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Abstract: An efficient task scheduling plays an important role in facilitating the virtual resource in a cloud computing 

environment by minimalizing make span and enhancing the allocation of resources. Requests for resources are treated 

as tasks, and appropriate resources are allocated based on user requirements. But, due to high demand and requests, 

the cloud has difficulty allocating resources. To overcome the issues, this research introduced an optimization-based 

task scheduling approach. The Multi-Objective Prairie Dog Optimization (MOPDO) algorithm is introduced which 

considers the makespan time and the execution time as the major objective while allocating resources in IoT. The 

proposed MOPDOA effectively allocates the resource to the Virtual Machines (VMs) by choosing the host with 

maximized resources. The search mechanism with the help of MOPDO helps to detect a suitable VM for resource 

allocation will be continued. After the process of allotting the resources to VMs, the load balancing process must be 

initiated to schedule the tasks for VMs. When the task count is assigned as 100, the makespan time of MOPDOA is 

12s while Particle Swarm Gray Wolf Optimization (PSGWO) obtains a makespan time of the 20s.  Similarly, for 

different VMs, the proposed approach is 175.45s for execution whereas the existing Improved Multi-Objective Multi-

Verse Optimizer obtains 186.33s to execute for 10 VMs. 

Keywords: Cloud computing, Task scheduling, Multi-objective prairie dog optimization, Make span time, Execution 

time, Load balancing. 

 

 

1. Introduction 

Cloud computing emerged as a revolutionized 

computing technology where the computing 

resources are evaluated globally via the internet. 

Moreover, it offers a set of services and resources 

through Cloud Service Providers (CSP) [1, 2]. The 

term “Cloud Computing” is derived from two unique 

words such as cloud which is related to network and 

computing refers to calculation. So, cloud computing 

is referred to as the process of computing data using 

a computer [3]. The available resources are utilized 

by physically available machines. While scheduling 

the tasks among virtual machines, the load imbalance 

is created due to overutilization and unutilization of 

resources [4].  Containerizing acts as a relevant 

solution to fulfil the needs in a cloud environment [5]. 

In comparison to virtual machines, containerization 

is a cloud-based technology that is becoming more 

and more popular because of its advantages in terms 

of lightweight, scalability, and availability [6].  

Workflows for continuous integration and delivery 

are best suited for containers. To balance resources 

among the virtual machines and to have positive 

feedback in balancing resources, a precise load-

balancing system acts as a key method. In addition, 

the load balancing is maintained by spreading the 

load by allotting the specified load to every virtual 

machine [7, 8]. The resources can be increased in two 
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different ways: vertically by adding additional 

resources to the deployed virtual machines, or 

horizontally by adding new virtual machines. Both 

approaches take more time, have latency problems, 

and could be more expensive [9]. These issues affect 

the processing of the data and create a critical 

situation in maintaining the equalized data 

distribution among the virtual machines. 

The optimized load balancer acts as an important 

component that considers all the aforementioned 

issues by using efficient balancing strategies [10]. In 

general, load balancing is classified into two types 

such as static load balancing and dynamic load 

balancing. In static load balancing, the information is 

obtained in a prior state regarding the characteristics, 

computing nodes, and network. For dynamic load 

balancing, the efficacy of the processor is 

distinguished at the initial stage of the execution 

process [11, 12]. Every service transaction is 

performed based on allocating and scheduling the 

resources. At the time of scheduling the tasks, some 

of the short-time tasks are dismissed due to time 

delay. In the process of task scheduling, the scheduler 

deliberates the task based on resource availability 

[13]. Moreover, the virtual machine must be suitable 

to balance the resources among the hosts which tends 

to diminish the computational cost. The scheduling of 

virtual machines in a big data environment must act 

as an identifier to detect the optimal pairs of virtual 

machines [14]. Therefore, a discrete optimization 

technique should be utilized to overcome the issues 

regarding optimized load balancing [15,16]. This 

research introduced an improved optimization-based 

load balancing technique based on a cloud 

environment for the applications related to the 

allocation of resources and scheduling the tasks. 

The significant findings of this research are, 

1. This research presented an optimization-based 

task scheduling scheme using MOPDOA to 

maintain load balance in a cloud environment. 

2. The proposed MOPDOA is based on multi-

objective functions such as makespan time and 

execution time. These two functionalities are 

used to allocate the resources in the VMs with 

better scalability.   

