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Abstract: Image processing has extensively addressed object detection, classification, clustering, and segmentation 

challenges. At the same time, the use of computers associated with complex video datasets spurred various strategies 

to classify videos automatically, particularly in detecting traditional dances. This research proposes advancement in 

classifying traditional dances by implementing a Video Vision Transformer (ViViT) that relies on tubelet embedding. 

The authors utilized IDEEH-10, a dataset of videos showcasing traditional dances. In addition, the ViViT artificial 

neural network model was used for video classification. The video representation is generated by projecting spatio-

temporal tokens onto the transformer layer. Next, an embedding strategy is used to improve the classification accuracy 

of Traditional Dance Videos. The proposed concept treats video as a sequence of tubules mapped into tubule 

embeddings. Tubelet management has added TA (tubelet attention layer), CA (cross attention layer), and tubelet 

duration and scale management. From the test results, the proposed approach can better classify traditional dance 

videos compared to the LSTM, GRU, and RNN methods, with or without balancing data. Experimental results with 5 

flods showed Loss between 0.003 to 0.011 with an average Lost of 0.0058. Experiments also produced an accuracy 

rate between 98.68 to 100 percent, resulting in an average accuracy of 99.216. This result is the best of several 

comparison methods. ViViT with tubeless embedding has a good level of accuracy with low losses, so that it can be 

used for dance video classification processes. 

Keywords: Video vision transformer, Tubelet embedding, Video classification. 

 

 

1. Introduction 

Research in the field of computer vision, 

especially in human action detection, has increased in 

recent years. These works include the fields of 

transportation, health, security, and human 

interaction systems. In general [1, 2] action detection 

is more challenging than action recognition, 

especially for dealing with online video streams. 

Dance is one area of study that can be studied 

further with the help of computer vision. Dance can 

be said to be a type of sporting event carried out by 

one or more people. Movement skills and techniques 

can influence the beauty of dance [3]. Indonesia is a 

large country with various tribes, customs, and 

cultures. One of their cultures is traditional dance, 

and almost every region and tribe has its own culture 

[4]. Tradition means the hereditary customs that 

occur from generation to generation and contain 

binding values or norms for the community. 

Traditional dances grow and develop in an area that 

becomes the people's cultural identity. However, 

research on dance, including its relationship to 

integrating the latest technology, has not yet been 

studied in more depth [5, 6]. Several variations of 

dance movements are known to be complicated and 

require technique. The application of traditional 
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dance video classification through computer vision 

can help examine more deeply complex movements 

in the field of dance and reduce cultural diversity so 

that it can be preserved for educational purposes. 

There are several methods of classifying a video 

dataset. Classify one frame at a time This method 

ignores the temporal video features and classifies 

each clip by looking at each frame, using 

convolutional neural network (CNN), also known as 

ConvNet. More specifically, using Inception V3, 

which has been previously trained on ImageNet and 

transfer learning to retrain the Inception on existing 

data, this takes two steps: perfecting the top solid 

layer with several epochs to maintain the possibility 

of previous research [7, 8]. Use CNN time-distributed 

and feature passing to recurrent neural network 

(RNN). This model considers the video’s temporal 

features for the initial network using a Time 

Distributed wrapper, which allows distributing the 

CNN layer to an additional dimension, known as time. 

The ConvNet model uses a tiny network of VGG16 

type, while for the RNN portion, long short-term 

memory (LSTM) or gated recurrent unit (GRU) is 

usually used [9, 10]. Extract features using CNN and 

passes the sequences on RNN. This model first runs 

each video frame via Inception, storing the output 

from the network end set layer. Then converts it into 

an extracted feature set for training on the RNN 

model, which uses the LSTM layer [11-13]. In short, 

classifying video datasets involves various 

techniques. One of them is frame-by-frame 

classification using CNNs such as Inception V3. 

Another approach combines CNNs and RNNs with 

time distributed processing to capture temporal 

features.  

Transformer has experienced developments in the 

field of language processing (NLP), especially 

sequence-to-sequence models [14-16]. Initially, the 

transformer approach was used for machine 

translation as an alternative to natural language 

models based on RNN and CNN. Then, the 

Bidirectional Encoder Representations from 

Transformers (BERT) mechanism emerged with 

multiple NLP capabilities by pretraining transformers 

on unlabeled text. In [17] using video data and 

transformer method, applying Deep Video hashing 

on two separate modules 3DCNN and bidirectional 

encoder representation of transformer layer (BERT). 

Then appeared Generative Pre-trained Transformer 3 

(GPT-3), which describes a transformer-based model 

with many parameters with different NLP and 

without fine-tuning. Besides being used in the NLP 

field, Transformers are also implemented in the 

computer vision field. The Vision Transformer (ViT) 

mechanism is used for image classification by using 

image patches as input to a transformer encoder [18]. 

