 

communication, with the optimized policy 

embodying the digital and analog precoder 

optimization actions of the THz system, but 

dependent on accurate CSI.  

In [29], a machine learning algorithm is utilized 

for channel estimation in wireless communication, 

employing a distributed machine learning algorithm 

to augment reliability. Here significant 

computational resources are required for 

implementing DRL. [30] designs the hybrid precoder 

using RIS for MIMO systems with fixed precoders 

employing EMser and VGMser reflection methods. 

[31] introduces the design of robust hybrid precoders 

by concurrently estimating the channel state and 

optimizing the RIS reflecting element. But still 

dependency on accurate CSI. Finally, [32] employs 

adaptive resolution analog to digital converters for 

RIS-based MIMO systems, achieving robust, energy-

efficient hybrid beamforming through joint 

optimization of the converter resolution, RIS power, 

and reflecting element positioning but assumes 

infinite phase resolution and known CSI.  

Building on the foundations laid by studies [26-

32], our research further explores the integration of 

RIS with machine learning algorithms for channel 

estimation and hybrid precoder design. Previous 

research, such as [26, 27], has introduced 

methodologies for optimizing digital and analog 

precoders using deep learning and advanced 

optimization algorithms.  

However, these studies often lack a holistic 

approach in optimizing the entire system, including 

RIS elements, for achieving maximum efficiency. 

Our work extends these concepts by employing 

adaptive resolution ADCs in RIS-based MIMO 

systems, as proposed in [32], and focuses on joint 

optimization strategies that encompass converter 

resolution, RIS power, and element positioning, 

thereby aiming for a more robust and energy-efficient 

system. 

2.3 Designing hybrid precoders without RIS and 

using machine learning algorithms 

In [33], deep learning-driven hybrid precoding 

for MIMO systems involves training pilot signals, 

with estimations on both short and long temporal 

scales. [34] presents a deep learning-based hybrid 

precoding for MIMO, leveraging convolutional 

neural networks and deep neural networks for 

channel state estimation. [35] introduces a deep 

convolutional neural network-based framework for 

mmWave MIMO systems, optimizing radio 

frequency chains and boosting SE. [36] describes a 

machine learning hybrid precoding for multi-user 

MIMO systems, integrating the Dinkelbach and 

water-filling algorithms for optimization. 

In [37], a deep learning technique is employed for 

hybrid precoding in mmWave massive MIMO 

systems, using neural networks and zero-forcing 

algorithms. [38] offers a similar deep learning-based 

approach for time division duplexing massive MIMO  
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Figure. 2 Block diagram of hybrid precoder for conventional massive MIMO system 

 

systems, focusing on reducing overhead. 

[39] uses a deep learning algorithm for hybrid 

precoding in mmWave massive MIMO systems, 

enhancing SE and robustness. [40] optimizes MIMO 

channel estimation using lower resolution converters, 

showing reduced hardware and power requirements. 

A cross-entropy-based machine learning approach 

for hybrid precoding is highlighted in [41]. [42] 

explores channel estimation in massive MIMO 

systems via deep learning, combining a deep neural 

network with a fuzzy c-means clustering algorithm. 

[43] proposes a low-complexity deep learning 

precoding algorithm for MIMO systems, optimizing 

user quality of service. [44] introduces a deep 

reinforcement learning approach for mmWave hybrid 

precoders, while [45] presents a distributed neural 

precoding technique for mmWave MIMO systems, 

underlining significant performance enhancements. 

In the realm of hybrid precoding without RIS, 

studies [33-45] have made significant strides in 

employing deep learning for system optimization.  

While these studies have contributed valuable 

insights, especially in enhancing SE and reducing 

system complexity, they often overlook the potential 

synergies between low-resolution ADCs/DACs and 

machine learning algorithms. Our work seeks to 

bridge this gap by leveraging deep learning 

algorithms for optimizing hybrid precoders in 

massive MIMO systems with low-resolution 

converters. This approach promises to reduce 

hardware and power requirements significantly, 

while enhancing overall system performance. 

3. Research contributions 

In our work we address some of the challenges to 

enhance performance of massive MIMO systems by: 

 

• Efficiency optimization: Examining the trade-

offs of SE and EE by deploying varied resolution 

DACs and ADCs, thereby addressing the 

consequential power implications at the base 

station. 

• Quantization analysis: Utilizing UniQ and 

NniQ quantization techniques, we elucidate SE 

metrics and subsequently devise a novel 

algorithm for NniQ, targeting performance 

enhancements in massive MIMO systems with 

constrained ADCs/DACs resolutions. 

• Precoder design with and without using 

machine learning approaches: Using 

alternating minimization, we've crafted 

precoding techniques without machine learning, 

targeting performance akin to UniQ and NniQ 

DACs and ADCs systems. Furthermore, by 

blending DDPG for digital and analog precoding 

with FHO for DHRR-RIS and ABPNN for 

channel estimation, we've devised a hybrid 

precoding approach for improved 

communication efficiency. 

• Simulation: MATLAB R2023a simulations are 

employed to benchmark our innovations against 

prevailing models, underscoring the 

transformative potential of integrating machine 

learning algorithms and DHRR-RIS in massive 

MIMO systems. 

 

Collectively, this research seeks to foster 

innovative paradigms in massive MIMO systems, 

amalgamating foundational concepts with emerging 

technologies. 

4. System model 

In this paper, we investigate the design of hybrid 

precoders for massive MIMO systems in two 

different scenarios: a conventional massive MIMO 

system and a massive MIMO system enhanced by a 

DHRR-RIS. The overarching objective is to analyse 

and optimize the performance of low-resolution 

ADCs and DACs within these architectures, 

leveraging both machine learning and deep learning 

algorithms. 

4.1 System model of NniQ and UniQ massive 

MIMO system 

In the conventional setup, we consider a single-

user point-to-point massive MIMO system consisting 
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of transmitter antennas at the base station (BS) and 

receiver antennas at the User (UT) as shown in Fig. 2. 

The baseband and RF precoding matrices are denoted 

by 𝐷𝐵𝐵 ∈ ℂ𝑁𝑅𝐹×𝑁𝑆  and 𝐴𝑅𝐹 ∈ ℂ𝑁𝐵𝑆×𝑁𝑅𝐹 ,  where  

𝑁𝑅𝐹 is the number of RF chains and  𝑁𝑆 is the number 

of streams. The transmitted vector 𝑥𝐻𝑃 ∈ ℂ𝑁𝐵𝑆×1   

from the BS is obtained using hybrid precoding as: 

 

𝑥𝐻𝑃 = √𝑃𝐴𝑅𝐹𝑄𝑁𝑛𝑖𝑄(𝐷)(𝐷𝐵𝐵 × 𝑆)               (1) 

 

Where 𝑄𝑁𝑛𝑖𝑄(. ) is the NniQ process of DAC, 𝑆 

is a transmitted signal vector, P is the transmitter 

power, 𝐴𝑅𝐹 is the analog precoder matrix and 𝐷𝐵𝐵 is 

the digital precoder matrix.  After multipath fading, 

the received vector  𝑦𝐻𝑃 ∈ ℂ𝑁𝑈𝑆×1 at the UT is: 

 

𝑦𝐻𝑃 = 𝐻𝑥𝐻𝑃 + 𝑛                                         (2) 

 

Where 𝐻 ∊ ℂ𝑁𝑈𝑇×𝑁𝐵𝑆  is the channel matrix and 

𝑛 is the additive white Gaussian i.i.d noise with zero 

mean and variance. Here channel state information 

(CSI) is assumed to be known at both the BS and US 

[3]. In the first scenario, The saleh-valenzuela (SV) 

channel model [3] has been used considering 6 

clusters, with each cluster containing 8 rays. This 

specific configuration was chosen to model indoor 

environments where multipath components are 

abundant. Mathematically the channel response 

vector is obtained by:  

 

ℎ𝐻𝑃 = √
𝑁𝐵𝑆𝑁𝑈𝑇

𝑄
∑ 𝜔𝑙𝑓𝑈𝑇(𝜑)𝑓𝐵𝑆

𝐻(𝜑)𝑄
𝑞=1      (3) 

 

where 𝜔𝑙 is the channel gain of the path 𝑙, 𝑓𝑈𝑆(𝜑) 

and 𝑓𝐵𝑆(𝜑) are the channel array response vectors of 

the User Terminal and Base station respectively. Here 

uniform linear array (ULA) is considered and so the 

channel vectors are independent of elevation angle. 

The channel array response vectors at both the base 

station and user terminal are given by:  
 

𝑓𝑈𝑆,𝐵𝑆(𝜑) =
1

√𝑁
[1, 𝑒

𝑖2𝜋

𝜆
𝑑𝑠𝑖𝑛(𝜑)

, . , 𝑒
𝑖2𝜋

𝜆
𝑑(𝑁−1)𝑠𝑖𝑛(𝜑)

]
𝑇

 

(4) 

 

Where 𝑁 is the total number of elements in an 

array, 𝜑  is the azimuth angle between [0,2𝜋), 𝑑  is 

the antenna spacing and 𝜆 is the wavelength. 

The received vector 𝑦 at the receiver undergoes 

NniQ at ADC, this is formulated as: 

 

𝑓 = 𝑄𝑁𝑛𝑖𝑄(𝐴)(𝐻𝑥𝐻𝑃 + 𝑛)                             (5) 

 

By considering buss gang theorem and additive 

quantization noise model (AQNM) [3], the received 

vector after NniQ is given by: 
 

𝑓 = (1 − 𝑎)(1 − 𝑏)√𝑃𝐴𝑅𝐹𝐷𝐵𝐵𝑆 +  

(1 − 𝑎)√𝑃𝐻𝐴𝑅𝐹𝑢 + (1 − 𝑎)𝑛 + 𝑟            (6) 

 

Where 𝑏 is the distortion factor of DAC,𝑎 is the 

distortion induced by ADC, 𝑢  is the uncorrelated 

quantization error of DAC, and 𝑟  is the ADC 

distortion. Contrary to UniQ which is governed by 

the minimum value of 𝑥𝐻𝑃, NniQ is influenced by the 

maximum value of 𝑥𝐻𝑃. Given the nonlinear relation 

between quantized and unquantized values in NniQ, 

there's an opportunity to minimize distortion. To 

exploit this relationship, we developed a custom 

NniQ equation, capturing the essence of Precoded 

symbol dependencies: 

 

𝑥𝑖
𝑞𝑢𝑎 =  

⌊ (
𝑥𝑖(2𝑞𝑢𝑎−1)

(2𝑞𝑢𝑎−1)
) × 𝑠𝑖𝑔𝑛(𝑥𝑖) × (

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

2𝑞𝑢𝑎+1
) + 0.5⌋ (7) 

 

This custom NniQ is designed to offer enhanced 

representation efficiency for our application. In the 

above equation, the operator ⌊. ⌋  is the round-off 

operator, 𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛 maximum and minimum value 

of user precoded symbols and 𝑥𝑖
𝑞𝑢𝑎  stands for 

quantized data. 

4.2 System model of DHRR-RIS based massive 

MIMO system 

The second scenario introduces a DHRR-RIS 

between the BS and the UE to facilitate downlink 

data transmission, especially when direct links are 

hindered by blockages or path loss as shown in Fig. 

