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Abstract: Renewable energy systems (RESs) and electric vehicles (EVs) are critical components of current power 

systems for lowering greenhouse gas (GHG) emissions, combating climate change, and providing alternative energy 

sources. However, high initial costs and a lack of infrastructure, power storage, and power quality (PQ) are potential 

concerns for RESs and EVs in power systems. Among the numerous power quality (PQ) devices, the unified power 

quality conditioner (UPQC) can compensate for voltage and current-related PQ difficulties, correct the power factor, 

and is well suited for coordinative operation and control with RESs uncertainty. The position, size, and dynamic VAr 

control of UPQC, on the other hand, are key influencing variables for enhancing the performance and PQ of electrical 

distribution systems (EDSs). This paper describes an upgraded UPQC configuration known as open-UPQC (UPQC-

O) for reducing PQ difficulties caused by the inclusion of PVs and EVs. Further, an efficient gazelle optimization 

algorithm (GOA) is suggested to solve the multi-objective optimal allocation of the PV-UPQC-O issue with an 

emphasis on voltage quality, distribution losses, and voltage stability. Simulations were performed for various 

scenarios using a modified IEEE 33-bus test system. According to the comparison data, the PV-UPQC-O improved 

the feeder performance more effectively than the standard UPQC and UPQC-O. The proposed PV-UPQC-O results 

for total loss reduction of 76.15% when compared to base case without EV load penetration. On the other hand, it is 

around 76.52% reduction when compared to base case with EV load penetration. Furthermore, the proposed GOA 

outperforms the prairie dog optimization (PDO), pelican optimization algorithm (POA) and coati optimization 

algorithm (COA) in terms of global solution and convergence. 

Keywords: Power quality, Photovoltaic system, Electric vehicles, Unified power quality conditioner, Gazelle 

optimization algorithm, Multi-objective optimization. 

 

 

1. Introduction 

The global trend towards sustainability is focused 

on adaption of renewable energy sources (RESs) and 

electric vehicles (EVs) by aiming various techno, 

economic and environmental goals in energy sector 

and transportation sector, simultaneously. However, 

their randomness and uncertainty nature created 

various typical issues; particularly stability and 

power quality (PQ) based issues in electrical 

distribution system [1]. In [2], the effects of 

increasing photovoltaic (PV) and EV adoption on the 

power grid stability, power quality, and energy 

economics were examined. It begins with EV 

technologies and then discusses how the grid 

integration of EVs affects grid stability, power 

quality, and the energy market. The report also 

examined the effects of large-scale PV grid 

integration, including the PV structure and grid code 

requirements. Finally, grid integration of PV and EV 

has been shown to affect the electricity system 

operation. In [3], an in-depth examination of power 

quality mitigation in the context of solar PV 

integration into a utility grid was presented. They 

discuss renewable energy, solar energy integration, 

and power quality. The report covers problems 

related to the overall system network and proposes 
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strategies to address the PQ challenges associated 

with increased solar power penetration into the rural 

grid. It also includes IEEE standards for various PQ 

events, distribution flexible AC transmission system 

(DFACTS) device configurations, and control 

algorithms utilised for grid integration of PV systems. 

Unified power quality conditioner (UPQC) is one 

such effective device for handing PQ issues in 

electrical distribution systems (EDs). In [4], an 

exhaustive review of the different PQ devices 

including UPQC and its application in EDSs was 

presented by covering various topologies of PQ 

devices, compensation methods, control theories, and 

technological development.  