Next is the Video Vision Transformer (ViViT) from 

ViT, which explores the application of using ViT in 

video classification [19]. ViViT can be used as an 

architecture for long-range spatiotemporal modeling 

to solve video sequence problems in 3D video signal 

extraction. Then, the self-attention mechanism can be 

used to combine features from various modalities 

automatically [20-22]. The next challenge is the use 

of transformer-based ViViT for Tubelet Embedding 

for dance video classification. 

The primary contributions of this research are: 

1. introduction of a unique classification 

technique by leveraging ViViT and tubelet 

embedding. This marks a departure from 

conventional methods such as LSTM, GRU, and 

RNN, showcasing innovation in applying advanced 

neural network models for improved accuracy in 

traditional dance video classification. 

2. Utilization of the IDEEH-10 dataset, a 

collection of videos featuring traditional dances. This 

dataset becomes a crucial element in the research, 

providing a real-world and culturally relevant context 

for evaluating the proposed ViViT with the Tubelet 

embedding approach. 

3. Incorporating the ViViT artificial neural 

network model for video classification, emphasizing 

the importance of using state-of-the-art models in 

handling complex video datasets. ViViT's capacity to 

project spatiotemporal tokens onto transformer layers 

is highlighted as a key feature in generating effective 

video representations. 

4. Introduction of an embedding strategy that 

significantly improves the classification accuracy of 

traditional dance videos. Creating videos as 

sequences of tubelets and mapping them into tubule 

embeddings demonstrates a nuanced conventional 

dance understanding of sequences' temporal and 

spatial aspects. 

5. Comparative evaluation asserting that the 

proposed ViViT with the Tubelet embedding 

outperforms traditional methods like LSTM, GRU, 

and RNN, irrespective of data balancing. This 

empirical evidence adds weight to the contribution by 

demonstrating the superior performance of the 

proposed approach. 

6. The authors also propose the addition of TA 

(tubelet attention layer), CA (cross attention layer), 

and management of the scale and duration of tubelets. 

The management of tubelet scale and duration is 

important in video analysis because videos often have 

wide variations in object size, level of detail, and 

duration of object movement. In some cases, different 

tubelets in a video may have different scales from 

each other. For example, in a video featuring a scene 
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with distant objects and closely spaced objects, the 

scale ratio between the tubelets may vary. The 

development of techniques to adjust and normalize 

the scales between different tubelets can help obtain 

a consistent and reliable representation of the 

movement of objects in a video. We augment this 

scale and duration management with Relative 

Normalization between Tubelets. This addition will 

result in maintaining scale comparisons between 

different tubelets, relative normalization can be done 

by maintaining relative proportions between object 

sizes or dimensions within each tubelet. 

VIVIT with Tubelet Embedding is a technique in 

video processing that combines the Vision 

Transform-er (ViT) model with the concept of tubelet 

embedding for a better comprehension of object 

motion in videos. Here are some key features of this 

method: (1) Vision Transformer (ViT): A neural 

network architecture initially designed for image 

processing, now adapted to handle video data. It 

distinguishes itself from traditional Convolutional 

Neural Networks (CNNs) by utilizing a self-

attention-based method. ViT partitions the picture or 

video frame into blocks and then utilizes self-

attention transformation on these blocks to enhance 

feature representations., (2) Tubelet embedding is the 

representation of a sequence of contiguous frames in 

a video as dense vector embeddings. The embeddings 

contain data regarding spatial and temporal variations 

inside the tubelet. Embedding tubelets enhances the 

representation of object motion in videos, allowing 

the model to grasp the temporal context of object 

movement more thoroughly., (3) The integration of 

ViT with tubelet embedding enables the model to 

gain a more comprehensive comprehension of object 

motion within videos. Tubelet embedding enhances 

the model's capacity to acquire more complex object 

motion representations, whereas ViT allows for the 

adaptive and flexible processing of visual 

information., (4) ViT architecture is highly scalable 

to input size, allowing it to be applied to films of 

various resolutions without requiring major 

adjustments. Tubelet embedding creates more 

condensed representations of tubelets, reducing 

computational burden and facilitating efficient video 

processing on a broad scale., and (5) The VIVIT with 

Tubelet Embedding model accounts for temporal 

dependencies in object motion by utilizing 

information from tubelet embeddings. This enables 

the model to identify intricate and changing motion 

patterns in videos. VIVIT with Tubelet Embedding 

provides a strong and efficient method for video 

processing, especially for assessing object motion 

and comprehending temporal contexts in videos.  

