
Received: January 9, 2024. Revised: March 12, 2024. 290

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Performance Analysis of End-to-End Neural Coreference Resolution in English

and Indonesian Texts

Gunawan1* Ivan Hosea1 Esther Irawati Setiawan2 Kimiya Fujisawa3

1Informatics Department, Institut Sains dan Teknologi Terpadu Surabaya, Indonesia

2Information Technology Department, Institut Sains dan Teknologi Terpadu Surabaya, Indonesia
3School of Media Science, Tokyo University of Technology, Tokyo, Japan

* Corresponding author’s Email: gunawan@stts.edu

Abstract: This research evaluates the performance of End-to-End Neural Coreference Resolution models in English

and Indonesian linguistic contexts, drawing particular attention to the model by K. Lee, recognized for its simplified

preprocessing methodology. In this research, we use raw text to find and link mentions in documents, and handle

different languages. For the evaluation metrics, the English model achieved F1-Scores of 67.94% and 67.14% on the

OntoNotes-5.0 development and training sets. The Indonesian model, prepared using a CoNLL-2012 formatted dataset,

attained an F1-Score of 68.88% on a 25% segment of the Book of Markus. We also analyzed the additional features

integrated into the model to assess their contributions to performance improvement. The findings indicate that while

the English model demonstrates generalizability across various coreference challenges, the Indonesian model’s

performance is more domain-specific, being particularly effective within the confines of the Book of Mark.

Keywords: Coreference resolution, End-to-end learning, Deep learning, Natural language processing.

1. Introduction

Machine learning is an algorithm used by

computers to learn certain tasks that cannot be

applied with conventional programming [1]. The

easiest example of the task in question is work that

can be easily done by humans, such as recognizing

language, seeing, hearing, and so on. The machine

learning task in the field of human language

recognition is Natural Language Processing [2]. One

of the tasks of Natural Language Processing is

Coreference Resolution.

Coreference Resolution is a process of

determining if 2 or more expressions in natural

language are the same entity in the real world [3].

Coreference Resolution is also applied to assist other

natural language processing tasks, namely Question

Answering [4], Sentiment Analysis [5], Document

Summarization, Quote Attribution, and Information

Extraction.

Research on Coreference Resolution has been

carried out in many foreign languages, but not in

Indonesian. Previous coreference studies that have

the best results [6, 7], use Syntactic Parser and

Mention Detector algorithms made by themselves.

The problem that arises is if there is a parsing error it

can cause cascading errors. In addition, the custom

Mention Detector algorithm tends to be unusable in

other languages. End-to-End Neural Coreference is a

method that does not use a Mention Detector or

Syntactic Parser, but has better performance than the

previous methods.

In recent times, the exploration of End-to-End

Neural Coreference Resolution (E2E NCR) has

garnered attention due to its capability to address

previous methodological shortcomings. Particularly,

this research delves into the applicability of E2E

NCR models within Indonesian linguistic contexts,

marking a significant stride towards understanding

coreference resolution in under-studied languages.

By leveraging a simplified preprocessing

methodology, as proposed by K. Lee, this work

presents an insightful evaluation, shedding light on

the potential and limitations of E2E NCR models in

Received: January 9, 2024. Revised: March 12, 2024. 291

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

handling coreference challenges in Indonesian texts,

hence contributing to the broader discourse on

advancing coreference resolution techniques in

multilingual[8] settings.

This research also utilizes a method that

combines pre-processing and avoids cascading errors

by bypassing the need for syntax parsers or mention

detectors. It uses additional features such as speaker

and genre information to improve coreference

resolution performance across diverse linguistic

domains and contexts. This method also achieves

competitive results on the English OntoNotes

benchmark and outperforms existing methods on the

Indonesian Book of Mark dataset.

Moreover, the robust analysis carried out,

encompassing a comparative study between English

and Indonesian models, not only underscores the

domain-specific efficacy of the Indonesian model but

also propels further inquiry into optimizing E2E NCR

for diverse linguistic landscapes. The meticulous

examination of additional features integrated into the

model, and their consequent impact on performance

enhancement, embodies a novel endeavour towards

refining coreference resolution systems. This

investigation, therefore, not only furnishes a valuable

benchmark for evaluating E2E NCR models in

Indonesian but also catalyses future explorations

aimed at transcending linguistic boundaries in

coreference resolution tasks.

The following section discusses the previous

studies on Coreference Resolution. Next, the

proposed method of End-to-End Neural Coreference

Resolution is explained in Section 3. Section 4

introduces the Image-Text dataset for Indonesian

Sentiment Analysis. The experimental results and

analysis are presented in Section 5. The last section

summarizes the conclusion and future directions.

2. Literature review

Coreference Resolution is one of the tasks in

Information Extraction and Natural Language

Processing. The term ‘Coreference Resolution’ itself

is derived from the linguistic field, referring to the

concept of coreference. In the following section, we

will explore the fundamentals of Coreference

Resolution, including Natural Language Processing

and Named Entity Recognition [9]. Subsequently, we

will provide an explanation of Coreference

Resolution itself.

Natural Language Processing is a technique that

involves the computational representation and

analysis of human language. This is achieved through

various methods such as tokenization, parsing,

tagging, and semantic analysis. However, this

technique is not without its drawbacks. For instance,

the ambiguity, variability, and complexity of natural

language can affect it, making it difficult to capture

the meaning and context of texts. Additionally, it can

be dependent on the availability and quality of

linguistic resources like corpora, lexicons, grammars,

and ontologies, which can vary across languages and

domains. Furthermore, the emergence of new words,

phrases, and genres can pose a challenge,

necessitating constant updates and adaptations of the

models and methods [10].

Named Entity Recognition is a subtask of

Information Extraction. Named Entity Recognition

aims to find entities in text documents and classify

these entities into various categories such as person’s

name, organization’s name, time, and so on. Named

Entity Recognition is an important piece of research

in Natural Language Processing because it can be

used to help with more complicated tasks such as

Question Answering, Machine Translation, and

Coreference Resolution.

Coreference resolution[9] has been explored

using various methods as displayed on Table 1, from

traditional machine learning to advanced neural

networks. While neural models often perform well,

they require considerable computational resources

and may lack interpretability. The importance of

adaptable natural language processing techniques and

named entity recognition is highlighted to address the

evolving complexities of language and improve

coreference resolution systems.

Taking a fresh perspective on end-to-end neural

coreference resolution, a new baseline model is

introduced in this study. Despite its simplicity, it

surpasses more complex recent models on the public

English OntoNotes benchmark. This underlines the

importance of carefully considering the complexity

of both existing and new models, as even minor

modifications can yield improved results. [11]

Meanwhile, another study [12] delves into

enhancing end-to-end neural coreference resolution.

It presents a novel algorithm to adjust coreference

clusters, capable of eliminating mentions that lack

similarity and reducing errors caused by inconsistent

coreference clusters throughout a document. The

model’s performance is further enhanced by

replacing the simple scoring function used to

compute head word scores for the attention

mechanism with a feed-forward neural network, and

by modifying the maximum length of a mention.

These alterations significantly boost the performance

of coreference resolution. Subsequently, a new

system for resolving coreference in Korean text is

introduced in [13]. The system employs a neural

network with an attention mechanism to identify and

Received: January 9, 2024. Revised: March 12, 2024. 292

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Table 1. Previous Approaches on Coreference Resolution

Author(s) Techniques Used Objective Merits Disadvantages

W. M. Soon, H. T.

Ng, and D. C. Y.

Lim[3]

Machine Learning Coreference

resolution of noun

phrases

Not mentioned Lack of clarity on the

specific approach and

potential limitations

K. Clark and C. D.

Manning[6]

Neural Network Incorporation of

entity-level

information

Outperforms the

current state-of-

the-art

Neural networks may

require substantial

computational resources

and extensive training

data. Interpretability can

be challenging.

S. Wiseman, A. M.

Rush, and S. M.

Shieber[7]

Recurrent Neural

Networks

Learning global

features for

coreference

resolution

Outperforms the

current state-of-

the-art

RNNs may suffer from

vanishing gradient

problems and can be

computationally

expensive during

training.

S. Pradhan, A.

Moschitti, N. Xue,

O. Uryupina, and

Y. Zhang[8]

Comparison of various

conventional machine

learning method such

as Logistic Regression,

MaxEnt, C4.5, and

others.

Modeling

multilingual

unrestricted

coreference in

OntoNotes

Not mentioned Lack of details on the

specific models used and

their limitations.

K. Lee, L. He, M.

Lewis, and L.

Zettlemoyer[19]

Neural mention-

ranking model

End-to-end neural

coreference

resolution

Outperforms all

previous work

Neural models may be

sensitive to

hyperparameters and

require extensive tuning.

Training large neural

models can be resource-

intensive.

K. Clark and C. D.

Manning[20]

Deep Reinforcement

Learning

Mention-Ranking

Coreference Models

Outperforms the

current state-of-

the-art

Reinforcement learning

models can be

challenging to train, and

their performance

heavily depends on

reward design and

exploration strategies.

link all mentions of the same entity in a document.

Initially, all nouns in the document are considered as

potential mentions. The attention mechanism then

learns to predict the position of the referenced entity

for each noun. Experimental results demonstrate that

this system outperforms all other known systems on

Korean language coreference resolution.

In a similar vein, a system for resolving

coreference in Indonesian text is presented [14]. This

system utilizes a deep neural network to learn how to

identify pairs of words that refer to the same entity,

and a singleton classifier to prevent words that only

refer to themselves from being grouped together. The

system surpasses the best existing system, achieving

a high score on a standard benchmark for coreference

resolution.