3. 

DHRR-RIS is a design addressing conventional 

RIS limitations, specifically in CSI acquisition and 

phase control. Its elements, both passive (𝑉 ) and 

active (𝐿), are represented as 𝑀 = 𝐿 + 𝑉 where 1 ≤
𝐿 ≪ 𝑉  and 𝑀  is the total number of DHRR RIS 

elements [27]. The passive components, serving as 

analog beamformers, use vector modulated phase 

shifters to guide beams. On the contrary, active 

components handle separate channel state 

estimations for both transmitter and receiver. Let us 

consider 𝐵 ⊆ {1,2, . . . , 𝑀} which is a set of position 

of 𝐿 active elements. The reflection/relay coefficient 

𝜏𝑘is given by: 

 

𝜏𝑘 = {
|𝜏𝑘|𝑒𝑗∅𝑘 , 𝑖𝑓 𝑘 ∈ 𝐵

𝑒𝑗∅𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                           (8)  

 

Where ∅𝑘 ∈ [0,2𝜋)  represents the phase shift.  
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Figure. 3 Block diagram of hybrid precoder and combiner for massive MIMO system using DHRR-RIS 

 

We also consider three diagonal matrices based on 

𝜏𝑘 .  𝛾 = 𝑑𝑖𝑎𝑔(𝜏1, 𝜏2, … … . . , 𝜏𝑀) , 𝛼 =
{𝛼1, 𝛼2, … … . , 𝛼𝑀} and 𝛽 = {𝛽1, 𝛽2, … … . , 𝛽𝑀}. 

 

𝛼𝑘 = {
0, 𝑖𝑓 𝑘 ∈ 𝐵

𝜏𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                          (9) 

 

𝛽𝑘 = {
𝜏𝑘 , 𝑖𝑓 𝑘 ∈ 𝐵

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                     (10) 

 

Where 𝛼  and 𝛽  contain only the passive and 

active relaying coefficients, respectively, while  𝛾 

contains the coefficient of all elements of DHRR-RIS. 

Therefore,  𝛾 = 𝛼 + 𝛽 . We also note that |𝜏𝑘| =
1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∉ B. 

We denote the channel between the BS and 

DHRR-RIS by 𝐻𝑡  ∈  ℂ𝑀×𝑀𝐵𝑆  and the channel 

between the DHRR-RIS and the UE by 𝐻𝑟  ∈
 ℂ𝑀𝑈𝑇×𝑀. Where 𝑀𝐵𝑆 is total number of base station 

antennas and 𝑀𝑈𝑇 are the total number of antennas at 

the User Terminal. The transmission signal vector 

can be represented as 𝑦𝐷𝐻𝑅𝑅 ∈ ℂ𝑀𝑈𝑇×1. 𝑀 is the total 

number of elements in DHRR-RIS. During 

transmission digital or baseband precoding is applied 

at the base station for data streams followed by 

analog precoding. The received signal at the UT in 

the presence of DHRR-RIS can be expressed as: 

 

𝑦𝐷𝐻𝑅𝑅 = 𝐻𝑟𝛼𝐻𝑡𝑥𝐷𝐻𝑅𝑅 + 𝐻𝑟𝛽𝐻𝑡𝑥𝐷𝐻𝑅𝑅 + 𝐻𝑟𝛽𝑁𝐻 +  

𝑛𝑈𝑇   (11) 

 

𝑦𝐷𝐻𝑅𝑅 = (𝐻𝑟𝛼𝐻𝑡 + 𝐻𝑟𝛽𝐻𝑡)𝑥𝐷𝐻𝑅𝑅 + 𝑛𝐷𝐻𝑅𝑅    (12) 

 

𝑦𝐷𝐻𝑅𝑅 = 𝐻𝑟𝛾𝐻𝑡𝑥𝐷𝐻𝑅𝑅 + 𝑛𝐷𝐻𝑅𝑅                  (13) 

 

Where 𝑁𝐻~CN(0, 𝜎𝐻
2𝐼𝐿)  is the complex 

Gaussian noise vectors due to active relay elements 

at DHRR RIS and 𝑛𝑈𝑇~CN(0, 𝜎𝑈𝑇
2 𝐼𝑁𝑈𝑇

)  is the 

complex Gaussian noise vectors due to 𝑀𝑈𝑇 receiver 

antennas. For simplicity we assume 𝜎𝐻
2 = 𝜎𝑈𝑇

2 =

𝜎2 and 𝑁 ~ CN (0, 𝜎2(𝐼𝑀𝑈𝑇
+ 𝐻𝑟 𝛽𝛽𝐻𝐻𝑟

𝐻)) . The 

𝑥𝐷𝐻𝑅𝑅 is the transmitter vector from the base station. 

In this work same Saleh Valenzuela channel model 

[3] is used to generate the channel matrix H, were all 

three components, base station, User Terminal and 

DHRR RIS antenna elements are Uniform Planar 

array (UPA) [27].  

So, the channel response vector is obtained by, 

 

𝐻𝑛,𝑚 = √
𝑁𝐷𝐻𝑅𝑅

𝑄𝐷𝐻𝑅𝑅
∑ 𝜔𝑛,𝑚

(𝑞)𝑄𝐷𝐻𝑅𝑅
𝑞=1 𝑓𝐷𝐻𝑅𝑅 (𝜑𝑛,𝑚

(𝑞)
, 𝜃𝑛,𝑚

(𝑞)
)   

(14) 

 

Here, 𝑄𝐷𝐻𝑅𝑅  is the number of multipath 

components between sub surface of DHRR-RIS and 

UT, 𝑁𝐷𝐻𝑅𝑅 is the number of elements in the DHRR-

RIS, and 𝜔, 𝜑𝑛,𝑚
(𝑞)

, 𝜃𝑛,𝑚
(𝑞)

 are the antenna gain, azimuth 

and elevation angles of departure (AoD) of the path, 

respectively. DHRR RIS antenna’s structure (𝑀 =
𝑀𝑚1 × 𝑀𝑚2)  is considered in which horizontal 

direction 𝑀𝑚1 and vertical direction 𝑀𝑚2  antenna 

elements are considered. The total array response 

vector is formulated as: 

 

𝑓𝐷𝐻𝑅𝑅(𝜑, 𝜃) = 𝑓𝐷𝐻𝑅𝑅𝑎𝑧𝑖
(𝜑) ⊗ 𝑓𝐷𝐻𝑅𝑅𝑒𝑙𝑒

(𝜃)   (15) 
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Where, the 𝑓𝐷𝐻𝑅𝑅𝑎𝑧𝑖
(𝜑) and 𝑓𝐷𝐻𝑅𝑅𝑒𝑙𝑒

(𝜃) can be 

expanded as, 

 

𝑓𝐷𝐻𝑅𝑅𝑎𝑧𝑖
(𝜑) =

1

√𝑀𝑚1
[𝑒

𝑖2𝜋𝑖(
𝑑1
𝜆

) sin(𝜑)
]

𝑇

,   

𝑖 ∈ 𝐼(𝑀𝑚1)    (16) 

 

𝑓𝐷𝐻𝑅𝑅𝑒𝑙𝑒
(𝜃) =

1

√𝑀𝑚2
[𝑒

𝑗2𝜋𝑗(
𝑑2
𝜆

) sin(𝜃)
]

𝑇

,  

 𝑗 ∈ 𝐼(𝑀𝑚2)    (17) 

 

Where 𝜆 is the wavelength, 𝑑1  is the antenna 

spacing in horizontal direction, 𝑑2  is the antenna 

spacing in vertical direction, and 𝐼(𝑛) =
{0,1, … … … , 𝑛 − 1}. 

5. Problem formulation 

The primary objective of this work is twofold. 

First, it seeks to enhance the SE and EE of massive 

MIMO systems equipped with low resolution 

DACs/ADCs, specifically in single-user scenarios. 

Secondly, in multi-user cases involving DHRR RIS-

based massive MIMO, the focus shifts to optimizing 

the WSR and BER. Both pursuits aim for optimal 

system performance. 

5.1 Problem formulation for single-user massive 

MIMO systems 

5.1.1. Maximize SE 

Mathematically, this can be represented as: 

Objective function: 

 

𝑆𝐸 = 𝑙𝑜𝑔2 |𝐼𝑁𝑟
+

𝑅𝑆̂𝑆̂

𝑅𝑢̂𝑢̂+𝑅𝑛̂𝑛̂+𝑅𝑟̂𝑟̂
|             (18) 

 

𝑆𝐸 =  

𝑙𝑜𝑔2 |𝐼𝑁𝑈𝑇
+ 𝑏

𝑃

𝑁𝑠
(𝑅𝑛)−1𝐻𝐴𝑅𝐹𝐷𝐵𝐵𝐷𝐵𝐵

𝐻𝐴𝑅𝐹
𝐻𝐻𝐻|         

(19) 

 

Constraints: 

• 𝑅𝑆̂𝑆̂ is covariance matrix of required signal. 

• 𝑅𝑢̂𝑢̂ is covariance matrix of DAC distortion. 

• 𝑅𝑛̂𝑛̂ is covariance matrix of white noise. 

• 𝑅𝑟̂𝑟̂ is covariance matrix of ADC distortion. 

5.1.2. Maximize EE 

Mathematically, this can be represented as: 

Objective function: 

 

𝐸𝐸 =
𝐵×𝑆𝐸

𝑃𝑡𝑜𝑡
                                                 (20) 

 

Table 1. Power consumption by each device [3] 

Device Notation Values 

Local Oscillator 𝑃𝐿𝑂 22.5mW 

Hybrid with buffer 𝑃𝐻𝐵 3mW 

Power Amplifier 𝑃𝑃𝐴 P/0.25 

Low Pass Filter 𝑃𝐿𝐹  14mW 

Mixer 𝑃𝑀 0.3mW 

Phase Shifter 𝑃𝑃𝑆 21.6mW 

 

Algorithm 1 

Iterative Alternating 

Minimization Algorithm for 

Precoder Design 

input 𝐻, 𝑁𝑅𝐹 , 𝑁𝑆 , Number of Iterations (𝑖) 

output Analog Precoder Matrix 𝐴𝑅𝐹  

Digital Precoder Matrix 𝐷𝐵𝐵 

initially [: , : , 𝑣𝐻] = 𝑆𝑉𝐷(𝐻), (𝑣𝐻)′ = 𝑊𝑜𝑝𝑡 

then Calculate 𝐴̂ = 𝑒[𝑟𝑎𝑛𝑑(𝑁𝑡,𝑁𝑟) with  

random phases 

 for  1 ≤ 𝑖 ≤ 𝐼 𝑑𝑜   

 Stage 1: Fix 𝐴̂, calculate 𝐷̂ = (𝐴̂)𝐻 𝑊𝑜𝑝𝑡 

 Calculate 𝐹 = 𝑊𝑜𝑝𝑡(𝐷̂)𝐻 

 Stage 2: Fix 𝐷̂,  update 𝐴̂, 𝐴̂ = 𝑒|𝐹| 

end for  

finally, 𝐴𝑅𝐹 = 𝐴̂,  𝐷𝐵𝐵 = √𝑁𝑆
𝐷̂

‖𝐴𝐷̂‖𝐹
 

 

Constraints:  

 

𝑃𝑡𝑜𝑡 = 𝑃𝐿𝑂 + 𝑃𝑃𝐴 + 2𝑁𝑟𝑃𝐴𝐷𝐶 + 𝑁𝑅𝐹𝑁𝑡𝑃𝑝𝑠 +  

𝑁𝑅𝐹(2𝑃𝐷𝐴𝐶 + 𝑃𝑅𝐹)  (21) 

 

𝑃𝑅𝐹 = 2𝑃𝑀 + 2𝑃𝐿𝐹 + 𝑃𝐻𝐵,𝑃𝐷𝐴𝐶 = 𝑐1𝑓1𝑞 + 𝑐22𝑞 

and 𝑃𝐴𝐷𝐶 = 𝑗𝑓𝑟2𝑏    (22) 

5.1.3. Hybrid precoder design 

An iterative alternating minimization algorithm 1 

[3] is used to optimize the hybrid precoder, thereby 

achieving the maximization of both SE and EE under 

the given constraints. 