However, the expected benefits of UPQC in 

EDSs may be realised only when they are optimally 

integrated and controlled in the system. Researchers 

have widely used various optimisation techniques, 

particularly meta-heuristic algorithms, to overcome 

the computing challenges in solving multi-objective 

optimisation problems using UPQC [5]. A case study 

on the use of a transformer-less UPQC to improve 

power quality in Cairo Airport’s lighting system was 

presented in [6]. The proposed topology was 

optimised and empirically validated using an 

extended bald eagle search (EBES) optimizer. In [6], 

the JAYA optimisation algorithm was proposed to 

optimise the operation of the UPQC. The JAYA 

algorithm was utilised to find the optimal control 

parameters of the UPQC, resulting in improved 

utilisation of the device. In [7], beetle swarm-based 

butterfly optimisation (BS-BOA) was presented to 

optimise a multi-converter UPQC. This algorithm 

was utilised to determine the optimal control 

parameters of the UPQC, resulting in improved PQ in 

the system. In [8], a puzzle optimisation algorithm 

(POA) was employed to enhance the power quality in 

multi-microgrids by robustly controlling an adaptive 

power quality compensator. In [9], PSO-based 

sliding mode controller for UPQC VSCs was 

discussed. The PSO optimises the sliding mode 

controller parameters to improve the performance of 

the UPQC VSCs. In [10], an enhanced self-adaptive 

Bat Algorithm (BA) for optimising the location of the 

UPQC is introduced. The enhanced BA adaptively 

adjusts its parameters during the optimisation process, 

resulting in improved accuracy in determining the 

optimal location of the UPQC. In [11], Rao’s 

algorithm was introduced to optimise the VA loading 

of the converter. This algorithm determines the 

optimal VA loading for the converter and maximises 

the utilisation of the UPQC. In [12], to mitigate 

harmonics and voltage instability in modern 

distribution power grids, Fixed Order Proportional-

Integral (FOPI) controllers for static synchronous 

compensators (STATCOM) and unified power 

quality conditioners (UPQC) were proposed. The 

study applies the whale optimisation algorithm 

(WOA) to design FOPI controllers for STATCOM 

and UPQC. FOPI controllers mitigate harmonics and 

voltage instability and improve the power quality in 

modern distribution power grids. In [13], the 

performance of different control approaches for 

UPQC was compared using a heuristic approach. 

This study evaluates the performance of UPQC 

control systems based on proportional-integral (PI) 

grey wolf optimisation (GWO) (PI-GWO), 

fractional-order controllers, and a reinforcement 

learning agent, providing insights into their 

effectiveness in improving power quality. In [14], the 

artificial rabbit optimisation (ARO) algorithm was 

used for the optimal allocation of PV systems and 

passive power filters. The ARO algorithm determines 

the optimal locations and sizes of PV systems and 

power filters, leading to an enhanced power quality 

in the radial distribution network. In [15], an 

improved jellyfish algorithm (IJFA) for mitigating 

power quality issues in a PV integrated microgrid 

system was proposed. The IJFA optimises the control 

parameters of the microgrid system and improves the 

power quality performance. In [16], an investigation 

is presented to address the effectiveness of the UPQC 

in mitigating voltage sags, voltage swells, and 

harmonics caused by nonlinear loads. This study 

provides insights into the performance of UPQC 

under nonlinear load conditions. In [17], a PV-UPQC 

system controlled by a Neural Network was 

presented. The PV-UPQC integrates solar PV, 

battery energy storage, and power conditioning 

capabilities to improve power quality in grid-

connected operations. 

The literature describes UPQC research gaps as 

investigating alternative optimization methodologies 

to improve integration and control approaches in 

EDS [18]. Although meta-heuristic algorithms are 

often used, multi-objective UPQC optimization 

difficulties need testing several optimisation methods 

[19]. Therefore, this research provides an 

optimization strategy to reduce PQ issues produced 

by RESs and EVs. Gazelle optimization algorithm 

(GOA) [20] can handle the multi-objective optimum 

PV-UPQC-O allocation problem with an emphasis 

on voltage quality, distribution losses, and voltage 

stability. 

The following are the major contributions of this 

study. 

1) To improve the overall performance of EDS 

under EV penetration by optimally integrating 

hybrid PV-UPQC-O. 
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2) To analyse and improve the EDS performance 

with different configurations, namely, PV, PV-

DSSSC, PV-UPQC-O1 (single shunt VSC) and 

PV-UPQC-O3 (three shunt VSCs). 

3) To compare the effectiveness of PV, PV-DSSSC, 

PV-UPQC-O1 and PV-UPQC-O3 without and 

with EV penetrations. 

4) Further, to introduce gazelle optimization 

algorithm (GOA) for the first time to solve PV 

allocation problem in EDS considering power 

quality devices. 

The paper’s structure unfolds as follows: Section 2 

details PV-UPQC-O and EV load modelling. Section 

3 introduces a multi-objective optimization problem 

with equal and unequal constraints. Section 4 delves 

into the GOA solution approach. Section 5 showcases 

IEEE 33-bus simulation results across various 

scenarios. Lastly, Section 6 summarizes key research 

findings comprehensively. 

2. Modelling of theoretical concepts 

This section explains the mathematical modelling 

of PV penetration and hourly network loading profile 

are explained. Two voltage-sourced VSCs, a series 

inverter and shunt inverter, make up the UPQC-O 

[21]. In a healthy network, the series inverter is 

intended to support VAr, and in a voltage sag 

scenario, it is intended to reduce the supply voltage 

sag. Conversely, shunt VSCs are designed to remove 

line-current harmonics and offer VAr support to a 

network. It is thought that a sample radial distribution 

network, as shown in Fig. 1, represents the steady-

state model of PV-UPQC-O [22]. 