A novel approach to coreference resolution was

proposed in [15]. Traditional models heavily rely on

span representations to find coreference links

between word spans, which requires various pruning

techniques due to computational complexity. It was

suggested to consider coreference links between

individual words instead of word spans and then

reconstructing the word spans. This method reduces

the complexity of the coreference model and allows

it to consider all potential mentions without pruning

Received: January 9, 2024. Revised: March 12, 2024. 293

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

any of them out. The paper also demonstrates that

with these changes, SpanBERT for coreference

resolution will be significantly outperformed by

RoBERTa. Despite its efficiency, the model performs

competitively with recent coreference resolution

systems on the OntoNotes benchmark.

Coreference resolution is also implemented in

Indonesian as in [16], which explores the application

of a multi-pass sieve coreference resolution model to

the Indonesian language. The multi-pass sieve is a

deterministic coreference model that implements

several layers of sieves, each taking a pair of

correlated mentions from a collection of non-

coherent mentions. This model operates on the

principle of high precision, followed by increased

recall in each sieve. The authors conducted an

experiment on 201 Wikipedia documents, and the

multi-pass sieve system yielded a 72.74% MUC F-

measure and a 52.18% BCUBED F-measure. This

research demonstrates the potential of the multi-pass

sieve technique for Indonesian coreference resolution

tasks.

In a recent study, researchers explored the use of

lexical and shallow syntactic features for resolving

coreference in Indonesian text [17]. Their system

successfully addressed coreference between

pronouns and proper nouns, as well as between

proper nouns and pronouns. To achieve this, they

leveraged various features, such as identifying

apposition relationships, determining the nearest

candidate for a pronoun, analyzing sentence context,

and examining preceding and following words.

Remarkably, their system achieved a commendable

score of 71.6% on a standard benchmark for

coreference resolution [18].

3. Methodology

End-to-End Neural Coreference Resolution is a

Coreference Resolution [21, 22] model that uses

machine learning in its application. This model is

considered end-to-end because the process that is

executed when changing input to output is only 1

architectural model.

In Fig. 1, the first part input. The input to this

network is a combination of word embedding and

character embedding. The word embedding used is

GloVe’s pre-trained word embedding with 300

dimensions and Turian’s word embedding with 50

dimensions.

Next, Bidirectional LSTM is used to encode

lexical information from inside and outside each span.

In the End-to-End Neural Coreference Resolution

architecture, the input vector will be feed-forward to

the Bidirectional LSTM. LSTM, which stands for

Figure. 1 Block Diagram End-to-End Neural Core

Resolution Architecture

Long Short-Term Memory, is a development of the

Recurrent Neural Network model, which is a model

commonly used for processing sequential data such

as text documents because the previous data in the

sequence also determines predictions for subsequent

data. Different from Recurrent Neural Network,

LSTM has memory and also a gating system to

overcome the vanishing gradient problem. Because

LSTM only makes predictions to the data after it,

Bidirectional LSTM was created which can make

predictions to the data before and after it. In the

following subchapters we will explain the vanishing

and exploding gradient problem, weight initialization,

and the Bidirectional LSTM architecture used.

After that, the span head will be formed as a

feature primarily to help represent spans whose width

is more than 1. Then the Bidirectional LSTM and

span head features will be some of the features used

to form the span representation. After getting the span

representation, the Mention Score will be calculated.

Mention Score is a value of how likely a span is a

mention or entity. Only spans with the highest value

will have their Antecedent Score assessed, the rest

will be prune. Antecedent Score itself is a value of

how likely it is that a span is an antecedent of another

span.

After getting the Antecedent Score, Mention

Score and Antecedent Score will be used to calculate

the Coreference Score. After the Coreference Score

is obtained, softmax will be carried out to determine

the antecedents of each span selected as a mention.

Received: January 9, 2024. Revised: March 12, 2024. 294

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

3.1 Task coreference resolution

In the End-to-End Neural Coreference Resolution

model, the input required from the dataset includes

the main document and speaker and genre metadata

features. The speaker metadata feature indicates who

the speaker of the word part of the document is, while

the genre feature indicates the genre of the document.

The output of the following model is a cluster of

mentions that are considered to have a coreference

relationship with each other.

The task is formulated with an input document D

which has the number of words T. All words in the

document will be represented in vector form

containing Word Embedding, Character Embedding,

and other features. Apart from words, other tokens

such as punctuation marks will also be included in the

input sequence. Of all the tokens in the document, the

maximum number of spans that will be formed can

be formulated using the following formula:

𝑁 = (𝑇(𝑇 + 1))/2 (1)

In the formula above, N is the number of spans.

For example, if there are 3 words in a document, then

based on the formula above you will get 6 types of

span.

In Fig. 2, the span will be formed from pieces of

1 word, 2 words, and 3 words. If there are T words,

then the largest span is formed from T words.

However, because 1 document can have thousands of

words, forming a span throughout the document can

take a very long time, and existing entities tend not to

be very long, so forming the length of the span will

be limited to the desired word length. If in the

example document “Budi bermain bola” (Budi plays

football) is limited by forming a span length of 1, then

the spans that will be formed are only “Budi”,

“bermain” (plays), and “bola” (football). Some spans

will then be selected as mentions, the rest will not be

searched for antecedents.

The task aims to fill in the antecedents of the selected

spans as mentions, for each mention i has an

antecedent yi. The set or possible candidates for each

yi are as follows:

The following is an example:

Figure. 2 Example of a Span Formed

Table 2. Examples of Candidate Antecedents

Mention

Number

Mention Name Candidate

Antecedent Y(i)

1 Budi {ϵ}

2 Lapangan (field) {ϵ,1}

3 pemilik lapangan

(field owner)

{ϵ,1,2}

4 Dia (he) {ϵ,1,2,3}

5 Setelah (after) {ϵ,1,2,3,4}

6 anak itu (that child) {ϵ,1,2,3,4,5}

7 tempat itu (that

place)

{ϵ,1,2,3,4,5,6}

𝑦𝑖 = {𝜖, 1,2, … , 𝑖 − 1} (2)

From the set above, ϵ is epsilon. The epsilon

antecedent dummy indicates that mention i has no

antecedent. The number 1 in the set above indicates

mention 1, as well as mention 2. The candidate

antecedent yi only reaches i-1 because it will only

check with previous mentions. For example, there is

a small document “Budi sedang bermain bola di

lapangan ketika pemilik lapangan menyuruh dia

pulang. Setelah itu pulanglah anak itu meninggalkan

tempat itu” (Budi was playing football on the field

when the field owner told him to go home. After that

the child went home and left the place), and for

example the span chosen as a mention is “Budi”,

“ lapangan” (field), “pemilik lapangan” (field owner),

“dia” (he), “Setelah” (after), “anak itu” (that child),

and “tempat itu” (that place), then the candidate

mentions from each mention can be described in

Table 2.

In Table 2, the mention “Budi” only has a

candidate antecedent ϵ because it is the first mention.

The mention “lapangan” (field) has a candidate

antecedent ϵ and 1 which is the mention of “Budi”

because the mention of “Budi” comes before the

mention of “lapangan” (field). Likewise, other

mentions both have a candidate antecedent ϵ and all

mentions that come before that mention.

After finding all the antecedents of each mention,

clusters will be formed containing mentions that have

a coreference relationship. The following is an

example of a table after the antecedent is determined:

In Table 3, it can be seen that the antecedent of “Dia”

(he) is mention 1, namely “Budi”, the antecedent of

“anak itu” (that child) is “Dia” (he), and the

antecedent of “tempat itu” (that place) is”lapangan”

(field). If it is made into a cluster, 2 clusters will be

created as in the Table 4.

As can be seen in Table 4, all mentions that have

Received: January 9, 2024. Revised: March 12, 2024. 295

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Table 3. Examples of Antecedents
Mention

Number

Mention Name Antecedent

1 Budi ϵ

2 Lapangan (field) ϵ

3 pemilik lapangan

(field owner)

ϵ

4 Dia (he) 1

5 Setelah (after) ϵ

6 anak itu (that child) 4

7 tempat itu (that

place)

2

Table 4. Cluster Example

Cluster Mention List

1 {“Budi”, “Dia (he)”, “anak itu

(that child)”}

2 {“lapangan (field)”, “tempat itu

(that place)”}

only one antecedent relationship with one of the

mentions in the cluster will be grouped into one

cluster. Like in cluster 1 where the antecedent of “Dia”

(he) is “Budi” and the antecedent of “anak itu” (that

child) is “Dia” (he), but the three mentions are made

into 1 cluster because there is at least 1 related

coreference between the mentions.

This End-to-End model in Fig. 3 [19] starts from

Word and Character Embedding. The Word

Embedding used is GloVe [23] 6B 300d and Turian

[24] 50d.

3.2 Word embedding

Word Embedding is a representation of words in

the form of number vectors which aims to improve

the performance of Natural Language Processing

tasks. The vector of these words will become the

architectural input.

Fig. 4 is an illustration of Word Embedding

which has 7 dimensions. Each word is represented in

vector form. It is illustrated that each dimension is a

category that exists in the real world, such as how

much value words have, namely living objects,

humans, verbs, and so on with a value limit of -1 to

1. However, Word Embedding will not have labeled

categories as above, but This illustration indicates

that the larger the d imensions of the Word

Embedding, the larger the categories that can be

loaded. The closeness between vectors can be

measured by the Eucledian distance. The Eucledian

distance of 2 words represented in the Word

Figure. 3 End-to-End Neural Coreference Resolution

Architecture

Figure. 4 End-to-End Neural Coreference Resolution

Architecture

Embedding vector will be lower if the two words

have a strong relationship. On the right side of the

image, you can see that the words “cat” and “kitten”

are close, indicating that the two words have a strong

relationship.

