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Abstract: Breast ultrasound is an important technology for detecting breast lesions, but it faces a challenge in the form 

of speckle noise that negatively affects the quality of images. Effective methods are needed to eliminate this noise 

without compromising the image's fine edges and important features. In this work, we present a cutting-edge 

methodology based on a deep understanding of the dynamics of breast ultrasound images and the challenges of speckle 

noise. The method uses two separate stages of processing with two nonlinear filters. The first filter, the anisotropic 

diffusion filter, smooths out edges and boosts image contrast by lowering noise while keeping the tissue's structure. In 

the second stage, the SRAD filter is applied to remove residual noise and refine the image, increasing its clarity and 

improving the ability to visualize subtle lesions. This improved approach was evaluated using a comprehensive set of 

quantitative indices. The results confirmed the significant performance improvement provided, with the lowest MSE 

value of 0.2 and the highest PSNR of 59.3. Also, it reached the optimal value in the UQI and SSI, which indicates the 

robustness of the method in maintaining the quality of the structural image. The results confirm the value of the 

proposed approach and herald its promising potential for improving medical diagnostic results using breast ultrasound. 

Keywords: Ultrasound images, Speckle noise, Linear filters, Non-linear filters, Anisotropic diffusion, SRAD. 

 

 

1. Introduction 

Women with abnormal mammography results 

often use breast ultrasound imaging as their main 

investigative tool. It is important to conduct a 

thorough breast examination using an ultrasound 

imaging system [1]. Because it is non-invasive, a 

trustworthy diagnosis technique, simple to use, non-

toxic, and inexpensive, ultrasound is becoming 

increasingly important. Unfortunately, speckle noise 

is the main issue with ultrasound imaging [2]. The 

texture of such noise was formerly assumed to give 

important information about the histological 

properties of the tissue area; however, further 

analyses have proven that speckle noise is essentially 

an artifact brought on by system imaging. It reduces 

the contrast and reliability of medical images, making 

it harder to perform various tasks, such as feature 

extraction, segmentation, and registration[3, 4]. 

Moreover, it takes effort and time for doctors to 

separate essential information from noise-corrupted 

images. Speckle is a feature of images created using 

coherent sources; it manifests visually as a random 

granular texture. Ultrasonic waves are an example of 

a wave whose phase remains constant, making them 

ideal for use as a coherent source. Each particle's 

reflected wave will have a phase and amplitude 

directly related to its position. That's why the sum of 

the reflected waves might have a constructive or 

destructive interaction. When an irregular surface 

reflects a wave, the image is damaged by appearing 

speckled,’ which is speckle noise. Speckle artifact is 

a significant contributor to image deterioration and 

contrast loss. It makes lesion identification more 

challenging. Consequently, speckle reduction filters 

are essential for boosting image quality and 

facilitating the detection of lesions. While 

suppressing speckle noise, preserving image borders 

and fine details is essential. A breast ultrasonography 

lesion is defined by various characteristics, including 

texture, shape, and boundary; preserving edges and 

details will enhance diagnostic accuracy [5]. In a 
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review of previous studies, we find multiple attempts 

to address this problem . In 2019, an algorithm 

combining a Savitzky-Golay smoothing (SGS) filter 

and an SRAD filter was proposed. To reduce speckle 

noise and preserve edges. Experimental results show 

that the proposed algorithm outperforms traditional 

methods in noise reduction and edge preservation. 

Key challenges include computational complexity 

and the need to precisely define filter parameters to 

ensure optimal performance [6].  In 2020, a new 

method for filtering speckle noise in medical images 

was proposed. This method uses a phase-based 

measure (PAS) to detect and filter various edges of 

the image, in addition to reducing speckle noise. The 

main innovation in this study is the integration of 

fractional azeotropic dispersion and total diversity 

into a single framework, providing a significant 

performance improvement in terms of noise 

reduction and preservation of image details. However, 

this method is complex to apply due to its use of 

advanced techniques such as fractional total contrast 

and phase analysis [7]. In a 2022 study, a comparative 

analysis of wavelet conversion systems in ultrasound 

image denoising was done. This analysis focused on 

the effectiveness of wave conversion systems using 

real ultrasound images as well as artificial images 

contaminated with three types of noise. The study 

found that the effectiveness of filtering is highly 

dependent on the settings of the specific waveform 

conversion system, the type of ultrasound data, and 

the noise present. The results indicated that selecting 

appropriate waveform conversion settings is essential 

to obtain high image quality. A weakness of this 

study is the complexity associated with selecting and 

adjusting the appropriate waveform conversion 

settings for each specific case, which requires skill 

and experience to achieve the best results [8]. In 2023, 

a new approach to reduce point noise in medical 

ultrasound images using Cyclically Consistent 

Adversarial Neural Network (CycleGAN) was 

presented. This method involves mode transfer 

between the noisy data domain and the noise-free 

data domain to form a global bidirectional mapping. 

