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Abstract: This research evaluates the performance of End-to-End Neural Coreference Resolution models in English 

and Indonesian linguistic contexts, drawing particular attention to the model by K. Lee, recognized for its simplified 

preprocessing methodology. In this research, we use raw text to find and link mentions in documents, and handle 

different languages. For the evaluation metrics, the English model achieved F1-Scores of 67.94% and 67.14% on the 

OntoNotes-5.0 development and training sets. The Indonesian model, prepared using a CoNLL-2012 formatted dataset, 

attained an F1-Score of 68.88% on a 25% segment of the Book of Markus. We also analyzed the additional features 

integrated into the model to assess their contributions to performance improvement. The findings indicate that while 

the English model demonstrates generalizability across various coreference challenges, the Indonesian model’s 

performance is more domain-specific, being particularly effective within the confines of the Book of Mark. 

Keywords: Coreference resolution, End-to-end learning, Deep learning, Natural language processing. 

 

 

1. Introduction 

Machine learning is an algorithm used by 

computers to learn certain tasks that cannot be 

applied with conventional programming [1]. The 

easiest example of the task in question is work that 

can be easily done by humans, such as recognizing 

language, seeing, hearing, and so on. The machine 

learning task in the field of human language 

recognition is Natural Language Processing [2]. One 

of the tasks of Natural Language Processing is 

Coreference Resolution. 

Coreference Resolution is a process of 

determining if 2 or more expressions in natural 

language are the same entity in the real world [3]. 

Coreference Resolution is also applied to assist other 

natural language processing tasks, namely Question 

Answering [4], Sentiment Analysis [5], Document 

Summarization, Quote Attribution, and Information 

Extraction. 

Research on Coreference Resolution has been 

carried out in many foreign languages, but not in 

Indonesian. Previous coreference studies that have 

the best results [6, 7], use Syntactic Parser and 

Mention Detector algorithms made by themselves. 

The problem that arises is if there is a parsing error it 

can cause cascading errors. In addition, the custom 

Mention Detector algorithm tends to be unusable in 

other languages. End-to-End Neural Coreference is a 

method that does not use a Mention Detector or 

Syntactic Parser, but has better performance than the 

previous methods. 

In recent times, the exploration of End-to-End 

Neural Coreference Resolution (E2E NCR) has 

garnered attention due to its capability to address 

previous methodological shortcomings. Particularly, 

this research delves into the applicability of E2E 

NCR models within Indonesian linguistic contexts, 

marking a significant stride towards understanding 

coreference resolution in under-studied languages.  

By leveraging a simplified preprocessing 

methodology, as proposed by K. Lee, this work 

presents an insightful evaluation, shedding light on 

the potential and limitations of E2E NCR models in 
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handling coreference challenges in Indonesian texts, 

hence contributing to the broader discourse on 

advancing coreference resolution techniques in 

multilingual[8] settings. 

This research also utilizes a method that 

combines pre-processing and avoids cascading errors 

by bypassing the need for syntax parsers or mention 

detectors. It uses additional features such as speaker 

and genre information to improve coreference 

resolution performance across diverse linguistic 

domains and contexts. This method also achieves 

competitive results on the English OntoNotes 

benchmark and outperforms existing methods on the 

Indonesian Book of Mark dataset. 

Moreover, the robust analysis carried out, 

encompassing a comparative study between English 

and Indonesian models, not only underscores the 

domain-specific efficacy of the Indonesian model but 

also propels further inquiry into optimizing E2E NCR 

for diverse linguistic landscapes. The meticulous 

examination of additional features integrated into the 

model, and their consequent impact on performance 

enhancement, embodies a novel endeavour towards 

refining coreference resolution systems. This 

investigation, therefore, not only furnishes a valuable 

benchmark for evaluating E2E NCR models in 

Indonesian but also catalyses future explorations 

aimed at transcending linguistic boundaries in 

coreference resolution tasks. 

The following section discusses the previous 

studies on Coreference Resolution. Next, the 

proposed method of End-to-End Neural Coreference 

Resolution is explained in Section 3. Section 4 

introduces the Image-Text dataset for Indonesian 

Sentiment Analysis. The experimental results and 

analysis are presented in Section 5. The last section 

summarizes the conclusion and future directions. 

2. Literature review 

Coreference Resolution is one of the tasks in 

Information Extraction and Natural Language 

Processing. The term ‘Coreference Resolution’ itself 

is derived from the linguistic field, referring to the 

concept of coreference. In the following section, we 

will explore the fundamentals of Coreference 

Resolution, including Natural Language Processing 

and Named Entity Recognition [9]. Subsequently, we 

will provide an explanation of Coreference 

Resolution itself. 

Natural Language Processing is a technique that 

involves the computational representation and 

analysis of human language. This is achieved through 

various methods such as tokenization, parsing, 

tagging, and semantic analysis. However, this 

technique is not without its drawbacks. For instance, 

the ambiguity, variability, and complexity of natural 

language can affect it, making it difficult to capture 

the meaning and context of texts. Additionally, it can 

be dependent on the availability and quality of 

linguistic resources like corpora, lexicons, grammars, 

and ontologies, which can vary across languages and 

domains. Furthermore, the emergence of new words, 

phrases, and genres can pose a challenge, 

necessitating constant updates and adaptations of the 

models and methods [10]. 

Named Entity Recognition is a subtask of 

Information Extraction. Named Entity Recognition 

aims to find entities in text documents and classify 

these entities into various categories such as person’s 

name, organization’s name, time, and so on. Named 

Entity Recognition is an important piece of research 

in Natural Language Processing because it can be 

used to help with more complicated tasks such as 

Question Answering, Machine Translation, and 

Coreference Resolution. 

Coreference resolution[9] has been explored 

using various methods as displayed on Table 1, from 

traditional machine learning to advanced neural 

networks. While neural models often perform well, 

they require considerable computational resources 

and may lack interpretability. The importance of 

adaptable natural language processing techniques and 

named entity recognition is highlighted to address the 

evolving complexities of language and improve 

coreference resolution systems. 

Taking a fresh perspective on end-to-end neural 

coreference resolution, a new baseline model is 

introduced in this study. Despite its simplicity, it 

surpasses more complex recent models on the public 

English OntoNotes benchmark. This underlines the 

importance of carefully considering the complexity 

of both existing and new models, as even minor 

modifications can yield improved results. [11] 

Meanwhile, another study [12] delves into 

enhancing end-to-end neural coreference resolution. 

It presents a novel algorithm to adjust coreference 

clusters, capable of eliminating mentions that lack 

similarity and reducing errors caused by inconsistent 

coreference clusters throughout a document. The 

model’s performance is further enhanced by 

replacing the simple scoring function used to 

compute head word scores for the attention 

mechanism with a feed-forward neural network, and 

by modifying the maximum length of a mention. 

These alterations significantly boost the performance 

of coreference resolution. Subsequently, a new 

system for resolving coreference in Korean text is 

introduced in [13]. The system employs a neural 

network with an attention mechanism to identify and  
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Table 1. Previous Approaches on Coreference Resolution

Author(s) Techniques Used Objective Merits Disadvantages 

W. M. Soon, H. T. 

Ng, and D. C. Y. 

Lim[3] 

Machine Learning Coreference 

resolution of noun 

phrases 

Not mentioned Lack of clarity on the 

specific approach and 

potential limitations 

K. Clark and C. D. 

Manning[6] 

Neural Network Incorporation of 

entity-level 

information 

Outperforms the 

current state-of-

the-art 

Neural networks may 

require substantial 

computational resources 

and extensive training 

data. Interpretability can 

be challenging. 

S. Wiseman, A. M. 

Rush, and S. M. 

Shieber[7] 

Recurrent Neural 

Networks 

Learning global 

features for 

coreference 

resolution 

Outperforms the 

current state-of-

the-art 

RNNs may suffer from 

vanishing gradient 

problems and can be 

computationally 

expensive during 

training. 

S. Pradhan, A. 

Moschitti, N. Xue, 

O. Uryupina, and 

Y. Zhang[8] 

Comparison of various 

conventional machine 

learning method such 

as Logistic Regression, 

MaxEnt, C4.5, and 

others. 

Modeling 

multilingual 

unrestricted 

coreference in 

OntoNotes 

Not mentioned Lack of details on the 

specific models used and 

their limitations. 

K. Lee, L. He, M. 

Lewis, and L. 

Zettlemoyer[19] 

Neural mention-

ranking model 

End-to-end neural 

coreference 

resolution 

Outperforms all 

previous work 

Neural models may be 

sensitive to 

hyperparameters and 

require extensive tuning. 

Training large neural 

models can be resource-

intensive. 

K. Clark and C. D. 

Manning[20] 

Deep Reinforcement 

Learning 

Mention-Ranking 

Coreference Models 

Outperforms the 

current state-of-

the-art 

Reinforcement learning 

models can be 

challenging to train, and 

their performance 

heavily depends on 

reward design and 

exploration strategies. 

 

 

link all mentions of the same entity in a document. 