5.2 Problem formulation for massive MIMO 

systems using DHRR-RIS 

Given a massive MIMO system employing a 

hybrid precoder with DHRR-RIS, we seek to 

optimize the system's performance in terms of the 

WSR, BER and SE. 

5.2.1. Maximizing achievable WSR 

When a multiuser scenario is considered the 

weighted sum rate WSR is formulated as: 
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𝑊𝑆𝑅 = ∑ 𝑊𝑖𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑖(𝐴𝐷𝐻𝑅𝑅 , 𝐷𝐷𝐻𝑅𝑅 , 𝛾)𝐾
𝑖=1  

(23) 

 

Where 𝑆𝐼𝑁𝑅𝑖  is the signal to interference noise 

ratio of the 𝑖𝑡ℎ user and 𝑊𝑖 is the weight assigned to 

the 𝑖𝑡ℎ user and 𝐾 is the total number of users. 𝜸 is 

the reflection coefficient of DHRR-RIS. 

 

𝑆𝐼𝑁𝑅𝑖 =
|𝐻𝑖

𝐻𝐴𝐷𝐻𝑅𝑅𝛾𝐷𝐷𝐻𝑅𝑅
𝑖|

∑ |𝐻𝑖
𝐻𝐴𝐷𝐻𝑅𝑅𝛾𝐷𝐷𝐻𝑅𝑅

𝑖′
|+𝜎2𝐾

𝑖′≠𝑖

       (24) 

 

Where 𝐻𝑖  is the channel matrix of 𝑖𝑡ℎ  user, 

𝐴𝐷𝐻𝑅𝑅 and 𝐷𝐷𝐻𝑅𝑅 are the analog and digital precoder 

matrices obtained through DDPG algorithm 

respectively. 𝜎2 is variance of AWGN.  

Objective function: 

 

(𝐴𝐷𝐻𝑅𝑅
opt, 𝐷𝐷𝐻𝑅𝑅

opt) = arg max
b,pre

 (𝑊𝑆𝑅)   (25) 

                 Subject to,  c1: ‖𝐷𝐷𝐻𝑅𝑅‖𝐷
2 ≤ 𝑃𝑡 

                                    c2: 𝐷𝐷𝐻𝑅𝑅 ∈ ζ 

 

Where 𝑷𝒕 is maximum transmission power and 𝛇 

is the set of all possible Analog beamforming 

matrices. 

5.2.2. Minimizing BER  

BER is pivotal in gauging the reliability of 

massive MIMO systems, particularly when 

employing advanced hybrid precoding designs 

integrated with DHRR-RIS. We utilize the Saleh-

Valenzuela (S-V) channel model, ensuring a realistic 

portrayal of massive MIMO propagation 

characteristics. The core system optimizations come 

from the interplay between the DDPG for precoding, 

Fire Hawk optimization for DHRR-RIS, ABPNN for 

CSI estimation, and the EFCM algorithm for data 

stream clustering. For our M-QAM modulated 

system, the BER, influenced by the SINR, is 

approximated by: 

 

𝐵𝐸𝑅𝐷𝐻𝑅𝑅 ≈
4

log2 𝑀
𝑒𝑟𝑓𝑐 (√

3𝑆𝐼𝑁𝑅

𝑀−1
)         (26) 

 

Objective function: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
{𝜏𝑘}

𝐵𝐸𝑅𝐷𝐻𝑅𝑅( 𝐴𝐷𝐻𝑅𝑅 , 𝛾, 𝐷𝐷𝐻𝑅𝑅 , 𝐻𝑒𝑠𝑡 , 𝑁𝑆) 

(27) 

 

Subject to: 𝑐1: 𝑡𝑟𝑎𝑐𝑒(𝐷𝐷𝐻𝑅𝑅𝐷𝐷𝐻𝑅𝑅
𝐻) ≤ 𝑃𝑡 

𝑐2: |𝛾𝑖|2 = 1, ∀𝑖, 𝑐3 = |𝐻 − 𝐻𝑒𝑠𝑡| ≤ 𝜀 

 

Where 𝑐1 is power constraint at base station, 𝑐2 is 

unit modulus constraint for RIS elements and 𝑐3 is 

channel estimation constraint with 𝜀  being a 

permissible estimation error. 

6. Data stream clustering EFCM 

6.1 Algorithm design 

Enhanced fuzzy C-means (EFCM) clustering 

emerges as an efficacious tool for partitioning data 

streams into public and private clusters, conducive to 

effective digital precoding. The algorithm judiciously 

classifies data into two coherent clusters, namely 

cluster A and B, leveraging a fuzzified membership 

function paired with a penalty term, and employs 

quantized symbols confined to the range, [0, 𝑀 −
1] where 𝑀 denotes the maximum value for symbol 

quantization. Given 𝑁𝑠 Number of data streams, 

𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠 Number of samples per data stream and 𝑀 

maximum value for symbol quantization the function 

prototype is represented as follows: 

 

𝐹(𝑁𝑠, 𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠 , 𝑀) → (𝐴, 𝐵, 𝐷)              (28) 

 

Where A is the Indices of data streams belonging 

to cluster A, B is the Indices of data streams 

belonging to Cluster B, D is randomly generated 

quantized data streams and 𝐹(. )  represents the 

EFCM data clustering function. 

6.2 Data generation and parameter initialization 

Let D be a 𝑁𝑆 × 𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠  matrix, where each 

element 𝑑𝑖𝑗 is an integer randomly selected from the 

discrete uniform distribution in the interval [0, 𝑀 −
1]. mathematically, this can be expressed as: 

 

𝐷 = [𝑑𝑖𝑗]                                                       (29) 

 

Were, 

 

0 ≤ 𝑑𝑖𝑗 ≤ (𝑀 − 1), 𝑖 = 1,2, . . , 𝑁𝑆 , 𝑗 =

1,2, . . , 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠  

 

This expresses that the data matrix D is populated 

with random integers in the specified range for each 

data stream and sample. 

For EFCM, initial parameters are set as: 

 

• 𝐶 = 2: Number of clusters 

• 𝑚 = 2 : Fuzzifier parameter to control the 

fuzziness of the membership matrix. 

• 𝑚𝑎𝑥𝑖𝑡𝑒𝑟=100: Maximum iteration limit 

• 𝜖 = 10−5 : Convergence tolerance 
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• 𝜗 = 0.5: Penalty parameter. 

6.3 Algorithm implementation 

• Cluster initialization: Cluster centres 𝑉, and the 

membership matrix 𝑈, are initialized randomly. 

V is of dimension 𝐶 × 𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠  and U is of 

dimension 𝑁𝑆 × 𝐶.  

• Membership matrix update: The membership 

𝑈𝑖𝑗 of the 𝑖𝑡ℎ  data stream to cluster 𝑗 is updated 

using: 

 

𝑈𝑖𝑗 =
1

∑ (
‖𝑑𝑎𝑡𝑎𝑖−𝑉𝑗‖

‖𝑑𝑎𝑡𝑎𝑖−𝑉𝑘‖
)

2
𝑚−1

𝐶
𝑘=1

                             (30) 

 

• Cluster centres update: The penalty term 𝜗 , 

influences the update of the cluster centres 𝑉𝑗 as 

follows: 

 

𝑉𝑗 =
∑ (𝑈𝑖𝑗)𝑚.𝑑𝑎𝑡𝑎𝑖

𝑁𝑆
𝑖=1

∑ (𝑈𝑖𝑗)𝑚+𝜗‖𝑉𝑗‖
2𝑁𝑆

𝑖=1

                                    (31) 

 

• Convergence check: If the difference between 

consecutive cluster centres is below the threshold 

𝜖, the algorithm converges. 

• Cluster assignment: The data streams are 

assigned to clusters 𝐴  and 𝐵 , based on the 

highest membership value in 𝑈. 

6.4 Integration with digital precoder 

Following the classification of data streams into 

either cluster A or B through EFCM, this classified 

data is subsequently fed into a digital precoder over 

varying time scales. Utilizing both public and private 

data streams facilitates the development of a robust 

digital precoding strategy, thereby enhancing 

communication system performance by optimizing 

signal quality and reducing interference. This 

modular approach introduces an innovative pathway 

to explore novel data stream clustering 

methodologies, inviting future works to explore 

diverse clustering algorithms in digital precoding 

applications. Further explorations may navigate 

through optimizing parameter tuning and exploring 

the applicability in various communication models. 

7. Channel estimation in MIMO systems 

using ABPNN for DHRR RIS-assisted 

communications 

In the proposed DHRR-RIS system, ensuring 

precise CSI estimation is crucial for both the 

channels: from the BS to the DHRR RIS, and from 

the DHRR RIS to UT. The ABPNN emerges as an 

effective solution for this dual-channel estimation. 

For an ABPNN algorithm used for channel 

estimation, we focused on minimizing MSE with 

increasing epochs. 

 

𝑀𝑆𝐸 =
1

𝑔
∑ (ℎ̂𝑖 − ℎ𝑖)2 

𝑔
𝐼=1                              (32) 

 

Where 𝑔 number of samples in the dataset, ℎ̂𝑖 is 

the estimated Channel response by ABPNN and ℎ𝑖 is 

the true channel response. The BS transmits the pilot 

sequence, represented by Eq. (33), and for downlink, 

the Eq. (34) depicts the pilot sequence sent by the US. 

 

𝑋𝐵𝑆−𝐷𝐻𝑅𝑅 = 𝐴𝐷𝐻𝑅𝑅𝑆𝑝𝑖𝑙𝑜𝑡
𝐵𝑆                       (33) 

 

𝑋𝐷𝐻𝑅𝑅−𝑈𝑇 = 𝑊𝐷𝐻𝑅𝑅𝑆𝑝𝑖𝑙𝑜𝑡
𝑈𝑇                        (34) 

 

Where 𝑋𝐵𝑆−𝐷𝐻𝑅𝑅 and 𝑋𝐷𝐻𝑅𝑅−𝑈𝑆  are the pilot 

sequences, 𝐴𝐷𝐻𝑅𝑅 is the Analog Precoder matrix and  

𝑊𝐷𝐻𝑅𝑅  is the analog combiner matrix. 𝑆𝑝𝑖𝑙𝑜𝑡
𝐵𝑆  and 

𝑆𝑝𝑖𝑙𝑜𝑡
𝑈𝑇  are the transmitted symbol sequences of 

Base Station and User terminal respectively.The 

ABPNN architecture comprises three pivotal layers: 

input as shown in Eq. (35), hidden shown in Eq. (36), 

and output shown in Eq. (37).  