VIVIT with Tubelet Embedding offers various 

ad-vantages in video processing compared to older 

approaches. Here are some of the primary benefits: 

(1) Comprehensive Representation of Object Motion: 

By employing tubelet embedding, which captures 

both spatial and temporal information inside a 

sequence of frames, VIVIT may provide a more 

comprehensive representation of object motion in 

films. This allows for a richer understanding of the 

dynamics and context of object movement 

throughout time., (2) Tubelet embedding allows 

VIVIT to properly capture temporal dependencies in 

object motion. The model can analyze the sequence 

of frames in a tubelet to comprehend the evolution of 

object movements over time, resulting in more 

precise and contextually detailed representations., (3) 

The Vision Transformer (ViT) design in VIVIT 

provides scalability and efficiency benefits, 

especially for processing large-scale video data. 

ViT's self-attention mechanism enables it to handle 

films of different resolutions effectively, without 

requiring significant adjustments, thereby making it 

well-suited for real-world applications with a wide 

range of video inputs., (4) VIVIT benefits from the 

flexibility of the ViT architecture in learning visual 

representations. ViT utilizes self-attention 

mechanisms to selectively focus on pertinent spatial 

and temporal characteristics within the input data, 

enhancing the acquisition of object motion patterns 

and visual context., (5) The utilization of tubelet 

embedding enhances the interpretability and 

explainability of the model's predictions. VIVIT 

enhances transparency in decision-making processes 

by embedding tubelets into dense vector 

representations to provide insights into how object 

motion is encoded and utilized by the model., and (6) 

VIVIT with Tubelet Embedding has shown cutting-

edge performance in many video comprehension 

tasks, including action recognition, object detection, 

and video captioning. Its capacity to capture detailed 

temporal dynamics and context has resulted in better 

performance in comparison to conventional 

approaches. VIVIT with Tubelet Embedding 

provides a robust and flexible method for video 

processing, allowing for precise, contextually 

detailed, and understandable representations of 

object motion in videos. 

In summary, this research advances the state-of-

the-art in traditional dance video classification by 

introducing a cutting-edge ViViT with the Tubelet 

embedding approach, backed by a comprehensive 

evaluation using a relevant dataset. The innovative 

classification technique and improved accuracy 

showcase the potential for practical application in 

dance video classification processes. 
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The article is organized into several sections: 

Section 2 covers materials and methods, including 

dataset, preprocessing. Section 3 explain 

classification process, including ResNet101 

architecture integrated with LSTM, GRU, and RNN 

layers, configured with and without weight class 

balancing. ViViT using Tubelet Embedding also 

explained with result analysis. Section 4 explains 

results and discussions, and section 5 is conclusion. 

2. Related work 

Advancements in image recognition have been 

reflected in the architectures designed for video 

understanding. In the early stages of video research, 

appearance and motion information were encoded 

using manually created features [23]. The initial 

success of AlexNet on ImageNet [24, 25] prompted 

the adaptation of 2D image convolutional networks 

(CNNs) for video applications, resulting in the 

development of two-stream networks [26-28]. These 

models independently analyzed RGB frames and 

optical flow images before merging them at the final 

stage. The availability of bigger video classification 

datasets, such as Kinetics [29], has made it easier to 

train spatio-temporal 3D CNNs [30, 31]. These 

models have a much higher number of parameters, 

which means they need larger training datasets. Due 

to the increased computational requirements of 3D 

convolutional networks compared to their image 

counterparts, several topologies employ convolution 

factorization techniques. The utilization of grouped 

convolutions [32-34] allows for the incorporation of 

both spatial and temporal aspects. In addition, we 

exploit the factorisation of the spatial and temporal 

dimensions of films to enhance efficiency, 

specifically inside transformer-based models.  

Simultaneously, in the field of natural language 

processing (NLP), Vaswani et al. [35] attained the 

most advanced outcomes by substituting 

convolutions and recurrent networks with the 

transformer network, which just comprised self-

attention, layer normalization, and multilayer 

perceptron (MLP) operations. The current cutting-

edge designs in Natural Language Processing (NLP) 

[36, 37] continue to be built on transformers and have 

been expanded to handle large-scale datasets from the 

web [38]. Several modifications of the transformer 

model have been suggested to decrease the 

computational burden of self-attention when dealing 

with longer sequences [39-43], as well as to enhance 

parameter efficiency [44]. While self-attention has 

been widely used in computer vision, it is usually 

included as a layer towards the end or in the later 

phases of the network [45, 46]. Alternatively, it can 

be used to enhance residual blocks inside a ResNet 

design.  

Prior studies have made efforts to substitute 

convolutions in vision architectures [47, 48]. 