This model uses noise images and noise-free images 

as input, allowing outstanding results in noise 

reduction while preserving details. However, the 

study faces some challenges such as the possibility of 

instability in training and difficulty in dealing with 

severe noise, which may affect the accuracy of the 

results in some cases [9]. Finally, in 2023, an 

advanced framework for ultrasound image 

enhancement with an improved hybrid search 

algorithm and a new kinematic clustering processing 

chain is presented. This approach uses pre-position 

frames generated by the specialist before selecting 

the required diagnostic frame. These frameworks are 

applied to the improved modified three-step search 

(O-MTSS) algorithm to improve the final processed 

framework. The results showed significant 

improvement in noise reduction while preserving fine 

edges and details with good computation time for 

real-time scanning. However, some challenges were 

identified, such as the possibility of an error in the 

first step in the algorithm, which could lead to 

following a wrong path, and distortion of correlations 

between neighboring pixels. In some of the 

techniques used, this leads to poor performance with 

images that contain significant noise [10]. These 

results highlight the importance of continuous review 

and improvement of the methods used in processing 

ultrasound images . 

In the field of medical image processing, 

traditional methods such as linear and nonlinear 

filters face major challenges in the need for a balance 

between image resolution and noise removal 

efficiency. Linear filters, although fast, fall short in 

preserving fine details and fail to deal with speckle 

noise effectively. On the other hand, although 

nonlinear filters are able to preserve edges and details, 

they have difficulties in handling high noise such as 

speckle noise [11]. To address these challenges, in 

this paper we propose to combine an anisotropic 

diffusion filter, which efficiently handles edges and 

fine details, but may struggle in the face of dense 

speckle noise, with an SRAD filter, which has a high 

ability to reduce noise including speckle noise but 

may cause Some loss of fine detail. By combining 

these two filters, we aim to create a balance that 

combines effectiveness in removing speckle noise 

while maintaining image quality and resolution. This 

approach seeks to achieve significant progress in the 

field of medical image processing, especially in 

breast ultrasound applications, where high accuracy 

and processing speed are urgently needed to improve 

diagnostic results.  

Following is the summary of the paper’s content. 

Several filters for reducing speckle noise and 

proposed model are discussed in Section 2. The 

Reduction Filters Evaluation Metric is described in 

Section 3. Section 4 presents the implementation and 

quantitative assessment findings. In Section 5, the 

study’s findings are addressed. 

2. Speckle reduction filters 

Images often include different types of noise. 

Numerous operations, such as image acquisition, 

conversion, and compression, may create noise. 

Since there are several sorts of noise, it is necessary 

to give various solutions. Because the brain, heart, 
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and other organs display temporal motion, speckle 

noise includes high-frequency components. Installing 

a low-pass filter is necessary to eliminate high-

frequency noise. Speckle noise was taken out of 

breast ultrasound (BUS) images using the following 

linear and non-linear filters. 

2.1 Linear speckle reduction filters 

The majority of published solutions for filtering 

speckle reduction employ linear filtering, which is 

based on local statistics. Their operating concept may 

be summarized by a weighted average computation 

using subregion statistics to estimate statistical 

measures across distinct pixel windows ranging from 

[3 × 3] to [15 × 15] [12]. Statistical adaptive filters 

are simply smoothing filters constructed such that 

areas of an image that closely resemble the speckle 

statistics are replaced with a local mean value, whilst 

regions with characteristics that are least similar to 

speckle are left untouched. Using the following 

formula, the output of the filter is calculated: 

 

𝑓 = 𝑊̅ + 𝑘(𝑊 − 𝑊̅)                                         (1) 

 

where 𝑘  is the adaptive filter coefficient, which is 

determined based on local statistics, and the mean 

value within the filter window is represented by the 

symbol 𝑊̅ . 

The average intensity of the mask is combined 

linearly with each neighborhood's center pixel 

intensity to create an image via the Lee filter. Local 

statistics based on a multiplicative speckle model are 

used in this strategy to conserve data. This filter 

employs the variance value. Smoothing is used when 

the resulting variation is slight and is not advised 

when the variance is large. Since image information 

may be maintained in low and high contrast, the filter 

has an adaptable character [13]. The mathematical 

model for the Lee filter is as shown: 

 

𝐼𝑚𝑔(𝑥, 𝑦) = 𝐼𝑚 + 𝑊 × (𝐶𝑃 − 𝐼𝑚)                 (2) 

 

where 𝑊  is the filter window, 𝐼𝑚  is the mean 

intensity of the filter window, 𝐼𝑚𝑔 is the pixel value 

after filtering, 𝐶𝑃 is the center pixel,  

 

𝑊 = 𝛿2(𝛿2 + 𝜀2),                                           (3) 

 

where 𝛿2 is the variance of the pixel specified as, and 

𝜀 is the additive noise variance. 

 

𝛿2 =
1

𝑊
∑ (𝑋𝑖)2,𝑊−1

𝑖=0                                    (4) 

 

where 𝑋𝑖 is the pixel value at 𝑖, and 𝑊 is the size of 

the window. The Lee filter is excellent at preserving 

fine details while reducing noise in images, especially 

in low-contrast areas. However, it may face 

challenges in high-contrast areas, where it performs 

less effectively at reducing noise. [14]. 