2.1 PV-UPQC-O 

The DC power generation from a PV system can 

be injected into main grid via a shunt/ series DC/AC 

converter/ voltage source converter (VSCs). Thus, as 

shown in Fig. 1, the series VSCs of UPQC-O is used 

for the same purpose.  

With this configuration, branch-sr can be seen as 

equivalent to PV system embedded with distribution 

static synchronous series compensator (PV-DSSSC) 

and its steady-state power injections given by [23]: 

 

𝑃𝑠(𝑖𝑛𝑗) = −𝑉𝑠𝑉𝑠𝑒 {𝑔𝑠𝑟𝑐𝑜𝑠(𝜃𝑠,𝑠𝑒) + (𝑏𝑠𝑟 +
𝑏𝑐

2
) 𝑠𝑖𝑛(𝜃𝑠,𝑠𝑒)}      (1) 

 

𝑄𝑠(𝑖𝑛𝑗) = −𝑉𝑠𝑉𝑠𝑒 {𝑔𝑠𝑟𝑠𝑖𝑛(𝜃𝑠,𝑠𝑒) − (𝑏𝑠𝑟 +
𝑏𝑐

2
) 𝑐𝑜𝑠(𝜃𝑠,𝑠𝑒)}      (2) 

 

𝑃𝑟(𝑖𝑛𝑗) = 𝑉𝑟𝑉𝑠𝑒{𝑔𝑠𝑟𝑐𝑜𝑠(𝜃𝑠,𝑠𝑒) + 𝑏𝑠𝑟𝑠𝑖𝑛(𝜃𝑟,𝑠𝑒)}   (3) 

 

𝑄𝑟(𝑖𝑛𝑗) = 𝑉𝑟𝑉𝑠𝑒{𝑔𝑠𝑟𝑠𝑖𝑛(𝜃𝑠,𝑠𝑒) − 𝑏𝑠𝑟𝑠𝑖𝑛(𝜃𝑟,𝑠𝑒)}   (4) 

 

where 𝑉𝑠 , 𝑉𝑟  and 𝑉𝑠𝑟  are the voltage magnitudes of 

bus-s, bus-r and series voltage source, respectively; 

𝜃𝑠, 𝜃𝑟 and 𝜃𝑠𝑟 are the voltage phase angles of bus-s, 

bus-r and series voltage source, respectively;   𝜃𝑠,𝑠𝑒 =
(𝜃𝑠 − 𝜃𝑠𝑒)  and 𝜃𝑟,𝑠𝑒 = (𝜃𝑟 − 𝜃𝑠𝑒) , 𝑦𝑠𝑟 = (𝑔𝑠𝑟 +

𝑗𝑏𝑠𝑟) is the admittance of branch-sr, 
𝑏𝑐

2
 is the half-

line charging admittance, 𝑃𝑠(𝑖𝑛𝑗) and 𝑄𝑠(𝑖𝑛𝑗) are the 

real and reactive power injections at bus-s, 

respectively; , 𝑃𝑟(𝑖𝑛𝑗)  and 𝑄𝑟(𝑖𝑛𝑗)  are the real and 

reactive power injections at bus-r, respectively.    

The net effective real and reactive power loadings 

at bus-s due to real and reactive power injections by 

PV-DSSSC and reactive power injections nu shunt 

VSCs are given by: 

 

�̅�𝑑(𝑠) = 𝑃𝑑(𝑠) − 𝑃𝑝𝑣(𝑠) − 𝑃𝑠(𝑖𝑛𝑗)   (5) 

 

 
Figure. 1 A sample distribution feeder with schematic of PV-UPQC-O with multiple shunt VSCs 
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�̅�𝑑(𝑠) = 𝑄𝑑(𝑠) − 𝑄𝑠(𝑖𝑛𝑗)     (6) 

 

�̅�𝑑(𝑟) = 𝑃𝑑(𝑟) − 𝑃𝑟(𝑖𝑛𝑗)     (7) 

 

�̅�𝑑(𝑟) = 𝑄𝑑(𝑟) − 𝑄𝑟(𝑖𝑛𝑗)     (8) 

 

In order to formulate PV-UPQC-O 

configuration, shunt inverters/ VSCs need to be 

integrated either at single location or multiple 

locations. 