In the End-to-End Neural Coreference Resolution

architecture, there are 2 types of Word Embedding

used, namely Word Embedding which is based on

GloVe and also Word Embedding which is based on

Turian. The two Word Embeddings are trained first

before the End-to-End model is run. The End-to-End

model only takes the contents of the finished results

of the two Word Embeddings. In the subsequent

subchapters, the two Word Embeddings will be

explained.

3.3 GloVe

Global Vectors (GloVe) is a word representation

model created by J. Pennington, R. Socher, and C. D.

Manning in 2014. It is called Global Vectors because

it uses global statistics from documents in the form

of a word-word co-occurrence matrix. GloVe has

been applied to the Word Analogy task and produces

an accuracy of 75%16. The source code of GloVe is

available open-source in C language and in Python

which can be accessed in the Gensim library. Table 5

is an example of a word-word co-occurrence matrix

Received: January 9, 2024. Revised: March 12, 2024. 296

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Table 5. Example of Co-occurrence Matrix

 Budi suka membaca menulis cerpen

budi 0 2 0 0 0

suka 2 0 1 1 0

membaca 0 1 0 0 0

menulis 0 1 0 0 1

cerpen 0 0 0 1 0

. 0 0 1 0 1

Doc 1: Budi suka membaca. (Budi likes reading)

Doc 2: Budi suka menulis cerpen. (Budi likes

writing short stories)

Table 6. Examples of Probability and Ratios

Probability

and Ratios

k =

padat

k =

gas

k =

air

k =

busana

P(k|es) 1.9 x

10-4

6.6 x

10-5

3.0 x

10-3

1.7 x

10-5

P(k|uap) 2.2 x

10-5

7.8 x

10-4

2.2 x

10-3

1.8 x

10-5

P(k|es) /

P(k|uap)

8.9 8.5 x

10-2

1.36 0.96

for 2 documents with a window size of 1. The

window size determines the number of words before

and after that will be counted in the co-occurrence

matrix. For example, if the window size is 1, the word

“menulis” (writing) in document 2 will count the

words “suka” (like) and “cerpen” (short story) in the

co-occurrence matrix, whereas if the window size is

2, the word “menulis” (writing) will count the word

“budi”, “suka” (like), “cerpen” (short story), and “.”

in the co-occurrence matrix.

The co-occurrence matrix will be denoted by X

which has the elements Xij, with i and j in Xij being

unique words found in all documents. For example, i

is Budi and j is like, then based on Table 5 Xij is 2.

Then there is Xi which is the number of times any

word appears in context i. For example, if i is “suka”

(like), then the value of Xi is 4, because “suka” (like)

appears twice in the context of “Budi”, once in the

context of “membaca” (reading), and once in the

context of “menulis” (writing).

𝑃𝑖 =
𝑋𝑖𝑗

𝑋𝑖
 (3)

The formula above itself is a probability formula

for word j appearing in the context of word i. With

this formula, the relationship between words can be

determined as displayed in Table 6.

In Table 6, it can be seen that k is an entity in the

real world, namely “padat” (solid), “gas” (gas), “cair”

(liquid), and “busana” (fashion). If the “es”

Figure. 5 Convolution Layer Architecture for Images

(ice) and “uap” (steam) probability values k are

increasingly similar, then the ratio of the probability

values between “es” (ice) and “uap” (steam) will be

closer to 1, as can be seen look at k “air” (water)

because both are water, and k “busana” (fashion)

because both are not fashion.

Algorithm 1 Algorithm Turian

01: E = Init_Word_Embedding()
02: N = Create_Ngram_List()
03: FOREACH X IN N
04: Y = Corrupt(X)
05: Xi = Map(X, E)
06: Yi = Map(Y, E)
07: Sx = FFNN(X)
08: Sy = FFNN(Y)
09: L = max(0, 1 - Sx + Sy)
10: Learn()
11: NEXT X

Algorithm 1 is a Turian learning algorithm for 1

epoch. The Corrupt function is a function to change

one of the words in n-gram X into another word. Map

is a function for embedding each word in n-gram X

stored in E. The FFNN function is useful for carrying

out Neural Network[25], [26] operations from input,

hidden, to output and returns the final score. L is the

loss gained. The Learn procedure is used to carry out

learning with backpropagation.

3.4 Character embedding

Figure. 6 Example of Pattern Detection with Convolution

Layer

Received: January 9, 2024. Revised: March 12, 2024. 297

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Table 7. Example of Mention Selection

 Span M. Score

 Budi Setiawan 3.5

Setiawan 1.7 Budi Setiawan 2.7

Setiawan bermain -1 Setiawan bermain bola 2.5

Setiawan bermain bola 2.5 Sort Bola 2.4

Bermain -0.2 → Setiawan 1.7

Bermain bola -1 Bermain -0.2

bola 2.4 Setiawan bermain -1

 Bermain bola -1

 Budi Setiawan bermain -2.3

 Selected as a mention

 Pruned because Mention Score was too low

 Pruned due to colliding with another span

Character Embedding utilizes the characters in

each word as features. Character Embedding uses a

1-dimensional Convolution Layer with ReLU

activation followed by Max Pooling. Convolutional

Neural Networks have been widely used to process

images because they can detect patterns from small

parts of the image.

In Fig. 5, the input is an image with a value that

is closer to 0, the blacker it is and the closer it is to 1,

the whiter it is and with a size of 5x5 pixels. What is

done in the Convolution Layer is element-wise

multiplication between the part of the input currently

in the window and the filter. The window size is the

same as the size of the filter, so in the image above

the window size for a 2x2 filter is 2x2. Initially, the

window will be in the top left corner, namely x1 in

the image above. After doing element-wise

multiplication with filters, exemplified in the image

above with x1 ○ f where f is a 2x2 filter having the

result placed in y1, then the window will then shift to

the right by a stride. For example, stride is 1, then the

window will shift by 1 pixel so that the window can

be modeled with an x2 matrix. Then it will be

multiplied again so that the result of x2 ○ f is placed

in y2. The same process will be repeated

continuously until the window cannot be shifted to

the right. If the window cannot be shifted to the right,

the window will return to the first pixel column and

shift one pixel down. So, the window will be in

position x3 according to the image above. Then the

result x3 ○ f is placed in y3. After that, it will

continue shifting to the right as usual. The

multiplication process will complete when the

window can no longer be shifted down.

Fig. 6 is an example of a filter as intelligence from

the Convolution Layer which can detect patterns. The

input image is a square image. There are 2 filters and

the convolution results from filter 1 produce a square

right line, while the convolution from filter 2

produces a square top line.

3.5 Mention score

Mention Score is a value of how big a span can

have an antecedent. Spans that usually have an

antecedent are spans which are nouns or pronouns.

The input of the Mention Score is a Span

Representation. Each Span Representation will have

its own Mention Score. In calculating the Mention

Score, Span Representation is fed forward to a Fully

Connected Neural Network with a hidden layer. The

output of the Neural Network is a scalar which

becomes the Mention Score.

Because a document can have many spans, and

only a very few of these spans can have coreference,

after the Mention Score for each timestep is found,

the collection of Mention Scores will be sorted and

several spans with the highest Mention Score will be

selected. If there are spans whose indexes collide,

then only the span with the higher value is selected as

a mention. The selected spans will then be searched

for their Antecedent Score while the spans that are

not selected will be pruned.

In Table 7, for example, the maximum span

length is 2 and the number of spans selected as

mentions is 75% of the number of words in the

document, so the number of spans selected is 3. It can

be seen that the span “Setiawan bermain bola”

(Setiawan plays football) is pruned because it collides

with the span “Budi Setiawan” whose Mention Score

is higher. Collision because they both have the word

“Setiawan”. However, the “Budi” span is not prune

even though the “Budi Setiawan” span also has the

word “Budi” because the span is entirely contained

within another span. So a span will not be prune if all

of its contents are contained in another selected span

or vice versa if it has the contents of another selected

Received: January 9, 2024. Revised: March 12, 2024. 298

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Figure. 7 Mention and Candidate Antecedents

Figure. 8 End-to-End Neural Coreference Resolution

Architecture

span.

3.6 Antecedent score

Antecedent Score is a value of how much a

mention is an antecedent of another mention. Each

mention has an Antecedent Score equal to the number

of candidate antecedents minus 1. As explained in

subsection 3.1, the candidate antecedents of a

mention are other mentions that exist previously in

the sequence and epsilon ϵ. Deducted by 1 because

candidate ϵ does not have Span Representation.

Fig. 7 is an example of an Antecedent Score

created from 4 mentions. In the image, an example

document is “Budi Setiawan bermain golf bersama

paman nya” (Budi Setiawan plays golf with his

uncle) and the spans selected as mentions are “Budi

Setiawan”, “golf”, “paman” (uncle), and “nya” (his).

Antecedent Score is written in Sa(i,j) where i is a

mention and j is a candidate antecedent of mention i.

I n F i g . 8 , E i s t h e e m b e d d in g v e c to r

representation form of the character and “Class” is

the word that will be converted into Character

Embedding form. The first thing to do is map each

character in the word into a vector form. For example,

in the image above, the embedding of the character

“s” is the vector [0.5, 0.5, 0.1]. In the image above,

the stride value is 1 and the window length is 2x3,

Figure. 9 Span Representation

Figure. 10 Head Span Computation Graph

where 2 is the number of characters in 1 convolution

and 3 is the dimension of the character features.

These dimensions in the input image can be exampled

with RGB coloring which requires 3 dimensions. Just

like in the picture, the window will be multiplied by

element-wise multiplication with the filter and then

continued by moving the window to the right

according to the stride size. After all the element-wise

multiplication processes are complete, the results will

be added by the respective bias filters, denoted by b1

and b2 in the image above, then this will be followed

by ReLU activation to remove negative values. In the

end, from the ReLU results of each filter, the element

with the largest value will be selected and will be

combined with the largest element from the other

ReLU filters. The results of this concatenation will

become input for the main architecture along with

Word Embedding. Character Embedding is trained

simultaneously with the main architecture.