Initially, all nouns in the document are considered as 

potential mentions. The attention mechanism then 

learns to predict the position of the referenced entity 

for each noun. Experimental results demonstrate that 

this system outperforms all other known systems on 

Korean language coreference resolution. 

In a similar vein, a system for resolving 

coreference in Indonesian text is presented [14]. This 

system utilizes a deep neural network to learn how to 

identify pairs of words that refer to the same entity, 

and a singleton classifier to prevent words that only 

refer to themselves from being grouped together. The 

system surpasses the best existing system, achieving 

a high score on a standard benchmark for coreference 

resolution. 

A novel approach to coreference resolution was 

proposed in [15]. Traditional models heavily rely on 

span representations to find coreference links 

between word spans, which requires various pruning 

techniques due to computational complexity. It was 

suggested to consider coreference links between 

individual words instead of word spans and then 

reconstructing the word spans. This method reduces 

the complexity of the coreference model and allows 

it to consider all potential mentions without pruning 
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any of them out. The paper also demonstrates that 

with these changes, SpanBERT for coreference 

resolution will be significantly outperformed by 

RoBERTa. Despite its efficiency, the model performs 

competitively with recent coreference resolution 

systems on the OntoNotes benchmark. 

Coreference resolution is also implemented in 

Indonesian as in [16], which explores the application 

of a multi-pass sieve coreference resolution model to 

the Indonesian language. The multi-pass sieve is a 

deterministic coreference model that implements 

several layers of sieves, each taking a pair of 

correlated mentions from a collection of non-

coherent mentions. This model operates on the 

principle of high precision, followed by increased 

recall in each sieve. The authors conducted an 

experiment on 201 Wikipedia documents, and the 

multi-pass sieve system yielded a 72.74% MUC F-

measure and a 52.18% BCUBED F-measure. This 

research demonstrates the potential of the multi-pass 

sieve technique for Indonesian coreference resolution 

tasks. 

In a recent study, researchers explored the use of 

lexical and shallow syntactic features for resolving 

coreference in Indonesian text [17]. Their system 

successfully addressed coreference between 

pronouns and proper nouns, as well as between 

proper nouns and pronouns. To achieve this, they 

leveraged various features, such as identifying 

apposition relationships, determining the nearest 

candidate for a pronoun, analyzing sentence context, 

and examining preceding and following words. 

Remarkably, their system achieved a commendable 

score of 71.6% on a standard benchmark for 

coreference resolution [18]. 

3. Methodology 

End-to-End Neural Coreference Resolution is a 

Coreference Resolution [21, 22] model that uses 

machine learning in its application. This model is 

considered end-to-end because the process that is 

executed when changing input to output is only 1 

architectural model. 

In Fig. 1, the first part input. The input to this 

network is a combination of word embedding and 

character embedding. The word embedding used is 

GloVe’s pre-trained word embedding with 300 

dimensions and Turian’s word embedding with 50 

dimensions. 

Next, Bidirectional LSTM is used to encode 

lexical information from inside and outside each span. 

In the End-to-End Neural Coreference Resolution 

architecture, the input vector will be feed-forward to 

the Bidirectional LSTM. LSTM, which stands for 

 
Figure. 1 Block Diagram End-to-End Neural Core 

Resolution Architecture 

 

 

Long Short-Term Memory, is a development of the 

Recurrent Neural Network model, which is a model 

commonly used for processing sequential data such 

as text documents because the previous data in the 

sequence also determines predictions for subsequent 

data. Different from Recurrent Neural Network, 

LSTM has memory and also a gating system to 

overcome the vanishing gradient problem. Because 

LSTM only makes predictions to the data after it, 

Bidirectional LSTM was created which can make 

predictions to the data before and after it. In the 

following subchapters we will explain the vanishing 

and exploding gradient problem, weight initialization, 

and the Bidirectional LSTM architecture used.  

After that, the span head will be formed as a 

feature primarily to help represent spans whose width 

is more than 1. Then the Bidirectional LSTM and 

span head features will be some of the features used 

to form the span representation. After getting the span 

representation, the Mention Score will be calculated. 

Mention Score is a value of how likely a span is a 

mention or entity. Only spans with the highest value 

will have their Antecedent Score assessed, the rest 

will be prune. Antecedent Score itself is a value of 

how likely it is that a span is an antecedent of another 

span. 

After getting the Antecedent Score, Mention 

Score and Antecedent Score will be used to calculate 

the Coreference Score. After the Coreference Score 

is obtained, softmax will be carried out to determine 

the antecedents of each span selected as a mention. 
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3.1 Task coreference resolution 

In the End-to-End Neural Coreference Resolution 

model, the input required from the dataset includes 

the main document and speaker and genre metadata 

features. The speaker metadata feature indicates who 

the speaker of the word part of the document is, while 

the genre feature indicates the genre of the document. 

The output of the following model is a cluster of 

mentions that are considered to have a coreference 

relationship with each other. 

The task is formulated with an input document D 

which has the number of words T. All words in the 

document will be represented in vector form 

containing Word Embedding, Character Embedding, 

and other features. Apart from words, other tokens 

such as punctuation marks will also be included in the 

input sequence. Of all the tokens in the document, the 

maximum number of spans that will be formed can 

be formulated using the following formula: 

 

𝑁 = (𝑇(𝑇 + 1))/2 (1) 

 
In the formula above, N is the number of spans. 

For example, if there are 3 words in a document, then 

based on the formula above you will get 6 types of 

span. 

In Fig. 2, the span will be formed from pieces of 

1 word, 2 words, and 3 words. If there are T words, 

then the largest span is formed from T words. 

However, because 1 document can have thousands of 

words, forming a span throughout the document can 

take a very long time, and existing entities tend not to 

be very long, so forming the length of the span will 

be limited to the desired word length. If in the 

example document “Budi bermain bola” (Budi plays 

football) is limited by forming a span length of 1, then 

the spans that will be formed are only “Budi”, 

“bermain” (plays), and “bola” (football). Some spans 

will then be selected as mentions, the rest will not be 

searched for antecedents. 

The task aims to fill in the antecedents of the selected 

spans as mentions, for each mention i has an 

antecedent yi. The set or possible candidates for each 

yi are as follows: 

 

 
The following is an example: 

 
Figure. 2 Example of a Span Formed 

Table 2. Examples of Candidate Antecedents 

Mention 

Number 

Mention Name Candidate 

Antecedent Y(i) 

1 Budi {ϵ} 

2 Lapangan (field) {ϵ,1} 

3 pemilik lapangan 

(field owner) 

{ϵ,1,2} 

4 Dia (he) {ϵ,1,2,3} 

5 Setelah (after) {ϵ,1,2,3,4} 

6 anak itu (that child) {ϵ,1,2,3,4,5} 

7 tempat itu (that 

place) 

{ϵ,1,2,3,4,5,6} 

 

𝑦𝑖 = {𝜖, 1,2, … , 𝑖 − 1} (2) 
 

From the set above, ϵ is epsilon. The epsilon 

antecedent dummy indicates that mention i has no 

antecedent. The number 1 in the set above indicates 

mention 1, as well as mention 2. The candidate 

antecedent yi only reaches i-1 because it will only 

check with previous mentions. For example, there is 

a small document “Budi sedang bermain bola di 

lapangan ketika pemilik lapangan menyuruh dia 

pulang. Setelah itu pulanglah anak itu meninggalkan 

tempat itu” (Budi was playing football on the field 

when the field owner told him to go home. After that 

the child went home and left the place), and for 

example the span chosen as a mention is “Budi”, 

“ lapangan” (field), “pemilik lapangan” (field owner), 

“dia” (he), “Setelah” (after), “anak itu” (that child), 

and “tempat itu” (that place), then the candidate 

mentions from each mention can be described in 

Table 2. 

In Table 2, the mention “Budi” only has a 

candidate antecedent ϵ because it is the first mention. 

The mention “lapangan” (field) has a candidate 

antecedent ϵ and 1 which is the mention of “Budi” 

because the mention of “Budi” comes before the 

mention of “lapangan” (field). Likewise, other 

mentions both have a candidate antecedent ϵ and all 

mentions that come before that mention. 

After finding all the antecedents of each mention, 

clusters will be formed containing mentions that have 

a coreference relationship. The following is an 

example of a table after the antecedent is determined: 

In Table 3, it can be seen that the antecedent of “Dia” 

(he) is mention 1, namely “Budi”, the antecedent of 

“anak itu” (that child) is “Dia” (he), and the 

antecedent of “tempat itu” (that place) is”lapangan” 

(field). If it is made into a cluster, 2 clusters will be 

created as in the Table 4. 

As can be seen in Table 4, all mentions that have 
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Table 3. Examples of Antecedents 
Mention 

Number 

Mention Name Antecedent 

1 Budi ϵ 

2 Lapangan (field) ϵ 

3 pemilik lapangan 

(field owner) 

ϵ 

4 Dia (he) 1 

5 Setelah (after) ϵ 

6 anak itu (that child) 4 

7 tempat itu (that 

place) 

2 

 

 

Table 4. Cluster Example 

Cluster Mention List 

1 {“Budi”, “Dia (he)”, “anak itu 

(that child)”} 

2 {“lapangan (field)”, “tempat itu 

(that place)”} 

 

only one antecedent relationship with one of the 

mentions in the cluster will be grouped into one 

cluster. Like in cluster 1 where the antecedent of “Dia” 

(he) is “Budi” and the antecedent of “anak itu” (that 

child) is “Dia” (he), but the three mentions are made 

into 1 cluster because there is at least 1 related 

coreference between the mentions. 