 

�̅�𝑑(𝑚) = 𝑄𝑑(𝑚) − 𝑄𝑜(𝑖𝑛𝑗),𝑚,    ∀𝑚 = 𝑖, 𝑗, 𝑘  (9) 

 

where �̅�𝑑(𝑠)  and �̅�𝑑(𝑠)  are the real and reactive 

power loads of bus-s after integrating PV-DSSSC, 

respectively; where �̅�𝑑(𝑟) and �̅�𝑑(𝑟) are the real and 

reactive power loads of bus-r after integrating PV-

DSSSC, respectively;  𝑃𝑑(𝑠)  and 𝑄𝑑(𝑠)  are the base 

case real and reactive power loads of bus-s, 

respectively; ;  𝑃𝑑(𝑟) and 𝑄𝑑(𝑟) are the base case real 

and reactive power loads of bus-r, respectively;  

𝑃𝑝𝑣(𝑠)  is the real power injection by PV system at 

bus-s, 𝑄𝑜(𝑖𝑛𝑗)  is the reactive power injections by 

shunt VSCs. 

2.2 Modeling of EV load 

Integration of EV load at a bus via AC/DC 

converter can cause for increment in both net 

effective real and reactive loadings and given by: 

 

�̅�𝑑(𝑛) = 𝑃𝑑(𝑛) + 𝑃𝑒𝑣(𝑛)𝑉𝑛
𝛼𝑒𝑣              (10) 

 

�̅�𝑑(𝑛) = 𝑄𝑑(𝑛) + 𝑃𝑒𝑣(𝑛)𝑡𝑎𝑛(𝜃𝑒𝑣)𝑉𝑛
𝛽𝑒𝑣                (11) 

 

where �̅�𝑑(𝑛)  and �̅�𝑑(𝑛)  are the real and reactive 

power loads of bus-n after integrating EV, 

respectively; 𝑃𝑑(𝑛) and 𝑄𝑑(𝑛) are the base case real 

and reactive power loads of bus-n, respectively; 

𝑃𝑒𝑣(𝑛) is the real power load of EV at bus-p, 𝜃𝑒𝑣 is 

the operating power factor EV charger, 𝑉𝑛  is the 

voltage magnitude of bus-n, 𝛼𝑒𝑣  and 𝛽𝑒𝑣  are the 

exponents of real and reactive power loadings of EV 

load modelling [24]. 

3. Main title 

This section explains the proposed multi-

objective function focusing on real power loss 

reduction (𝑃𝑙𝑜𝑠𝑠 ), improvement in voltage quality 

index ( 𝑉𝑄𝐼 ) and feeder loadability margin ( 𝐿𝑀 ) 

enhancement. Further, it also explains various 

operational and planning constraints under study. 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐼𝑘
2𝑟𝑘

𝑛𝑏𝑟
𝑘=1                 (12) 

 

𝑉𝑄𝐼 =
1

𝑛𝑏
√∑ (𝑉𝑠𝑠 − 𝑉𝑚)2𝑛𝑏

𝑚=1                (13) 

 

𝐿𝑀 = 𝜆𝑚𝑎𝑥 ∑ [𝑃𝑑(𝑘) + 𝑗𝑄𝑑(𝑘)]𝑛𝑏
𝑘=1              (14) 

 

where 𝑛𝑏𝑟 and 𝑛𝑏 are the number of branches and 

number of buses in the feeder, respectively; 𝑉𝑠𝑠 and 

𝑉𝑚  are the voltages of substation and bus-m, 

respectively; 𝑃𝑑(𝑘)  and 𝑄𝑑(𝑘)  are the real and 

reactive power loading of bus-k, respectively; 𝜆𝑚𝑎𝑥 

is the real scalar to express feeder loadability level, 

𝑟𝑘  and 𝐼𝑘 are the resistance and current flow of 

branch-k, respectively. 

The multi-objective function is formulated to 

minimize simultaneously these three objectives and 

is given by: 

 

𝑂𝐹 = 𝑃𝑙𝑜𝑠𝑠 + 𝑉𝑄𝐼 +
1

𝐿𝑀
               (15) 

 

The following are the constraints considered 

while solving the multi-objective function. 

 

𝑃𝑝𝑣(𝑝) ≤ (𝑃𝐷 + 𝑃𝑙𝑜𝑠𝑠)                           (16) 

 

[𝑄𝑠(𝑖𝑛𝑗) + 𝑄𝑟(𝑖𝑛𝑗) + ∑ 𝑄𝑜(𝑖𝑛𝑗),𝑚
𝑛𝑆ℎ
𝑚=1 ] ≤ 𝑄𝐷        (17) 

 

𝑉𝑠𝑠 ≤ 𝑉𝑚 ≤ 𝑉𝑚𝑖𝑛               (18) 

 

𝐼𝑘 ≤ 𝐼𝑘,𝑚𝑎𝑥                  (19) 

 

Here, Eqs. (16) and (17) are used to limit the over 

compensation in the feeder due to PV and UPQC-O, 

respectively; Eqs. (18) and (19) are used to define 

limits for bus voltage magnitudes and branch currents, 

respectively.  