In Fig. 9, the Span Representation is formed from

the initial and final Bi-LSTM outputs of the span, the

Span Head, and a Feature Vector as displayed in Fig.

4. The Feature Vector used is the embedding length

of the span.

Mention Score[20] (s m) is the value of how big

a span is a mention. This value is calculated using an

Artificial Neural Network[27], [28]. Only the few

spans that have the highest value will be taken as a

mention, the rest will be prune.

Received: January 9, 2024. Revised: March 12, 2024. 299

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Figure. 11 Input Antecedent Score

Algorithm 2 Algorithm Span Head

01: For I = 0 to len(Xbi) - 1
02: Alpha[I] = FC(I)
03: Next I
04: A = Softmax(Alpha)
05: Sh = Sum(a * X)

Algorithm 2 is the Span Head calculation, where

X is the initial Word and Character Embedding input,

Xbi is the Bidirectional LSTM output result, FC is the

Fully Connected Layer function, and Sh is the final

Span Head vector result.

Fig. 10 depicts an example of a computation

graph from Span Head “Budi Setiawan bermain bola”

(Budi Setiawan playing football) from input to output.

In the graph, xt* is the Bidirectional LSTM output.

All Fully Connected Layers used in the graph above

use the same weight. The output from the Fully

Connected Layer in the graph above is the Head

Score αt which is a scalar. All Head Scores are then

collected into one vector and softmax is used for each

element to get vector a.

The final Span Head is an embedding

representation of the span. A Fully Connected Layer

and Softmax are used to determine which word is

more important to represent the span.

Fig. 11 is an example of input from an Antecedent

Score where “Budi Setiawan” is a candidate

antecedent and “dia” (he) is a mention. The input of

an Antecedent Score is formed from the

concatenation of the Span Representation of

antecedent candidates, element-wise multiplication

between the Span Representation of antecedent

candidates and mentions, the Span Representation of

mentions, and the Feature Vector.

Feature Vector input Antecedent Score consists

of 2 features, namely distance and metadata. The

distance feature is based on the distance between a

mention and its antecedent candidate. For example,

there is a document “Budi bermain golf bersama

paman nya” (Budi plays golf with his uncle) and

those selected as mentions are “Budi”, “golf”, and

“paman” (uncle), then the distance between “Budi”

and “paman” (uncle) is 2 because it is calculated from

the difference in the mention index. The distance

feature is represented by a random vector which will

be trained simultaneously with the End-to-End model.

The distance feature is separated into [0, 1, 2, 3, 4, 5-

7, 8-15, 16-31, 32-63, 64+], where the number inside

is the mention distance. For example, a candidate

antecedent with a distance of 2 will have the same

distance vector as another candidate antecedent with

a distance of 2, while a candidate antecedent with a

distance of 33 will have the same distance vector as a

candidate antecedent with a distance of 57, because

they are both found in range 32 to 63.

The metadata feature is a feature that takes

information directly from the dataset. The metadata

feature consists of 2, namely speaker and genre. Both

features are represented by random vectors that are

trained simultaneously with the End-to-End model.

For the speaker feature, 2 random vectors are formed

with one representing if the speaker of the mention

and the candidate antecedent are the same, while the

other represents if the speaker of the mention and the

candidate antecedent are different. Genre features are

divided according to the number of genres in the

entire dataset and each different genre has a different

embedding vector.

After the input from an Antecedent Score is

formed, the input will be fed forward to the Fully

Connected Neural Network which has a hidden layer.

The output of the Neural Network is an Antecedent

Score in scalar form.

Antecedent Score (Sa) has inputs like Fig. 6,

namely Span Representation mentions, Span

Representation candidate antecedents, the results of

both element-wise multiplication, and Feature Vector.

The following Feature Vector is speaker and genre

metadata features as well as mention distance

features, where each group of different mention

distances has a different embedding, grouped by

distance [0, 1, 2, 3, 4, 5-7, 8-15, 16- 31, 32-63, 64+].

Speaker metadata has 2 possibilities, namely the

same or different speakers.

𝑠(𝑖, 𝑗) = {0 𝑖𝑓 𝑗 = 𝜖 𝑠𝑚(𝑖) + 𝑠𝑚(𝑗) +
𝑠𝑎(𝑖, 𝑗) 𝑖𝑓 𝑗 ≠ 𝜖 (4)

Received: January 9, 2024. Revised: March 12, 2024. 300

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Above is the formula for Coreference Score s(i,j).

After obtaining the Coreference Score, the loss will

be sought with the following marginal log-likelihood:

𝑙 = 𝑙𝑜𝑔 ∏𝑁
𝑖=1 ∑𝑦∈𝑌(𝑖)∩𝐺𝑂𝐿𝐷(𝑖) 𝐹(𝑦) (5)

𝐹(𝑦) =
𝑒𝑥𝑝𝑒𝑥𝑝 (𝑠(𝑖,𝑦))

∑
𝑦′∈𝑦𝑖

𝑒𝑥𝑝(𝑠(𝑖,𝑦′))
 (6)

Code End-to-End Neural Coreference Resolution

developed by K. Lee accessible at

https://github.com/kentonl/e2e-coref. The total LOC

of all code is 1855. The code is written in Python and

uses TensorFlow version 1.0.0 to apply the model

architecture.

3.7 Learning

After the forward pass is carried out on the End-

to-End Neural Coreference Resolution model, of

course a backward pass will be carried out to study

the task. This subchapter explains the backward pass

that is carried out and explains several other things

that are used when conducting training that are not

discussed in the architecture.

3.8 Backpropagation

Backpropagation is the name of the technique

used to perform a backward pass to find the gradient

of each weight or bias that can be updated or studied.

The gradient of a weight is the derivative of the loss

function for the weight, so it can be written as follows.

𝐺𝑟 𝑤 =
𝜕𝐿

𝜕𝑤
 (7)

In the notation above, L is the loss and w is the weight

whose gradient is sought.

3.9 Hyperparameters

In this subchapter, several hyperparameters used

during training will be explained. The

hyperparameters contained in the model are as

follows:

a. Word Embedding

The Word Embedding used is pretrained GloVe

300 dimensions which was trained with the 2014

Wikipedia website dataset and Gigaword fifth edition

with a total of 6 billion tokens and pretrained Turian

50 dimensions which was trained from the RCV-1

Newswire dataset with a total of 40 million tokens.

b. Character Embedding

The Convolutional Network input vector for each

character is 8 dimensions. The filters used are sizes 3,

4, and 5, and there are 50 of each.

c. Bidirectional LSTM

Each Fully Connected Layer in Bidirectional LSTM

has 200 output nodes.

d. Learning Rate

The initial learning rate is 0.001. Decay is used

to reduce the learning rate when there are more

iterations. Decay Rate is 0.999 and Decay Frequency

is 100, so decay is carried out every 100 iterations.

e. Dropout Rate

The large dropout value is divided into 2, namely

Lexical Dropout and Dropout. Lexical Dropout is 0.5

and Dropout is 0.2. The larger the value, the greater

the possibility of the node being discarded. Lexical

Dropout is only used for word representation input,

others use Dropout.

f. Hidden Layer Neural Network

End-to-End architecture uses 2 hidden layers

with each layer having 150 hidden nodes.

g. Feature Size

All Feature Vectors used, from metadata,

distance, and mention length all have an initial vector

of 20 dimensions.

h. Constraints

The maximum length of sentences entered is 50. Each

mention has a maximum of 250 antecedents. A

mention ratio of 0.4 means that 40% of the total

number of tokens will be mentioned. Mention width

is 10, which means the longest span is formed from

10 tokens.

3.10 Optimizer

Optimizer in Neural Network is a method used to

change Neural Network attributes such as weight in

order to reduce loss values. The optimizer will run

after getting the gradients of the learnable attributes

that are searched through backpropagation.

All optimizations used in End-to-End Neural

Coreference Resolution are based on Gradient

Descent optimization. Gradient Descent is an

optimization algorithm used to minimize the loss

function by updating the weight repeatedly based on

the gradient size.

Algorithm 3 Algorithm Gradient Descent

01: D[ITERATION]
02: FOR I=0 TO EPOCH-1
03: G = ZEROS(W)
04: FOR J=0 TO ITERATION-1
05: G += CALC_GRAD(D[J])
06: NEXT J
07: UPDATE_WEIGHT(G)

https://github.com/kentonl/e2e-coref

Received: January 9, 2024. Revised: March 12, 2024. 301

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

08: NEXT I

Algorithm 3 is Algorithm Gradient Descent

where ITERATION is the number of datasets,

EPOCH is the number of times that will be repeated

for the entire dataset, D is a list of datasets, G is a list

of gradients of all weights, W is the number of

weights, the ZEROS function is used to initialize a

vector along parameters with all values being zero,

the CALC_GRAD function function to calculate the

gradient based on document-to-parameter input, and

the UPDATE_WEIGHT function.

Algorithm 4 Algorithm Stochastic Gradient

Descent

01: D[ITERATION]
02: FOR I=0 TO EPOCH-1
03: FOR J=0 TO ITERATION-1
04: G = CALC_GRAD(D[J])
05: UPDATE_WEIGHT(G)
06: NEXT J
07: NEXT I

Algorithm 4 is Algorithm Stochastic Gradient

to update the weights immediately after the gradient

is found from the input one dataset record. However,

this algorithm can cause very long training if the

dataset is very large, therefore a Mini-Batch Gradient

Descent is formed to overcome this.