The remaining research paper is structured as 

follows: Section 2 describes related works and 

Section 3 describes the proposed methodology. The 

results and analysis of this research are described in 

Section 4 and finally, the conclusion of the research 

is described in Section 5. 

 

 

 

2. Related works 

Here, the various research based on task 

scheduling and load balancing in cloud computing 

environments are discussed. 

Mohd Sha Alam Khan and R. Santhosh [17] have 

introduced a hybrid optimization algorithm that is 

comprised of Particle Swarm Optimization (PSO) 

and Gray Wolf Optimization (GWO) referred to as 

PSGWO for an optimistic resource allocation in the 

cloud platform. At the initial stage, the VMs are 

categorized on the basis of Support Vector Machines 

(SVM). The suggested method detects the optimal 

VM and helps in the optimal allocation of resources. 

Moreover, the suggested approach effectively 

minimizes the waiting time and enhances the QoS. 

However, the suggested approach offers diminished 

results when the VMs are placed randomly. 

Sudheer Mangalampalli [18] have introduced a task 

scheduling approach using Cat Swarm Optimization 

(CSO) algorithm. The CSO addresses the makespan, 

time taken for migration, energy consumption, and 

power cost. The task scheduling was performed by 

calculating the priorities at the task level and VM 

level to provide a mapping of tasks for the respective 

VMs. However, the suggested approach was not 

suitable for scheduling tasks based on a real-time 

cloud environment. 

Mohammed Otair [19] have introduced an 

Improved Multi-Objective Multi-Verse Optimizer 

(IMOMVO) to solve the task scheduling problems 

which occur in a cloud environment. The suggested 

approach rectifies the issues related to average 

positioning by improving the position based on the 

best solution. The IMOMVO can perform various 

tasks comprised of different tasks and VM to evaluate 

the ability of the scheduling tasks. However, the 

search space of the proposed approach does not 

consider any fitness functionalities. Mohammed I. 

Alghamdi [20] have introduced Artificial Neural 

Network Binary Particle Swarm Optimization (ANN-

BPSO) to perform load balancing and task scheduling 

in the cloud computing environment. The ANN-

BPSO allots reference for each particle and helps to 

accelerate the search for an optimal solution for the 

allocation of resources and scheduling the tasks. 

Moreover, the suggested approach updates the 

position of every individual particle and helps to 

prohibit the overload or underload of VMs. However, 

the resource allocation using ANN-BPSO does not 

consider energy consumption which is an essential 

parameter that needs to be considered while 

allocating the resources. 

Chirag Chandrasekhar [21] have introduced a 

Hybrid Weighted Ant Colony Optimization 



Received:  January 9, 2024.     Revised: February 8, 2024.                                                                                               587 

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024           DOI: 10.22266/ijies2024.0430.47 

 

(HWACO) algorithm to perform ideal task 

scheduling. The suggested HWACO considered two 

functions such as the Construct-ANT solution and the 

Update pheromone function to schedule the tasks 

with better makespan and parameters based on cost. 

The HWACO algorithm achieved integration in 

minimal time but the algorithm lacked its efficiency 

when the task count was enhanced. Mehak Sharma 

[22] have introduced an optimistic approach for 

scheduling tasks in a cloud computing environment. 

The suggested approach plays an effective role in 

positioning the VMs and helps to enhance the QoS 

parameters. Moreover, the suggested approach 

minimizes the configuration overhead in a cloud 

environment through effective scheduling and 

improvising the QoS with fewer hosts. 

The results obtained from the overall methods 

discussed in the related works show that the existing 

approaches had taken higher makespan time and 

execution time while allocating the resources over a 

cloud environment. So, the proposed optimization 

approach effectively balances the load and allocates 

resources to the cloud environment. 

3. Optimization-based load balancing and 

task scheduling in a cloud environment 

The cloud service providers have designed the 

cloud environment based on Virtual Machines (VMs) 

and Physical Machines (PMs), which also rely as a 

boundary for public accessibility. The user executes 

tasks based on their requirement and it will be 

aggregated by the resource manager to retain the 

records effectively. Moreover, the tasks which are 

performed based on the user’s request are known as 

system loads. Following this, a task scheduler is used 

to schedule tasks for the VMs by maintaining the load 

balance by allocation of resources. The task 

scheduling is performed after the scheduler receives 

the task from request manager. The process of 

scheduling the task is improvised by obtaining the 

exact location of VMs along with the user-requested 

tasks. The process involved in task scheduling helps 

to minimize the migration cost, utilization of load, 

time, and computational cost. The proposed task 

scheduling approach is effective in balancing the 

loads to the virtual machines and scheduling the tasks. 