In order to evaluate 𝑃𝑙𝑜𝑠𝑠  and  𝑉𝑄𝐼 , NR load flow 

method is employed. Further, to determine 𝐿𝑀, the 

load at all buses is increased simultaneously until NR 

method fails to converge. The amount of increased 

load from the base case loading is treated as 

loadability margin 𝐿𝑀. 

4. Gazelle optimization algorithm 

This section explains the gazelle optimization 

algorithm (GOA) [28]. It mimics gazelles’ survival 

tactics in a predator-driven habitat. It adapts their 

evasion strategies in an algorithmic framework to 

tackle real-world optimization, alternating between 
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peaceful grazing and evasive manoeuvres when 

predators are spotted for solution discovery. 

The GOA employs a population-based approach, 

initializing search agents as gazelles (𝐺) in a matrix 

form for solutions in Eq. (20). Their positions, 

governed by Eq. (21), are stochastically generated 

within defined bounds (𝑙𝑏 and 𝑢𝑏). Each candidate’s 

vector, 𝑔𝑖𝑗  is randomly positioned in n gazelles 

across d dimensions in the optimization problem’s 

search space. 

 

𝐺 = [

𝑔1,1 ⋯ 𝑔1,𝑑

⋮ ⋱ ⋮
𝑔𝑛,1 ⋯ 𝑔𝑛,𝑑

]               (20) 

 

𝑔𝑖𝑗 = 𝑟(𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏                (21) 

 

Each iteration generates candidate solutions (𝑔𝑖𝑗) . 

The best found becomes the elite gazelle ( 𝑔𝑖𝑗
′ ), 

mirroring nature’s adeptness in spotting, alerting 

others, and escaping predators. This elite forms a 

matrix as given in Eq. (22) guiding further gazelle 

steps. 

 

𝐸 = [

𝑔1,1
′ ⋯ 𝑔1,𝑑

′

⋮ ⋱ ⋮
𝑔𝑛,1

′ ⋯ 𝑔𝑛,𝑑
′

]               (22) 

 

In GOA, predators and gazelles act as search 

agents. When a predator is sighted, both flee towards 

safety, exploring the same direction. The elite 

updates if a superior gazelle replaces the top one at 

each iteration’s end. 

4.1 Exploitation phase 

During this phase, the gazelles graze undisturbed 

either in the absence of a predator or while being 

observed by one. Here, their movement follows 

Brownian motion, marked by methodical and 

uniform steps, efficiently covering adjacent regions 

within their habitat. The mathematical representation 

of this behaviour is described in Eq. (23). 

 

𝑔𝑖
𝑘+1 = 𝑔𝑖

𝑘 + 𝑠𝑔 ∙ 𝑟 ∙ 𝑟𝑏 ∙ (𝐸𝑖 − 𝑟𝑏 × 𝑔𝑖
𝑘)             (23) 

 

where 𝑔𝑖
𝑘+1 represents the solution in the upcoming 

iteration, while 𝑔𝑖
𝑘  stands for the current iteration’s 

solution,  𝑠𝑔 signifies the grazing speed of gazelles, 

and 𝑟𝑏  is a vector of random values portraying 

Brownian motion, derived from vector 𝑟 consisting 

of uniform random numbers [0,1]. 

4.2 Exploration phase 

Upon spotting a predator, gazelles respond by tail 

flicking, foot stomping, or bounding up to 2 meters-

scaled between 0 and 1. This behaviour, simulated by 

Lévy flight, involves small steps and occasional long 

jumps, enhancing searchability in optimization. 

Gazelles and predators abruptly change directions, 

alternating behaviour per iteration-gazelles using 

Lévy flight on odd iterations, predators initially 

employing Brownian motion before Lévy flight. 

 

𝑔𝑖
𝑘+1 = 𝑔𝑖

𝑘 + 𝑆𝑔 ∙ 𝛾 ∙ 𝑟 ∙ 𝑟𝑙 ∙ (𝐸𝑖 − 𝑟𝑙 ∙ 𝑔𝑖
𝑘)           (24) 

 

where 𝑆𝑔 represents the maximum speed achievable 

by a gazelle, while 𝑟𝑙 signifies a vector derived from 

random numbers following Lévy distributions, 𝛾 =
[1, −1]. Eq. (25) illustrates the mathematical model 

governing the predator’s behaviour in pursuit of the 

gazelle. 