Algorithm 5 Algorithm Mini-Batch Gradient

Descent

01: D[ITERATION]
02: FOR I=0 TO EPOCH-1
08: BATCH[F][B] =

CREATE_BATCH(D)
09: FOR J=0 TO F-1
10: FOR K=0 TO B-1
11: G =

CALC_GRAD(BATCH[J][K])
12: NEXT K
13: UPDATE_WEIGHT(G)
14: NEXT J
15: NEXT I

Algorithm 5 is Mini-Batch Gradient Descent

where BATCH is a list of batches that is formed

containing as many batches as F and each batch has

as many as B. CREATE_BATCH is a function used

to separate a dataset into several batches.

3.11 Evaluation

This subchapter will explain how to evaluate

Coreference Resolution. In the End-to-End Neural

Coreference Resolution model, 3 types of metrics are

used to determine the precision, recall, and F1-Score

of the model, namely the standard metrics MUC, B3,

and CEAFϕ4.

The MUC metric is a metric that measures the

number of correct coreference links.

The Kuhn-Munkres algorithm is a technique used

for solving large-scale assignment problems, such as

matching workers to tasks or students to schools. It

works by finding the optimal assignment that

minimizes the total cost. However, this technique

does have some drawbacks. For example, it can be

slow or infeasible for very large or dynamic problems,

which can require a lot of iterations and updates to

find the optimal solution. It can also be sensitive to

the choice of cost matrix, which can affect the quality

and stability of the solution. Additionally, it can be

limited by the assumption of one-to-one matching,

which may not hold for some real-world problems

that involve multiple or partial assignments[29].

Algorithm 6 Algorithm Kuhn-Munkres

01: M[COLUMN,ROW]
16: FOR I=0 TO ROW-1
17: SUBTRACT_ROW(M,I)
18: NEXT I
19: FOR I=0 TO COLUMN-1
20: SUBTRACT_COLUMN(M,I)
21: NEXT I
22: COVER_ZEROS(M)
23: WHILE ZERO_LINES(M)<ROW
24: K=SUBTRACT_SMALLEST(M)
25: ADD_COVER(K)
26: COVER_ZEROS(M)
27: END WHILE
28: SELECT_MATCH(M)

Algorithm 6 is Algorithm Kuhn-Munkres where

M is an RxK adjacency matrix whose value is

negative, SUBTRACT_ROW is a function to reduce

each row by the element with the smallest value in

that row, while SUBTRACT_COLUMN does the

same thing as SUBTRACT_ROW but in columns.

COVER_ZEROS is a function used to cover matrix

rows or columns that have a value of 0, and the

number of closures is as minimal as possible.

Algorithm 7 Algorithm Get Prediction and Loss

01: FUNCTION

GET_PREDICTION_AND_LOSS
29: Initiate
30: Input
31: Bidirectional LSTM
32: Span Representation
33: Choose Mention

Received: January 9, 2024. Revised: March 12, 2024. 302

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

34: Antecedent Score and

Coreference Score
35: Loss
36: Return
37: END FUNCTION

Algorithm 7 is Algorithm to get Prediction and Loss.

4. Results and discussion

4.1 Dataset

The OntoNotes-5.0 dataset is the latest release of

OntoNotes[30], an annotated corpus whose

annotations are provided in separate text files for each

annotation layer. This dataset has been widely used

for Named Entity Recognition, Coreference

Resolution, and Semantic Role Labeling tasks. This

dataset is also the dataset most often used in

Coreference Resolution research at this time and is

also the dataset used in research on the main

reference paper. Ontonotes-5.0 can be obtained from

LDC free of charge for non-profit research and

education.

The OntoNotes-5.0 dataset has 3 different

languages, namely English, Chinese, and Arabic.

Apart from that, the dataset is divided into 6 genres,

namely Newswire, Broadcast News, Broadcast

Conversation, Web Text, Telephone Conversation,

and Pivot Corpus.

Table 8 is a statistic of the number of all tokens with

columns as language and rows as genre. In the

English dataset with the Newswire genre, 625

thousand tokens consist of 300 thousand Wall Street

Journal tokens and 325 thousand tokens of the

English part of the English-Chinese Parallel

Treebank (ECTB).

The next dataset is a dataset created from the

Book of Mark from the 1974 New Translation of the

Bible. Each token of the Book of Mark will be tagged

manually into CoNLL-2012 format. A document is a

passage.

Table 8. Number of Ontonotes-5.0 Tokens by Language

and Genre

 English

Newswire 625 K

Broadcast News 200 K

Broadcast Conversation 200 K

Web Text 300 K

Telephone Conversation 120 K

Pivot Corpus 300 K

Table 9. Datasets Statistic

Dataset Token Train Token Dev

OntoNotes-5.0

English

1.3 million

(2802 document)

160 thousand

(343

document)

Book of Mark 14.4 thousand

(65 document)

3.7 thousand

(22 document)

The Table 9 above is a table of many documents

and their tokens in each set. There are 78 passages

and a total of 18 thousand tokens in the Book of Mark.

The 78 passages were divided into train and dev sets

with a ratio of 75% for training and 25% for

validation.

4.2 Data preprocessing

In machine learning, preprocessing is done to

convert the dataset into a format suitable for the

training model. This subchapter will explain 3 files

that perform preprocessing of the dataset before

running it on the main model. These files are

minimize.py, get-char-vocab.py, and filter-

embeddings.py.

4.2.1 Minimize

The minimize.py file converts CoNLL format

files to JSON. It extracts only the necessary

information for the model. The Document State class

is introduced to store the contents of a dataset,

including document ID, sentences, and coreference

clusters. The main functions involve checking and

ensuring the correctness of the class, as well as

transforming the final results into a JSON format that

the model can use.

4.2.2 Get char vocab

The get-char-vocab.py file is designed to create a

file containing all unique characters across the entire

dataset. It includes functions to generate a character

vocabulary file based on the training, development,

and test sets.

4.2.3 Filter embeddings

To address the large size of the GloVe 300-

dimensional file, filter-embeddings.py is employed to

reduce the Word Embedding size. This file filters out

words from the Word Embedding that do not appear

in any of the datasets, resulting in a smaller Word

Embedding file. The execution of this file involves

specifying the Word Embedding file and the JSON

dataset files for filtering.

Received: January 9, 2024. Revised: March 12, 2024. 303

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

4.2.4 CoNLL-2012

Because the information from the OntoNotes

dataset is split into several separate files, it will first

be converted to CoNLL-2012 format. Instructions for

conversion to CoNLL-2012 format can be accessed

on the CoNLL-2012 website. The CoNLL-2012

format has 13 columns, namely as follows:

Document ID is the ID of the document, with the

first 2 letters representing the genre of the document.

The Broadcast News document genre is represented

by the initials bn, Broadcast Conversation is

represented by the initials bc, Web Text is

represented by the initials wb, Telephone

Conversation is represented by the initials tc, and

Pivot Corpus is represented by the initials pt.

Newswires in the Wall Street Journal and ECTB

Xinhua section are represented by the initials nw,

while Newswires in the ECTB magazine section are

represented by the initials mz.

Part Number is an index that indicates the number

of a document in a file.

Word Numbers is a sequence index of tokens

starting from 0 in each sentence.

Word is a section that the actual token form in the

document.

Part-of-Speech is a category of words based on

their syntactic function such as nouns, verbs,

pronouns, adjectives, and so on.

Bit Parse is the syntactic structure of the document,

with the character * replaced by Part-of-Speech from

column e which is a leaf of the Syntactic Tree.

Predicate Lemma contains the basic form of

words for words that have Word Sense or Semantic

Role. Additionally, it will contain “-”.

Predicate Frameset ID contains the basic form of

words for words that have Word Sense or Semantic

Role. Additionally, it will contain “-”.

Word Sense contains the Word Sense of the words

in column d.

Speaker or Author contains the name of the

person speaking or the person writing the token of the

document.

Named Entities is a Named Entity of tokens or

phrases, where a phrase is stated if it is contained in

the same brackets, with * which can be replaced by

the word in column d.

Predicate Arguments is a column for each

argument predicate information structure for the

predicates in column g.

Coreference is in the last column. This is

information from a coreference that has a phrase

system with brackets, where the phrase from a token

that has a coreference ID tag with an open bracket

goes to a token that has a coreference ID tag with a

closed bracket. Phrases that have a coreference

relationship are phrases that have the same number in

a document.

4.3 Experiments

The model was evaluated using the MUC, B3,

and CEAF ϕ4 metrics . The MUC metric focuses on

coreference links, B3 focuses on mentions in the

coreference cluster, while CEAF ϕ4 focuses on a

cluster of pairs that are most similar. The final F1 is

the average of the three metrics.

Training is conducted on the English and

Indonesian models for 150 epochs and the model will

be evaluated every 5 epochs. ADAM is used as

optimizer. Given a dropout of 0.5 on the Word

representation and Character Embedding and 0.2 on

the hidden layer and on the Feature Vector.

Constraint sentence in a document is 50, the

maximum number of antecedents is 250, and the

maximum span length is 10.

The ANN used in the Mention Score and

Antecedent Score has a hidden layer 2, with 150

nodes for the English model and 100 nodes for the

Indonesian model.

Word Representation uses Word Embedding

which is described in III while the Indonesian Word

Embedding is 100 vector sizes made with GloVe with

the entire book of Mark dataset. Character

Embedding[31] uses 3 types of filters with sizes [3, 4,

5] and each filter has 50, while the initial

representation of the characters themselves has

dimensions of 8.

pruning is carried out until there is a span of 40%

of the number of tokens remaining. In the UK model,

this means that the model only uses an average of 4%

of the formed span. However, the model still manages

to get 92% correct mentions.