This End-to-End model in Fig. 3 [19] starts from 

Word and Character Embedding. The Word 

Embedding used is GloVe [23] 6B 300d and Turian 

[24] 50d. 

3.2 Word embedding 

Word Embedding is a representation of words in 

the form of number vectors which aims to improve 

the performance of Natural Language Processing 

tasks. The vector of these words will become the 

architectural input. 

Fig. 4 is an illustration of Word Embedding 

which has 7 dimensions. Each word is represented in 

vector form. It is illustrated that each dimension is a 

category that exists in the real world, such as how 

much value words have, namely living objects, 

humans, verbs, and so on with a value limit of -1 to 

1. However, Word Embedding will not have labeled 

categories as above, but This illustration indicates 

that the larger the d imensions of the Word 

Embedding, the larger the categories that can be 

loaded. The closeness between vectors can be 

measured by the Eucledian distance. The Eucledian 

distance of 2 words represented in the Word  

 
Figure. 3 End-to-End Neural Coreference Resolution 

Architecture 

 

 

 
Figure. 4 End-to-End Neural Coreference Resolution 

Architecture 

 

Embedding vector will be lower if the two words 

have a strong relationship. On the right side of the 

image, you can see that the words “cat” and “kitten” 

are close, indicating that the two words have a strong 

relationship. 

In the End-to-End Neural Coreference Resolution 

architecture, there are 2 types of Word Embedding 

used, namely Word Embedding which is based on 

GloVe and also Word Embedding which is based on 

Turian. The two Word Embeddings are trained first 

before the End-to-End model is run. The End-to-End 

model only takes the contents of the finished results 

of the two Word Embeddings. In the subsequent 

subchapters, the two Word Embeddings will be 

explained. 

3.3 GloVe 

Global Vectors (GloVe) is a word representation 

model created by J. Pennington, R. Socher, and C. D. 

Manning in 2014. It is called Global Vectors because 

it uses global statistics from documents in the form 

of a word-word co-occurrence matrix. GloVe has 

been applied to the Word Analogy task and produces 

an accuracy of 75%16. The source code of GloVe is 

available open-source in C language and in Python 

which can be accessed in the Gensim library. Table 5 

is an example of a word-word co-occurrence matrix 
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Table 5. Example of Co-occurrence Matrix 

 Budi suka membaca menulis cerpen 

budi 0 2 0 0 0 

suka 2 0 1 1 0 

membaca 0 1 0 0 0 

menulis 0 1 0 0 1 

cerpen 0 0 0 1 0 

. 0 0 1 0 1 

Doc 1: Budi suka membaca. (Budi likes reading) 

Doc 2: Budi suka menulis cerpen. (Budi likes 

writing short stories) 

 

 
Table 6. Examples of Probability and Ratios 

Probability 

and Ratios 

k = 

padat 

k = 

gas 

k = 

air 

k = 

busana 

P(k|es) 1.9 x 

10-4 

6.6 x 

10-5 

3.0 x 

10-3 

1.7 x 

10-5 

P(k|uap) 2.2 x 

10-5 

7.8 x 

10-4 

2.2 x 

10-3 

1.8 x 

10-5 

P(k|es) / 

P(k|uap) 

8.9 8.5 x 

10-2 

1.36 0.96 

 

for 2 documents with a window size of 1. The 

window size determines the number of words before 

and after that will be counted in the co-occurrence 

matrix. For example, if the window size is 1, the word 

“menulis” (writing) in document 2 will count the 

words “suka” (like) and “cerpen” (short story) in the 

co-occurrence matrix, whereas if the window size is 

2, the word “menulis” (writing) will count the word 

“budi”, “suka” (like), “cerpen” (short story), and “.” 

in the co-occurrence matrix. 

The co-occurrence matrix will be denoted by X 

which has the elements Xij, with i and j in Xij being 

unique words found in all documents. For example, i 

is Budi and j is like, then based on Table 5 Xij is 2. 

Then there is Xi which is the number of times any 

word appears in context i. For example, if i is “suka” 

(like), then the value of Xi is 4, because “suka” (like) 

appears twice in the context of “Budi”, once in the 

context of “membaca” (reading), and once in the 

context of “menulis” (writing).  

 

𝑃𝑖 =
𝑋𝑖𝑗

𝑋𝑖
 (3) 

 

The formula above itself is a probability formula 

for word j appearing in the context of word i. With 

this formula, the relationship between words can be 

determined as displayed in Table 6. 

In Table 6, it can be seen that k is an entity in the 

real world, namely “padat” (solid), “gas” (gas), “cair” 

(liquid), and “busana” (fashion). If the “es”  

 
Figure. 5 Convolution Layer Architecture for Images 

 

(ice) and “uap” (steam) probability values k are 

increasingly similar, then the ratio of the probability 

values between “es” (ice) and “uap” (steam) will be 

closer to 1, as can be seen look at k “air” (water) 

because both are water, and k “busana” (fashion) 

because both are not fashion. 

 

Algorithm 1 Algorithm Turian 

01: E = Init_Word_Embedding() 
02: N = Create_Ngram_List() 
03: FOREACH X IN N 
04:   Y = Corrupt(X) 
05:   Xi = Map(X, E) 
06:   Yi = Map(Y, E) 
07:   Sx = FFNN(X) 
08:   Sy = FFNN(Y) 
09:   L = max(0, 1 - Sx + Sy) 
10:   Learn() 
11: NEXT X 

 

Algorithm 1 is a Turian learning algorithm for 1 

epoch. The Corrupt function is a function to change 

one of the words in n-gram X into another word. Map 

is a function for embedding each word in n-gram X 

stored in E. The FFNN function is useful for carrying 

out Neural Network[25], [26] operations from input, 

hidden, to output and returns the final score. L is the 

loss gained. The Learn procedure is used to carry out 

learning with backpropagation. 

3.4 Character embedding 

 
Figure. 6 Example of Pattern Detection with Convolution 

Layer 



Received:  January 9, 2024.     Revised: March 12, 2024.                                                                                                 297 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.24 

 

Table 7. Example of Mention Selection 

   Span M. Score 

   Budi Setiawan 3.5 

Setiawan 1.7  Budi Setiawan 2.7 

Setiawan bermain -1  Setiawan bermain bola 2.5 

Setiawan bermain bola 2.5 Sort Bola 2.4 

Bermain -0.2 → Setiawan 1.7 

Bermain bola -1  Bermain -0.2 

bola 2.4  Setiawan bermain -1 

   Bermain bola -1 

   Budi Setiawan bermain -2.3 

 

 Selected as a mention 

 Pruned because Mention Score was too low 

 Pruned due to colliding with another span 

 

 

Character Embedding utilizes the characters in 

each word as features. Character Embedding uses a 

1-dimensional Convolution Layer with ReLU 

activation followed by Max Pooling. Convolutional 

Neural Networks have been widely used to process 

images because they can detect patterns from small 

parts of the image. 

In Fig. 5, the input is an image with a value that 

is closer to 0, the blacker it is and the closer it is to 1, 

the whiter it is and with a size of 5x5 pixels. What is 

done in the Convolution Layer is element-wise 

multiplication between the part of the input currently 

in the window and the filter. The window size is the  

same as the size of the filter, so in the image above 

the window size for a 2x2 filter is 2x2. Initially, the 

window will be in the top left corner, namely x1 in 

the image above. After doing element-wise 

multiplication with filters, exemplified in the image 

above with x1 ○ f where f is a 2x2 filter having the 

result placed in y1, then the window will then shift to 

the right by a stride. For example, stride is 1, then the 

window will shift by 1 pixel so that the window can 

be modeled with an x2 matrix. Then it will be 

multiplied again so that the result of x2 ○ f is placed 

in y2. The same process will be repeated 

continuously until the window cannot be shifted to 

the right. If the window cannot be shifted to the right, 

the window will return to the first pixel column and 

shift one pixel down. So, the window will be in 

position x3 according to the image above. Then the 

result x3 ○  f is placed in y3. After that, it will 

continue shifting to the right as usual. The 

multiplication process will complete when the 

window can no longer be shifted down. 

Fig. 6 is an example of a filter as intelligence from 

the Convolution Layer which can detect patterns. The 

input image is a square image. There are 2 filters and 

the convolution results from filter 1 produce a square 

right line, while the convolution from filter 2 

produces a square top line. 

3.5 Mention score 

Mention Score is a value of how big a span can 

have an antecedent. Spans that usually have an 

antecedent are spans which are nouns or pronouns. 