 

𝑔𝑖
𝑘+1 = 𝑔𝑖

𝑘 + 𝑆𝑔. 𝛾. 𝛿. 𝑟𝑏 . (𝐸𝑖 − 𝑟𝑙 . 𝑔𝑖
𝑘)                     (25) 

 

𝛿 = (1 −
𝑘

𝑘𝑚𝑎𝑥
)

(
2𝑘

𝑘𝑚𝑎𝑥
)
               (26) 

 

where 𝛿 is the cumulative effect of the predator. This 

factor represents the overall impact of the predator. 

In research on Mongolian Gazelles, despite their non-

endangered status, they have a 0.66 annual survival 

rate, implying predators succeed only 0.34 times. 

Predator Success Rates (𝑃) , influence gazelles’ 

escape ability, preventing the algorithm from getting 

stuck in local minima. Its modelled effect is detailed 

in Eq. (27). 

 

For 𝑟 ≤ 𝑃  

 

𝑔𝑖
𝑘+1 = {𝑔𝑖

𝑘 + 𝛿 ∙ [𝑟 ∙ (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏] ∙ 𝑈            (27) 

 

Otherwise,  

 

𝑔𝑖
𝑘+1 = [{𝑔𝑖

𝑘 + 𝑃 ∙ (1 − 𝑟) + 𝑟] ∙ (𝑔𝑟1
𝑘 − 𝑔𝑟2

𝑘 )   (28) 

 

where 𝑟 is a random number between 0 and 1, 𝑔𝑟1
𝑘  

and 𝑔𝑟2
𝑘  are randomly selected gazelles within the 

same iteration, respectively; 𝑈  is a binary vector 

defined by Eq. (29). 

 

𝑈 = {
0 𝑖𝑓 𝑟 < 0.34
1 𝑒𝑙𝑠𝑒             

                (29) 

 

In this ways, GOA’s exploitation phase mirrors 

gazelles grazing undisturbed or while being stalked 



Received:  January 2, 2024.     Revised: April 24, 2024.                                                                                                   143 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.11 

 

by a predator. Once a predator is sighted, the 

algorithm shifts into the exploration phase, wherein 

gazelles evade the predator, reaching safety. These 

steps iterate until meeting termination criteria, 

seeking optimal solutions in optimization problems. 

Further, the computational features of GOA can be 

explored more in [20]. 

5. Simulation results 

Simulation studies are performed on IEEE 33-bus 

distribution system for different scenarios. At fist 

scenario, the performance of feeder is improved by 

integrating PV system optimally in the network. In 

the second scenario, the maximum possible size of 

UPQC is evaluated at PV bus (shunt converter bus) 

to formulate PV-UPQC system. Finally, the optimal 

locations for series converter buses are determined 

along with proper sizes for formulating PV-UPQC-O 

configuration. 

5.1 Without EV load penetration 

Case 0: The base case test system has total 

constant power load of 3715 kW and 2300 kVAr and 

operates at 11 kV. By NR load flow, the distribution 

losses are evaluated as 210.9976 kW and 143.0325 

kVAr, respectively. Further, the lowest voltage 

magnitude is determined as 0.9038 p.u. at bus-18.   

Case 1: In this case, the optimal location and size 

of PV system is determined using proposed 

methodology. The search space boundary for 

locations is bus-2 to bus-33 and for the sizes, 0 to 

3715 kW, respectively. By using GOA, the size of PV 

system is estimated as 2590.241 kW at bus-6. The 

distribution losses are reduced to 111.0298 kW and 

81.6840 kVAr, respectively. Further, the lowest 

voltage magnitude is raised to 0.9424 p.u. at bus-18. 

The simulation results PV allocation using GOA and 

other methods are given in Table 1. 

 

 

 
Figure. 2 Convergence characteristics 

Table 1. Comparison of different algorithms 

Item COA POA PDO GOA 

PVsize (kW) 2590 2590 2590 2590  

PVbus (#) 6 6 6 6 

Ploss (kW) 110.03 110.03 110.03 110.03 

Qloss (kVAr) 81.684 81.684 81.684 81.684 

Vmin (p.u.) 0.9424 0.9424 0.9424 0.9424 

Vmin,bus (#) 18 18 18 18 

Best 111.03 111.03 111.03 111.03 

Worst 121.33 119.13 114.88 114.37 

Mean  111.78 111.44 111.14 111.13 

Median 111.03 111.03 111.03 111.03 

SD 1.798 1.566 0.586 0.501 

Time (sec) 32.341 31.316 30.167 30.018 

 

 

Further to GOA, simulations are performed with 

prairie dog optimization (PDO) [25], pelican 

optimization algorithm (POA) [26] and coati 

optimization algorithm (COA) [27]. For all 

algorithms, the population size and the number of 

maximum iterations are considered as 30 and 50, 

respectively. The statistical analysis of 25 

independent runs of each algorithm is given in Table 

1. All algorithms are resulted for same global optima, 

however, GOA has shown superiority in terms of 

least mean and standard deviation. The convergence 

characteristics of compared algorithms are given in 

Fig. 2. As can be observed, GOA has avoided sliding 

into the local optima trap and has attained global 

optima while maintaining consistent search features. 