However, it was only recently demonstrated by 

Dosovitisky et al. [49] that their ViT architecture, 

which utilizes pure-transformer networks like those 

used in NLP, can achieve cutting-edge performance 

in image classification as well. The authors 

demonstrated that these models are most effective 

when applied on a large scale. This is because 

transformers lack some inherent biases found in 

convolutional networks, such as translational 

equivariance. Consequently, training these models 

necessitates datasets larger than the commonly used 

ImageNet ILSRVC dataset. ViT has sparked 

significant further research in the community, and it 

is worth mentioning that there are several ongoing 

efforts to expand its application to other computer 

vision tasks [50, 51] and enhance its efficiency in 

handling data [52, 53]. Specifically, [54, 55] have 

also suggested transformer-based models for video. 

Building upon the advancements in object 

detection using deep convolution neural networks, 

frame-level approaches have significantly enhanced 

action detection in videos [56, 57]. Some researchers 

utilize 3D convolution networks, such as [58, 59], to 

effectively collect temporal information in order to 

recognize activities. Feichtenhofer et al. [60] propose 

a slowfast network to more effectively gather spatio-

temporal information. Both Tang et al. [61] and Pan 

et al. [62] suggest explicitly incorporating the 

modeling of relationships between actors and objects. 

In a recent study, Chen et al. [63] suggest training 

actor location and action classification 

simultaneously using a single backbone. Vaswani et 

al. [35] introduced the transformer model for machine 

translation, which quickly gained popularity as the 

primary framework for sequence-to-sequence tasks, 

such as [64, 65]. Recently, it has also made 

significant progress in object identification [66, 67], 

picture classification [49, 68], and video recognition 

[69-71]. Girdhar et al. [72] introduce a video action 

transformer network for the purpose of action 

detection. They utilize a region-proposal network to 

perform localization. The transformer is employed to 

enhance action recognition by consolidating features 

from the spatio-temporal context around actors. We 

present a comprehensive approach to concurrently 

determine the location and identify actions. 

This paper compares several algorithms for dance 

video classification. The algorithms employed are 

VIVIT with Tubelet Embedding, ResNet101, 

MobileNetV2, LSTM, and GRU. ResNet101 

demands significant processing resources because to 



Received:  February 19, 2024.     Revised: May 17, 2024.                                                                                                534 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.41 

 

its deep architecture with several layers, making it 

less efficient for real-time applications or devices 

with limited computational capacity. ResNet101 

lacks explicit techniques to characterize temporal 

dependencies in video data, which may result in 

limits in capturing temporal context and dynamics. 

MobileNetV2 may not deliver as deep feature 

representations as ResNet101 due to its focus on 

speed and efficiency, perhaps resulting to inferior 

performance in tasks requiring thorough feature 

extraction. While MobileNetV2 is built for efficiency, 

it may be less efficient in circumstances where richer 

feature representations are required, as it may 

struggle to compress complicated information 

adequately. LSTM and GRU designs are 

computationally more complex compared to CNNs 

and may need greater computational resources, 

making them less suited for deployment on resource-

constrained devices. Despite their capacity to manage 

long-term dependencies, LSTM and GRU 

architectures may still struggle with capturing very 

long-range temporal relationships efficiently, which 

might influence performance in certain sequence 

modeling applications. VIVIT with Tubelet 

Embedding gives a thorough depiction of object 

motion in videos by using tubelet embeddings. This 

provides for a detailed understanding of temporal 

dynamics in object movement. With tubelet 

embeddings collecting temporal information, VIVIT 

enables efficient processing of movies by efficiently 

adding temporal context into the analysis. The Vision 

Transformer (ViT) architecture employed in VIVIT 

allows scalability to changing input sizes, making it 

suited for processing videos with different 

resolutions. In summary, VIVIT with Tubelet 

Embedding excels in providing a comprehensive 

understanding of object motion in videos and 

efficient video processing, while ResNet101, 

MobileNetV2, LSTM, and GRU have their 

weaknesses in terms of computational cost, limited 

temporal context modeling, and feature 

representation capabilities. 

3. Materials and methods 

3.1 Dataset 

Implementing the IDEEH-10 dataset marks a 

pioneering effort in algorithmic education, explicitly 

targeting the identification of traditional dances 

endowed with cultural importance. Recognizing the 

absence of appropriate datasets tailored for 

instructing algorithms in discerning culturally 

significant dances, a curated assortment of videos has 

been introduced. 

 
Figure. 1 Overview of traditional dance dataset. 