The Frost filter provides a computationally 

efficient adaptive filter approach to decrease speckle 

noise in the spatial domain. This filter preserves the 

important edge properties of the image. It is a 

minimum mean square error (MSE) convolutional 

filter for speckle removal. The Frost filter is a 

circularly symmetric exponentially damped filter that 

employs local statistics inside individual filter 

windows. The pixel being filtered is replaced with a 

value based on the filter's center distance, damping 

factor, and local variance . For the Frost filter, a 

damping factor is necessary. The value of the 

Damping Factor measures exponential damping. The 

lower the value, the better the filter's performance and 

smoothness. When the Frost filter is used to de-

noised images, the edges become more distinct [15]. 

It is described as: 

 

𝑁 = ∑ 𝑟𝜗 𝑒−𝜗|𝑑|
𝑚×𝑚                                         (5) 

 

where, 𝑟  is the filter parameter, 𝜗 = (
4

𝑚𝜎́2) (
𝜎2

𝐼2 ), 𝜗 

describes the location of the pixel after processing, 𝑚 

shows a moving kernel, 𝜎 represents values for local 

variance and 𝜎́  represents image coefficient of 

variation. 𝐼  definition of local mean and |𝑑|  is the 

measurement of the distance from the pixel 𝜗.  Frost 

filter effectively preserves edge characteristics and 

increases image clarity. This filter works in a way that 

reduces noise while maintaining image quality, but it 

may be less effective at dealing with high-frequency 

noise[16]. 

Kuan filter is a local minimum MSE linear filter 

subject to multiplicative noise. Even though the 

signal model assumptions and derivations vary, the 

formulations of the Kaun and Lee filters are identical. 

This filter ensures consistency between the averages 

of comparable areas and detects the presence of edges 

and points. This stability is dependent on the moving 

window that contains the variation figure. It is far 

more sophisticated than the Lee filter because it does 

not use approximation. It transforms the 

multiplicative speckle model into the linear additive 

form. The expression for the weighted function W of 

the Kuan filter: 

 

𝑊 =
(1−

𝐶𝑢
𝐶𝑖

)

(1+𝐶𝑢)
                                                        (6) 
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where, 𝐶𝑢= coefficient of estimated noise variation, 

𝐶𝑢 = √
1

𝐸𝑁𝐿
,  𝐸𝑁𝐿 =  equivalent noise looks, 𝐶𝑖 = 

image variation coefficient, 𝐶𝑖 =
𝑆

𝑚
 , 𝑆 =  standard 

deviation inside the window filter. The Kuan filter 

efficiently detects edges and spots, which contributes 

to improving image quality. This filter stands out in 

areas of low to moderate noise, but its effectiveness 

may be affected by the severity of the noise in the 

image [14]. 

2.2 Non-linear speckle reduction filters 

To remove noise from an image, non-linear 

filtering uses a linear scaling of pixel values and non-

linear actions on neighboring pixels. The most 

homogenous region around each image pixel is the 

basis for several of the non-linear filters . 

Perona and Malik introduced an anisotropic (PM) 

model for image augmentation and denoising based 

on a partial differential equation (PDE). PM improves 

edges by restricting diffusion along edges and 

promoting isotropic diffusion inside homogenous 

regions and smooths out images  [17]. The 

mathematical description of this diffusion is shown: 

 
𝜕𝑓(𝑡)

𝜕𝑡
= 𝑑𝑖𝑣[𝐶(‖∇𝑓(𝑡)‖ × 𝛻𝑓(𝑡))],  

𝑓(𝑡 = 0) = 𝑓                                                          (7) 

 

where the divergence operator is div, (‖∇𝑓(𝑡)‖) is 

the image 𝑓(𝑡)  gradient magnitude, 𝐶(‖∇𝑓(𝑡)‖)  is 

the diffusivity function or the diffusion coefficient 

and 𝑓  is the original image. 𝐶(‖∇𝑓(𝑡)‖)  is a non-

negative, monotonic, nonincreasing function in the 

anisotropic diffusion technique over the gradient 

magnitude. Consequently, the diffusion coefficient 

may adaptively regulate the diffusion speed, allowing 

for the differentiation of image edges and the 

reduction of diffusion in edge areas. 

By linearly scaling the gray-level values, the 

image is despeckled. Calculate the average of all 

pixels in a moving window of 5 × 5   pixels whose 

difference between the grey level and intensity (the 

middle pixel) is less than or equal to a specified 

threshold. This filter stands out for improving the 

image by significantly reducing noise and enhancing 

edges. However, it requires careful parameter routing 

to achieve the optimal balance between noise 

reduction and detail preservation [18]. 

Median filtering is a non-linear technique that 

removes “speckle” noise from ultrasound images. It 

assigns each pixel the neighborhood’s median value. 