5.2 Comparative Study with Literature 

A comparative study with literature works 

performed using pathfinder algorithm (PFA) [28], 

mayfly optimization algorithm (MOA) [29] and 

coyote optimization algorithm (COA) [30], as given 

in Table 2. For all algorithms, the size of PV system 

is estimated as 2590.241 kW at bus-6. The 

distribution losses are reduced to 111.0298 kW and 

81.6840 kVAr, respectively. Further, the lowest 

voltage magnitude is raised to 0.9424 p.u. at bus-18. 

From this, it is very clear that GOA can be said that a 

competitive algorithm to literature works. 

Case 2: In this case, the optimal location and size 

of PV system along with DSSSC parameters are 

determined.  

 

 
Table 2. Comparison of different algorithms 

Reference PVsize (kW)/ bus Ploss (kW) 

PFA [28] 2590.264/ 6 111.03 

MOA [29] 2590.264/ 6 111.03 

COA [30] 2590/ 6 111.03 

GOA 2590.264/ 6 111.03 
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Table 3. Comparison of different configurations without EV load penetration 
Case Configuration  PV (kW)/ bus Series  Shunt  Ploss (kW) Qloss (kVAr) Vmin (p.u.) 

0 Base   — — 210.998 143.033 0.9038 (18) 

1 PV 2590.24(6) — — 111.0298 81.684 0.9424 (18) 

2 PV-DSSSC 2558.51(6) 1761.35(6) — 67.8685 54.8324 0.9583 (18) 

3 PV-UPQC-O1 2558.51(6) 1747.01(6) 335.08(30) 67.691 54.732 0.9583 (18) 

4 PV-UPQC-O3 2525.83(6) 733.61(6) 

236.96(19) 

370.08(25) 

894.14(30) 

50.3229    41.7397 0.9578 (18) 

 
Table 4. Comparison of different configurations with EV load penetration 

Case Configuration  PV (kW)/ bus Series  Shunt  Ploss (kW) Qloss (kVAr) Vmin (p.u.) 

0 Base   — — 314.647 213.139 0.9038 (18) 

1 PV 3166.7(6) — — 161.3860   118.8062 0.9311 (18) 

2 PV-DSSSC 3119.87(6) 2111.14(6) — 98.9005 79.8620 0.9504 (18) 

3 PV-UPQC-O1 3075.42(6) 1023.29(6) 1056.91(19) 77.7105    63.8449 0.9499 (18) 

4 PV-UPQC-O3 3073.28(6) 866.01(6) 

294.58(19) 

453.10(25) 

1056.96(30) 

73.8733    61.1884 0.9496 (18) 

 

 

 
Figure. 3 Comparison of voltage profile without EV load 

penetration at different case studies 

 

 

At bus-6, the optimal PV and VSC of DSSSC sizes 

are to be 2558.51 kW and 1761.35 kVAr, 

respectively. By this, the losses are reduced to 

67.8685 kW and 54.8324 kVAr, respectively. And, 

the minimum voltage is observed at bus-18 as 0.9583 

p.u. 

Case 3: In this case, the optimal location and size 

of PV system along with UPQC parameters with one 

series and one shunt VSCs are determined. At bus-6, 

the optimal PV and VSC of DSSSC sizes are to be 

2558.51 kW and 1747.01 kVAr, respectively. And, 

the shunt VSC is determined at bus-19 as 335.08 

kVAr. By this, the losses are reduced to 67.691 kW 

and 54.732 kVAr, respectively. And, the minimum 

voltage is observed at bus-18 as 0.9583 p.u. 

Case 4: In this case, the optimal location and size 

of PV system along with UPQC parameters with one 

series and three shunt VSCs are determined. At bus-

6, the optimal PV and VSC of DSSSC sizes are to be 

2525.83 kW and 733.608 kVAr, respectively. And, 

the shunt VSCs are determined at buses 19, 25 and 30 

as 236.961 kVAr, 370.078 kVAr, and 894.136 kVAr, 

respectively. By this, the losses are reduced to 

50.3229 kW and 41.7397 kVAr, respectively. And, 

the minimum voltage is observed at bus-18 as 0.9578 

p.u. 