The input of the Mention Score is a Span 

Representation. Each Span Representation will have 

its own Mention Score. In calculating the Mention 

Score, Span Representation is fed forward to a Fully 

Connected Neural Network with a hidden layer. The 

output of the Neural Network is a scalar which 

becomes the Mention Score. 

Because a document can have many spans, and 

only a very few of these spans can have coreference, 

after the Mention Score for each timestep is found, 

the collection of Mention Scores will be sorted and 

several spans with the highest Mention Score will be 

selected. If there are spans whose indexes collide, 

then only the span with the higher value is selected as 

a mention. The selected spans will then be searched 

for their Antecedent Score while the spans that are 

not selected will be pruned. 

In Table 7, for example, the maximum span 

length is 2 and the number of spans selected as 

mentions is 75% of the number of words in the 

document, so the number of spans selected is 3. It can 

be seen that the span “Setiawan bermain bola” 

(Setiawan plays football) is pruned because it collides 

with the span “Budi Setiawan” whose Mention Score 

is higher. Collision because they both have the word 

“Setiawan”. However, the “Budi” span is not prune 

even though the “Budi Setiawan” span also has the 

word “Budi” because the span is entirely contained 

within another span. So a span will not be prune if all 

of its contents are contained in another selected span 

or vice versa if it has the contents of another selected  
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Figure. 7 Mention and Candidate Antecedents 

 

 

 
Figure. 8 End-to-End Neural Coreference Resolution 

Architecture 

 

span. 

3.6 Antecedent score 

Antecedent Score is a value of how much a 

mention is an antecedent of another mention. Each 

mention has an Antecedent Score equal to the number 

of candidate antecedents minus 1. As explained in 

subsection 3.1, the candidate antecedents of a 

mention are other mentions that exist previously in 

the sequence and epsilon ϵ. Deducted by 1 because 

candidate ϵ does not have Span Representation. 

Fig. 7 is an example of an Antecedent Score 

created from 4 mentions. In the image, an example 

document is “Budi Setiawan bermain golf bersama 

paman nya” (Budi Setiawan plays golf with his 

uncle) and the spans selected as mentions are “Budi 

Setiawan”, “golf”, “paman” (uncle), and “nya” (his). 

Antecedent Score is written in Sa(i,j) where i is a 

mention and j is a candidate antecedent of mention i. 

I n  F i g .  8 ,  E  i s  t h e  e m b e d d in g  v e c to r 

representation form of the character and “Class” is 

the word that will be converted into Character 

Embedding form. The first thing to do is map each 

character in the word into a vector form. For example, 

in the image above, the embedding of the character 

“s” is the vector [0.5, 0.5, 0.1]. In the image above, 

the stride value is 1 and the window length is 2x3,  

 
Figure. 9 Span Representation 

 

 

 
Figure. 10 Head Span Computation Graph 

 

where 2 is the number of characters in 1 convolution 

and 3 is the dimension of the character features. 

These dimensions in the input image can be exampled 

with RGB coloring which requires 3 dimensions. Just 

like in the picture, the window will be multiplied by 

element-wise multiplication with the filter and then 

continued by moving the window to the right 

according to the stride size. After all the element-wise 

multiplication processes are complete, the results will 

be added by the respective bias filters, denoted by b1 

and b2 in the image above, then this will be followed 

by ReLU activation to remove negative values. In the 

end, from the ReLU results of each filter, the element 

with the largest value will be selected and will be 

combined with the largest element from the other 

ReLU filters. The results of this concatenation will 

become input for the main architecture along with 

Word Embedding. Character Embedding is trained 

simultaneously with the main architecture. 

In Fig. 9, the Span Representation is formed from 

the initial and final Bi-LSTM outputs of the span, the 

Span Head, and a Feature Vector as displayed in Fig. 

4. The Feature Vector used is the embedding length 

of the span. 

Mention Score[20] (s m ) is the value of how big 

a span is a mention. This value is calculated using an 

Artificial Neural Network[27], [28]. Only the few 

spans that have the highest value will be taken as a 

mention, the rest will be prune. 
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Figure. 11 Input Antecedent Score 

 

 

Algorithm 2 Algorithm Span Head 

01: For I = 0 to len(Xbi) - 1 
02:   Alpha[I] = FC(I) 
03: Next I 
04: A = Softmax(Alpha) 
05: Sh = Sum(a * X) 

 

Algorithm 2 is the Span Head calculation, where 

X is the initial Word and Character Embedding input, 

Xbi is the Bidirectional LSTM output result, FC is the 

Fully Connected Layer function, and Sh is the final 

Span Head vector result. 

Fig. 10 depicts an example of a computation 

graph from Span Head “Budi Setiawan bermain bola” 

(Budi Setiawan playing football) from input to output. 

In the graph, xt* is the Bidirectional LSTM output. 

All Fully Connected Layers used in the graph above 

use the same weight. The output from the Fully 

Connected Layer in the graph above is the Head 

Score αt which is a scalar. All Head Scores are then 

collected into one vector and softmax is used for each 

element to get vector a. 

The final Span Head is an embedding 

representation of the span. A Fully Connected Layer 

and Softmax are used to determine which word is 

more important to represent the span. 

Fig. 11 is an example of input from an Antecedent 

Score where “Budi Setiawan” is a candidate 

antecedent and “dia” (he) is a mention. The input of 

an Antecedent Score is formed from the 

concatenation of the Span Representation of 

antecedent candidates, element-wise multiplication 

between the Span Representation of antecedent 

candidates and mentions, the Span Representation of 

mentions, and the Feature Vector. 

Feature Vector input Antecedent Score consists 

of 2 features, namely distance and metadata. The 

distance feature is based on the distance between a 

mention and its antecedent candidate. For example, 

there is a document “Budi bermain golf bersama 

paman nya” (Budi plays golf with his uncle) and 

those selected as mentions are “Budi”, “golf”, and 

“paman” (uncle), then the distance between “Budi” 

and “paman” (uncle) is 2 because it is calculated from 

the difference in the mention index. The distance 

feature is represented by a random vector which will 

be trained simultaneously with the End-to-End model. 

The distance feature is separated into [0, 1, 2, 3, 4, 5-

7, 8-15, 16-31, 32-63, 64+], where the number inside 

is the mention distance. For example, a candidate 

antecedent with a distance of 2 will have the same 

distance vector as another candidate antecedent with 

a distance of 2, while a candidate antecedent with a 

distance of 33 will have the same distance vector as a 

candidate antecedent with a distance of 57, because 

they are both found in range 32 to 63. 

The metadata feature is a feature that takes 

information directly from the dataset. The metadata 

feature consists of 2, namely speaker and genre. Both 

features are represented by random vectors that are 

trained simultaneously with the End-to-End model. 

For the speaker feature, 2 random vectors are formed 

with one representing if the speaker of the mention 

and the candidate antecedent are the same, while the 

other represents if the speaker of the mention and the 

candidate antecedent are different. Genre features are 

divided according to the number of genres in the 

entire dataset and each different genre has a different 

embedding vector. 

After the input from an Antecedent Score is 

formed, the input will be fed forward to the Fully 

Connected Neural Network which has a hidden layer. 

The output of the Neural Network is an Antecedent 

Score in scalar form. 

Antecedent Score (Sa) has inputs like Fig. 6, 

namely Span Representation mentions, Span 

Representation candidate antecedents, the results of 

both element-wise multiplication, and Feature Vector. 

The following Feature Vector is speaker and genre 

metadata features as well as mention distance 

features, where each group of different mention 

distances has a different embedding, grouped by 

distance [0, 1, 2, 3, 4, 5-7, 8-15, 16- 31, 32-63, 64+]. 

Speaker metadata has 2 possibilities, namely the 

same or different speakers. 

 

𝑠(𝑖, 𝑗) = {0 𝑖𝑓  𝑗 = 𝜖 𝑠𝑚(𝑖) + 𝑠𝑚(𝑗) +
𝑠𝑎(𝑖, 𝑗)    𝑖𝑓  𝑗 ≠ 𝜖  (4) 
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Above is the formula for Coreference Score s(i,j). 

After obtaining the Coreference Score, the loss will 

be sought with the following marginal log-likelihood: 

 

𝑙 = 𝑙𝑜𝑔 ∏𝑁
𝑖=1 ∑𝑦∈𝑌(𝑖)∩𝐺𝑂𝐿𝐷(𝑖) 𝐹(𝑦) (5) 

 

𝐹(𝑦) =
𝑒𝑥𝑝𝑒𝑥𝑝 (𝑠(𝑖,𝑦)) 

∑
𝑦′∈𝑦𝑖

𝑒𝑥𝑝(𝑠(𝑖,𝑦′))
 (6) 

 

Code End-to-End Neural Coreference Resolution 

developed by K. Lee accessible at 

https://github.com/kentonl/e2e-coref. The total LOC 

of all code is 1855. The code is written in Python and 

uses TensorFlow version 1.0.0 to apply the model 

architecture. 

3.7 Learning 

After the forward pass is carried out on the End-

to-End Neural Coreference Resolution model, of 

course a backward pass will be carried out to study 

the task. This subchapter explains the backward pass 

that is carried out and explains several other things 

that are used when conducting training that are not 

discussed in the architecture. 