Anomalous frames are marked with red borders while 

frames with green borders are normal 
 

Table 1. Dataset of  Traditional Dance 

No. Type of 

Dance 

Clip Duration 

per clip 

(s) 

Frame 

1 

2 

3 

4 

5 

6 

Gambyong 

Saman 

Pendet 

Topeng 

Barong 

Merak 

194 

189 

187 

191 

192 

186 

10 

10 

10 

10 

10 

10 

93.120 

90.720 

89.760 

91.680 

92.160 

89.280 

 

Table 2. Label Each Frame 

Gambyong Class  Saman Class 

frame1_1 1  frame2__1 2 

frame1_2 1  frame2__2 2 

………. ..  ………. .. 

………. ..  ………. .. 

frame1_93120 1  frame2_90720 2 

 
Pendet Class  Topeng Class 

frame3_1 3  frame4__1 4 

frame3_2 3  frame4__2 4 

………. ..  ………. .. 

………. ..  ………. .. 

frame3_89760 3  frame4_91680 4 

 
Barong Class  Merak Class 

frame5_1 5  frame6__1 6 

frame5_2 5  frame6__2 6 

………. ..  ………. .. 

………. ..  ………. .. 

frame5_92160 5  frame6_89280 6 

 

IDEEH-10, an acronym denoting "Indonesian 

Dances by Edy Eko Hery," encompasses a rich 

compilation of ten distinct traditional dances, each 
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deeply rooted in the country's cultural tapestry. These 

dances serve as poignant expressions of Indonesia's 

cultural heritage, contributing to preserving and 

appreciating its artistic traditions. The dataset is 

meticulously structured, providing a comprehensive 

resource for algorithmic training, with detailed 

information on various dance forms and their 

corresponding frame counts elucidated in Fig. 1 and 

Table 1, respectively. This initiative not only fosters 

the advancement of machine learning in cultural 

recognition but also contributes to the broader goal of 

safeguarding and promoting diverse cultural legacies 

through technological innovation. 

The acquisition of the dataset involved the 

meticulous recording of traditional cultural dances, 

capturing the nuanced movements and expressions 

inherent in each performance. An essential 

preprocessing phase was implemented to construct a 

robust dataset. The initial step in this process entailed 

segmenting each recorded video into distinct sub-

clips, aligning with the various movements executed 

by different dancers. This granular dissection served 

a dual purpose: to articulate the dancers with specific 

labels and to isolate individual dance moves. 

Consequently, each video was systematically 

sectioned into fragments, with each segment 

corresponding to the particular number of traditional 

dances captured. This methodological approach 

facilitated the categorization of dancers and enabled 

the nuanced analysis of discrete dance elements. 

Through this meticulous preprocessing, the resulting 

dataset becomes a comprehensive repository, laying 

the groundwork for training algorithms to discern and 

appreciate the intricate details of traditional cultural 

dances with heightened accuracy and cultural 

sensitivity.  

Following the initial segmentation of videos into 

sub-clips, the subsequent stage involves a refined 

cutting process to enhance the focus on the dancers 

within each sub-clip. This meticulous adjustment is 

executed on an individual basis, further honing the 

precision of the dataset. The subsequent prediction 

outcomes are bolstered in accuracy by narrowing the 

visual scope to showcase the dancers primarily. This 

targeted approach facilitates a more effective 

identification of the dancers and their intricate 

movements, thus refining the algorithm's capacity to 

recognize and interpret these cultural expressions. 

The refinement continues; the process advances 

to a frame-based classification methodology. In this 

phase, a frame is extracted from each sub-clip, which 

has already undergone the meticulous trimming 

process. This frame is a crucial snapshot, 

encapsulating a pivotal moment within the dance 

sequence. Adopting a frame-centric approach, the 

algorithm can access a snapshot of the dancers' poses 

and expressions at a specific instance. This granular 

level of analysis enhances the accuracy of predictions 

and allows for a nuanced understanding of the diverse 

movements encapsulated in each sub-clip. 

Therefore, the frame-based classification strategy 

underscores the significance of isolating key frames 

within the trimmed sub-clips, serving as the 

foundational step in the algorithm's journey toward 

discerning and classifying traditional dance forms 

with a heightened level of precision and cultural 

understanding. 

The quantity of frames extracted from the 

meticulously curated sub-clips, tailored to accentuate 

the focal point of interest, is inherently flexible, 

accommodating the diverse requirements of the 

dataset. This adaptability ensures that the number of 

frames is aligned with the specific needs and 

intricacies of the traditional dances under 

consideration. Subsequently, the subsequent phase in 

this intricate process involves the assignment of 

labels to each frame within the sub-clips. This 

labeling initiative is fundamental in imparting a 

structured and categorical identity to the extracted 

frames, facilitating the seamless integration of these 

visual snippets into a coherent dataset. 