In comparison to all case studies reported in Table 

3, the PV-UPQC-O3 allocation reduced the total 

losses and improved the voltage profile significantly. 

Further, the voltage profiles are given in Fig. 3. 

5.3 With EV load penetration 

Case 0: In this case, 25% extra load at all buses is 

considered as EV load penetration. Thus, the base 

case test system has total constant power load of 

4526.02 kW and 2755.35 kVAr and operates at 11 kV. 

By NR load flow, the distribution losses are evaluated 

as 314.6476 kW and 213.1387 kVAr, respectively. 

Further, the lowest voltage magnitude is determined 

as 0.8827 p.u. at bus-18. 

Case 1: In this case, the optimal location and size 

of PV system is determined using proposed 

methodology. By using GOA, the size of PV system 

is estimated as 3166.7 kW at bus-6. The distribution 

losses are reduced to 161.386 kW and 118.806 kVAr, 

respectively. Further, the lowest voltage magnitude is 

raised to 0.9311 p.u. at bus-18.  

Case 2: In this case, the optimal location and size 

of PV system along with DSSSC parameters are 

determined. At bus-6, the optimal PV and VSC of 

DSSSC sizes are to be 3119.87 kW and 2111.14 
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kVAr, respectively. By this, the losses are reduced to 

98.9 kW and 79.862 kVAr, respectively. And, the 

minimum voltage is observed at bus-18 as 0.9504 p.u. 

Case 3: In this case, the optimal location and size 

of PV system along with UPQC parameters with one 

series and one shunt VSCs are determined. At bus-6, 

the optimal PV and VSC of DSSSC sizes are to be 

3075.42 kW and 1023.29 kVAr, respectively. And, 

the shunt VSC is determined at bus-30 as 1056.91 

kVAr. By this, the losses are reduced to 77.7105 kW 

and 63.8449 kVAr, respectively. And, the minimum 

voltage is observed at bus-18 as 0.9499 p.u. 

Case 4: In this case, the optimal location and size 

of PV system along with UPQC parameters with one 

series and three shunt VSCs are determined. At bus-

6, the optimal PV and VSC of DSSSC sizes are to be 

3073.28 kW and 866.01 kVAr, respectively. And, the 

shunt VSCs are determined at buses 19, 25 and 30 

294.58 kVAr, 453.1 kVAr, and 1056.96 kVAr, 

respectively. By this, the losses are reduced to 

73.8733 kW and 61.1884 kVAr, respectively. And, 

the minimum voltage is observed at bus-18 as 0.9496 

p.u. 

In comparison to the base case without EV 

penetration, the losses with PV, PV-DSSSC, PV-

UPQC-O1, and PV-UPQC-O3 are reduced by 47.38%, 

67.83%, 67.92%, and 76.15%, respectively. However, 

the losses are increased by 49.12% (i.e., from 211 kW 

to 314.647 kW) with EV penetration, and they are 

again reduced significantly with PV, PV-DSSSC, 

PV-UPQC-O1, and PV-UPQC-O3 by 48.71%, 

68.57%, 75.30%, and 76.52%, respectively. This 

indicates the need for hybridization of RESs with PQ 

devices, considering emerging load trends in modern 

EDSs. 

6. Conclusion 

The unified power quality conditioner (UPQC) 

stands out among PQ devices, addressing voltage 

issues, correcting power factors, and aligning with 

uncertain RESs. UPQC’s positioning, sizing, and 

dynamic control significantly impact electrical 

distribution systems’ (EDS) performance and PQ. 

This paper presents an upgraded UPQC, UPQC-O, 

easing PQ challenges from PVs and EVs. Using the 

gazelle optimization algorithm (GOA), it optimally 

allocates PV-UPQC-O, prioritizing voltage quality, 

losses, and stability. Simulations on an IEEE 33-bus 

system highlight PV-UPQC-O’s superiority over 

standard UPQC and UPQC-O, while GOA surpasses 

PDO, POA, and COA in global solutions and 

convergence. However, it is further essential to 

analyze the computational efficiency of GOA, and 

the performance of the proposed hybrid system, i.e.,  

 
Figure. 4 Comparison of voltage profile with EV load 

penetration at different case studies 

 

 

Figure. 5 Comparison of Ploss without and with EV load 

penetration at different case studies 

 

 

 
Figure. 6 Comparison of Ploss reduction without and with 

EV load penetration at different case studies 

 

 

PV-UPQC-O, in larger networks needs to be 

investigated, which is treated as the future scope of 

this work. 
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