3.8 Backpropagation 

Backpropagation is the name of the technique 

used to perform a backward pass to find the gradient 

of each weight or bias that can be updated or studied. 

The gradient of a weight is the derivative of the loss 

function for the weight, so it can be written as follows. 

 

𝐺𝑟 𝑤 =
𝜕𝐿

𝜕𝑤
 (7) 

 
In the notation above, L is the loss and w is the weight 

whose gradient is sought. 

3.9 Hyperparameters 

In this subchapter, several hyperparameters used 

during training will be explained. The 

hyperparameters contained in the model are as 

follows: 

a. Word Embedding 

The Word Embedding used is pretrained GloVe 

300 dimensions which was trained with the 2014 

Wikipedia website dataset and Gigaword fifth edition 

with a total of 6 billion tokens and pretrained Turian 

50 dimensions which was trained from the RCV-1 

Newswire dataset with a total of 40 million tokens. 

b. Character Embedding 

The Convolutional Network input vector for each 

character is 8 dimensions. The filters used are sizes 3, 

4, and 5, and there are 50 of each. 

c. Bidirectional LSTM 

Each Fully Connected Layer in Bidirectional LSTM 

has 200 output nodes. 

d. Learning Rate 

The initial learning rate is 0.001. Decay is used 

to reduce the learning rate when there are more 

iterations. Decay Rate is 0.999 and Decay Frequency 

is 100, so decay is carried out every 100 iterations. 

e. Dropout Rate 

The large dropout value is divided into 2, namely 

Lexical Dropout and Dropout. Lexical Dropout is 0.5 

and Dropout is 0.2. The larger the value, the greater 

the possibility of the node being discarded. Lexical 

Dropout is only used for word representation input, 

others use Dropout. 

f. Hidden Layer Neural Network 

End-to-End architecture uses 2 hidden layers 

with each layer having 150 hidden nodes. 

g. Feature Size 

All Feature Vectors used, from metadata, 

distance, and mention length all have an initial vector 

of 20 dimensions. 

h. Constraints 

The maximum length of sentences entered is 50. Each 

mention has a maximum of 250 antecedents. A 

mention ratio of 0.4 means that 40% of the total 

number of tokens will be mentioned. Mention width 

is 10, which means the longest span is formed from 

10 tokens. 

3.10 Optimizer 

Optimizer in Neural Network is a method used to 

change Neural Network attributes such as weight in 

order to reduce loss values. The optimizer will run 

after getting the gradients of the learnable attributes 

that are searched through backpropagation. 

All optimizations used in End-to-End Neural 

Coreference Resolution are based on Gradient 

Descent optimization. Gradient Descent is an 

optimization algorithm used to minimize the loss 

function by updating the weight repeatedly based on 

the gradient size. 

 

Algorithm 3 Algorithm Gradient Descent 

01: D[ITERATION] 
02: FOR I=0 TO EPOCH-1 
03:   G = ZEROS(W) 
04:   FOR J=0 TO ITERATION-1 
05:     G += CALC_GRAD(D[J]) 
06:   NEXT J 
07:   UPDATE_WEIGHT(G) 

https://github.com/kentonl/e2e-coref
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08: NEXT I 

 

Algorithm 3 is Algorithm Gradient Descent 

where ITERATION is the number of datasets, 

EPOCH is the number of times that will be repeated 

for the entire dataset, D is a list of datasets, G is a list 

of gradients of all weights, W is the number of 

weights, the ZEROS function is used to initialize a 

vector along parameters with all values being zero, 

the CALC_GRAD function function to calculate the 

gradient based on document-to-parameter input, and 

the UPDATE_WEIGHT function. 

 

Algorithm 4 Algorithm Stochastic Gradient 

Descent 

01: D[ITERATION] 
02: FOR I=0 TO EPOCH-1 
03:   FOR J=0 TO ITERATION-1 
04:     G = CALC_GRAD(D[J]) 
05:     UPDATE_WEIGHT(G) 
06:   NEXT J 
07: NEXT I 

Algorithm 4 is Algorithm Stochastic Gradient 

to update the weights immediately after the gradient 

is found from the input one dataset record. However, 

this algorithm can cause very long training if the 

dataset is very large, therefore a Mini-Batch Gradient 

Descent is formed to overcome this. 

 

Algorithm 5 Algorithm Mini-Batch Gradient 

Descent 

01: D[ITERATION] 
02: FOR I=0 TO EPOCH-1 
08:   BATCH[F][B] = 

CREATE_BATCH(D) 
09:   FOR J=0 TO F-1 
10:     FOR K=0 TO B-1 
11:       G = 

CALC_GRAD(BATCH[J][K]) 
12:     NEXT K 
13:     UPDATE_WEIGHT(G) 
14:   NEXT J 
15: NEXT I 
 

Algorithm 5 is Mini-Batch Gradient Descent 

where BATCH is a list of batches that is formed 

containing as many batches as F and each batch has 

as many as B. CREATE_BATCH is a function used 

to separate a dataset into several batches. 

3.11 Evaluation 

This subchapter will explain how to evaluate 

Coreference Resolution. In the End-to-End Neural 

Coreference Resolution model, 3 types of metrics are 

used to determine the precision, recall, and F1-Score 

of the model, namely the standard metrics MUC, B3, 

and CEAFϕ4. 

The MUC metric is a metric that measures the 

number of correct coreference links. 

The Kuhn-Munkres algorithm is a technique used 

for solving large-scale assignment problems, such as 

matching workers to tasks or students to schools. It 

works by finding the optimal assignment that 

minimizes the total cost. However, this technique 

does have some drawbacks. For example, it can be 

slow or infeasible for very large or dynamic problems, 

which can require a lot of iterations and updates to 

find the optimal solution. It can also be sensitive to 

the choice of cost matrix, which can affect the quality 

and stability of the solution. Additionally, it can be 

limited by the assumption of one-to-one matching, 

which may not hold for some real-world problems 

that involve multiple or partial assignments[29]. 

 

Algorithm 6 Algorithm Kuhn-Munkres 

01: M[COLUMN,ROW] 
16: FOR I=0 TO ROW-1 
17:   SUBTRACT_ROW(M,I) 
18: NEXT I 
19: FOR I=0 TO COLUMN-1 
20:   SUBTRACT_COLUMN(M,I) 
21: NEXT I 
22: COVER_ZEROS(M) 
23: WHILE ZERO_LINES(M)<ROW 
24:   K=SUBTRACT_SMALLEST(M) 
25:   ADD_COVER(K) 
26:   COVER_ZEROS(M) 
27: END WHILE 
28: SELECT_MATCH(M) 
 

Algorithm 6 is Algorithm Kuhn-Munkres where  

M is an RxK adjacency matrix whose value is 

negative, SUBTRACT_ROW is a function to reduce 

each row by the element with the smallest value in 

that row, while SUBTRACT_COLUMN does the 

same thing as SUBTRACT_ROW but in columns. 

COVER_ZEROS is a function used to cover matrix 

rows or columns that have a value of 0, and the 

number of closures is as minimal as possible. 

 

Algorithm 7 Algorithm Get Prediction and Loss 

01: FUNCTION 

GET_PREDICTION_AND_LOSS 
29:   Initiate 
30:   Input 
31:   Bidirectional LSTM 
32:   Span Representation 
33:   Choose Mention 



Received:  January 9, 2024.     Revised: March 12, 2024.                                                                                                 302 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.24 

 

34:   Antecedent Score and 

Coreference Score 
35:   Loss 
36:   Return 
37: END FUNCTION 

 
Algorithm 7 is Algorithm to get Prediction and Loss. 

4. Results and discussion 

4.1 Dataset 

The OntoNotes-5.0 dataset is the latest release of 

OntoNotes[30], an annotated corpus whose 

annotations are provided in separate text files for each 

annotation layer. This dataset has been widely used 

for Named Entity Recognition, Coreference 

Resolution, and Semantic Role Labeling tasks. This 

dataset is also the dataset most often used in 

Coreference Resolution research at this time and is 

also the dataset used in research on the main 

reference paper. Ontonotes-5.0 can be obtained from 

LDC free of charge for non-profit research and 

education. 

The OntoNotes-5.0 dataset has 3 different 

languages, namely English, Chinese, and Arabic. 

Apart from that, the dataset is divided into 6 genres, 

namely Newswire, Broadcast News, Broadcast 

Conversation, Web Text, Telephone Conversation, 

and Pivot Corpus. 

Table 8 is a statistic of the number of all tokens with 

columns as language and rows as genre. In the 

English dataset with the Newswire genre, 625 

thousand tokens consist of 300 thousand Wall Street 

Journal tokens and 325 thousand tokens of the 

English part of the English-Chinese Parallel 

Treebank (ECTB). 

The next dataset is a dataset created from the 

Book of Mark from the 1974 New Translation of the 

Bible. Each token of the Book of Mark will be tagged 

manually into CoNLL-2012 format. A document is a 

passage. 