The median is calculated by arranging all of the 

nearby pixel values in numerical order and then 

swapping out the pixel value that is being examined 

for the middle one. Typically, median filters 

eliminate lines narrower than half the neighborhood’s 

width and may also round off corners. The hybrid 

median filter (HMF) is an improved median filter that 

may avoid these issues. It can eliminate more specks 

and retain edges and corners more effectively. The 

essential concept of an HMF is that it takes data from 

two kinds of windows. This filter, for example, 

suppresses noise in every 5 × 5  local windows of an 

image using the methods below: Step 1: Each 5 × 5  

window's pixels are separated into two groups, with 

the first group consisting of pixels 45°  degrees 

distant from the center pixel. This sub-neighborhood 

is denoted by the symbol “+” while the second sub-

neighborhood consists of pixels positioned at 90° 

angles to the core pixel. This neighborhood is 

referred to as the “×” sub-neighborhood. 𝑚+ is the 

median value of the first group, and 𝑚× is the median 

value of the second group. In Step 2, the center pixel 

is replaced with the median of 𝑚+ , 𝑚× , and the 

original pixel [19]. The filtering procedure is shown 

in the diagram Fig. 1. Median filter effective at 

removing noise while preserving edges, but may have 

difficulty maintaining sharp edges in cases of 

extreme noise, which can sometimes lead to 

distortion. 

In addition to the HMF, the relaxed median filter 

(RMF) may also be used as an alternative to the 

medium filter. By relaxing the order statistic for pixel 

replacement, this filter is achieved. RMF allows for 

the preservation of more image features than the 

median filter. This approach preserves tiny features, 

sharp corners, thin lines, and curved structures more 

effectively than the median filter. RMF operates as 

follows: lower (𝑙) and upper (𝑢) boundaries establish 

a sub list inside the [𝑊𝑖 ](.) that includes the grey 

levels that are enough non-noise to be considered 

acceptable. If the input corres ponds to the sub-list, it 

is not filtered; otherwise, the standard median filter is 

used. Let 𝑚 =  𝑁 + 1  and 𝑙, 𝑢  such that 1 ≤  𝑙 ≤
 𝑚 ≤  𝑢 ≤ 2𝑁 +  1 ; otherwise, let the standard 

median filter be applied. RMF is defined as follows: 

 

 {𝑊𝑖} = {
𝑋𝑖        𝑖𝑓 𝑋𝑖 ∈ [[𝑊𝑖]𝑙 , [𝑊𝑖]𝑢]; 
[𝑊𝑖]𝑚                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

  (8) 

 

where 𝑌𝑖 =  Relaxed median= {𝑊𝑖} , [𝑊𝑖]𝑚  is the 

median value of the samples inside the window 𝑊𝑖.  
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Figure. 1 Pictorial representation of HMF 

 

 

 

               

𝒇(𝒙, 𝒚) 

 

 
Logarithmic 

function 
 

Fast Fourier 
transform 

 
filtering 
transfer 

 

Inverse 
fast 

Fourier 

 
Exponential 

function 
  𝒈(𝒙, 𝒚) 

               

Figure. 2 Flow diagram of HF 

 

 

To decrease the localization error caused by non-

uniform illuminations, the homomorphic filter (HF) 

is a technique for enhancing images. As seen in Fig. 

2, HF first transfers image(s) from the spatial domain 

to the frequency domain to enhance image brightness 

and contrast. After filtering, the image(s) are 

transported back to the spatial domain with decreased 

reflectance [20]. 

The Kuwahara filter, a non-linear filter type, is 

utilized to eliminate adaptive noise from the images. 

Better image smoothing is achieved with this filter. 

This filter can be built for a variety of window sizes. 

The technique will be explained for a window with a 

size of 3 × 3 for readability. As shown in Fig. 3, the 

filter window must be separated into four regions. 

Dark black color is usually used to indicate the center 

pixel. The following equation may be used to get the 

average and variance for all four regions: 

 

𝑍𝑘 =
1

(𝑀+1)×(𝑀+1)
× ∑ 𝜑(𝑖(𝑥, 𝑦))(𝑥,𝑦)∈𝑘     (9) 

 

 𝜕𝑘
2 =

1

(𝑀+1)×(𝑀+1)
× ∑ [𝜑(𝑖(𝑥, 𝑦) − 𝑍𝑘]2

(𝑥,𝑦)∈𝑘  (10) 

 

were, 𝐾 → {0, 1, 2, 3}, or four separate regions. The 

image function with (𝑥, 𝑦) coordinates is 𝑖(𝑥, 𝑦). The 

function to determine a specific pixel value is 𝜑. The 

number of pixels in the current region is  

 

     

 

     

 

     

 

     

                    

                    

                    

                    

Figure. 3 Different areas of the Kuwahara filter 
 
(𝑀 + 1) × (𝑀 + 1). Although a larger window size 

yields better results for the Kuwahara filter, the 

studied. Kuwahara filter effectively enhances and 

smoothes the image, preserving edges, but may 

produce unwanted effects in areas of sharp changes, 

requiring its careful use[21]. 

Lee developed a spatial filter based on the 

Gaussian distribution’s Sigma probability. It is often 

compared to recent real-time noise-adaptive filters 

[22]. For noisy grayscale images, the sigma filter is 

used to detect noise by using the standard deviation 

measure defined as: 

 

𝑆 = √
1

𝑚
∑ (𝑥𝑗 − 𝜇)

2𝑚
𝑗=1                               (11) 

 

In this case, we’ll use a window of size 𝑚 to calculate 

the mean 𝜇 of 𝑚 sets of input data, 𝑥1, 𝑥2, … … 𝑥𝑚 . 