For each frame extracted from the sub-clips, a 

singular class label is attributed, establishing a 

cohesive link between the visual representation and 

the designated dance form. Table 2 is a visual 

reference, elucidating the correspondence between 

class labels (1 through 6) and specific traditional 

dances. To elaborate further, label 1 corresponds to 

the Gambyong dance class, label 2 denotes the Pendet 

dance, label 3 signifies the Saman dance, label 4 

represents the Topeng dance, label 5 encapsulates the 

Barong dance, and label 6 is indicative of the Merak 

dance. This meticulous classification strategy 

streamlines the subsequent stages of analysis, 

enabling the algorithm to recognize individual frames 

and categorize them according to the distinct 

 

 
Figure. 2 Tubelet embedding 
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traditional dance forms they represent. The dataset 

attains a structured framework through this 

systematic labeling, laying the foundation for 

accurate and culturally informed predictions in 

standard dance classification. 

Labelling process is carried out for all frames in 

the training process. The next process is to divide the 

data into two parts based on composition. 

The dataset was prepared for the combination of 

Resnet101, LSTM, GRU and MobileNet methods.  

The dataset has also been prepared for embedding 

video clips, in order to map on  𝑉 ∈ ℝ T×H×W×C   to a 

sequence of tokens 𝑧̃  ∈ ℝ n𝑡×nℎ×n𝑤×d . It then adds 

position embedding and reshaping into ℝ N×d  to 

obtain z, the input to the transformer.  

Embedding of tubelets A different approach, 

illustrated in Fig. 2, involves extracting non-

overlapping, spatio-temporal "tubes" from the input 

volume and projecting them linearly onto Rd. This 

approach is a continuation of Vit embedding 

technique into three dimensions, which aligns with a 

three-dimensional convolution. For a tubelet with 

dimensions t×h×w, 𝑛𝑡 = [
𝑇

𝑡
] , 𝑛ℎ = [

𝐻

ℎ
]  and 𝑛𝑤 =

[
𝑊

𝑤
], tokens are extracted from the temporal, height, 

and width dimensions, respectively. Reducing the 

diameters of the tubelets leads to a higher number of 

tokens, hence increasing the computational workload. 

This method incorporates spatio-temporal 

information during tokenization, as opposed to the 

"Uniform frame sampling" approach where the 

transformer merges temporal information from 

distinct frames. 

3.2 Methodology 

In Fig. 3, we comprehensively depict the 

methodology employed to elevate the traditional 

dance classification process, utilizing a video visual 

transformer based on tubelet embedding. The 

initiation of this process unfolds with a meticulous 

video data preprocessing stage, where preparatory 

measures are taken for the video data corresponding 

to the Gambyong dance class, Pendet dance, Saman 

dance, Topeng dance, Barong dance, and Merak 

Dance. In this preparatory phase, preemptive actions 

are taken to address missing values and engage in 

feature selection for data segments that necessitate 

attention due to processing complexities. 

The subsequent stage involves systematically 

inputting video data for each of the six dances: 

Gambyong, Pendet, Saman, Topeng, Barong, and 

Merak Dance. During this video input phase, frames 

are meticulously extracted from each batch, capturing 

pivotal moments and nuances within the dance  

 
Figure. 3 Flowchart for Dance Classification 

 

sequences. This extraction process serves as a 

foundational step in generating a visual 

representation that encapsulates the essence of each 

traditional dance form. Through this comprehensive 

approach, the video vision transformer based on 

tubelet embedding is equipped with a rich and diverse 

dataset, laying the groundwork for accurate and 

nuanced classification of traditional dances. Fig. 3 

acts as a visual guide, unraveling this transformative 

process's intricacies that enhance the classification 

accuracy and cultural understanding of the 

algorithmic model. 

The video transformation process starts with 

applying transformative techniques at the Tubelet 

Embedding stage within the ViViT framework. 

ViViT, for Video Vision Transformer, is a neural 

network model designed explicitly for video 

classification. Its operational mechanism involves 

projecting each video segment into a feature space, a 

pivotal step that encapsulates the spatial and temporal 

dimensions of the input data. This transformative 

projection is executed spatio-temporally, and the 

resulting representation is denoted as a Tubelet. 

The development of strategies to alter and 

normalize the scale between distinct tubelets can help 

produce a consistent and trustworthy portrayal of 

object movement in video. We supplement this scale 

and duration management using Relative 
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Normalization between Tubelets. This addition will 

result in maintaining scale comparisons across 

distinct tubelets, relative normalizing can be done by 

retaining relative proportions between the sizes or 

dimensions of objects within each tubelet.  