 

X = (X1, X2, … , Xn)T                                    (35) 

 

hidi = act1(∑ weijXj − Thi
n
j=1 )                  (36) 

 

opi = act2(∑ cweth,j hidi − cweth
m
j=1 )       (37) 

 

op̂forecast = (op̂i + 1)(maxi(opi) − mini(opi) +

mini(opi))         (38) 

 

Err =
1

2
∑ (opl − 𝑒𝑥opl)

2L
𝑙                             (39) 

 

𝜗l = (𝑒𝑥opl − opl)opl(1 − opl)                  (40) 

 

errcj = (∑ cweth,j ∗L
𝑙 Err)hidi (1 − hidi)    (41) 

 

𝐶𝑉 = 𝑏𝑤𝑑(𝑓𝑤𝑑(𝐶𝑉; 𝛯𝑒); 𝛯𝑟𝑡)                     (42) 

 

𝐻𝑒𝑠𝑡 = (𝑄[CV])                                            (43)   

 

The network iteratively refines its weights, 

aiming to minimize the error between the estimated 

and actual channel responses. The estimated channel 

vectors are then relayed to the transmitters and 

receivers. Following this, feedback in terms of the 
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achievable rate is obtained and channelled back to the 

RIS.  

The subsequent phase involves reconstructing the 

channel vector, as shown in Eq. (43), and its 

quantization to achieve a robust hybrid precoder 

design. This approach not only ensures accurate 

channel estimation but also caters to the dynamically 

changing wireless environment, making ABPNN a 

cornerstone for the proposed DHRR-RIS system. 

8. Hybrid precoder and combiner design 

using DDPG 

The DDPG algorithm, an adaptation of deep Q-

learning to the continuous action domain, is 

instrumental in optimizing the digital (𝐷𝐷𝐻𝑅𝑅) and 

analog ( 𝐴𝐷𝐻𝑅𝑅)  precoders in a massive MIMO 

communication system. The state 𝑆(𝑡) representing 

the system at time t is characterized by the channel 

state information (CSI), 𝐻(𝑡) , and the current 

precoder matrices. The action 𝐴(𝑡) is defined as the 

adjustment applied to the precoder matrices. The 

reward function 𝑅(𝑡) is crafted as a composite metric 

involving the 𝑆𝑁𝑅 and the 𝐵𝐸𝑅 as: 

 

𝑅(𝑡) = 𝑤1. 𝑆𝑁𝑅(𝑡) − 𝑤2. 𝐵𝐸𝑅(𝑡)              (44) 

 

Subject to c1: ‖𝐹‖𝐷
2 ≤ 𝑃𝑡 ,  

                 c2: 𝛾𝑖 ∈ (0,2π), 0 ≤ 𝛾𝑖 ≤ 2𝜋 

 

where 𝑤1  and 𝑤2   are the weighting factors 

indicating the trade-off between 𝑆𝑁𝑅  and 𝐵𝐸𝑅 . 

Employing the DDPG algorithm begins with 

initializing the actor and critic networks and their 

corresponding target networks. The exploration-

exploitation strategy, such as the Ornstein-Uhlenbeck 

process, is adopted to explore the action space 

proficiently. 

Critic update: Utilizing sampled experiences 

(𝑆, 𝐴, 𝑅, 𝑆′) from the replay buffer, the critic network 

is updated by minimizing the mean squared error 

(MSE) loss between the predicted Q-value and the 

target Q-value, which is computed as: 

 

𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) = 𝑅(𝑡) + 𝛿𝑄′ (, 𝜇′(𝑆′(𝑡)))         (45) 

 

𝐿𝑜𝑠𝑠𝐶 = 𝑀𝑆𝐸[𝑄(𝑆(𝑡), 𝐴(𝑡)), 𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)]   (46) 

 

Where 𝑄′  and 𝜇′  represent the critic and actor 

target networks and 𝛿 is the discount factor. 

Actor update: The actor network is refined by 

maximizing the expected cumulative reward, which 

is approximated using the gradient of the critic 

network with respect to the action, expressed as: 

𝛻𝜃𝜇
𝐽 ≈

1

𝑁
∑ 𝛻𝑎𝑄(𝑆, 𝐴|𝜙)𝑆=𝑆𝑖,𝐴=𝜇(𝑆𝑖)𝛻𝜃𝜇

(𝑆|𝑁
𝑖=1 𝜃𝜇)𝑆𝑖

                

(47) 

 

Where N is the batch size, and 𝜃𝜇 and 𝜙denotes 

the actor and critic networks respectively. 

Soft target updates: The target networks are 

softly updated using, 

 

𝜃𝜇
′ ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
                              (48) 

 

𝜙′ ← 𝜏𝜙 + (1 − 𝜏)𝜙′                                  (49) 

 

Where 0 < 𝜏 ≪ 1  ensures slow tracking of the 

learned networks. 

Output precoders: The optimized actor network 

provides the policy for selecting actions, thus 

providing the optimized precoders, expressed as: 

 

𝐷𝐷𝐻𝑅𝑅(𝑡) = 𝜇𝐷𝐷𝐻𝑅𝑅
(𝑆(𝑡)|𝜃𝜇)                     (50) 

 

𝐴𝐷𝐻𝑅𝑅(𝑡) = 𝜇𝐴𝐷𝐻𝑅𝑅
(𝑆(𝑡)|𝜃𝜇)                     (51) 

 

By iteratively updating the actor and critic 

networks, the DDPG algorithm yields optimized 

digital precoder matrix 𝐷𝐷𝐻𝑅𝑅(𝑡)  and 𝐴𝐷𝐻𝑅𝑅(𝑡) , 

enhancing communication performance by 

adaptively shaping the transmitted signals to navigate 

through the wireless channel optimally. In a 

symmetrical vein, the digital and analog combiners, 

𝑊𝑑𝐷𝐻𝑅𝑅  and 𝑊𝑎𝐷𝐻𝑅𝑅  respectively, at the receiver 

end are optimized using a similar approach. The 

combiner design's objective is primarily to maximize 

the received signal to noise ratio (SNR) while 

mitigating interference and preserving the integrity of 

the transmitted signal amidst the wireless channel’s 

impairments. 

Given the state 𝑆′(𝑡), comprised of the received 

signal matrix and the current combiners’ status, the 

DDPG algorithm endeavors to learn a policy that 

iteratively updates the combiners to enhance the 

received signal quality. The action 𝐴′(𝑡)  herein is 

typified as the incremental adjustment to the 

combiner matrices. Defining the reward function as 

𝑅′(𝑡) = 𝑤3. 𝑆𝑁𝑅′(𝑡) − 𝑤4. 𝐵𝐸𝑅′(𝑡) arbitrate the 

emphasis between SNR and BER in the reward 

landscape, the adaptation of the combiner matrices 

unfolds. 

Critic update: Analogous to the precoder design, 

the critic network updates leverage sampled 

experiences.  

(𝑆′, 𝐴′, 𝑅′, 𝑆′′)  from the replay buffer and 

minimize the MSE loss between predicted and target 

Q-values, mathematically represented as: 
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Table 2. Parameters for proposed DDPG in designing 

hybrid precoder 

Parameter Description 

State 𝑆(𝑡) The clustered 𝑁𝑆 and 𝐻𝑒𝑠𝑡  between BS 

and DHRR RIS at the current time stamp 

Action 

𝐴(𝑡) 

Performs optimization of DAC-RF Chain 

pairs  

Reward 

𝑅(𝑡) 

minimize MSE and maximize achievable 

rate 

 

 

𝑄′
𝑡𝑎𝑟𝑔𝑒𝑡

(𝑡) = 𝑅′(𝑡) + 𝛿𝑄′′ (, 𝜇′′(𝑆′′(𝑡)))   (52) 

 

𝐿𝑜𝑠𝑠𝐶′ = 𝑀𝑆𝐸 [𝑄′(𝑆′(𝑡), 𝐴′(𝑡)), 𝑄′
𝑡𝑎𝑟𝑔𝑒𝑡

(𝑡)]   (53) 

 

Actor update: The actor network, conversely, 

optimizes for the cumulative expected reward. The 

update is accomplished by considering the gradient 

from the critic network with respect to the action, 

expressed as: 

 

𝛻𝜃
𝜇′ 𝐽 ≈  

1

𝑁′
∑ 𝛻𝑎𝑄(𝑆′, 𝐴′|𝜙′)𝑆′=𝑆′

𝑖,𝐴′=𝜇′(𝑆𝑖
′)𝛻𝜃

𝜇′
(𝑆′|𝑁′

𝑖=1 𝜃𝜇′)𝑆𝑖
′  

(54) 

 

Soft target updates: Similar soft updates are 

performed for the target networks as follows: 

 

𝜃𝜇′
′ ← 𝜏′𝜃𝜇′ + (1 − 𝜏′)𝜃𝜇′′′                        (55) 

 

𝜙′′
← 𝜏′𝜙′ + (1 − 𝜏′)𝜙′′

                             (56) 

 

Where 𝜏′ is a small positive factor ensuring slow 

tracking of the learned networks. 

In both analog and digital combiner cases, the 

outputs are given by: 

 

𝑊𝑑𝐷𝐻𝑅𝑅(𝑡) = 𝜇𝑊𝑑𝐷𝐻𝑅𝑅
(𝑆′(𝑡)|𝜃𝜇′)              (57) 

 

𝑊𝑎𝐷𝐻𝑅𝑅(𝑡) = 𝜇𝑊𝑎𝐷𝐻𝑅𝑅
(𝑆′(𝑡)|𝜃𝜇′)             (58) 

 

The convergence towards optimal combiners, 

𝑊𝑑𝐷𝐻𝑅𝑅 and 𝑊𝑎𝐷𝐻𝑅𝑅  is facilitated by iteratively 

applying the DDPG updates, thereby navigating 

through the action space to uncover combiner 

matrices that uphold the integrity and reliability of the 

received signals in a massive MIMO context.  

9. DHRR RIS design using FHO algorithm 

In leveraging the FHO algorithm for optimizing 

the DHRR-RIS in a MIMO system, the integration of 
 

Table 3. Parameters for proposed DDPG in designing 

hybrid combiner 

Parameter Description 

State 𝑆(𝑡) The received signal at the DHRR RIS, 

noise levels and the 𝐻𝑒𝑠𝑡  between 

DHRR RIS and UT at the current time 

stamp. 

Action 

𝐴(𝑡) 

Optimization of combining weights to 

minimize interference and maximize 

signal quality for the desired signal. 

Reward 

𝑅(𝑡) 

A function that rewards minimizing the 

BER and maximizing the Signal to 

Noise Ratio (SINR) at the receiver. 

 

 

appropriate constraints and a well-defined cost 

function is crucial.  