The incoming tasks from the user get dispersed 

among the cloud and the task scheduling is performed 

with load balance.  The entire process involved in 

task scheduling is diagrammatically represented in 

Fig. 1 as follows: 

The list of tasks that need to be executed is 

represented as 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚}  and the list of 

virtual machines is represented as 𝑉 = 

 

 
Figure. 1 The architecture of the proposed MOPDOA 

task scheduler for allocation of resources in a cloud 

environment 

 
{𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑛} . Every individual VM can 

process and execute the task that was assigned to it. 

The main objective of this research is to build an 

effective task scheduler algorithm for the allocation 

of resources and maintain the load balance. 

3.1 Allocating resources to Virtual Machines 

(VMs) 

The problem related to the allocation of resources 

is framed as an optimization problem (𝑃) which is 

represented as Eq. (1). 

 

𝑃 = 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (
𝑃𝑗
𝐶𝑃𝑈

𝑉𝑀𝑖

𝐶𝑃𝑈 +
𝑃𝑗
𝑀𝐸𝑀

𝑉𝑀𝑖

𝑀𝐸𝑀 +
𝑃𝑗
𝑏𝑤

𝑉𝑀𝑖

𝑏𝑤) (1) 

 

Where the variables that are required in allocating 

the resources in the VM model are represented as 

𝑉𝑀𝑖

𝐶𝑃𝑈 (Variable for processing unit),  

𝑉𝑀𝑖

𝑀𝐸𝑀(Variable for memory),  and 𝑉𝑀𝑖

𝑏𝑤 (Variable 

for bandwidth). The variables used by the physical 

machines are represented as 𝑃𝑗
𝐶𝑃𝑈  (Variable for 

processing unit), 𝑃𝑗
𝑀𝐸𝑀(Variable for memory),

𝑃𝑗
𝑏𝑤(Variable for bandwidth) . Since the host 

allows additional resources based on the limit of VMs, 

the proposed model worked in detecting a host with 

the highest units based on the Eq. (2) to Eq. (5) as 

follows: 
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∀𝑖∑ 𝑦𝑖𝑗 = 1
𝑚

𝑗=1
(2) 

 

∀𝑖∑ 𝑦𝑖𝑗𝑉𝑀𝑖

𝐶𝑃𝑈 ≤ 𝑃𝑗
𝐶𝑃𝑈

𝑛

𝑗=1
(3) 

 

∀𝑖∑ 𝑦𝑖𝑗𝑉𝑀𝑖

𝑀𝐸𝑀 ≤ 𝑃𝑗
𝑀𝐸𝑀

𝑛

𝑗=1
(4) 

 

∀𝑖∑ 𝑦𝑖𝑗𝑉𝑀𝑖

𝑏𝑤 ≤ 𝑃𝑗
𝑏𝑤

𝑛

𝑗=1
(5) 

 

The proposed method focuses on detecting the 

host with a maximal count of available resources. 

From Eq. (2) to Eq. (5), the count of tasks and the 

count of VMs are represented as 𝑀 and 𝑛 

respectively. Moreover, 𝑦𝑖𝑗  is known as a binary 

variable which shows that the VMs can be placed on 

the 𝑗th layer of the physical machine. Eq. (2) shows 

that every individual VM is allotted to one physical 

machine. Eq. (3), Eq. (4), and Eq. (5) verify the 

available resources with the existing ones which 

include CPU, memory and the bandwidth of 𝑗th layer 

of the physical machine. This bandwidth of the 𝑗th 

layer is capable of being selected as a replacement for 

𝑖th VMs. If the conditions defined in Eq. (2) to Eq. 

(5) are satisfied, then the VMs will be positioned on 

the required physical machine. 