4.3.1 English model

Fig. 12 shows that based on the recall and

precision obtained, the model becomes bolder in

Figure. 12 Recall dan Precision from English Model

Received: January 9, 2024. Revised: March 12, 2024. 304

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Figure. 13 Loss Graph with Dropout and without Dropout

on English Model

Figure. 14 Comparison of F1-Score Set Train and Dev on

English Model

guessing the coreference the more epochs are trained.

Fig. 13 shows that the resulting loss calculated

with some nodes dropped out is much greater than

when all nodes are used. This proves that dropout

functions well because the resulting loss when

combined is actually very small even though the node

selection is different in each iteration.

Fig. 14 shows that the image on the bottom is an

enlargement of the “Dev” graph on the left. The

results of the training set’s F1-Score continued to

increase well every epoch up to 85%, while the

evaluation results had a much smaller F1-Score.

However, the evaluation results still tend to increase

the F1-Score for each epoch.

Figure. 15 Tuning F1-Score Learning Rate on English

Model

Figure. 16 Precision dan Recall Tuning Learning Rate on

English Model

Fig. 15 shows that the first tuning carried out is

the learning rate. The best results are still at the

default learning rate of 0.001.

Fig. 16 shows that there is no significant

difference in both recall and precision. However, a

learning rate of 0.001 still has the best precision and

recall compared to other learning rates.

Fig. 17 shows that the best number of LSTM

nodes is 150. The default hyperparameter of 200 has

smaller results with an F1-Score of 67.59%. The F1-

Score of 250 nodes has stopped growing after 85

epochs while underfitting occurs on 100 nodes.

Fig. 18 shows that there is not much difference in

the recall values while the precision values for 100

Received: January 9, 2024. Revised: March 12, 2024. 305

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Figure. 17 Tuning F1-Score LSTM Node on English

Model

Figure. 18 Precision dan Recall Tuning LSTM Node on

English Model

nodes are much lower while the precision values for

200 nodes and 250 nodes are not much different from

the best. The results of 150 nodes managed to beat

other models, especially in the value of precision.

4.3.2 Mention score and antecedent score on English

model

This subchapter explains the results of the

Mention Score and Antecedent Score. Before getting

a mention, spans are selected with 40% of the

document tokens from the spans that have the highest

Mention Score. So, because the longest mention limit

is 10 and the OntoNotes-5.0 dataset has an average

Table 10. Mention Score and Antecedent Score Table

Doc = Donald is the president of USA which is a

country in North America.

 That country has a lot of states.

 The president is older than me.

Index Mention Mention

Score

0 Donald 0.44

1 USA which is a country -3.7

2 USA which is a country in North

America

0.66

3 North America 0.34

4 That country 0.76

5 have -1.46

6 a lot of states 0.36

7 The president 0.78

8 older -1.42

9 older than me -3.76

10 me 0.3

Antecedent “That Country”

Index

Mention

Antecedent Score Coreference Score

0 -8.57 -7.37

1 2.04 -0.91

2 3.71 5.13

3 3.21 4.31

ϵ - 0

number of tokens of 467, a maximum of 4625 spans

will be formed if there are 467 tokens in the document,

even though only 40% of the total number of tokens,

namely 187 spans, are selected. This means that in

documents the average span size selected is only 4%

of the total number of spans. Remaining spans that

are not used will not receive updates in the backward

pass. Even though it only used 4%, the models that

were tried succeeded in getting 92% of mentions

since the first 5 epochs which were not prune except

for models that did not use LSTM and Word

Embedding. Even though it didn’t use LSTM and

Word Embedding, the model still managed to reach

82% mentions in the first 5 epochs, and rose to 86%

Received: January 9, 2024. Revised: March 12, 2024. 306

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Table 11. Mention Score for All Subjects and Some

Subjects

Doc = Lisa and John were friends.

 They met in a small town.

 She was a few years older than him.

Mention Mention Score

Lisa and John 0.52

John -1.17

were -1.67

They 0.37

met -0.71

a small town 0.72

She 0.52

him 0.19

Table 12. The Complicated Problem of Coreference

Doc 1 = James was robbed by George and now he is

in prison.

Doc 2 = Felicia was robbed by George and now he

is in prison.
Antecedent “he” Doc 1

Antecedent Antecedent Score

James 7.66

robbed -3.54

George 7.24

Antecedent “he” Doc 2

Antecedent Antecedent Score

Felicia 2.88

robbed -3.96

George 6.68

when it reached 30 epochs. However, the model

without these two features gets an F1-Score of

43.76% in 30 epochs, while with these two features

the model gets an F1-Score of 66.87% in the same

number of epochs.

The Mention Score and Antecedent Score values

have quite a wide range when compared, table 10 is

an example of model results without metadata

features. In Table 10, the top table is the spans

selected as mentions while the right table is the

antecedents of the mention “That country”. It can be

seen that the Mention Score tends to be much smaller

in value when compared to the Antecedent Score.

This means that the role of the Antecedent Score is

much more important than the Mention Score when

determining antecedents. It can also be seen that the

Mention Score is greater for words that are full

subjects or objects, which means that the LSTM used

in the model allows the model to detect patterns

between nouns and conjunctions or verbs. Based on

Table 11, phrases that are a whole subject such as

“Lisa and John” have a good Mention Score while

words that are a small part of a subject such as “John”

actually have a bad Mention Score, even the word

“Lisa” is not included in the mentions. The model

tends to detect full Noun Phrases. This can be good

for detecting full names, but bad in instances of more

than 1 subject like the example above. However, the

model can still detect phrases that have pronouns

such as “his” in “his children” well. This is also one

of the disadvantages of combining learning to search

for mentions or entities which is usually done with

Named Entity Recognition directly with antecedent

searches, because even though a span is a Named

Entity, it will still be considered to have negative

feedback on the model if it happens to have no

antecedents. Furthermore, in Table 12 there are 2

examples of documents with Doc 1 being a fairly

complicated coreference problem:

In Table 12, the tricky problem in Doc 1 is

determining whether “he” is “George” or “James”,

where the model is wrong because it prefers “James”.

Models tend to choose the earliest nouns in problems

like this. In Doc 2, because the detected genders are

different, the model can easily determine the correct

coreference relationship.

4.3.3 Indonesian model

Fig. 19 shows the “normal” line is the F1-Score

obtained every 2 epochs. It can be seen that each

epoch has quite a large difference in F1-Score and

that is why evaluations are carried out every 2 epochs

so that we don’t easily lose the best results.

Figure. 19 F1-Score Evaluation on Indonesian Model

Received: January 9, 2024. Revised: March 12, 2024. 307

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Figure. 20 Precision and Recall on Indonesian Model

Figure. 21 Tuning Loss Learning Rate on Indonesian

Model

Figure. 22 Detected Mentions and Loss

The F1-Score value still tends to increase every epoch.

The “smooth” line is a “normal” line that is smoothed

Figure. 23 F1-Score dan Recall Learning Rate Indonesia

Figure. 24 F1-Score and Recall LSTM Node Indonesia

so that the difference with other lines can be seen

easily which will be applied when tuning.

Fig. 20 shows the precision obtained is not stable

every epoch. In the tuning carried out, the precision

Received: January 9, 2024. Revised: March 12, 2024. 308

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Figure. 25 F1-Score and Recall Hidden Node Indonesia

values for each different set of hyperparameters get

different patterns as well. However, recall still tends

to increase every epoch, just like in the UK case.

These unstable results are due to the small number of

datasets in Indonesian with a comparison of the

training dataset of 1:43 and the evaluation dataset of

1:16 for the number of Indonesian and English

documents.

Fig. 21 shows that the loss from learning rates of

0.003 and 0.001 both work well, while the loss of

learning rate 0.0003 takes too long to converge, while

the learning rate of 0.01 is difficult to reduce loss

because the learning rate is too large. Then, it can be

seen that the loss in the early epochs was unstable,

and only stabilized down since several epochs were

running.

Fig. 22 shows the new loss graph will stabilize

downwards when the model detects mentions that are

approximately 90% or more unprune. This is because

the prune spans are not used in calculating loss.

Fig. 23 shows the F1-Score and recall values are

quite identical in development with the 0.003 model

having the best results.

Fig. 24 shows that F1-Score and recall metrics

from 150 nodes get the best results while 100 nodes

are still underfit while 200 nodes are overfitting.

Fig. 25 shows that it doesn’t take a lot of Hidden

Nodes to get good results on the Indonesian set. The

best performing results are those with 50 and 100

nodes. However, the development of 50 nodes

stopped at 110 epochs while 100 nodes continued to

grow.

4.4 Comparative analysis

4.4.1 English

The English Case Study uses the OntoNotes-5.0

dataset, train set for training and dev set for

evaluation. The model that has the best evaluation

results will be tested on the test dataset to become the

final F1-Score. Training is carried out for up to 150

epochs. The default training hyperparameters are the

parameters used in the reference paper. Because

Google Colab sessions last a maximum of 12 hours,

training is carried out every 30 epochs. Training of 30

epochs runs for approximately 3.5 hours on a Tesla

P100-PCIE-16GB GPU and approximately 7 hours

on a Tesla K80, which means it takes 17.5 hours to

35 hours to run 150 epoch training.