We can characterize the sigma filter’s output as 

follows: 

 

 

“+” sub-neighborhood 
median value from sub-

neighborhood 𝑚+ 

New pixel 
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original pixel 

median value from sub-

neighborhood  𝑚× 
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𝑦𝑆𝐹 =  

{
𝑓(𝑥1, 𝑥2, … 𝑥𝑚) 𝑖𝑓 |𝑥(𝑚+1) 2⁄ − 𝜇| > 𝑡𝑆

𝑥(𝑚+1) 2⁄                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (12) 

 

the median of the input set is used to create the 

smoothing function 𝑓(. ), where 𝑡 is the smoothing 

parameter and 𝑥(𝑚+1) 2⁄  is the center sample. The 

smoothing function 𝑓(. )  is applied to the input set if 

and only if the criterion 𝑑𝑡|𝑥(𝑚+1) 2⁄ − 𝜇| > 𝑡𝑆  is 

met, which indicates that the center sample is a 

probable noisy sample. No filtering is done if the 

center sample is devoid of noise. The filtering 

operation, from the uniformly smoothing filter 

operation (𝑡 = 0) to the identity operation (𝑡 → ∞) 

Sigma filter excellent at detecting and removing 

noise while preserving detail, but care must be taken 

in choosing parameters to avoid removing important 

details from the image, especially in cases where 

noise is similar to real details . 

The Gaussian pass filter removes parts with high 

regularity, ensuring that parts with low regularity are 

preserved. It helps with image kneading. It confines 

very high-frequency parts and retains low-frequency 

components to smooth the image. 

 

𝐺(𝑢, 𝑣)  =  𝐻(𝑢, 𝑣). 𝐹(𝑢, 𝑣)                          (13) 

 

where 𝐹 (𝑢, 𝑣)  is the original image’s Fourier 

transform. 𝐻(𝑢, 𝑣): Filter mask Fourier Transform. 

The Gaussian filter helps improve brightness and 

contrast, making it ideal for softening an image and 

improving its overall quality. 

The SRAD filter, known as speckle noise 

reduction anisotropic diffusion, is an advanced image 

processing technology, specifically designed to 

improve the quality of ultrasound images. This filter 

uses a partial differential equation, where the 

diffusion process is regulated based on a diffusion 

coefficient that depends on the magnitude of the 

gradient in the image. This parameter is applied to 

allow diffusion across homogeneous regions and 

restrict diffusion along edges, preserving sharp edges 

and reducing the effect of noise. The basic equation 

for this filter follows the formula: 

 

𝑓𝑖,𝑗 = 𝑔𝑖,𝑗 +
1

ℎ𝑠
div (𝑐srad (|∇𝑔|)∇𝑔𝑖,𝑗)                (14) 

 

where 𝑓𝑖,𝑗 is the pixel value after filtering, 𝑔𝑖,𝑗 is the 

original pixel value, ℎ𝑠 is the scaling factor, 𝑐srad is 

the noise reduction filter coefficient defined by the 

following formula: 

 

𝑐srad (|∇𝑔|)2

=
1

2|∇𝑔𝑖,𝑗|
2

+
1

16
(∇2𝑔𝑖,𝑗)

2
+ (𝑔𝑖,𝑗 +

1

4
∇2𝑔𝑖,𝑗)

2 

 

where ∇𝑔𝑖,𝑗 is the gradient of the image, and ∇2𝑔𝑖,𝑗 is 

the Laplacian of the image. The SRAD filter has a 

high ability to reduce speckle noise without 

negatively affecting image clarity and ensures that 

essential edge detail is preserved, making it ideal for 

applications requiring high clarity and fine detail. 

However, it requires careful parameter routing to 

ensure best performance, and can be more 

computationally complex than simpler filters[23]. 

2.3 Proposed model  

In our constant pursuit of tangible progress in the 

field of breast ultrasound imaging, we present a 

proposed method based on combining an anisotropic 

diffusion filter with an SRAD filter. The selection of 

these two candidates did not come out of nowhere, 

but rather was the result of an in-depth study of their 

unique characteristics and how the capabilities of 

each can be enhanced when applied in conjunction. 

The anisotropic diffusion filter has an excellent 

ability to preserve and enhance image edges, which 

is vital for differentiating between healthy and 

diseased tissue in breast images. On the other hand, 

the SRAD filter has a high ability to reduce speckle 

noise, which improves image clarity and facilitates 

the diagnosis process. Combining these two filters 

provides a comprehensive approach that takes 

advantage of the advantages of each filter for 

integrated image enhancement. The motivation for 

this choice lies in the perfect complementarity 

between the edge preservation provided by the 

anisotropic diffusion filter and the SRAD filter's 

ability to reduce noise with high precision. This 

integration allows us to achieve higher levels of 

accuracy in image analysis, making the proposed 

method able to deliver sharper and less noisy images, 

which is essential in capturing fine tissue properties. 