3.2 Task Scheduling to VMs 

Task scheduling is defined as a process of 

mapping tasks to suitable resources to optimize their 

usage. Tasks are allotted to the VM which has more 

effort and less communication delay. The VM host 

on the physical machines is used to allocate the 

resources and gets isolated from the varying users of 

cloud infrastructure. The provider follows up on the 

tasks and confirms the effective Quality of Service 

(QoS) based on the user requirements. In the stage of 

task scheduling, the response time of suggested 

approach is minimized. The following Eq. (6) to Eq. 

(8) are the conditions that are satisfied by the 

proposed method at the time of task scheduling.  

 

∀𝑖∑ 𝑇𝑖𝑗 = 1
𝑚

𝑗=1
(6) 

 

𝐹𝑖 ≤ 𝐴𝑖 + 𝐷𝑖 (7) 
 

𝑒𝑡𝑖𝑗 + 𝐷𝑖 ≤ 𝑐𝑡𝑖𝑗 (8) 
 

Where 𝑇𝑖𝑗  is denoted as the task 𝑖  which is 

allotted for 𝑗 the virtual machine, estimated period to 

accomplish task is denoted as 𝐹𝑖 and 𝐴𝑖 denotes time 

of arrival of the 𝑖𝑡ℎ task. Moreover, the time of the 

deadline of the 𝑖𝑡ℎ the task is denoted as 𝐷𝑖. The time 

of execution and the time of completion of 𝑖th task in 

𝑗th VM is represented as 𝑒𝑡𝑖𝑗  and 𝑐𝑡𝑖𝑗  respectively. 

Eq. (6) denotes that every individual task should be 

allotted to one VM only and Eq. (7) is utilized to 

verify the time of deadline and the time of executing 

the 𝑖th task. The final Eq. (8) shows the period taken 

to accomplish the 𝑖th task on 𝑗th VM in a minimal 

time by considering the deadline. The evaluation of 

runtime and the work completion is acquired based 

on Eq. (9) and Eq. (10) mentioned as follows: 

 

𝑒𝑡𝑖𝑗 =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘

𝑀𝑖𝑝𝑠 𝑜𝑓 𝑉𝑚𝑗
× 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

(9) 

 
𝑐𝑡𝑖𝑗 = etij + 𝑤𝑡𝑖 (10) 

 

Where Vmj
 represents the 𝑗th VM and the time of 

waiting to accomplish the 𝑖th task is denoted as 𝑤𝑡𝑖. 

3.3 Evaluation of load status 

The load status of the VMs is computed based on 

the provided load which takes place in the prior time 

of scheduling and assigning the task to the preferred 

machine. The VM load is based on parameters such 

as processor load, memory usage, and bandwidth. 

Moreover, these parameters take the significant 

responsibility to pre-determine the load state of the 

VM. Eq. (11) shows the mathematical expression for 

the evaluation of load status.  

 

𝐿 = {𝐿1, 𝐿2, 𝐿3} (11) 
 

Where 𝐿1, 𝐿2 and 𝐿3  represents CPU usage, 

memory space and bandwidth respectively. The 

evaluation of 𝐿1 , 𝐿2  and 𝐿3  takes place based on 

equation (12) as follows:   

𝐿1 = CPU usage of
𝑉𝑀𝑖

𝑃𝑗
𝐶𝑃𝑈

𝐿2=Memory usage of
𝑉𝑀𝑖

𝑃𝑗
𝑀𝐸𝑀

𝐿3=Bandwidth usage of 𝑉𝑀𝑖 }
 
 

 
 

(12) 

 

𝐿𝑖(𝑡) = ∑
𝐿𝑗

𝑛
𝑛
𝑗=1   is the degree of the load and the 

conditions to be satisfied are represented in Eq. (13) 

Eq. (14).  

 

{
idle, 𝐿𝑖(𝑡) = 𝐿𝑖

𝑖𝑑𝑙𝑒(𝑡) = 0 

under load,  𝐿𝑖
𝑖𝑑𝑙𝑒(𝑡) < 𝐿𝑖(𝑡) < 𝐿𝑖

𝑚𝑖𝑛(𝑡)
(13) 



Received:  January 9, 2024.     Revised: February 8, 2024.                                                                                               589 

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024           DOI: 10.22266/ijies2024.0430.47 

 

 

{
normal, 𝐿𝑖

𝑚𝑖𝑛(𝑡) < 𝐿𝑖(𝑡) < 𝐿𝑖
𝑚𝑎𝑥(𝑡)

overload, 𝐿𝑖(𝑡) > 𝐿𝑖
𝑚𝑎𝑥(𝑡)

(14) 

 

Where the maximal and minimal load of the host 

is represented as 𝐿𝑖
𝑚𝑎𝑥(𝑡) and 𝐿𝑖

𝑚𝑖𝑛(𝑡) respectively, 

the status of the load is at the final stage and is 

considered as the final decision.  