Table 13. English Results Without Certain Features

 F1 ΔF1

Best 67.94

- Word Embedding 62.47 -5.47

- Char Embedding 66.20 -1.74

- Span Head 65.87 -2.07

- Feature Distance 63.75 -4.19

- Feature Width 67.35 -0.59

- Metadata Genre 67.04 -0.90

- Metadata Speaker 66.53 -1.41

 P ΔP

Best 71.24

- Word Embedding 68.05 -3.19

- Char Embedding 68.24 -3.00

- Span Head 69.07 -2.17

- Feature Distance 67.01 -4.23

- Feature Width 70.30 -0.94

- Metadata Genre 70.01 -1.23

- Metadata Speaker 68.79 -2.45

 R ΔR

Best 64.93

- Word Embedding 57.79 -7.14

- Char Embedding 64.27 -0.66

- Span Head 62.96 -1.97

- Feature Distance 60.81 -4.12

- Feature Width 64.64 -0.29

- Metadata Genre 64.31 -0.62

- Metadata Speaker 64.42 -0.51

Received: January 9, 2024. Revised: March 12, 2024. 309

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Table 14. Evaluation on English dataset with baseline

model [15]
Metric Value

MUC 0.51

CEAF 2.07

BCubed 0.83

All models are evaluated every 5 epochs. First, we

will explain the best results obtained, then after

getting the best results we will analyze the usefulness

of the features used, then we will explain the

hyperparameter tuning that was carried out to get the

best results. After that, several other analyzes of the

model will be explained.

The best results from the English case study were

using the default hyperparameters with a

combination of 150 LSTM layer nodes with an F1-

Score of 67.94% on the dev set and a final successful

F1-Score of 67.14% on the test set.

Table 13 shows the English Results Without

Certain Features

Word Embedding causes the model to be able to

handle more types of coreferring noun phrases that

exist in the Word Embedding vocabulary. In addition,

this feature also helps determine the antecedent of a

pronoun based on gender.

Character Embedding has the advantage of

providing word representations for words that are not

contained in the vocabulary. Words that are outside

the vocabulary tend to be guessed as coreferences to

one another if the input representation is only Word

Embedding because the representations are the same.

the Span Head is not used, the Bidirectional

LSTM representation used is only the first and last

words of the span. This causes information from the

words in the middle of the span to be lost.

Distance is not used, pronouns that fail to find

antecedents can actually look for antecedents to

mentions that are very far apart because they do not

know how big the distance between the two mentions

is.

The speaker helps group the pronouns “I” and

“you” where if the speakers are the same, then what

can be grouped is “I” with “I” and “you” with “you”.

In addition, if the speakers are different, it raises the

possibility that “you” and “I” can be grouped together.

It was also found that the model is more

concerned with the Antecedent Score than the

Mention Score. In addition, the model tends to be

concerned with detecting full Noun Phrases in

documents.

The coreference resolution system on Ontonotes

dataset with the baseline model [15] achieved

moderate performance with an MUC score of 0.51.

However, there is room for improvement, as

indicated by the CEAF score of 2.07. On the positive

side, the system demonstrated relatively good

precision and recall with a BCubed score of 0.83.

Further analysis and optimization are recommended

to enhance overall effectiveness.

4.4.2 Indonesian

Indonesian Case Study using the Book of Mark

dataset. Training is carried out for up to 150 epochs.

The default training hyperparameters are the same as

the best English hyperparameters, only with

num_filters Character Embedding of 30 and

decay_frequency of 65 because the model has a much

smaller number of datasets. Training 150 epochs runs

for approximately 15 minutes on the Tesla P100 GPU

and 25 minutes on the Tesla K80 GPU. All models

are evaluated every 2 epochs.

The best results for the Indonesian language case

study were getting an F1-Score of 68.88% with

default hyperparameters with a combination of 100

Hidden Nodes and a learning rate of 0.003. The

dropout effect and F1-Score results from the training

set have the same pattern as the English case. Table

15 shows the Indonesia Results Without Certain

Features.

Table 15. Indonesia Results Without Certain Features

 F1 ΔF1

Best 68.88

- Word Embedding 63.36 -5.52

- Char Embedding 58.89 -9.99

- Span Head 65.44 -3.44

- Feature Distance 66.60 -2.28

- Feature Width 67.72 -1.16

 P ΔP

Best 72.91

- Word Embedding 72.39 -0.52

- Char Embedding 75.13 +2.22

- Span Head 72.77 -0.14

- Feature Distance 73.57 +0.66

- Feature Width 72.79 -0.12

 R ΔR

Best 65.31

- Word Embedding 56.52 -8.79

- Char Embedding 48.70 -16.61

- Span Head 59.70 -5.61

- Feature Distance 60.93 -4.38

- Feature Width 63.45 -1.86

Received: January 9, 2024. Revised: March 12, 2024. 310

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Table 16. Evaluation on Indonesian dataset with baseline

model

Dataset

Metric Recall

(R)

Precision

(P)

F1

Score

Original MUC 0.758 0.761 0.756

B³ 0.627 0.538 0.543

CEAF_m 0.456 0.495 0.475

CEAF_e 0.379 0.439 0.389

BLANC 0.607 0.598 0.551

Our

Dataset
MUC 0.477 0.404 0.430

B³ 0.885 0.619 0.697

CEAF_m 0.621 0.621 0.621

CEAF_e 0.557 0.775 0.624

BLANC 0.773 0.795 0.760

Word Embedding allows important words that

rarely appear in documents to have a greater chance

of being mentioned.

Character Embedding is not used, the model loses

recall of 16.61%, which means the model is underfit.

In contrast to Word Embedding, which has a fixed

value, Character Embedding is more flexible because

Character Embedding is trained directly with a

dataset task, while Word Embedding is trained

regardless of what task will be performed.

Distance in Indonesian does not get a much

higher performance because on average each Bible

passage does not have many kinds of mentions in it

so that the possibility of saying a coreference is

smaller.

Despite getting pretty good results at the time of

evaluation, the model still has difficulties in solving

problems other than anaphora. The average document

dataset created has a few clusters but many

coreference relationships.

Even though there are many shortcomings in the

model as described above, the Indonesian language

model can work well in the domain of the book of

Mark and does not need to require additional dataset

processing or further architecture other than

separating the affixes “nya”, “ku”, and “mu” on

dataset creation.

The original dataset achieved respectable results

across various evaluation metrics. For the MUC

metric, the recall was 0.758, precision stood at 0.761,

and the F₁ score reached 0.756. However, for B³,

CEAF_m, CEAF_e, and BLANC, the performance

was comparatively lower. These metrics ranged from

0.379 to 0.627 for recall, 0.439 to 0.538 for precision,

and 0.389 to 0.543 for the F₁ score.

In contrast, our dataset exhibited different

strengths and weaknesses. The MUC metric achieved

a recall of 0.477 and a precision of 0.404, resulting in

an F₁ score of 0.430. Notably, the B³ metric

performed exceptionally well, with a recall of 0.885,

precision of 0.619, and an impressive F₁ score of

0.697. Additionally, CEAF_m maintained consistent

recall and precision at 0.621, while CEAF_e achieved

a high precision of 0.775 and an F₁ score of 0.624.

Lastly, BLANC demonstrated strong overall

performance, with a recall of 0.773, precision of

0.795, and an F₁ score of 0.760[16].

4.5 Coreference visualization

To display the coreference results obtained from

the model, visualization is carried out. There are 2

visualization media created, one for comparing

predicted and actual coreference, and the other for

carrying out direct testing from the input provided.

The following coreference visualization was

created using HTML and Javascript. All that is

needed to perform the following visualization is the

JSON output from decoder.py. The following

visualization is a modification of the main.js and

index.html files in the original End-to-End

Coreference Resolution source.

Fig. 26 is an example of a comparison of

predicted and actual coreference clusters. In the

cluster column, each box indicates a cluster and the

contents of the box are a maximum of 3 spans of the

clusters in the coreference. The “<“ and “>“ buttons

at the top center are used to move to another

document. In the URL, there is a parameter whose

contents are the name of the JSON file that will be

visualized and next to it is “#x” where x is the index

of the document.

Figure. 26 Comparative Coreference Visualization

Received: January 9, 2024. Revised: March 12, 2024. 311

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Figure. 27 Interface Testing Coreference

4.6 Web application

The IPython library is used to create the interface

for the web application. In Fig. 27, the required input

is a document written in the textarea. After you have

finished writing the document, click the “SUBMIT”

button to get the cluster prediction results.

The output result is “Num Clusters” as how many

clusters are formed and visualization of a document

according to a cluster. The “NEXT” button functions

to move to another cluster visualization.

4.7 Discussion

The End-to-End Neural Coreference Resolution

model comes with a host of advantages. It eliminates

the need for complicated preprocessing during both

training and testing phases. The model is versatile

and can be applied to other languages with minimal

additional preprocessing. The process of applying

coreference resolution is streamlined into a single

stage of model creation. It has the potential to

outperform previous studies by utilizing only the

features of the actual text and its metadata.

Furthermore, it eliminates the need for calculations

across the entire span that is formed.

However, the model also has its share of

disadvantages. It demands large datasets from

various domains. As it is integrated into a Neural

Network architecture, the mentions learned are not

name entities, but rather entities that have more

frequent coreferences in the dataset. The model still

struggles with complex coreference problems.

Tracing to identify issues related to coreference

resolution in the model is challenging due to its

Neural Network-based nature.

5. Conclusion

The experiments conducted led to several

conclusions. The English model was found to detect

coreference with an F1-Score of 67.14% in the

OntoNotes-5.0 dataset, while the Indonesian model

achieved an F1-Score of 68.88%. Despite the higher

F1 score of the Indonesian model, the English model

performed better on independent datasets due to its

larger dataset and different domain.

LSTM played a crucial role in determining the

span which is a mention, as it could detect patterns of

sentence parts. The model was able to determine 92%

of the correct mentions, even though it selected only

approximately 4% of all spans, pruning the remaining

96% of the span.

All additional features, except for the long

mention feature, provided a significant performance

boost to the model. The long mention feature only

increased the performance of the British model by

0.59%, while other features added at least 0.9%.

Mention length contributed to the performance of the

Indonesian model by 1.16%, while other features

added at least 2.28%.