 

 
Table 8. Number of Ontonotes-5.0 Tokens by Language 

and Genre 

 English 

Newswire 625 K 

Broadcast News 200 K 

Broadcast Conversation 200 K 

Web Text 300 K 

Telephone Conversation 120 K 

Pivot Corpus 300 K 

Table 9. Datasets Statistic 

Dataset Token Train Token Dev 

OntoNotes-5.0 

English 

1.3 million 

(2802 document) 

160 thousand 

(343 

document) 

Book of Mark 14.4 thousand 

(65 document) 

3.7 thousand 

(22 document) 

 
The Table 9 above is a table of many documents 

and their tokens in each set. There are 78 passages 

and a total of 18 thousand tokens in the Book of Mark. 

The 78 passages were divided into train and dev sets 

with a ratio of 75% for training and 25% for 

validation. 

4.2 Data preprocessing 

In machine learning, preprocessing is done to 

convert the dataset into a format suitable for the 

training model. This subchapter will explain 3 files 

that perform preprocessing of the dataset before 

running it on the main model. These files are 

minimize.py, get-char-vocab.py, and filter-

embeddings.py. 

4.2.1 Minimize 

The minimize.py file converts CoNLL format 

files to JSON. It extracts only the necessary 

information for the model. The Document State class 

is introduced to store the contents of a dataset, 

including document ID, sentences, and coreference 

clusters. The main functions involve checking and 

ensuring the correctness of the class, as well as 

transforming the final results into a JSON format that 

the model can use. 

4.2.2 Get char vocab 

The get-char-vocab.py file is designed to create a 

file containing all unique characters across the entire 

dataset. It includes functions to generate a character 

vocabulary file based on the training, development, 

and test sets. 

4.2.3 Filter embeddings 

To address the large size of the GloVe 300-

dimensional file, filter-embeddings.py is employed to 

reduce the Word Embedding size. This file filters out 

words from the Word Embedding that do not appear 

in any of the datasets, resulting in a smaller Word 

Embedding file. The execution of this file involves 

specifying the Word Embedding file and the JSON 

dataset files for filtering. 
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4.2.4 CoNLL-2012 

Because the information from the OntoNotes 

dataset is split into several separate files, it will first 

be converted to CoNLL-2012 format. Instructions for 

conversion to CoNLL-2012 format can be accessed 

on the CoNLL-2012 website. The CoNLL-2012 

format has 13 columns, namely as follows: 

Document ID is the ID of the document, with the 

first 2 letters representing the genre of the document. 

The Broadcast News document genre is represented 

by the initials bn, Broadcast Conversation is 

represented by the initials bc, Web Text is 

represented by the initials wb, Telephone 

Conversation is represented by the initials tc, and 

Pivot Corpus is represented by the initials pt. 

Newswires in the Wall Street Journal and ECTB 

Xinhua section are represented by the initials nw, 

while Newswires in the ECTB magazine section are 

represented by the initials mz. 

Part Number is an index that indicates the number 

of a document in a file. 

Word Numbers is a sequence index of tokens 

starting from 0 in each sentence. 

Word is a section that the actual token form in the 

document. 

Part-of-Speech is a category of words based on 

their syntactic function such as nouns, verbs, 

pronouns, adjectives, and so on. 

Bit Parse is the syntactic structure of the document, 

with the character * replaced by Part-of-Speech from 

column e which is a leaf of the Syntactic Tree. 

Predicate Lemma contains the basic form of 

words for words that have Word Sense or Semantic 

Role. Additionally, it will contain “-”. 

Predicate Frameset ID contains the basic form of 

words for words that have Word Sense or Semantic 

Role. Additionally, it will contain “-”. 

Word Sense contains the Word Sense of the words 

in column d. 

Speaker or Author contains the name of the 

person speaking or the person writing the token of the 

document. 

Named Entities is a Named Entity of tokens or 

phrases, where a phrase is stated if it is contained in 

the same brackets, with * which can be replaced by 

the word in column d. 

Predicate Arguments is a column for each 

argument predicate information structure for the 

predicates in column g. 

Coreference is in the last column. This is 

information from a coreference that has a phrase 

system with brackets, where the phrase from a token 

that has a coreference ID tag with an open bracket 

goes to a token that has a coreference ID tag with a 

closed bracket. Phrases that have a coreference 

relationship are phrases that have the same number in 

a document. 

4.3 Experiments 

The model was evaluated using the MUC, B3, 

and CEAF ϕ4 metrics . The MUC metric focuses on 

coreference links, B3 focuses on mentions in the 

coreference cluster, while CEAF ϕ4 focuses on a 

cluster of pairs that are most similar. The final F1 is 

the average of the three metrics. 

Training is conducted on the English and 

Indonesian models for 150 epochs and the model will 

be evaluated every 5 epochs. ADAM is used as 

optimizer. Given a dropout of 0.5 on the Word 

representation and Character Embedding and 0.2 on 

the hidden layer and on the Feature Vector. 

Constraint sentence in a document is 50, the 

maximum number of antecedents is 250, and the 

maximum span length is 10. 

The ANN used in the Mention Score and 

Antecedent Score has a hidden layer 2, with 150 

nodes for the English model and 100 nodes for the 

Indonesian model. 

Word Representation uses Word Embedding 

which is described in III while the Indonesian Word 

Embedding is 100 vector sizes made with GloVe with 

the entire book of Mark dataset. Character 

Embedding[31] uses 3 types of filters with sizes [3, 4, 

5] and each filter has 50, while the initial 

representation of the characters themselves has 

dimensions of 8. 

pruning is carried out until there is a span of 40% 

of the number of tokens remaining. In the UK model, 

this means that the model only uses an average of 4% 

of the formed span. However, the model still manages 

to get 92% correct mentions. 

4.3.1 English model 

Fig. 12 shows that based on the recall and 

precision obtained, the model becomes bolder in  

 

 
Figure. 12 Recall dan Precision from English Model 
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Figure. 13 Loss Graph with Dropout and without Dropout 

on English Model 

 

 

 
Figure. 14 Comparison of F1-Score Set Train and Dev on 

English Model 

 

guessing the coreference the more epochs are trained. 

Fig. 13 shows that  the resulting loss calculated 

with some nodes dropped out is much greater than 

when all nodes are used. This proves that dropout 

functions well because the resulting loss when 

combined is actually very small even though the node 

selection is different in each iteration. 

Fig. 14 shows that the image on the bottom is an 

enlargement of the “Dev” graph on the left. The 

results of the training set’s F1-Score continued to 

increase well every epoch up to 85%, while the 

evaluation results had a much smaller F1-Score. 

However, the evaluation results still tend to increase 

the F1-Score for each epoch. 

 
Figure. 15 Tuning F1-Score Learning Rate on English 

Model 

 

 

 
Figure. 16 Precision dan Recall Tuning Learning Rate on 

English Model 

 

Fig. 15 shows that the first tuning carried out is 

the learning rate. The best results are still at the 

default learning rate of 0.001. 

Fig. 16 shows that there is no significant 

difference in both recall and precision. However, a 

learning rate of 0.001 still has the best precision and 

recall compared to other learning rates. 

Fig. 17 shows that the best number of LSTM 

nodes is 150. The default hyperparameter of 200 has 

smaller results with an F1-Score of 67.59%. The F1-

Score of 250 nodes has stopped growing after 85 

epochs while underfitting occurs on 100 nodes. 

Fig. 18 shows that there is not much difference in 

the recall values while the precision values for 100  
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Figure. 17 Tuning F1-Score LSTM Node on English 

Model 

 

 

 
Figure. 18 Precision dan Recall Tuning LSTM Node on 

English Model 

 

nodes are much lower while the precision values for 

200 nodes and 250 nodes are not much different from 

the best. The results of 150 nodes managed to beat 

other models, especially in the value of precision. 

4.3.2 Mention score and antecedent score on English 

model 

This subchapter explains the results of the 

Mention Score and Antecedent Score. Before getting 

a mention, spans are selected with 40% of the 

document tokens from the spans that have the highest 

Mention Score. So, because the longest mention limit 

is 10 and the OntoNotes-5.0 dataset has an average  

Table 10. Mention Score and Antecedent Score Table 

Doc = Donald is the president of USA which is a 

country in North America. 

 That country has a lot of states. 

 The president is older than me. 

Index Mention Mention 

Score 

0 Donald 0.44 

1 USA which is a country -3.7 

2 USA which is a country in North 

America 

0.66 

3 North America 0.34 

4 That country 0.76 

5 have -1.46 

6 a lot of states 0.36 

7 The president 0.78 

8 older -1.42 

9 older than me -3.76 

10 me 0.3 

 
Antecedent “That Country” 

Index 

Mention 

Antecedent Score Coreference Score 

0 -8.57 -7.37 

1 2.04 -0.91 

2 3.71 5.13 

3 3.21 4.31 

ϵ - 0 

 

number of tokens of 467, a maximum of 4625 spans 

will be formed if there are 467 tokens in the document, 

even though only 40% of the total number of tokens, 

namely 187 spans, are selected. This means that in 

documents the average span size selected is only 4% 

of the total number of spans. Remaining spans that 

are not used will not receive updates in the backward 

pass. Even though it only used 4%, the models that 

were tried succeeded in getting 92% of mentions 

since the first 5 epochs which were not prune except 

for models that did not use LSTM and Word 

Embedding. Even though it didn’t use LSTM and 

Word Embedding, the model still managed to reach 

82% mentions in the first 5 epochs, and rose to 86% 
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Table 11. Mention Score for All Subjects and Some 

Subjects 

Doc = Lisa and John were friends. 