3.4 Overview of PDOA 

Generally, the load balancing is performed by the 

optimization models which detect an optimistic 

solution to balance the load and allocate the tasks to 

the respective VMs. In this research, MOPDOA is 

used to allocate resources considering the make span 

and the execution time while allocating the resources. 

The proposed algorithm is obtained from PDOA [23] 

to minimize the make span and the execution time 

while allocating the resources. The prairie dog’s 

population relies as a search agent in d-dimensional 

vector space to evaluate an individual’s position. The 

activities based on foraging and burrow building 

come under the stage of exploration and they produce 

a squeaky sound to designate the occurrence of food 

which is under the phase of exploitation.  

3.4.1. Exploration stage 

In the stage of exploration, the prairie dogs 

undergo two processes such as foraging and the 

construction of burrows which are represented in Eq. 

(15) and Eq. (16) respectively.  

 
𝑃𝐷𝑖+1.𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 − 𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝜌 −

𝐶𝑃𝐷𝑖,𝑗 × 𝐿𝑒𝑣𝑦(𝑛)∀𝑖𝑡𝑒𝑟 <
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
(15)

 

 

Where 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗  is the global best solution and 

best solution is denoted as 𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗 . The food 

source is 𝜌 and randomized outcome is denoted as 

𝐶𝑃𝐷𝑖,𝑗. The position will be based on constructing a 

burrow which is denoted in Eq. (16). 

 
𝑃𝐷𝑖+1.𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝑟𝑃𝐷 × 𝐷𝑆 ×

𝐿𝑒𝑣𝑦(𝑛)∀
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
≤ 𝑖𝑡𝑒𝑟 <

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
2

(16)
 

 

Where the random solution is denoted as 𝑟𝑃𝐷 

and the digging strength is denoted as 𝐷𝑆. 𝐿𝑒𝑣𝑦(𝑛) 
is the Levy distribution function in the exploration 

stage.  

3.4.2. Exploitation stage 

The communication ability of prairie dogs has a 

major role in sustaining food requirements and 

safeguarding them from enemies. The two strategies 

followed by them are denoted in Eq. (17) and Eq. (18). 

 
𝑃𝐷𝑖+1.𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 − 𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝜀 −

𝐶𝑃𝐷𝑖,𝑗 × 𝑟𝑎𝑛𝑑 ∀
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

2
≤ 𝑖𝑡𝑒𝑟 < 3

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
4

(17)
 

 
𝑃𝐷𝑖+1.𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝑃𝐸 × 𝑟

𝑎𝑛𝑑 ∀ 3
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
≤ 𝑖𝑡𝑒𝑟 < 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 (18)

 

 

Where 𝜀  is the quality of the food source and 

random number in the range 0 to 1 is denoted as 𝑟𝑎𝑛𝑑 

and predator effect is 𝑃𝐸 that is represented in Eq. 

(19). 

 

𝑃𝐸 = 1.5 × (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)
(2

𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)

(19) 

 

Where iteration in current state and best iteration 

is denoted as 𝑖𝑡𝑒𝑟 and 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 correspondingly. 

3.5 Load balancing and task scheduling using 

MOPDOA 

After acquiring the information related to load 

status, the load balancing is performed. In this 

research, load balancing is performed by resource 

allocation to VM and task scheduling. The 

MOPDOA considered the multiobjective functions 

such as makespan and the execution time rather than 

the traditional fitness function in PDOA. The 

proposed MOPDOA effectively allocates the 

resource to the VMs by choosing the host with 

maximized resources which should satisfy the 

conditions mentioned previously in equations (1-4). 

Whenever the computed VM has enough number of 

resources, these resources are allotted to the target 

VMs. Otherwise, the search mechanism to detect a 

suitable VM for resource allocation will be continued. 