 

𝑐𝑜𝑠𝑡 = −𝑆𝑁𝑅 = −
|ℎ𝑒𝑓𝑓𝑤|

2

𝜎2                          (59) 

 

Where ℎ𝑒𝑓𝑓 is the effective channel including the 

DHRR RIS, 𝑤 is the beamforming vector and 𝜎2 is 

the noise power. This optimization process revolves 

around minimizing the cost so negative SNR. 

Hawk position representation: The position of 

each hawk in the FHO algorithm, 𝑋(𝑘), corresponds 

to a potential RIS configuration. For passive elements, 

it represents phase shifts, and for active elements, 

both amplification factors and phase shifts: 

 

𝑋(𝑘) = {
|𝜏𝑘|𝑒𝑗∅𝑘 , 𝑖𝑓 𝑘 ∈ 𝐵

𝑒𝑗∅𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                         (60) 

 

where 𝜏𝑘  and 𝑒𝑗𝜃𝑘  denote the amplitude and 

phase shift introduced by the RIS element 𝑖 
respectively and 𝐵 ⊆ {1,2, . . . , 𝑀} which is a set of 

position of 𝐿 active elements. 

FHO iterative position update: The new position 

of the 𝑖𝑡ℎ  hawk 𝑋𝑛𝑒𝑤
(𝑘) , is updated based on its old 

position 𝑋𝑜𝑙𝑑
(𝑘) , and the positions of the best-

performing hawk, 𝑋𝑏𝑒𝑠𝑡
(𝑘)

, influenced by constants 

𝜘  (exploitation) and 𝜚  (exploration), along with a 

random complex number 𝜉(𝑘)  to introduce 

randomness as shown below: 

 

𝑋𝑛𝑒𝑤
(𝑘) = 𝑋𝑜𝑙𝑑

(𝑘) + 𝜘 × (𝑋𝑏𝑒𝑠𝑡
(𝑘) − 𝑋𝑜𝑙𝑑

(𝑘)) +  

𝜚 × 𝜉(𝑘)    (61) 

 

Phase shift matrix for passive elements: To 

pragmatically integrate the FHO within the DHRR-

RIS system, the passive elements introduce a phase 

shift to the incident signal, while active elements 

impart amplification alongside phase modulation.  
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Figure. 4 Simulation model of first approach 

 

 
Figure. 5 Base station simulink model of DHRR RIS based hybrid precoder for massive MIMO 

 

 
Figure. 6 User terminal simulink model of DHRR RIS based hybrid precoder for massive MIMO 

 

 

 
Figure. 7 Overall simulink model of DHRR RIS based hybrid precoder for massive MIMO 
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The phase shift introduced by the passive elements, 

being a function of their position in the search space 

𝑋, can be represented by a phase shift matrix 𝑃: 

 

𝑃 = 𝑑𝑖𝑎𝑔(𝑒𝑗∅1 , 𝑒𝑗∅2 , … … … . . , 𝑒𝑗∅𝑉)         (62) 

 

where 𝑉 is the number of passive elements, and 

each 𝑒𝑗𝜃𝑉  denotes the complex exponential 

representing the phase shift introduced by the 

𝑖𝑡ℎ passive element. 

Amplification matrix for active elements: The 

active elements L in number, involve an 

amplification factor |𝜏𝑘|  alongside the phase 

modulation, formulated as an amplification matrix G 

which is formulated as: 

 

𝐺 = 𝑑𝑖𝑎𝑔(|𝜏1|𝑒𝑗∅1 , |𝜏1|𝑒𝑗∅2 , … … … . . , |𝜏𝐿|𝑒𝑗∅𝐿) 

(63) 

 

Where with |𝜏𝑘|  and 𝑒𝑗∅𝐿  as the amplification 

factor and phase introduced by the 𝑖𝑡ℎ active element. 

10. Simulation results 

This paper presents two distinct studies on 

massive MIMO systems, each exploring different 

facets and yielding insightful findings. The first study 

focuses on a single-user MIMO system, where the 

key strategy was implementing NniQ in low-

resolution DACs and ADCs, challenging the norm of 

UniQ. The second study extended the scope to multi-

user MIMO systems, introducing RIS and machine 

learning algorithms. Unlike the first study, this 

approach harnessed the power of machine learning 

algorithms for various tasks.  

We implemented MATLAB simulation for our 

first approach as shown in Fig. 4 and simulink model 

for our second approach as shown in Figs. 5-7 using 

MATLAB R2023a tool, think station Lenovo 

computer with 256GB RAM and AMD Rygen 

Threadripper PRO 32 cores processor and compared 

it with existing works using several validation 

metrics. Our results show that our first approach 

yields a very good result for NniQ as compared to 

UniQ low resolution ADCs/DACs are considered and 

our second approach outperforms existing works in 

terms of WSR, and BER.  

10.1 Comparative analysis of NniQ and UniQ 

massive MIMO system 

The first study meticulously evaluates the SE of a 

hybrid precoder setup, integrating advanced DACs 

and ADCs within a base station featuring 𝑁𝑡 

transmitting antennas addressing a single-user with a  
 

 
Figure. 8 SE vs SNR with 𝑞 = 2,4,6,100 𝑏𝑖𝑡𝑠 and 𝑏 =

100 𝑏𝑖𝑡𝑠 
 

Table 4 SE (bps/Hz)- Varying 𝑞  

Type  
DAC Resolution (𝒒) 

𝟐 𝒃𝒊𝒕𝒔 𝟒 𝒃𝒊𝒕𝒔 𝟔 𝒃𝒊𝒕𝒔 

NniQ 19.79 26.44 31.53 

UniQ [3] 18.77 21.51 24.97 

Data Rate  

(𝑮𝒃𝒑𝒔) 

NniQ-3.9 

UniQ-3.7 

NniQ-5.2 

UniQ-4.3 

NniQ-6.3 

UniQ-4.9 

Improved 5.43% 22.91% 26.27% 

 

 

36-antenna receiver setup. Our exploration is dual-

focused, encompassing UniQ and NniQ.  

In our detailed assessment as shown in Fig. 4, we 

examined the Hybrid Precoded Massive MIMO 

system’s performance with 𝑁𝑡 = 64, 𝑁𝑟 = 36, 𝑁𝑠 =

2 and 𝑁𝑅𝐹
𝑡 = 2 underscoring the influence of varied 

ADC and DAC resolutions with both 𝑏 and 𝑞 equal 

to 2,4,6 𝑏𝑖𝑡𝑠  under diverse quantization and SNR 

scenarios.  

Fig. 8 emphasizes varied 𝑞  which indicates SE 

performances between UniQ and NniQ beyond an 

SNR of −10𝑑𝐵 . This efficiency surges with 

increased 𝑞 and 𝑏, with NniQ outperforming UniQ in 

high-resolution scenarios.  

NniQ's bit economy is evident, showcasing 

pronounced SE at higher SNRs.  At lower SNRs, 

UniQ and NniQ perform similarly due to close 

Gaussian white noise and transmitted power levels. 

Crucially, NniQ is notably superior in low-resolution 

DAC setups, highlighting its suitability for efficient, 

high-quality transmissions in Massive MIMO 

systems. Fig. 9, emphasizing varied 𝑏, reveals that 

elevating ADC resolution significantly boosts SE, 

eventually mirroring a system without quantization 

distortions. This hints at an optimal threshold for  
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Figure. 9. SE vs SNR wit 𝑏 = 2,4,6 𝑏𝑖𝑡𝑠 and 𝑞 =

100 𝑏𝑖𝑡𝑠 

 
Table 5 SE (bps/Hz) for Varying 𝑏  

Type ADC Resolution (𝒃) 

𝟐 𝒃𝒊𝒕𝒔 𝟒 𝒃𝒊𝒕𝒔 𝟔 𝒃𝒊𝒕𝒔 

NniQ 22.35 28.56 33.74 

UniQ [3] 21.26 23.7 26.54 

Data Rate  

(𝑮𝒃𝒑𝒔) 

NniQ-4.4 

UniQ-4.2 

NniQ -5.7 

UniQ -4.7 

NniQ -6.7 

UniQ -5.3 

Improved 5.12% 20.50% 27.12% 

 

 

resolution enhancement. 

Theoretically, NniQ’s adaptability to allocate 

quantization levels based on signal amplitude 

distributions sets it apart. This approach, in contrast 

to UQ's linear strategy, optimally manages 

quantization levels, especially in varying wireless 

signal environments. As a result, NniQ maintains a 

BER and ensures enhanced link stability. 

However, the simulation results emphasizes that 

low resolution DAC and ADC benefits with 

enhanced SE and NniQ works much better than UniQ 

in both the scenarios as shown in Tables 4 and 5. This 

is attributed to NniQ's adept quantization mechanism, 

minimizing noise, and optimizing power use, unlike 

UniQ’s more rigid method.  

Figs. 10 and 11 delve into the EE-SE relationship 

trade-off curve concerning 𝑞  and 𝑏 . Collectively, 

they highlight NniQ's advantage in achieving 

superior EE, particularly at reduced SNRs. 

In Tables 6 and 7, we present a comparative 

analysis of power consumption for the system under 

study, contrasting the results between UniQ and 

NniQ with a fully digital precoding approach.  

The fully digital precoding method, where each 

antenna is connected to individual RF chains,  
 

 
Figure.10 EE vs. SE comparison for varied 𝑞 with 𝑏 =

6 𝑏𝑖𝑡𝑠, 𝑆𝑁𝑅 = −5𝑑𝐵 

 

 
Figure. 11 EE vs. SE comparison for varied 𝑏 with 𝑞 =

3 𝑏𝑖𝑡𝑠, 𝑆𝑁𝑅 = −5𝑑𝐵 

 

 
Figure. 12. SE vs SNR for fully digital precoding 

 

achieves a spectral efficiency of 70bps/Hz as shown 

in Fig. 12 while consumes 94 watts of power.  

In contrast, the NniQ approach attains a 

comparable data rate but demonstrates a significant 

reduction in power consumption, requiring only 6 

watts. This reduction, however, comes with a trade-

off in spectral efficiency, where NniQ delivers 

35bps/Hz.  
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Table 6. Power consumption and data rate varying 𝑞 with 

𝑏 = 6𝑏𝑖𝑡𝑠 

Performance Metrics 
NniQ UniQ 

𝒒 = 𝟐 𝒃𝒊𝒕𝒔 

EE (𝑮𝒃𝒑𝒔/𝑾) 0.096 0.068 

Power Consumed (𝒎𝑾) 6166.37 6851.53 

Data rate  591𝑀𝑏𝑝𝑠 465𝑀𝑏𝑝𝑠 

 𝒒 = 𝟒 𝒃𝒊𝒕𝒔 

EE (𝑮𝒃𝒑𝒔/𝑾) 0.257 0.185 

Power Consumed (𝒎𝑾) 6166.41 6851.57 

Data rate  1.58𝐺𝑏𝑝𝑠 1.26𝐺𝑏𝑝𝑠 

 𝒒 = 𝟔 𝒃𝒊𝒕𝒔 

EE (𝑮𝒃𝒑𝒔/𝑾) 0. 462 0.32 

Power Consumed (𝒎𝑾) 6166.44 6851.60 

Data rate  2.84𝐺𝑏𝑝𝑠 2.19𝐺𝑏𝑝𝑠 

 
Table 7. Power consumption and data rate varying 𝑏 with 

𝑞 = 3𝑏𝑖𝑡𝑠 

Performance Metrics 
NniQ UniQ 

𝒃 = 𝟐 𝒃𝒊𝒕𝒔 

EE (𝑮𝒃𝒑𝒔/𝑾) 0.080 0.066 

Power Consumed 

(𝒎𝑾) 

6165.54 6850.61 

Data rate  493𝑀𝑏𝑝𝑠 452𝑀𝑏𝑝𝑠 

 𝒃 = 𝟒 𝒃𝒊𝒕𝒔 

EE (𝑮𝒃𝒑𝒔/𝑾) 0.214 0.157 

Power Consumed 

(𝒎𝑾) 

6165.72 6850.80 

Data rate  1.31𝐺𝑏𝑝𝑠 1.07𝐺𝑏𝑝𝑠 

 𝒃 = 𝟔 𝒃𝒊𝒕𝒔 

EE (𝑮𝒃𝒑𝒔/𝑾) 0.371 0.258 

Power Consumed 

(𝒎𝑾) 

6166.39 6851.55 

Data rate  2.28𝐺𝑏𝑝𝑠 1.76𝐺𝑏𝑝𝑠 

 

 

This comparison underscores the energy 

efficiency of NniQ in achieving substantial power 

savings at the cost of reduced spectral efficiency, a 

crucial consideration for the design of massive 

MIMO systems. 