Character Embedding emerged as a good text

alternative feature due to its flexibility and

adaptability to the task at hand. Without using Word

Embedding and only Character Embedding in the

input, the British model achieved an F1 of 62.47%,

while the Indonesian model achieved an F1 of

63.36%. Word Embedding remained a superior

feature on large datasets, but Character Embedding

alone managed to yield satisfactory results.

It was found unnecessary to initialize the LSTM

weights with an orthogonal matrix, as LSTM itself

could handle the problem of vanishing gradients and

exploding gradients well. The initial processing to

form the Indonesian language model only required

the separation of the affixes “nya”, “ku”, and “mu”

when forming the dataset.

A dataset from just one domain performed quite

well in that domain but faltered when applied to other

domains due to a lack of vocabulary and bias towards

the text pattern of that domain only. End-to-End

Neural Coreference Resolution models were found to

require large datasets on Word Embedding training

and the model itself, and from several different

domains, to achieve better results.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, Gunawan, Esther I. Setiawan,

Ivan Hosea; methodology, Gunawan, Esther I.

Setiawan, Ivan Hosea, Kimiya Fujisawa; software,

Ivan Hosea; validation, Gunawan, Ivan Hosea;

formal analysis, Esther I. Setiawan and Kimiya

Fujisawa; writing—original draft preparation,

Gunawan, Ivan Hosea, Esther I. Setiawan; writing—

review and editing, Gunawan, Ivan Hosea, Esther I.

Setiawan and Kimiya Fujisawa ; visualization, Ivan

Hosea; supervision, Gunawan, Esther I. Setiawan and

Kimiya Fujisawa; project administration, Gunawan,

Received: January 9, 2024. Revised: March 12, 2024. 312

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

Esther I. Setiawan and Kimiya Fujisawa; funding

acquisition, Gunawan.

References

[1] Y. Bengio, J. Louradour, R. Collobert, and J.

Weston, “Curriculum learning”, In: Proc. of the

26th Annual International Conference on

Machine Learning, pp. 41-48, 2009.

[2] D. Khurana, A. Koli, K. Khatter, and S. Singh,

“Natural language processing: State of the art,

current trends and challenges”, Multimed Tools

Appl, Vol. 82, No. 3, pp. 3713-3744, 2023.

[3] W. M. Soon, H. T. Ng, and D. C. Y. Lim, “A

machine learning approach to coreference

resolution of noun phrases”, Computational

linguistics, Vol. 27, No. 4, pp. 521-544, 2001.

[4] E. I. Setiawan, J. Santoso, and others, “Answer

Ranking with Weighted Scores in Indonesian

Hybrid Restricted Domain Question Answering

System”, In: Proc. of 2021 3rd East Indonesia

Conference on Computer and Information

Technology (EIConCIT), pp. 456-461, 2021.

[5] E. I. Setiawan, H. Juwiantho, J. Santoso, S.

Sumpeno, K. Fujisawa, and M. H. Purnomo,

“Multiview Sentiment Analysis with Image-

Text-Concept Features of Indonesian Social

Media Posts”, International Journal of

Intelligent Engineering & Systems, Vol. 14, No.

2, 2021, doi: 10.22266/ijies2021.0430.47.

[6] K. Clark and C. D. Manning, “Improving

coreference resolution by learning entity-level

distributed representations”, arXiv preprint

arXiv:1606.01323, 2016.

[7] S. Wiseman, A. M. Rush, and S. M. Shieber,

“Learning global features for coreference

resolution”, arXiv preprint arXiv:1604.03035,

2016.

[8] S. Pradhan, A. Moschitti, N. Xue, O. Uryupina,

and Y. Zhang, “CoNLL-2012 shared task:

Modeling multilingual unrestricted coreference

in OntoNotes”, In: Proc. of Joint conference on

EMNLP and CoNLL-shared task, pp. 1-40, 2012.

[9] J. Santoso, E. I. Setiawan, C. N. Purwanto, E. M.

Yuniarno, M. Hariadi, and M. H. Purnomo,

“Named entity recognition for extracting

concept in ontology building on Indonesian

language using end-to-end bidirectional long

short term memory”, Expert Syst Appl, Vol. 176,

p. 114856, 2021.

[10] K. Chowdhary and K. R. Chowdhary, “Natural

language processing”, Fundamentals of

artificial intelligence, pp. 603-649, 2020.

[11] T. M. Lai, T. Bui, and D. S. Kim, “End-to-end

neural coreference resolution revisited: A

simple yet effective baseline”, In: Proc. of

ICASSP 2022-2022 IEEE International

Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 8147-8151, 2022.

[12] J.-C. Gu, Z.-H. Ling, and N. Indurkhya, “A

study on improving end-to-end neural

coreference resolution”, In: Proc. of Chinese

Computational Linguistics and Natural

Language Processing Based on Naturally

Annotated Big Data: 17th China National

Conference, CCL 2018, and 6th International

Symposium, NLP-NABD 2018, Changsha,

China, October 19-21, 2018, Proceedings 17,

pp. 159-169, 2018.

[13] C. Park, J. Lim, J. Ryu, H. Kim, and C. Lee,

“Simple and effective neural coreference

resolution for Korean language”, ETRI Journal,

Vol. 43, No. 6, pp. 1038-1048, 2021.

[14] T. Auliarachman and A. Purwarianti,

“Coreference Resolution System for Indonesian

Text with Mention Pair Method and Singleton

Exclusion using Convolutional Neural

Network”, In: Proc. of 2019 International

Conference of Advanced Informatics: Concepts,

Theory and Applications (ICAICTA), pp. 1-5,

2019.

[15] V. Dobrovolskii, “Word-level coreference

resolution”, arXiv preprint arXiv:2109.04127,

2021.

[16] V. K. P. Artari, R. Mahendra, M. A. Jiwanggi,

A. Anggraito, and I. Budi, “A multi-pass sieve

coreference resolution for Indonesian”, In: Proc.

of the International Conference on Recent

Advances in Natural Language Processing

(RANLP 2021), pp. 79-85, 2021.

[17] V. K. P. Artari, R. Mahendra, M. A. Jiwanggi,

A. Anggraito, and I. Budi, “A multi-pass sieve

coreference resolution for Indonesian”, In: Proc.

of the International Conference on Recent

Advances in Natural Language Processing

(RANLP 2021), pp. 79-85, 2021.

[18] G. J. Suherik and A. Purwarianti, “Experiments

on coreference resolution for Indonesian

language with lexical and shallow syntactic

features”, In: Proc. of 2017 5th International

Conference on Information and Communication

Technology (ICoIC7), pp. 1-5, 2017.

[19] K. Lee, L. He, M. Lewis, and L. Zettlemoyer,

“End-to-end neural coreference resolution”,

arXiv preprint arXiv:1707.07045, 2017.

[20] K. Clark and C. D. Manning, “Deep

reinforcement learning for mention-ranking

coreference models”, arXiv preprint

arXiv:1609.08667, 2016.

Received: January 9, 2024. Revised: March 12, 2024. 313

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.24

[21] H. Cui, J. Zhang, C. Cui, and Q. Chen, “Solving

large-scale assignment problems by Kuhn-

Munkres algorithm”, In: Proc. of 2nd Int. Conf.

Advances Mech. Eng. Ind. Inform. (AMEII

2016), 2016.

[22] P. Elango, “Coreference resolution: A survey”,

University of Wisconsin, Madison, WI, p. 12,

2005.

[23] J. Pennington, R. Socher, and C. D. Manning,

“Glove: Global vectors for word representation”,

In: Proc. of the 2014 conference on empirical

methods in natural language processing

(EMNLP), pp. 1532-1543, 2014.

[24] J. Turian, L. Ratinov, and Y. Bengio, “Word

representations: a simple and general method for

semi-supervised learning”, In: Proc. of the 48th

annual meeting of the association for

computational linguistics, pp. 384-394, 2010.

[25] M. Rivai, F. Kurniawan, and others, “Diabetes

Detection Using Carbon Nanomaterial Coated

QCM Gas Sensors and a Convolutional Neural

Network through Urine Sample”, International

Journal of Intelligent Engineering & Systems,

Vol. 16, No. 5, 2023, doi:

10.22266/ijies2023.1031.36.

[26] S. Patro, J. Mishra, and B. S. Panda, “Hybrid

Convolutional Neural Network with Residual

Neural Network for Breast Cancer Prediction

Using Mammography Images”, International

Journal of Intelligent Engineering & Systems,

Vol. 16, No. 1, 2023, doi:

10.22266/ijies2023.0228.33.

[27] S. Vikkurty and P. Setty, “Artificial Neural

Network based Optimized Link State Routing

Protocol in MANET”, International Journal of

Intelligent Engineering & Systems, Vol. 15, No.

6, 2022, doi: 10.22266/ijies2022.1231.07.

[28] M. S. Sawah, S. A. Taie, M. H. Ibrahim, and S.

A. Hussein, “Deep Neural Network-based

Approach for Accurate Vehicle Counting”,

International Journal of Intelligent Engineering

& Systems, Vol. 16, No. 2, 2023, doi:

10.22266/ijies2023.0430.21.

[29] M. Mayez, K. Nagaty, and A. Hamdy,

“Developer Load Normalization Using Iterative

Kuhn-Munkres Algorithm: An Optimization

Triaging Approach”, arXiv preprint

arXiv:2202.01713, 2022.

[30] A. Zeldes, “Can we Fix the Scope for

Coreference? Problems and Solutions for

Benchmarks beyond OntoNotes”, arXiv

preprint arXiv:2112.09742, 2021.

[31] X. Zhang, J. Zhao, and Y. LeCun, “Character-

level convolutional networks for text

classification”, Adv Neural Inf Process Syst, Vol.

28, 2015.