In this proposed method, an anisotropic diffusion 

filter is first used to smooth the image and identify 

edges, followed by an SRAD filter to purify the 

image from residual noise, including random specks 

that may hide vital details. 

3. Evaluation Metric of Reduction Filters 

The standard techniques of testing speckle 

reduction filters for ultrasound images are described 

in this section. We are evaluating the efficacy and 

improvement of image data of speckle noise 
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reduction filtering algorithms. The quantity of 

variations between the input and the filtered image 

that may be found using MES is often employed. The 

disparity between the original and filtered images 

will vary more and less depending on the MSE value. 

In the case of identical images, MSE is equal to 0. For 

wholly different images, it is 255. It is determined as 

follows: 

 
 

𝑀𝑆𝐸 =
1

𝑁𝑀
∑ ∑ (𝑓𝑖,𝑗 − 𝑔𝑖,𝑗)

2𝑀
𝑗=1

𝑁
𝑖=1                 (15) 

 

The 𝑁  and 𝑀  variables, respectively, represent 

the rows and columns of the input 𝑓𝑖,𝑗 image and the 

filtered 𝑔𝑖,𝑗 image [13]. 

In the presence of multiplicative noise, the signal-

to-noise ratio (SNR) quantifies the decrease of 

speckles. It is determined by dividing the noise image 

by the filtered image. Higher SNR levels indicate that 

the filtering effect is more effective, and the quality 

of the de-noised image is much better. Decibels SNR 

is used to represent it as: 

 

𝑆𝑁𝑅 = 10 log10 (
𝜎2

𝜎𝑒𝑟𝑟𝑜𝑟
2 )                                (16) 

 

𝜎2 is the original image’s variance, and 𝜎𝑒𝑟𝑟𝑜𝑟
2  is the 

error variance (difference between noise and de-

noised image), i.e. |𝑓𝑖,𝑗 − 𝑔𝑖,𝑗|. 

Peak signal-to-noise ratio (PSNR) is the 

performance assessment of speckle noise reduction. 

It is the maximum signal power achievable ratio to 

the noise image. The equation gives the PSNR in dB 

for 256 grey levels: 

 

𝑃𝑆𝑁𝑅 = 20 log10
2𝑛−1

𝑀𝑆𝐸
20 log10

𝜔

𝑀𝑆𝐸
               (17) 

 

where 𝜔 is the image’s maximum intensity. Higher 

𝑃𝑆𝑁𝑅  values indicate a higher image quality. For 

identical images, 𝑀𝑆𝐸 = 0 and 𝑃𝑆𝑁𝑅 are undefined. 

The three elements contrast distortions, 

brightness distortions, and correlation loss are 

combined to create the universal quality index (UQI), 

which assesses image distortions between two 

images. The given equation can be used to estimate 

the UQI: 

 

𝑈𝑄𝐼 = 𝜂 × 𝜓 × 𝜉         − 1 < 𝑈𝑄𝐼 < 1         (18) 

 

𝜂 =
2𝜀°×𝜀𝑟

𝜀°
2+𝜀𝑟

2 , 𝜓 =
𝜏𝑜𝑟

𝜏𝑜×𝜏𝑟
, 𝜉 =

2𝜏𝑜×𝜏𝑟

𝜏𝑜
2+𝜏𝑟

2               (19) 

  

where (𝜂) is the mean luminance similarity between 

the noised image and the de-noised image, and (𝜓) 

represents the correlation coefficient that assesses the 

similarity between the two images, and ( 𝜉 ) the 

contrast similarity of the images. The standard 

deviation of the filtered and origin images is (𝜏𝑜) and 

(𝜏𝑟), respectively, and the covariance is (𝜏𝑜𝑟). (𝜀°) 

and (𝜀𝑟) are the filtered and origin images' mean[24]. 

The structural similarity index (SSI) predicts the 

retention of structural information in de-noised 

images. SSI’s formulation is explained as follows: 

 

𝑆𝑆𝐼 =
1

𝑁
∑

(2𝜇1𝜇2+𝑎1)(2𝜇1,2+𝑎2)

(𝜇1
2+𝜇2

2+𝑎1)(𝜎1
2+𝜎2

2+𝑎2)
                    (20) 

 

where  𝜎1, 𝜎2 are the standard deviations and 𝜇1, 𝜇2 

are mean of images. Constants 𝑎1  and 𝑎2  are 

supplied to strengthen the denominator. SSI has 

values ranging from 0 𝑡𝑜 1; when it equals 1, images 

are structurally equivalent [25]. 

Laplacian mean squared error (LMSE) metric 

was created based on the edges measurement value. 

A high LMSE value indicates a low-quality image. 

Following is a definition of LMSE: 

 

𝐿𝑀𝑆𝐸 =
∑ ∑ [𝐿(𝑓(𝑖,𝑗))−𝐿(𝑔(𝑖,𝑗))]

2𝐽
𝑗=1

𝐼
𝑖=1

∑ ∑ [𝐿(𝑓(𝑖,𝑗))]
2𝐽

𝑗=1
𝐼
𝑖=1

               (21) 

 

where 𝐿(𝑖, 𝑗) is laplacian operator: 

𝐿(𝑓(𝑖, 𝑗)) = 𝑓(𝑖 + 1, 𝑗) + 𝑓(𝑖 − 1, 𝑗) + 𝑓(𝑖, 𝑗 +

1) + 𝑓(𝑖, 𝑗 − 1) − 4𝑓(𝑖, 𝑗)[26]. 