After the process of allotting the resources to VMs, 

the load balancing process must be initiated to 

schedule the tasks for VMs. The scheduler selects a 

VM to proceed the values based on execution and 

completion time which was stored in the memory to 

make decisions accordingly. The objective function 

of the proposed MOPDOA is updated by considering 

the fitness like make span and execution time which 

is mathematically represented in Eq. (20) as follows: 
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𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =

∑𝑇𝑖

𝑛

𝑖=1

(𝛼.𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 + 𝛽. 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒) (20)
 

 

Where the task which is selected from the list of 

tasks is represented as 𝑇𝑖 and value of 𝑖 varies from 

[1-n] (𝑛 denotes total count of tasks). The make span 

constant is represented as 𝛼 and the constant which is 

related to execution time is represented as 𝛽.  The 

steps involved in the process of scheduling the tasks 

are listed as follows: 

i. The request from the user is transmitted to the 

cloud server and the evaluation is done based on 

various VMs. The tasks are stored based on time 

matrices on execution and completion period. 

ii. The set of requests is received and the set with 

the minimum deadline is selected. Moreover, the 

VMs are selected based on execution and 

completion time matrices and the model’s 

constraints.  

iii. The status of the load for the selected machine is 

computed, if the load status of the VM is in the 

abnormal state then the search is continued to 

find a better machine. The overall process 

involved in task scheduling using the proposed 

MOPDOA is represented in Fig. 2 as follows: 

 

Figure. 2 Flowchart for the process involved in resource 

allocation and task scheduling using MOPDOA 

 

4. Results and analysis 

Here, the experimental outcome of the suggested 

framework is evaluated based on efficiency in 

makespan, execution time, and fitness. The proposed 

approach is implemented on a VM with 10GB 

Random Access Memory, a 2.4 processor, 36GB 

virtual storage, and Windows 10 operating system. 

The makespan and the execution time are evaluated 

using the Eq. (21) and Eq. (22) respectively. 

 

𝑀𝑎𝑘𝑒 𝑠𝑝𝑎𝑛 =∑∑𝐸𝑖𝑗𝑋𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

(21) 

 

Where the makespan denotes the waiting time 

and the completion time of the tasks. The execution 

time of the task 𝑖 on the VM is represented as 𝐸𝑖𝑗 and 

the Boolean representation in VM is represented in 

Eq. (23) 𝑋𝑖𝑗 . 

 
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =

∑𝐸𝑛𝑑 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 −
𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 (𝑡)

𝑛

𝑚

𝑡=0

(23) 

 

Where the number of tasks executed in the VM is 

represented as 𝑛. 

4.1. Performance analysis 

Here, efficiency of MOPDOA is assessed on the 

basis of makespan time, execution time, and based on 

fitness functions. The effectiveness of MOPDOA is 

assessed with existing metaheuristic optimization 

techniques such as the Particle Swarm Optimization 

algorithm (PSO), Grey Wolf Optimization algorithm 

(GWO), Whale Optimization Algorithm(WOA), and 

Grasshopper Optimization Algorithm (GOA). The 

efficacy of MOPDOA is assessed for different task 

count ranges from 100 to 1000. Table 1 exhibits the 

experimental outcome based on makespan time. 

The outcome through Table 1 exhibits MOPDOA 

has taken minimum makespan time when evaluated 

with other existing optimization techniques. For 

example, makespan time of the proposed MOPDOA 

for 100 tasks is 12s whereas the existing optimization 

techniques like PSO, GWO, WOA, and GOA have 

the makespan time of 37s, 33s, 28s, and 23s 

respectively. The optimal outcome of MOPDOA is 

due to its ability to maintain balance among 

exploration and exploitation that assists in 

maintaining load balance while scheduling the tasks 

to VMs. Fig. 3 presents the graph for comparison of 

makespan time for different task counts. 
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Table 1. Evaluation of makespan time 

Methods  Make span time (sec) 

100 200 300 400 500 600 700 800 900 1000 

PSO 37 76 132 158 189 213 249 281 368 392 

GWO 33 64 121 142 187 204 240 274 359 387 

WOA 28 60 117 138 175 198 235 277 341 381 

GOA 23 54 108 121 172 192 221 260 329 377 

MOPDOA 12 48 93 115 168 188 210 255 300 370 

 

 
Figure. 3 Graphical representation for comparison of makespan time 

 

Table 2.  Evaluation of execution time to allocate resources 

Methods  Execution time (sec) 