 They met in a small town. 

 She was a few years older than him. 

Mention Mention Score 

Lisa and John 0.52 

John -1.17 

were -1.67 

They 0.37 

met -0.71 

a small town 0.72 

She 0.52 

him 0.19 

 

 
Table 12. The Complicated Problem of Coreference 

Doc 1 = James was robbed by George and now he is 

in prison. 

Doc 2 = Felicia was robbed by George and now he 

is in prison. 
Antecedent “he” Doc 1 

Antecedent Antecedent Score 

James 7.66 

robbed -3.54 

George 7.24 

 
Antecedent “he” Doc 2 

Antecedent Antecedent Score 

Felicia 2.88 

robbed -3.96 

George 6.68 

 

when it reached 30 epochs. However, the model 

without these two features gets an F1-Score of 

43.76% in 30 epochs, while with these two features 

the model gets an F1-Score of 66.87% in the same 

number of epochs. 

The Mention Score and Antecedent Score values 

have quite a wide range when compared, table 10 is 

an example of model results without metadata 

features. In Table 10, the top table is the spans 

selected as mentions while the right table is the 

antecedents of the mention “That country”. It can be 

seen that the Mention Score tends to be much smaller 

in value when compared to the Antecedent Score. 

This means that the role of the Antecedent Score is 

much more important than the Mention Score when 

determining antecedents. It can also be seen that the 

Mention Score is greater for words that are full 

subjects or objects, which means that the LSTM used 

in the model allows the model to detect patterns 

between nouns and conjunctions or verbs. Based on 

Table 11, phrases that are a whole subject such as 

“Lisa and John” have a good Mention Score while 

words that are a small part of a subject such as “John” 

actually have a bad Mention Score, even the word 

“Lisa” is not included in the mentions. The model 

tends to detect full Noun Phrases. This can be good 

for detecting full names, but bad in instances of more 

than 1 subject like the example above. However, the 

model can still detect phrases that have pronouns 

such as “his” in “his children” well. This is also one 

of the disadvantages of combining learning to search 

for mentions or entities which is usually done with 

Named Entity Recognition directly with antecedent 

searches, because even though a span is a Named 

Entity, it will still be considered to have negative 

feedback on the model if it happens to have no 

antecedents. Furthermore, in Table 12 there are 2 

examples of documents with Doc 1 being a fairly 

complicated coreference problem: 

In Table 12, the tricky problem in Doc 1 is 

determining whether “he” is “George” or “James”, 

where the model is wrong because it prefers “James”. 

Models tend to choose the earliest nouns in problems 

like this. In Doc 2, because the detected genders are 

different, the model can easily determine the correct 

coreference relationship. 

4.3.3 Indonesian model 

Fig. 19 shows the “normal” line is the F1-Score 

obtained every 2 epochs. It can be seen that each 

epoch has quite a large difference in F1-Score and 

that is why evaluations are carried out every 2 epochs 

so that we don’t easily lose the best results. 

 

 
Figure. 19 F1-Score Evaluation on Indonesian Model 
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Figure. 20 Precision and Recall on Indonesian Model 

 

 
Figure. 21 Tuning Loss Learning Rate on Indonesian 

Model 

 

 
Figure. 22 Detected Mentions and Loss 

 

The F1-Score value still tends to increase every epoch. 

The “smooth” line is a “normal” line that is smoothed  

 

 
Figure. 23 F1-Score dan Recall Learning Rate Indonesia 

 

 

 
Figure. 24 F1-Score and Recall LSTM Node Indonesia 

 

so that the difference with other lines can be seen 

easily which will be applied when tuning. 

Fig. 20 shows the precision obtained is not stable 

every epoch. In the tuning carried out, the precision  



Received:  January 9, 2024.     Revised: March 12, 2024.                                                                                                 308 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.24 

 

 
Figure. 25 F1-Score and Recall Hidden Node Indonesia 

 

values for each different set of hyperparameters get 

different patterns as well. However, recall still tends 

to increase every epoch, just like in the UK case. 

These unstable results are due to the small number of 

datasets in Indonesian with a comparison of the 

training dataset of 1:43 and the evaluation dataset of 

1:16 for the number of Indonesian and English 

documents. 

Fig. 21 shows that the loss from learning rates of 

0.003 and 0.001 both work well, while the loss of 

learning rate 0.0003 takes too long to converge, while 

the learning rate of 0.01 is difficult to reduce loss 

because the learning rate is too large. Then, it can be 

seen that the loss in the early epochs was unstable, 

and only stabilized down since several epochs were 

running. 

Fig. 22 shows the new loss graph will stabilize 

downwards when the model detects mentions that are 

approximately 90% or more unprune. This is because 

the prune spans are not used in calculating loss. 

Fig. 23 shows the F1-Score and recall values are 

quite identical in development with the 0.003 model 

having the best results. 

Fig. 24 shows that F1-Score and recall metrics 

from 150 nodes get the best results while 100 nodes 

are still underfit while 200 nodes are overfitting. 

Fig. 25 shows that it doesn’t take a lot of Hidden 

Nodes to get good results on the Indonesian set. The 

best performing results are those with 50 and 100 

nodes. However, the development of 50 nodes 

stopped at 110 epochs while 100 nodes continued to 

grow. 

4.4 Comparative analysis 

4.4.1 English 

The English Case Study uses the OntoNotes-5.0 

dataset, train set for training and dev set for 

evaluation. The model that has the best evaluation 

results will be tested on the test dataset to become the 

final F1-Score. Training is carried out for up to 150 

epochs. The default training hyperparameters are the 

parameters used in the reference paper. Because 

Google Colab sessions last a maximum of 12 hours, 

training is carried out every 30 epochs. Training of 30 

epochs runs for approximately 3.5 hours on a Tesla 

P100-PCIE-16GB GPU and approximately 7 hours 

on a Tesla K80, which means it takes 17.5 hours to 

35 hours to run 150 epoch training. 

 

 
Table 13. English Results Without Certain Features 

 F1 ΔF1 

Best 67.94  

- Word Embedding 62.47 -5.47 

- Char Embedding 66.20 -1.74 

- Span Head 65.87 -2.07 

- Feature Distance 63.75 -4.19 

- Feature Width 67.35 -0.59 

- Metadata Genre 67.04 -0.90 

- Metadata Speaker 66.53 -1.41 

 P ΔP 

Best 71.24  

- Word Embedding 68.05 -3.19 

- Char Embedding 68.24 -3.00 

- Span Head 69.07 -2.17 

- Feature Distance 67.01 -4.23 

- Feature Width 70.30 -0.94 

- Metadata Genre 70.01 -1.23 

- Metadata Speaker 68.79 -2.45 

 R ΔR 

Best 64.93  

- Word Embedding 57.79 -7.14 

- Char Embedding 64.27 -0.66 

- Span Head 62.96 -1.97 

- Feature Distance 60.81 -4.12 

- Feature Width 64.64 -0.29 

- Metadata Genre 64.31 -0.62 

- Metadata Speaker 64.42 -0.51 
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Table 14. Evaluation on English dataset with baseline 

model [15] 
Metric Value 

MUC 0.51 

CEAF 2.07 

BCubed 0.83 

 

 

All models are evaluated every 5 epochs. First, we 

will explain the best results obtained, then after 

getting the best results we will analyze the usefulness 

of the features used, then we will explain the 

hyperparameter tuning that was carried out to get the 

best results. After that, several other analyzes of the 

model will be explained. 

The best results from the English case study were 

using the default hyperparameters with a 

combination of 150 LSTM layer nodes with an F1-

Score of 67.94% on the dev set and a final successful 

F1-Score of 67.14% on the test set. 

Table 13 shows the English Results Without 

Certain Features 

Word Embedding causes the model to be able to 

handle more types of coreferring noun phrases that 

exist in the Word Embedding vocabulary. In addition, 

this feature also helps determine the antecedent of a 

pronoun based on gender. 

Character Embedding has the advantage of 

providing word representations for words that are not 

contained in the vocabulary. Words that are outside 

the vocabulary tend to be guessed as coreferences to 

one another if the input representation is only Word 

Embedding because the representations are the same. 

the Span Head is not used, the Bidirectional 

LSTM representation used is only the first and last 

words of the span. This causes information from the 

words in the middle of the span to be lost. 

Distance is not used, pronouns that fail to find 

antecedents can actually look for antecedents to 

mentions that are very far apart because they do not 

know how big the distance between the two mentions 

is. 

The speaker helps group the pronouns “I” and 

“you” where if the speakers are the same, then what 

can be grouped is “I” with “I” and “you” with “you”. 

In addition, if the speakers are different, it raises the 

possibility that “you” and “I” can be grouped together. 