 

Algorithm of Relative Normalization between 

Tubelets: 

function relative_normalization(tubelets): 

    normalized_tubelets = [] 

    // Iterate through each tubelet 

    for each tubelet in tubelets: 

        total_area = 0 

        total_frames = length(tubelet) 

        // Calculate total area of objects 

        for each frame in tubelet: 

            // Calculate area of object in the frame 

            area = calculate_object_area(frame) 

            total_area = total_area + area 

        // Calculate average area of objects  

        average_area = total_area / total_frames 

        // Normalize each frame relative to the average    

        // area 

        normalized_tubelet = [] 

        for each frame in tubelet: 

            // Calculate scaling factor based on ratio 

between  

           // object area in frame and average area 

            scaling_factor = 

calculate_object_area(frame) /     

            average_area 

            // Normalize size of object in frame using 

scaling  

           // factor 

            normalized_frame =  

            normalize_object_size(frame, scaling_factor) 

            // Append normalized frame to normalized 

tubelet 

            append normalized_frame to 

normalized_tubelet 

        // Append normalized tubelet to list of 

normalized  

       // tubelets 

        append normalized_tubelet to 

normalized_tubelets 

    return normalized_tubelets 

 

3.2.1 Tubelet encoder 

Diverging from the conventional transformer 

encoder, the Tubelet encoder is specifically crafted to 

handle information in the 3D spatio-temporal domain. 

Each encoder layer comprises a self-attention layer 

(SA), two normalization layers, and a feed-forward 

network (FFN), as outlined in reference. Only the 

essential attention layers are included in the equations 

below. 

Given a video clip  𝑉 ∈ ℝ T×H×W×C where T, H, 

W, C denote the number of frames, height, width, and 

colour channels, Tube R first applies a 3D backbone 

to extract video feature  F𝑏 ∈ ℝ T
′×H′×W′×C′

 , where 

T′ is the temporal dimension and C′ is the feature 

dimension. 

 

𝐹𝑒𝑛 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝐹𝑏)     (1) 

 

Where Fb is the backbone feature and  F𝑒𝑛 ∈

ℝ T
′×H′×W′×C′

 denotes the C′ dimensional encoded 

feature embedding. Fb is the input of the encoder 

function and the result will be stored in Fen. 

 

𝑆𝐴(𝐹𝑏) = 𝑠𝑓𝑥 × 𝜎𝑣(𝐹𝑏)      (2) 

 

𝑠𝑓𝑥 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝜎𝑞(𝐹𝑏)×𝜎𝑘(𝐹𝑏)𝑇

√𝐶
)       (3) 

 

Where 𝑆𝐴  is self-attention layer. Each encoder 

layer comprises a self-attention layer. Sfx is softmax 

function. The σ(∗) is the linear transformation plus 

positional embedding. Embpos is the 3D positional 

embedding. 

 

𝜎(𝑥) = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑥) + 𝐸𝑚𝑏𝑝𝑜𝑠         (4) 

 

3.2.2 Tubelet decoder 

Drawing inspiration from [73], we employ tubelet 

queries denoted as Q={Q1, ..., QN} that are informed 

by the video data. Rather than manually designing 3D 

anchors, we learn a tubelet query to capture the 

inherent dynamics in a tubelet. The initialization of 

box embeddings is uniform across all tubelet queries. 

To encapsulate relations within these tubelet queries, 

we introduce a tubelet-attention (TA) module 

consisting of two self-attention layers. 

 

𝐹𝑞 = 𝑇𝐴(𝑄)   (5) 

 

We provide a tubelet-attention (TA) module with two 

self-attention layers to describe relations in tubelet 

queries. We possess a spatial self-attention layer that 

manages the spatial connections among box query 

embeddings within a frame. The tube decoder utilizes 

the tubelet attention module to process tubelet 

inquiries Q in order to produce the tubelet query 

feature Fq. 
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The decoder component is a pivotal element 

within the system architecture. It comprises two 

crucial components: the tubelet-attention module and 

a cross-attention (CA) layer. These components play 

a vital role in decoding, especially in extracting and 

deciphering tubelet-specific features from the 

encoded information. The tubelet-attention module is 

responsible for capturing intricate relationships and 

patterns within the tubelet queries, employing self-

attention mechanisms. On the other hand, the cross-

attention layer facilitates extracting relevant 

information by considering interdependencies 

between the tubelet queries and other pertinent 

aspects of the input data. Together, these components 

contribute to the nuanced decoding of tubelet-

specific features, providing a comprehensive and 

accurate representation of the dynamic information 

encapsulated in the original video data. 