4. Result and discussion 

Image quality in medical imaging is a crucial 

factor in determining the accuracy of diagnoses, and 

from this standpoint, this study focused on analysing 

the performance of different noise filters in 

improving breast ultrasound (BUS) [27]. The 

experiments were performed on a dataset of 780 

images of three different categories: normal, benign, 

and malignant with an average resolution of 500 x 

500 pixels. Images are saved as PNG files. The 

images were divided into three categories: 133 

normal, 487 benign, and 210 malignant, with a size 

of 1280×1024. Fig. 4 shows the fundamental 

structures of the approach used to reduce speckle 

noise on BUS. These filters were evaluated using a 

set of standard statistical metrics including MSE, 

SNR, PSNR, UQI, SSI, and LMSE. 

The results, as shown in Tables 1 and 2, provide 

a clear indication of the marked superiority of 

nonlinear filters over their linear counterparts on 

most of the criteria used. Specifically, the anisotropic 

diffusion filter and SRAD filter stand out with 

advanced results, as they showed low MSE values  
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Figure. 4 Block diagram of the produced speckle noise 

reduction on BUS 

 

 

indicative of reduced noise, while high SNR and 

PSNR values indicative of enhanced image quality. 

In addition, higher SSI values suggest effective 

preservation of structural features of the original 

image, which is critical for preserving fine clinically 

relevant details. 

It is noteworthy that the proposed filter, which 

combines anisotropic diffusion filter and SRAD 

techniques, scored highest across almost all metrics, 

reflecting its outstanding effectiveness in achieving 

an ideal balance between noise reduction and 

maintaining structural clarity. These results are 

attributed to the strategy used in the proposed filter, 

where the diffusion is adjusted based on the image 

gradient, allowing edges and fine details to be 

preserved while effectively removing noise from 

homogeneous regions. This clearly shows how 

improved filters can contribute to improving the 

accuracy of diagnosis and screening of lesions in 

ultrasound imaging. Low values of LMSE in 

nonlinear filters indicate their high ability to preserve 

the structural quality of the image. On the other hand, 

high values of UQI and SSI indicate outstanding 

success in keeping the brightness, contrast, and 

overall image quality similar to the original image.  

The notable differences between linear and nonlinear 

filters in the table underscore the importance of 

choosing the appropriate image filtering method in 

clinical applications. Although some linear filters 

such as “Frost” and “Conditional Averaging” have 

shown acceptable results, they do not measure up to 

non-linear filters in providing an improved final 

image. 

Table 1. Image quality evaluation metrics calculated for 

BUS based on statistical measurements of MSE, SNR, 

PSNR, UQI, SSI, and LMSE, for linear filters 

Linear filters MSE SNR PSNR  UQI SSI 
LMS

E 

Additive 9.1 33.2 41.5 0.97 0.99 0.98 

lee 3.1 37.9 46.3 0.97 0.99 0.26 

Frost 2.4 38.9 47.3 0.97 0.99 0.34 

kuan 27.2 28.4 36.8 0.97 0.99 4.24 

linear Skal 23.7 29.0 37.4 0.94 0.98 2.90 

Conditional 

Averaging 
4.2 36.6 44.9 0.97 0.99 0.60 

Neighborhood 

Averaging 
2.9 38.2 46.5 0.98 0.99 0.32 

Log-

Compressed 
46.4 26.1 34.4 0.91 0.96 1.09 

 

 
Table 2. Image quality evaluation metrics calculated for 

BUS based on statistical measurements of MSE, SNR, 

PSNR, UQI, SSI, and LMSE, for non-linear filters 

Nonlinear filters MSE SNR PSNR  UQI SSI LMSE 

Anisotropic Diffusion 0.5 45.9 54.2 0.99 0.99 0.23 

Linean Scaling 5.4 35.5 43.8 0.94 0.98 0.66 

Hybrid Median 1.4 41.2 49.5 0.98 0.99 0.32 

Relaxed Median 1.5 41.1 49.4 0.98 0.99 0.53 

Homomorphic 9.7 32.9 41.3 0.89 0.96 1.55 

kuwahara 33.5 27.6 35.9 0.89 0.93 3.11 

sigma 2.4 39.0 47.3 0.97 0.99 0.36 

Gaussian Smooth 6.3 34.8 43.1 0.98 0.99 0.77 

SRAD 0.5 46.1 54.4 0.99 0.99 0.01 

Proposed model 0.2 51.0 59.3 1.00 1.00 0.003 

 

 

The strategy adopted in applying these filters is 

considered essential in achieving noticeable 

improvements. By dynamically adjusting the 

diffusion rate based on information extracted from 

image gradients, the filtering process is directed to be 

more sensitive in areas of high detail and less 

aggressive in homogeneous areas. This means that 

the filter does not act with the same force over the 

entire image, but rather adapts to the specific need of 

each part of the image, which contributes to 

preserving the structural quality and details vital for 

diagnosis. This adaptation significantly improves the 

final image quality, not only by reducing noise but 

also by enhancing structural clarity and contrast. 