It was also found that the model is more 

concerned with the Antecedent Score than the 

Mention Score. In addition, the model tends to be 

concerned with detecting full Noun Phrases in 

documents. 

The coreference resolution system on Ontonotes 

dataset with the baseline model [15] achieved 

moderate performance with an MUC score of 0.51. 

However, there is room for improvement, as 

indicated by the CEAF score of 2.07. On the positive 

side, the system demonstrated relatively good 

precision and recall with a BCubed score of 0.83. 

Further analysis and optimization are recommended 

to enhance overall effectiveness. 

4.4.2 Indonesian 

Indonesian Case Study using the Book of Mark 

dataset. Training is carried out for up to 150 epochs. 

The default training hyperparameters are the same as 

the best English hyperparameters, only with 

num_filters Character Embedding of 30 and 

decay_frequency of 65 because the model has a much 

smaller number of datasets. Training 150 epochs runs 

for approximately 15 minutes on the Tesla P100 GPU 

and 25 minutes on the Tesla K80 GPU. All models 

are evaluated every 2 epochs.  

The best results for the Indonesian language case 

study were getting an F1-Score of 68.88% with 

default hyperparameters with a combination of 100 

Hidden Nodes and a learning rate of 0.003. The 

dropout effect and F1-Score results from the training 

set have the same pattern as the English case. Table 

15 shows the Indonesia Results Without Certain 

Features. 

 
Table 15. Indonesia Results Without Certain Features 

 F1 ΔF1 

Best 68.88  

- Word Embedding 63.36 -5.52 

- Char Embedding 58.89 -9.99 

- Span Head 65.44 -3.44 

- Feature Distance 66.60 -2.28 

- Feature Width 67.72 -1.16 

 P ΔP 

Best 72.91  

- Word Embedding 72.39 -0.52 

- Char Embedding 75.13 +2.22 

- Span Head 72.77 -0.14 

- Feature Distance 73.57 +0.66 

- Feature Width 72.79 -0.12 

 R ΔR 

Best 65.31  

- Word Embedding 56.52 -8.79 

- Char Embedding 48.70 -16.61 

- Span Head 59.70 -5.61 

- Feature Distance 60.93 -4.38 

- Feature Width 63.45 -1.86 
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Table 16. Evaluation on Indonesian dataset with baseline 

model 

Dataset 

Metric Recall 

(R) 

Precision 

(P) 

F1 

Score 

Original MUC 0.758 0.761 0.756 

B³ 0.627 0.538 0.543 

CEAF_m 0.456 0.495 0.475 

CEAF_e 0.379 0.439 0.389 

BLANC 0.607 0.598 0.551 

Our 

Dataset 
MUC 0.477 0.404 0.430 

B³ 0.885 0.619 0.697 

CEAF_m 0.621 0.621 0.621 

CEAF_e 0.557 0.775 0.624 

BLANC 0.773 0.795 0.760 

 

 

Word Embedding allows important words that 

rarely appear in documents to have a greater chance 

of being mentioned. 

Character Embedding is not used, the model loses 

recall of 16.61%, which means the model is underfit. 

In contrast to Word Embedding, which has a fixed 

value, Character Embedding is more flexible because 

Character Embedding is trained directly with a 

dataset task, while Word Embedding is trained 

regardless of what task will be performed. 

Distance in Indonesian does not get a much 

higher performance because on average each Bible 

passage does not have many kinds of mentions in it 

so that the possibility of saying a coreference is 

smaller. 

Despite getting pretty good results at the time of 

evaluation, the model still has difficulties in solving 

problems other than anaphora. The average document 

dataset created has a few clusters but many 

coreference relationships. 

Even though there are many shortcomings in the 

model as described above, the Indonesian language 

model can work well in the domain of the book of 

Mark and does not need to require additional dataset 

processing or further architecture other than 

separating the affixes “nya”, “ku”, and “mu” on 

dataset creation. 

The original dataset achieved respectable results 

across various evaluation metrics. For the MUC 

metric, the recall was 0.758, precision stood at 0.761, 

and the F₁ score reached 0.756. However, for B³, 

CEAF_m, CEAF_e, and BLANC, the performance 

was comparatively lower. These metrics ranged from 

0.379 to 0.627 for recall, 0.439 to 0.538 for precision, 

and 0.389 to 0.543 for the F₁ score. 

In contrast, our dataset exhibited different 

strengths and weaknesses. The MUC metric achieved 

a recall of 0.477 and a precision of 0.404, resulting in 

an F₁ score of 0.430. Notably, the B³ metric 

performed exceptionally well, with a recall of 0.885, 

precision of 0.619, and an impressive F₁ score of 

0.697. Additionally, CEAF_m maintained consistent 

recall and precision at 0.621, while CEAF_e achieved 

a high precision of 0.775 and an F₁ score of 0.624. 

Lastly, BLANC demonstrated strong overall 

performance, with a recall of 0.773, precision of 

0.795, and an F₁ score of 0.760[16].  

4.5 Coreference visualization 

To display the coreference results obtained from 

the model, visualization is carried out. There are 2 

visualization media created, one for comparing 

predicted and actual coreference, and the other for 

carrying out direct testing from the input provided. 

The following coreference visualization was 

created using HTML and Javascript. All that is 

needed to perform the following visualization is the 

JSON output from decoder.py. The following 

visualization is a modification of the main.js and 

index.html files in the original End-to-End 

Coreference Resolution source. 

Fig. 26 is an example of a comparison of 

predicted and actual coreference clusters. In the 

cluster column, each box indicates a cluster and the 

contents of the box are a maximum of 3 spans of the 

clusters in the coreference. The “<“ and “>“ buttons 

at the top center are used to move to another 

document. In the URL, there is a parameter whose 

contents are the name of the JSON file that will be 

visualized and next to it is “#x” where x is the index 

of the document. 

 

 

 
Figure. 26 Comparative Coreference Visualization 
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Figure. 27 Interface Testing Coreference 

4.6 Web application 

The IPython library is used to create the interface 

for the web application. In Fig. 27, the required input 

is a document written in the textarea. After you have 

finished writing the document, click the “SUBMIT” 

button to get the cluster prediction results. 

The output result is “Num Clusters” as how many 

clusters are formed and visualization of a document 

according to a cluster. The “NEXT” button functions 

to move to another cluster visualization. 

4.7 Discussion 

The End-to-End Neural Coreference Resolution 

model comes with a host of advantages. It eliminates 

the need for complicated preprocessing during both 

training and testing phases. The model is versatile 

and can be applied to other languages with minimal 

additional preprocessing. The process of applying 

coreference resolution is streamlined into a single 

stage of model creation. It has the potential to 

outperform previous studies by utilizing only the 

features of the actual text and its metadata. 

Furthermore, it eliminates the need for calculations 

across the entire span that is formed. 

However, the model also has its share of 

disadvantages. It demands large datasets from 

various domains. As it is integrated into a Neural 

Network architecture, the mentions learned are not 

name entities, but rather entities that have more 

frequent coreferences in the dataset. The model still 

struggles with complex coreference problems. 

Tracing to identify issues related to coreference 

resolution in the model is challenging due to its 

Neural Network-based nature. 

5. Conclusion 

The experiments conducted led to several 

conclusions. The English model was found to detect 

coreference with an F1-Score of 67.14% in the 

OntoNotes-5.0 dataset, while the Indonesian model 

achieved an F1-Score of 68.88%. Despite the higher 

F1 score of the Indonesian model, the English model 

performed better on independent datasets due to its 

larger dataset and different domain. 

LSTM played a crucial role in determining the 

span which is a mention, as it could detect patterns of 

sentence parts. The model was able to determine 92% 

of the correct mentions, even though it selected only 

approximately 4% of all spans, pruning the remaining 

96% of the span. 

All additional features, except for the long 

mention feature, provided a significant performance 

boost to the model. The long mention feature only 

increased the performance of the British model by 

0.59%, while other features added at least 0.9%. 

Mention length contributed to the performance of the 

Indonesian model by 1.16%, while other features 

added at least 2.28%. 

Character Embedding emerged as a good text 

alternative feature due to its flexibility and 

adaptability to the task at hand. Without using Word 

Embedding and only Character Embedding in the 

input, the British model achieved an F1 of 62.47%, 

while the Indonesian model achieved an F1 of 

63.36%. Word Embedding remained a superior 

feature on large datasets, but Character Embedding 

alone managed to yield satisfactory results. 

It was found unnecessary to initialize the LSTM 

weights with an orthogonal matrix, as LSTM itself 

could handle the problem of vanishing gradients and 

exploding gradients well. The initial processing to 

form the Indonesian language model only required 

the separation of the affixes “nya”, “ku”, and “mu” 

when forming the dataset. 

A dataset from just one domain performed quite 

well in that domain but faltered when applied to other 

domains due to a lack of vocabulary and bias towards 

the text pattern of that domain only. End-to-End 

Neural Coreference Resolution models were found to 

require large datasets on Word Embedding training 

and the model itself, and from several different 

domains, to achieve better results. 
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