 
Figure.13 BER vs Eb/N0 for NniQ and UniQ when DAC 

resolution of 2,4 and 6 bits considered 
 

 
Figure. 14 BER vs Eb/N0 for NniQ and UQ when ADC 

resolution of 2,4 and 6 bits considered 

 
Table 10. BER vs 𝐸𝑏/𝑁𝑂 - varying DAC resolution at 

base station 

Type  
DAC Resolution (𝒒) 

𝟐 𝒃𝒊𝒕𝒔 𝟒 𝒃𝒊𝒕𝒔 𝟔 𝒃𝒊𝒕𝒔 

NniQ 
2.07
× 10−7 

1.17
× 10−6 

7.14
× 10−7 

UniQ 
2.63
× 10−7 

3.60
× 10−7 

8.34
× 10−8 

FD CMMSE [46] 1.12 × 10−6 

SVA MMSE [46] 6.31 × 10−6 

FD MMSE [46] 7.94 × 10−5 

 

 

Employing quadrature phase shift keying (QPSK) 

modulation, known for its balance between data rate 

and reliability, the system under NniQ and UniQ 

conditions exhibits notable robustness compared with 

different MMSE techniques shown in [46].  
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Table 11. BER vs 𝐸𝑏/𝑁𝑂 - Varying DAC resolution at 

base station 

Type  
ADC Resolution (𝒃) 

𝟐 𝒃𝒊𝒕𝒔 𝟒 𝒃𝒊𝒕𝒔 𝟔 𝒃𝒊𝒕𝒔 

NniQ 
3.74
× 10−6 

5.64
× 10−7 

7.99
× 10−8 

UniQ 
2.01
× 10−6 

1.21
× 10−7 

1.34
× 10−7 

FD CMMSE [46] 1.12 × 10−6 

SVA MMSE [46] 6.31 × 10−6 

FD MMSE [46] 7.94 × 10−5 

 

 

 
Figure. 15 Simulation model of second approach 

 

The graph as shown in Figs. 13 and 14, presents 

the BER for a massive MIMO system employing 

hybrid precoders and combiners designed via 

alternating minimization and reciprocal alternating 

optimization algorithms, respectively. It evaluates the 

system performance over a range of 𝐸𝑏/𝑁0 values for 

different DAC/ADCs resolutions under two 

quantization schemes: UniQ and NniQ. 

Lower BER is achieved with NniQ across all 

DAC/ADCs resolutions as shown in Tables 10 and 11, 

highlighting its efficiency in handling signal details. 

The BER curves for the UniQ and NniQ converge 

toward those of the benchmark techniques (FD-

MMSE, SVA-MMSE, FD-CMMSE) as Eb/No 

increases, indicating that despite the lower resolution 

DACs, the system approaches the performance of 

more traditional MIMO systems at higher signal-to-

noise ratios. 

10.2 Optimization and efficacy of hybrid precoder 

design in leveraging machine learning and 

reconfigurable intelligent surfaces 

This work examines the efficacy of a hybrid 

precoder and combiner design using 64 

𝑀𝐵𝑆 transmitter antennas with half wavelength 

spacing and 4 users with each user 4 (𝑀𝑈𝑇)  user 

antennas distributed among UT users as shown in Fig. 

15, at a carrier frequency of 28 GHz and bandwidth 

of 200MHz.  

 
Figure. 16 reward vs episodes 

 

The simulations utilized 1,000 symbols and 

employed 4-bit DACs and ADCs with 16 QAM 

modulation scheme. These symbols are clustered into 

private and public streams using EFCM algorithm.  

The hybrid precoder and combiner were designed 

using a DDPG algorithm, while channel estimation 

was performed with ABPNN algorithm. Additionally, 

DHRR-RIS were designed using the fire hawk 

optimization technique.  

Over 500 iterations, the system’s performance 

and reliability were analysed using monte carlo 

simulations, with ensuing sections providing a 

detailed examination of the obtained data, revealing 

insights into the system's behaviour and performance 

under the stipulated configurations. 

10.2.1. Simulation outcomes of machine learning 

algorithms 

10.2.1.1. DDPG for hybrid precoder optimization 

The DDPG algorithm was configured with 

distinct learning rates for the critic (0.001) and actor 

(0.0001) networks, optimizing the balance between 

stability and convergence speed. A carefully 

managed noise variance decay strategy ensured an 

effective balance between exploration and 

exploitation throughout the training process. 

The algorithm's ability to address the high 

dimensionality and computational constraints in 

massive MIMO systems showcases its robustness. By 

leveraging a large experience buffer and an 

appropriate discount factor, DDPG facilitated an 

efficient design process, tailoring the precoder and 

combiner weights to achieve optimal performance as 

shown in Fig. 16 and Table 12 within the constraints 

of real-time processing demands. 

10.2.1.2. ABPNN for channel estimation optimization 

The ABPNN algorithm demonstrated  
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Table 12. DDPG parameter settings and simulation 

results 

Parameter Value 

Configurations 

Critic Network Learning Rate 0.001 
Critic Gradient Threshold 1 
Actor Network Learning Rate 0.0001 
Actor Gradient Threshold 1 
Target Smooth Factor 0.001 

Experience Buffer 1 × 106 𝑠𝑡𝑒𝑝𝑠 
Discount Factor 0.99 
Minibatch Size 32 
Noise Variance 0.3 𝑡𝑜 10−6 

Simulation Outcomes 

Max Episodes 100 
Max Steps Per Episode 20 
Training Stop Criterion Average Reward − 66 

Computational Time 1991 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 
 

 

 
Figure. 17 MSE vs maximum epochs 

 

considerable efficacy in channel estimation between 

the BS and DHRR-RIS, and from DHRR-RIS to the 

UT. Employing a dual-layer structure with 100 and 

2304 nodes respectively, the ABPNN was optimized 

using a scaled conjugate gradient training algorithm. 

An initial learning rate of 0.01, adjusted by increase 

and decrease factors of 1.05 and 0.7, underpinned the 

network’s adaptive learning capability. 

The learning process was characterized by a 

notable reduction in MSE, reaching a final training 

MSE of 8.6706 × 10−5 , with validation and test 

MSEs converging around 8.99 × 10−4 . The 

ABPNN's adaptation culminated after 100 epochs as 

shown in Fig. 17 and Table 13, with the entire process 

executed in 1978.43 seconds. 

This approach highlights the ABPNN's 

robustness in capturing the complex characteristics of 

the wireless channel, enhancing the accuracy of 

channel state information and potentially 

contributing to the optimization of signal 

transmission in advanced communication systems.  

Table 13. ABPNN configuration and performance 

outcomes 

Parameter Value 

Configurations 

Hidden Layers [100, 2304] 

Training Algorithm Scaled Conjugate 

Gradient Initial Learning Rate 0.01 

Increase Factor 1.05 

Decrease Factor 0.7 

Simulation Outcomes 

Final Training MSE 8.6706 × 10−5 

Final Validation MSE 8.994276 × 10−4 

Final Test MSE 8.6795 × 10−4 

Total Epochs 100 

Computational Time 1978.43 seconds 

 

 
Figure. 18 Best cost vs maximum iterations 

10.2.1.3. FHO for DHRR RIS optimization 

The fire hawk optimization (FHO) algorithm was 

employed for the strategic design and optimization of 

a dynamic hybrid relay reconfigurable intelligent 

surface (DHRR-RIS).  

This novel optimization method was applied to a 

RIS configuration consisting of 64 elements, with 8 

active and 56 passive elements. 

The graphical representation of the optimization 

process, as shown in Fig. 18, demonstrates a rapid 

decrease in cost as the number of iterations increases.  

 
Table 14. FHO design specifications and optimization 

achievements 

Parameter Value 

Configurations 

RIS Configuration 64 elements (8 active, 56 passive) 

Simulation Outcomes 

Best Cost 0.00099114 

Iterations 100 

Total Evaluations 11,608 

Computational 

Time 

1160.8 seconds 
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Figure. 19 WSR vs reflecting elements of DHRR RIS 

(Proposed Work)  

 

 
Figure. 20 WSR vs number of RIS elements (comparative 

analysis) 

 

After 100 iterations, the FHO algorithm achieved 

an optimal cost of 0.00099114. The process involved 

a total of 11,608 evaluations, reflecting the 

algorithm's thorough search for an optimal solution 

within the design space as shown in Table 14. 

Although the computational time was not 

specified, the trajectory of the cost curve suggests a 

swift convergence, indicative of the FHO algorithm's 

efficiency.  

This optimization contributes to the RIS's ability 

to dynamically adapt to varying channel conditions, 

potentially enhancing the performance of wireless 

communication networks.  

10.3 WSR analysis 

10.3.1. Comparative analysis of WSR performance 

with increasing DHRR-RIS elements 

In our proposed DHRR RIS, we harness the FHO 

algorithm to strategically select superior reflecting 

elements in DHRR RIS, pivotal for efficient analog 

beamforming. Proper calibration of these elements is 

crucial, directly influencing the WSR, a primary 

indicator of system performance. 

Our analysis, detailed in Fig. 19, indicates a direct 

relationship between the WSR and the array of 

reflecting elements. A higher count of these elements 

correlates with improved WSR. This method stands 

out compared to prior works as shown in Fig. 20, 

primarily due to the optimization techniques applied 

to configure reflecting elements in intelligent 

surfaces. 

Our approach involves using a DHRR-RIS to 

facilitate sophisticated analog beamforming, 

essential for effective hybrid precoding. We employ 

the FHO algorithm to optimize the arrangement of 

phase shifters in passive elements.  