100 200 300 400 500 600 700 800 900 1000 

PSO 1450 1600 1700 1750 1800 1900 2200 2600 3400 3800 

GWO 1200 1350 1500 1400 1650 1750 2150 2550 3250 3650 

WOA 1050 1300 1250 1350 1500 1700 2000 2500 3150 3400 

GOA 900 1150 1100 1150 1400 1600 1900 2450 3100 3150 

MOPDOA 750 900 950 1100 1300 1550 1800 2400 2950 3200 

 

 
Figure. 4 Graphical representation for comparison of execution time 

 

Secondly, the efficiency of MOPDOA is assessed 

on the basis of execution time. Table 2 show the time 

taken by proposed optimization approach to 

implement the tasks when compared with existing 

optimization techniques. 

Table 2 and Fig. 4 exhibits that MOPDOA took 

minimal execution time when it is compared with the 
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existing optimization algorithm. For a task count of 

1000, the proposed approach took 3200 seconds 

whereas the existing PSO, GWO, WOA, and GOA  

had taken execution times of 3800s, 3650s, 3400s 

and 3150s respectively. The better result of 

MOPDOA is due to the minimal response time which 

helps to execute the tasks to the VM in minimal time. 

4.2. Comparative analysis 

Here, the efficiency of MOPDOA is assessed on 

the basis of makespan time and the execution time for 

different task counts. The performance of MOPDOA 

is assessed with PSGWO [17], IMOMVO [19] and 

ANN-BPSO [20]. The simulation setup of the 

proposed approach is based on three cases. The 

PSGWO is evaluated based on case 1, the IMOMVO 

is evaluated based on case 2 and ANN-BPSO is 

evaluated based on case 3.  

Case 1: There are 10 data centers considered for 

evaluation for task count from 100-1000. The number 

of hosts and total VMs are 20 and 100 respectively. 

The evaluation of results based on case 1 is presented 

in table 3. 

Case 2: The evaluation is performed for VMs 

from 10-60 and the number of cores from each host 

is 2. When VM is 10, the number of tasks is 100 and 

vice versa. The evaluation of results based on case 2 

is presented in table 4.  

Case 3: The evaluation is performed from task 

count from 1000-5000. The cloud sim simulator is 

used to assess the proposed method’s efficiency and 

150 VMs are spread in an even manner across 15 

hosts. The evaluation of results based on case 3 is 

presented in table 5.      

In Table 3, the performance of the proposed 

MOPDOA is evaluated with PSGWO for different 

task counts ranging from 100 to 1000. 

Secondly, the efficiency of MOPDOA is assessed 

with IMOMVO based on execution time and 

throughput for variable number of VMs. Table 4 

presents the outcome achieved while evaluating 

MOPDOA with IMOMVO. Thirdly, the performance 

is evaluated based on MOPDOA’s efficiency with 

ANN-BPSO based on average resource utilization 

and make span time. The table 5 presents the results 

achieved while evaluating MOPDOA with ANN-

BPSO.The experimental outcome through Table 3 

and Table 4 exhibits MOPDOA acquires better 

results in terms of make span and execution time for 

different numbers of tasks and different numbers of 

VMs. When the task count is assigned as 100, the 

make span time of MOPDOA is 12 s whereas 

PSGWO obtains a make span time of 20 s. Similarly, 

for different VMs, the proposed approach is 175.45s 

for execution whereas the existing IMOMVO obtains 

186.33s to execute for 10 VMs. The experimental 

results from Table 5 shows that MPDOA performs 

better in terms of average resource utilization and 

make span time. The average resource utilization of 

MOPDOA for 1000 tasks is 98.21% which is 

comparably higher than the existing ANN-BPSO  

 
Table 3. Comparison of makespan and execution time based on number of tasks 

Methods Metrics 

(sec) 

Number of tasks 

100 200 300 400 500 600 700 800 900 1000 

PSGWO [17] Make span 

time 

20 60  100 130 180 200 230 270 310 390 

MOPDOA 12 48 93 115 168 188 210 255 300 370 

PSGWO [17] Execution 

time 

900 1000 1100 1300 1700 1850 2400 3000 3300 3900 

MOPDOA 750 900 950 1100 1300 1550 1800 2400 2950 3200 

 