Thus, this method allows doctors to see more clearly 

and accurately the lesions and fine details within the 

image, which enhances the diagnostic ability and 

helps in making treatment decisions based on reliable, 

high-quality information. In addition, the use of these 

filters contributes to improving the overall 

performance of breast ultrasound, opening new 

horizons for research and development in the field of  

Original image 

Adding speckle noise to original image 

A filter is applied to a noisy image 

Denoised image 

Results based on the applied filter 
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Figure. 5 Linear speckle reduction filters 
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Figure. 6 Non-linear speckle reduction filters 
 

 

medical imaging. Thus, the method proposed in our 

research is an important step towards improving the 

quality of medical imaging and enhancing the 

accuracy of diagnosis. 

The strategy adopted in applying these filters is 

considered essential in achieving noticeable 

improvements. By dynamically adjusting the 

diffusion rate based on information extracted from 

image gradients, the filtering process is directed to be 

more sensitive in areas of high detail and less 

aggressive in homogeneous areas. This means that 

the filter does not act with the same force over the 

entire image, but rather adapts to the specific need of 

each part of the image, which contributes to 

preserving the structural quality and details vital for 

diagnosis. This adaptation significantly improves the 

final image quality, not only by reducing noise but 

also by enhancing structural clarity and contrast. 

Thus, this method allows doctors to see more clearly 

and accurately the lesions and fine details within the 

image, which enhances the diagnostic ability and 

helps in making treatment decisions based on reliable, 

high-quality information. In addition, the use of these 

filters contributes to improving the overall 

performance of breast ultrasound, opening new 

horizons for research and development in the field of  

Table 3. Comparison of our proposed model to current 

models 

Reference MSE SNR PSNR  UQI SSI LMSE 

Goyal [6] 0.01 - 22.9 - 0.8 - 

Mei [7] - - 27.7 -  - 

Vilimek  [8] - - 23.8 - 0.6 - 

Liu  [9] - - 39.1 - - - 

Elnokrashy [10] 1214.1 12.3 17.3 - 0.5 - 

Proposed model 0.2 51.0 59.3 1.0 1.0 0.003 

 

medical imaging. Thus, the method proposed in our 

research is an important step towards improving the 

quality of medical imaging and enhancing the 

accuracy of diagnosis. 

In the context of comparison with other studies, it 

can be said that the method proposed in our research, 

which combines the anisotropic diffusion filter and 

SRAD techniques, has recorded a significant 

improvement in almost all the metrics used. Table 3 

shows the results of comparing the proposed model 

with existing models, these results not only highlight 

the effectiveness of this method in reducing noise and 

improving structural clarity but are also attributable 

to the strategy adopted in applying the filtering, 

where the diffusion rate is adjusted based on the 

image gradient to preserve fine edges and details. 
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These results reinforce the conviction that 

advanced image filtering methods, especially those 

based on nonlinear principles, offer effective 

solutions to the challenges associated with ultrasound 

imaging. By striking a careful balance between 

reducing noise and preserving necessary structural 

information, these methods enable us to perform 

more accurate diagnostic assessments, which 

contributes to enhancing the efficiency of medical 

diagnosis. 

5. Conclusions and future works 

In this study, we comprehensively evaluated 

linear and nonlinear filters in breast ultrasound image 

processing, and our results yielded advanced 

techniques that achieve an optimal balance between 

removing noise and preserving vital structural 

features of images. The proposed method, which 

combines an anisotropic diffusion filter and SRAD 

filter, not only showed significant improvement in 

MSE, SNR, and PSNR metrics compared to existing 

methods, but also in UQI, SSI, and LMSE metrics, 

confirming its ability to enhance the overall quality 

of medical images. Our results show that the 

proposed model achieved the lowest mean square 

error (MSE) value of 0.2, the highest signal-to-noise 

ratio (SNR) value of 51.0, and the highest peak 

signal-to-noise ratio (PSNR) value of 59.3. In 

addition, the proposed model achieved the optimal 

value of Universal Image Quality Indicator (UQI) 

and Structural Attribute Index (SSI) of 1.00, and the 

LMSE value decreased to 0.003, demonstrating a 

significant improvement in the overall quality of 

medical images compared to the other techniques 

studied. From our findings, we conclude that the use 

of nonlinear filters can have a significant positive 

impact on medical image processing, paving the way 

for important improvements in the diagnosis of 

mammary lesions. The study also shows that 

effective integration of different techniques can lead 

to significant improvements in performance, which 

indicates the importance of a multi-faceted approach 

to medical image processing. Our findings open 

perspectives to explore the applicability of the 

proposed filter to a wide range of other medical 

applications, such as CT and MRI, where macular 

noise can be a pressing problem. Developing 

integrated image processing systems that use 

artificial intelligence to automatically recognize 

healthy and pathological patterns in medical images 

is one of the main goals of future research. 
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