This optimization of reflecting elements within 

the DHRR-RIS leads to a maximized WSR, an 

enhancement over existing methods. Additionally, 

while the DRIS-HP [27] method uses the reflective 

modulation optimization (RMO) algorithm for phase 

shift fine-tuning, it faces challenges due to its high 

computational demands, further impacting the WSR 

negatively. Our proposed work as achieved 18bps/Hz 

by considering 64 DHRR RIS elements whereas the 

DRIS-HP has achieved approximately 3.9bps/Hz by  

 

 
Figure. 21 WSR vs varying antennas at base station 

(proposed work) 

 

 
Figure. 22 WSR vs varying user antennas (proposed 

work) 
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Figure. 23 WSR vs varying antennas at base station 

(comparative analysis) 

 

 
Figure. 24 WSR vs varying user antennas (comparative 

analysis) 

 

considering dual RIS with 100 reflecting elements.  

10.3.2. Comparative analysis of WSR performance 

with varying transmitter and receiver antennas 

In the proposed communications framework, the 

roles of transmitter and receiver antennas, integral to 

base stations and user terminals, are critical. Their 

optimization and balanced operation are essential for 

effective communication within the network. 

Figs. 21 and 22 depict the analysis of WSR 

relative to the intricate configurations of the 

transmitter and receiver antennas whereas Figs. 23 

and 24 depict the comparative analysis with the 

existing work.The data indicates that the proposed 

method achieves an enhanced WSR compared to 

existing strategies. This improvement stems from an 

innovative approach to antenna optimization, which 

involves considering minimum number of connected 

RF chains and Low-resolution DAC/ADC pairs.  

This approach minimizes unnecessary energy 

consumption and operational complexity during 

transmission phases, leading to a noticeable increase 

in WSR. 

 
Figure. 25 BER vs 𝑆𝑁𝑅 (proposed work) 

 

 
Figure. 26 BER vs varying RF-DAC/ADC chains 

(proposed work) 

 

In contrast, existing models like DRIS-HP [27] 

incorporate advanced deep learning techniques for 

hybrid precoding design but fall short in addressing 

inefficiencies and complexities in antenna functions, 

resulting in a lower WSR.  

Subsequent analysis reveals similar trends with 

receiver antennas; an increase to 8 antennas sees our 

WSR rise to 5.7 bps/Hz, a marked improvement over 

the 4.4 bps/Hz achieved by DRIS-HP. 

Our simulation results further highlight this 

efficiency: when the transmitter antennas are 

increased to 12, our system's WSR peaks at 5.14 

bps/Hz, outperforming DRIS-HP which register 3.7 

bps/Hz. The observed differential in performance 

underscores the efficacy of our proposed system.  

10.3.2.1. Comparative analysis of BER performance with 

varying SNR and RF-DAC/ADC chains 

An initial examination of the BER in relation to 

the signal to noise ratio (SNR) disclosed a notable 

reduction in BER from 10−1 to 10−6  as the SNR 

intensified, this is clearly depicted in Fig. 25.  
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Established theory suggests a high SNR, given 

the system's optimal operation and perfect channel 

states, is expected to correspond to a lowered BER. 

This principle was conspicuously confirmed by the 

simulation data, where the 𝐵𝐸𝑅 − 𝑆𝑁𝑅  graph 

demonstrated consistent enhancements in error rates 

as the SNR grew. This pattern not only reaffirms the 

credibility and efficiency of the hybrid precoder and 

combiner's DDPG-based design but also highlights 

the system's adherence to anticipated theoretical 

models. 

In parallel, a study focusing on BER relative to 

the count of RF chains, detailed in Fig. 26, identified 

a BER decline from 10−3 to 0 with the addition of 

more RF chains. 

This trend matches the theoretical assumption 

that an increase in RF chains, contingent on precise 

channel estimation and the successful neutralization 

of inter-user disturbances, would naturally lead to 

BER diminishment, thus boosting overall system 

dependability.  

The witnessed BER reduction with the rising 

number of RF chains validates the functional potency 

of the channel estimation carried out by ABPNN and 

the DHRR RIS structured through FHO. The 

practical outcomes presented, achieved through these 

dual evaluative standards, convincingly coincide 

with theoretical forecasts, thereby solidifying the 

proposed massive MIMO system's dependability and 

resilience. 

In the realm of evaluating the bit error rate (BER) 

within communication systems, our proposed 

methodology exhibits significant advancements over 

existing strategies, particularly when contrasted with 

the two-timescale deep neural network (DNN) [33] 

approach utilized for hybrid precoding as shown in 

Figs. 27 and 28. 

The two-timescale DNN method, while 

innovative, struggles with dynamic environmental 

shifts and the intricate demands of signal processing. 

Essentially, it's not always quick or responsive 

enough to handle the unpredictable nature of real-

world communication channels. As a result, it often 

experiences a higher BER, impacting overall 

communication reliability. 

Instead of reacting to errors after they occur, our 

system uses the ABPNN algorithm to predict and 

correct transmission errors by analysing critical 

factors like the angle of arrival (AoA), direction of 

arrival (DoA).  

This pre-emptive stance helps maintain signal 

quality throughout the transmission process. What 

sets our approach apart is its ability to learn and adjust 

in real-time, a significant upgrade over the more 

static two-timescale DNN approach. Our findings,  
 

 
Figure. 27 BER vs 𝑆𝑁𝑅 (comparative analysis) 

 

 
Figure. 28 BER vs varying RF-DAC/ADC chains 

(comparative analysis) 

 

especially with 8 RF-DAC/ADC pairs and at an 𝑆𝑁𝑅 

of 10𝑑𝐵 registering a BER of 0.0002, underscore the 

proposed model’s merit in harmonizing enhanced 

channel estimation and minimized BER, fortifying its 

stance as a viable model for future communication 

systems’ reliability and scalability. 

11. Conclusion  

This paper presents a comprehensive exploration 

into enhancing massive MIMO systems, beginning 

with the implementation of NniQ in low resolution 

ADCs/DACs to improve spectral and EE. The initial 

phase of the research established that NniQ-based 

systems could achieve SE comparable to that of 

systems utilizing UQ, with the added advantage of 

better EE. This approach laid the groundwork for 

subsequent advancements in the field. 

Evolving further, the study embraced more 

complex Massive MIMO environments, integrating 

DHRR-RIS and advanced algorithmic paradigms. 

The introduction of RIS was strategic, addressing 

critical challenges such as excessive energy 
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consumption, channel estimation errors, and 

limitations in SE commonly associated with 

conventional MIMO systems. The innovation did not 

stop there; machine learning and deep learning 

algorithms were employed, optimizing processes like 

channel estimation, hybrid precoding and combining, 

and data clustering. 

The sophistication introduced through DHRR-

RIS, along with adaptive and deep reinforcement 

learning methodologies, marked a substantial 

enhancement in the system's operational intelligence. 

This intelligence was evident in improved CSI 

accuracy and the efficient handling of data streams, 

contributing to notable gains in overall system 

performance. The integration of non-uniform 

quantized 4-Bit DAC/ADCs and the strategic 

utilization of RIS components, especially when 

combined with artificial intelligence algorithms, 

optimized system reliability and signal integrity. This 

optimization translated into superior performance 

metrics, particularly in WSR and BER, as validated 

through rigorous simulation testing. 

Conclusively, this research signifies a 

transformative approach in the design and 

implementation of Massive MIMO systems. By 

synergizing NniQ, RIS, and AI, the study has 

successfully demonstrated a methodology that 

surpasses traditional system limitations, setting a 

robust precedent for the development of more 

efficient, reliable, and high-capacity wireless 

communication networks. The results reaffirm the 

critical role of innovative, integrated technological 

strategies in shaping the future of wireless 

communications. 

Conflicts of interest 

The authors declare no conflict of interest.  

Author contributions  

The primary responsibilities and contributions of 

each author involved in this paper are as follows: 

Girish Kumar N G: Involved in conceptualization, 

methodology development, software utilization, 

validation of results, formal analysis, investigation, 

resource accumulation, data curation, original draft 

preparation, and writing—review & editing. 

Dr. M N Sree Ranga Raju: Contributed to 

visualization, offered supervision, and administered 

the project. 

Both authors have read and agreed to the 

published version of the manuscript. 

Acknowledgments 

I extend my sincere gratitude to Prof. G. 

Sadashivappa, Professor & CoE, RVCE, Bangalore 

and Dr. Iven Jose, Professor and Dean, Christ 

University, Bangalore for their invaluable guidance 

and relentless support throughout my research 

journey. Their expertise has been instrumental in 

shaping this work. Additionally, I am thankful to my 

Institution, Bangalore Institute of Technology for 

providing the necessary resources and an 

intellectually stimulating environment that has been 

pivotal for the fruition of this research. 

References 

[1] C. Chen, Y. Wang, S. Aïssa, and M. Xia, "Low-

Complexity Hybrid Analog and Digital 

Precoding for mmWave MIMO Systems", In: 

Proc. of IEEE 31st Annual International 

Symposium on Personal, Indoor and Mobile 

Radio Communications, pp. 1-6, 2020. 

[2] L. Yang and W. Zhang, "Hybrid Precoding 

Design Achieving Fully Digital Performance for 

Millimeter Wave Communications", Journal of 

Communications and Information Networks, 

Vol. 3, No. 4, pp. 74-84, Dec. 2018. 

[3] Q. Ding, Y. Deng, and X. Gao, "Spectral and EE 

of Hybrid Precoding for mmWave Massive 

MIMO With Low-Resolution ADCs/DACs", 

IEEE Access, Vol. 7, pp. 186529-186537, 2019.  

[4] Y. Xiong, "Achievable Rates for Massive MIMO 

Relaying Systems with Variable-Bit 

ADCs/DACs", IEEE Communications Letters, 

Vol. 24, No. 5, pp. 991-994, May 2020. 

[5] Q. Zhu, H. Li, R. Liu, M. Li, and Q. Liu, "Hybrid 

Beamforming and Passive Reflection Design for 

RIS-Assisted mmWave MIMO Systems", In: 

Proc. of IEEE International Conference on 

Communications Workshops (ICC Workshops), 

Montreal, QC, Canada, pp. 1-6, 2021 

[6] R. Schroeder, J. He, and M. Juntti, "Passive RIS 

vs. Hybrid RIS: A Comparative Study on 

Channel Estimation", In: Proc. of 2021 IEEE 

93rd Vehicular Technology Conference 

(VTC2021-Spring), Helsinki, Finland, pp. 1-7, 

2021. 

[7] A. W. Shaban, O. Damen, Y. Xin, and E. Au, 

"Statistically Aided Codebook-Based Hybrid 

Precoding for Millimeter Wave Channels", in 

IEEE Access, Vol. 8, pp. 101500-101513, 2020. 

[8] Y. Huang, C. Liu, Y. Song, and X. Yu, “DFT 

codebook-based hybrid precoding for multiuser 

mmWave massive MIMO systems”, EURASIP J. 

Adv. Signal Process, Vol. 11, 2020.  

[9] A. Almradi, M. Matthaiou, P. Xiao, and V. F. 



Received:  November 2, 2023.     Revised: December 2, 2023.                                                                                        769 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.63 

 

Fusco, "Hybrid Precoding for Massive MIMO 

With Low Rank Channels: A Two-Stage User 

Scheduling Approach", IEEE Transactions on 

Communications, Vol. 68, No. 8, pp. 4816-4831, 

Aug. 2020. 