Table 4. Comparison of execution time based on number of VMs 

Methods Metrics 

 

Number of VMs 

10 20 30 40 50 60 

IMOMVO [19] Execution time 

(sec) 

186.33 385.34 502.56 743.11 851.89 934.92 

MOPDOA 175.45 370.67 400.37 690.87 802.19 883.58 

IMOMVO [19] Throughput 

(Kbps) 

0.19 0.43 0.441 0.525 0.78 0.797 

MOPDOA 0.23 0.46 0.47 0.54 0.81 0.83 

 

Table 5. Comparison of average resource utilization and make span time 

Methods Methods Number of tasks 

1000 2000 3000 4000 5000 

ANN-BPSO [20] Average resource 

utilization (%) 

96.84 95.21 94.54 94.09 93.56 

MOPDOA 98.21 97.63 95.98 95.13 94.89 

ANN-BPSO [20] Make span time 

(Sec) 

90 96 100 120 150 

MODPOA 86 92 97 108 135 
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Notation list 

Parameter Description 

𝑉𝑀𝑖
𝐶𝑃𝑈 Variable for processing unit 

𝑉𝑀𝑖
𝑀𝐸𝑀 Variable for memory 

𝑉𝑀𝑖
𝑏𝑤 Variable for bandwidth 

𝑃𝑗
𝐶𝑃𝑈 Physical machine for processing unit 

𝑃𝑗
𝑀𝐸𝑀  Physical machine for memory 

𝑃𝑗
𝑏𝑤 Physical machine for bandwidth 

𝑀 Number of tasks 

𝑛 Number of VM 

𝑦𝑖𝑗  Binary variable 

𝑇𝑖𝑗  The task 𝑖  which is allotted for 𝑗  the 

virtual machine 

𝐹𝑖 Estimated period to complete the task 

𝐴𝑖 The time of arrival of the 𝑖𝑡ℎ task 

𝐷𝑖  The time of the deadline of the 𝑖𝑡ℎ  task  

𝑒𝑡𝑖𝑗 Time of execution 

𝑐𝑡𝑖𝑗 Time of completion 

𝐿𝑖
𝑚𝑎𝑥(𝑡) Maximal load of the host 

𝐿𝑖
𝑚𝑖𝑛(𝑡) Minimal load of the host 

𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 Global best solution 

𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗 Best solution among the population 

𝜌 Source of food 

𝐶𝑃𝐷𝑖,𝑗 Randomized cumulative outcome 

𝑟𝑃𝐷 Random solution  

𝐷𝑆 Digging strength 

𝐿𝑒𝑣𝑦(𝑛) Levy distribution function 

𝜀 Quality of the food source 

𝑟𝑎𝑛𝑑 Random number in the range 0 to 1 

𝑃𝐸 Predator effect  

𝑖𝑡𝑒𝑟 Iteration in the current state  

𝑀𝑎𝑥𝑖𝑡𝑒𝑟  Maximum iteration 

𝑇𝑖  The task which is selected from the list of 

tasks 

𝛽 The execution time 

𝐸𝑖𝑗  The execution time of the task 𝑖  on the 

VM 

𝑋𝑖𝑗 The Boolean representation in VM 

 

with 96.84% accuracy. The better result of 

MOPDOA is due to the ability in balancing load 

among exploration and exploitation to maintain the 

load balance while scheduling the tasks to VMs. 

5. Conclusion  

This research introduced an optimization-based 

task scheduler that effectively schedule tasks to the 

corresponding VMs with minimal make-span time 

and execution time. The MOPDO prioritizes make 

span time and execution time in resource allocation 

with load balancing and task scheduling. When the 

job count is set to 100, the suggested approach has a 

manufacture span time of 12 s, whereas the existing 

Particle Swarm Gray Wolf Optimization (PSGWO) 

has a make span time of 20 s.  Similarly, the 

suggested technique takes 175.45s to run for different 

VMs, whereas the existing Improved Multi-

Objective Multi-Verse Optimizer takes 186.33s to 

perform for 10 VMs. The better result of MOPDOA 

is due to the ability in balancing load among 

exploration and exploitation to maintain the load 

balance while scheduling the tasks to VMs that helps 

in balancing the load and aids in better allocation of 

resources. In the future, hybridized optimization 

approaches can be utilized to minimize the makespan 

time and execution time.  
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