[10] W. Zhang, X. Xia, Y. Fu, and X. Bao, "Hybrid 

and full-digital beamforming in mmWave 

Massive MIMO systems: A comparison 

considering low-resolution ADCs", China 

Communications, Vol. 16, No. 6, pp. 91-102, 

June 2019.  

[11] J. Liu, J. Dai, J. Wang, X. Yin, Z. Jiang, and J. 

Wang, “Achievable rates for full-duplex 

massive MIMO systems with low-resolution 

ADCs/DACs under imperfect CSI environment”, 

J Wireless Com Network, 2018.  

[12] J. Dai, J. Liu, J. Wang, J. Zhao, C. Cheng, and J. 

Y. Wang, "Achievable Rates for Full-Duplex 

Massive MIMO Systems with Low-Resolution 

ADCs/DACs", IEEE Access, Vol. 7, pp. 24343-

24353, 2019. 

[13] Q. Ding, Y. Lian, and Y. Jing, "Performance 

Analysis of Full-Duplex Massive MIMO 

Systems with Low-Resolution ADCs/DACs 

Over Rician Fading Channels", IEEE 

Transactions on Vehicular Technology, Vol. 69, 

No. 7, pp. 7389-7403, July 2020 

[14] Q. Xu and P. Ren, "Secure Massive MIMO 

Downlink with Low-Resolution ADCs/DACs in 

the Presence of Active Eavesdropping", IEEE 

Access, Vol. 8, pp. 140981-140997, 2020. 

[15] Y. Xiong, S. Sun, N. Wei, L. Liu, and Z. Zhang, 

"Performance Analysis of Massive MIMO 

Relay Systems with Variable-Resolution 

ADCs/DACs Over Spatially Correlated 

Channels", IEEE Transactions on Vehicular 

Technology, Vol. 70, No. 3, pp. 2619-2634, 

March 2021. 

[16] H. Wang, C. Sun, J. Li, P. Zhu, D. Wang, and X. 

You, “Joint optimization of SE and EE with low-

precision ADCs in cell-free massive MIMO 

systems”, Sci. China Inf. Sci, Vol. 65, p. 152301, 

2022. 

[17] X. Zhang, T. Liang, K. An, G. Zheng, and S. 

Chatzinotas, "Secure Transmission in Cell-Free 

Massive MIMO With RF Impairments and Low-

Resolution ADCs/DACs", IEEE Transactions 

on Vehicular Technology, Vol. 70, No. 9, pp. 

8937-8949, Sept. 2021. 

[18] J. Li, A. Wan, M. Zhou, J. Yuan, R. Yin, and L. 

Yang, "Downlink Analysis for the D2D 

Underlaid Multigroup Multicast Cell-Free 

Massive MIMO With Low-Resolution 

ADCs/DACs", IEEE Access, Vol. 10, pp. 

115702-115715, 2022. 

[19] Y. Zhang, D. Li, D. Qiao, and L. Zhang, 

"Analysis of Indoor THz Communication 

Systems with Finite-Bit DACs and ADCs", 

IEEE Transactions on Vehicular Technology, 

Vol. 71, No. 1, pp. 375-390, Jan. 2022. 

[20] E. Balti and B. L. Evans, "Full-Duplex Massive 

MIMO Cellular Networks with Low Resolution 

ADC/DAC", In: Proc. of GLOBECOM 2022 - 

2022 IEEE Global Communications Conference, 

Rio de Janeiro, Brazil, pp. 1649-1654, 2022. 

[21] M. Zhou, Y. Zhang, X. Qiao, M. Xie, L. Yang, 

and H. Zhu, "Multigroup Multicast Downlink 

Cell-Free Massive MIMO Systems with 

Multiantenna Users and Low-Resolution 

ADCs/DACs", IEEE Systems Journal, Vol. 16, 

No. 3, pp. 3578-3589, Sept. 2022. 

[22] I. S. Kim, M. Bennis, and J. Choi, "Cell-Free 

mmWave Massive MIMO Systems with Low-

Capacity Fronthaul Links and Low-Resolution 

ADC/DACs", IEEE Transactions on Vehicular 

Technology, Vol. 71, No. 10, pp. 10512-10526, 

Oct. 2022. 

[23] W. Zhang, J. Xia, and X. Bao, "Massive MIMO 

Systems with Low-Resolution ADCs: 

Achievable Rates and Allocation of 

Quantization Bits", Wireless Communications 

and Mobile Computing, Vol. 2023, Article ID 

4012841, p. 12, 2023. 

[24] J. Park, N. Lee, S. Hong, and Y. Jeon, "Learning 

from Noisy Labels for MIMO Detection with 

One-Bit ADCs", IEEE Wireless 

Communications Letters, Vol. 12, pp. 456-460, 

Mar. 2023 

[25] L. Wen, H. Qian, Y. Hu, Z. Deng, and X. Luo, 

"One-bit Downlink Precoding for Massive 

MIMO OFDM System", IEEE Transactions on 

Wireless Communications, January 2023. 

[26] Y. Lu, M. Hao, and R. Mackenzie, 

"Reconfigurable intelligent surface-based 

hybrid precoding for THz communications", 

Intelligent and Converged Networks, Vol. 3, No. 

1, pp. 103-118, March 2022. 

[27] H. Niu, Z. Chu, F. Zhou, C. Pan, D. W. Ng, and 

H. X. Nguyen, “Double Intelligent Reflecting 

Surface-Assisted Multi-User MIMO MmWave 

Systems with Hybrid Precoding”, IEEE 

Transactions on Vehicular Technology, Vol. 71, 

pp. 1575-1587, 2021. 

[28] C. Huang, Z. Yang, G. C. Alexandropoulos, K. 

Xiong, L. Wei, C. Yuen, Z. Zhang, and M. 

Debbah, “Multi-Hop RIS-Empowered Terahertz 

Communications: A DRL-Based Hybrid 

Beamforming Design”, IEEE Journal on 

Selected Areas in Communications, Vol. 39, pp. 

1663-1677, 2021. 



Received:  November 2, 2023.     Revised: December 2, 2023.                                                                                        770 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.63 

 

[29] L. Dai, and X. Wei, “Distributed Machine 

Learning Based Downlink Channel Estimation 

for RIS Assisted Wireless Communications”, 

IEEE Transactions on Communications, Vol. 70, 

pp. 4900-4909, 2022. 

[30] J. Ye, S. Guo, and M. Alouini, “Joint Reflecting 

and Precoding Designs for SER Minimization in 

Reconfigurable Intelligent Surfaces Assisted 

MIMO Systems”, IEEE Transactions on 

Wireless Communications, Vol. 19, pp. 5561-

5574, 2019. 

[31] Z. Zhou, N. Ge, Z. Wang, and L. H. Hanzo, 

“Joint Transmit Precoding and Reconfigurable 

Intelligent Surface Phase Adjustment: A 

Decomposition-Aided Channel Estimation 

Approach”, IEEE Transactions on 

Communications, Vol. 69, pp. 1228-1243, 2020. 

[32] Y. Wang, X. Chen, Y. Cai, and L. H. Hanzo, 

“RIS-Aided Hybrid Massive MIMO Systems 

Relying on Adaptive-Resolution ADCs: Robust 

Beamforming Design and Resource Allocation”, 

IEEE Transactions on Vehicular Technology, 

Vol. 71, pp. 3281-3286, 2022. 

[33] Q. Hu, Y. Cai, K. Kang, G. Yu, J. Hoydis, and 

Y. C. Eldar, “Two-Timescale End-to-End 

Learning for Channel Acquisition and Hybrid 

Precoding”, IEEE Journal on Selected Areas in 

Communications, Vol. 40, pp. 163-181, 2022. 

[34] Q. Sun, H. Zhao, J. Wang, and W. Chen, “Deep 

Learning-Based Joint CSI Feedback and Hybrid 

Precoding in FDD mmWave Massive MIMO 

Systems”, Entropy, Vol. 24, 2022. 

[35] X. Bao, W. Feng, J. Zheng, and J. Li, “Deep 

CNN and Equivalent Channel Based Hybrid 

Precoding for mmWave Massive MIMO 

Systems”, IEEE Access, Vol. 8, pp. 19327-

19335, 2020. 

[36] X. Li, Y. J. Huang, W. Heng, and J. Wu, 

“Machine Learning-Inspired Hybrid Precoding 

for mmWave MU-MIMO Systems with 

Domestic Switch Network”, Sensors (Basel, 

Switzerland), Vol. 21, 2021. 

[37] W. Ma, C. Qi, Z. Zhang, and J. Cheng, “Sparse 

Channel Estimation and Hybrid Precoding 

Using Deep Learning for Millimeter Wave 

Massive MIMO”, IEEE Transactions on 

Communications, Vol. 68, pp. 2838-2849, 2020. 

[38] K. M. Attiah, F. Sohrabi, and W. Yu, “Deep 

Learning for Channel Sensing and Hybrid 

Precoding in TDD Massive MIMO OFDM 

Systems”, IEEE Transactions on Wireless 

Communications, 2022. 

[39] Q. Lu, T. Lin, and Y. Zhu, “Channel Estimation 

and Hybrid Precoding for Millimeter Wave 

Communications: A Deep Learning-Based 

Approach”, IEEE Access, Vol. 9, pp. 120924-

120939, 2021. 

[40] I. Kim and J. Choi, “Spatial Wideband Channel 

Estimation for mmWave Massive MIMO 

Systems with Hybrid Architectures and Low-

Resolution ADCs”, IEEE Transactions on 

Wireless Communications, Vol. 20, pp. 4016-

4029, 2021. 

[41] Y. Zhang, X. Dong, and Z. Zhang, “Machine 

Learning-Based Hybrid Precoding with Low-

Resolution Analog Phase Shifters”, IEEE 

Communications Letters, Vol. 25, pp. 186-190, 

2021. 

[42] X. Zhu, A. Koç, R. Morawski, and T. L. Ngoc, 

“A Deep Learning and Geospatial Data-Based 

Channel Estimation Technique for Hybrid 

Massive MIMO Systems”, IEEE Access, Vol. 9, 

pp. 145115-145132, 2021. 

[43] J. Shi, W. Wang, X. Yi, X. Gao, and G. Li, 

“Deep Learning-Based Robust Precoding for 

Massive MIMO”, IEEE Transactions on 

Communications, Vol. 69, pp. 7429-7443, 2021. 

[44] Q. Wang, K. Feng, X. Li, and S. Jin, 

“PrecoderNet: Hybrid Beamforming for 

Millimeter Wave Systems with Deep 

Reinforcement Learning”, IEEE Wireless 

Communications Letters, Vol. 9, pp. 1677-1681, 

2020. 

[45] K. Wei, J. Xu, W. Xu, N. Wang, and D. Chen, 

“Distributed Neural Precoding for Hybrid 

mmWave MIMO Communications with Limited 

Feedback”, IEEE Communications Letters, Vol. 

26, pp. 1568-1572, 2022.  

[46] J. Li, Y. Jiang, and L. Zhao, "Hybrid Precoding 

Design in Multi-User mmWave Massive MIMO 

Systems for BER Minimization", IEEE Wireless 

Communications Letters, 2023.  

 

 