 

𝐶𝐴(𝐹𝑞 , 𝐹𝑒𝑛) = 𝑠𝑓𝑥𝐶𝐴 × 𝜎𝑣(𝐹𝑒𝑛)  (6) 

 

The tubelet-attention module and a cross-

attention (CA) layer. These components play a 

significant role in decoding, notably in extracting and 

understanding tubelet-specific aspects from the 

encoded information. The tubelet-attention module is 

responsible for capturing detailed correlations and 

patterns inside the tubelet queries, leveraging self-

attention techniques. 

 

𝑠𝑓𝑥𝐶𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝐹𝑞×𝜎𝑘(𝐹𝑒𝑛)𝑇

√𝐶
) (7) 

 

𝐹𝑡𝑢𝑏 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝐹𝑞 , 𝐹𝑒𝑛)       (8) 

 

The Tubelet Embedding stage employs a series of 

transformer layers, strategically integrating the 

Tubelet projections into the feature space. This 

nuanced and multi-layered approach ensures that the 

video is accurately represented and encapsulates the 

dynamic and temporal intricacies inherent in the 

dance sequences. The Tubelet embedding process, 

characterized by these transformer layers, becomes 

instrumental in producing sophisticated video 

representations, serving as a robust foundation for 

subsequent stages in the ViViT model. 

By combining spatial and temporal dimensions 

within the Tubelet projections, ViViT achieves a 

comprehensive understanding of the video content. 

This amalgamation of spatial and temporal features 

enhances the model's capacity for discerning intricate 

patterns and dynamic movements within the 

traditional dance sequences, thereby contributing to 

the overall effectiveness of the video classification 

process. 

After the Tubelet Embedding stage in ViViT, the 

process advances to video classification, where 

several algorithms are systematically employed to 

facilitate a comprehensive comparison of the 

proposed method's application. This rigorous 

evaluation involves implementing seven distinct 

analysis methods, each meticulously chosen to 

provide a well-rounded assessment of the proposed 

approach's efficacy. The algorithms enlisted for 

comparison include Resnet101 and LSTM, 

Resnet101, LSTM, and Imbalanced Data Sampler, 

MobileNetv2, LSTM, and Imbalanced Data Sampler, 

Resnet101 and GRU, Resnet101, GRU, and 

Imbalanced Data Sampler, MobileNetv2, GRU, and 

Imbalanced Data Sampler, and finally, the proposed 

method ViViT with Tubelet Embedding. 

The Resnet101 and LSTM combination leverages 

the powerful image recognition capabilities of 

Resnet101 and the sequential learning prowess of 

Long Short-Term Memory networks (LSTM). 

Introducing the Imbalanced Data Sampler into this 

mix addresses any potential class imbalance issues, 

enhancing the model's ability to handle diverse 

datasets effectively. The MobileNetv2 and LSTM 

tandem and the Imbalanced Data Sampler further 

explore the intersection of lightweight mobile 

architectures and sequential learning. 

In parallel, the Resnet101 and GRU combination, 

accompanied by the Imbalanced Data Sampler, 

explores the fusion of Resnet101's deep feature 

extraction and the sequential processing capabilities 

of Gated Recurrent Units (GRU). Similarly, the 

MobileNetv2, GRU pairing, and Imbalanced Data 

Sampler delve into the potential synergy between 

mobile-friendly architectures and recurrent neural 

networks. 

Finally, the proposed method, ViViT with 

Tubelet Embedding, is a unique and innovative 

approach. ViViT, being a Video Vision Transformer, 

and Tubelet Embedding, contributing spatial-

temporal understanding through transformer layers, 

collaborate to offer a novel solution to video 

classification challenges. This comparative analysis 

aims to discern the strengths and weaknesses of each 

method, providing valuable insights into the 

applicability and performance of the proposed ViViT 

and Tubelet Embedding methodology within the 

context of traditional dance classification. 

4. Results and discussion 

In this section, we delve into the results and 

discussions derived from exploring traditional 
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cultural dance classification within the context of 

video frames. Our study encompasses a comparative 

analysis with various alternative methods, revealing 

a notable enhancement in classification accuracy by 

utilizing a visual video transformer based on the 

Tubelet embedding. 

The primary focus of our investigation lies in 

scrutinizing the effectiveness of different 

methodologies applied to the intricate task of 

classifying traditional cultural dances within 

individual video frames. Drawing comparisons with 

several other approaches, it becomes evident that 

incorporating a visual video transformer based on the 

Tubelet embedding leads to a substantial increase in 

classification accuracy. 

This improvement can be attributed to the unique 

characteristics of the Tubelet embedding approach, 

which harnesses the power of transformer layers to 

capture spatial and temporal intricacies within the 

dance sequences. The spatial-temporal understanding 

enabled by the Tubelet embedding proves pivotal in 

discerning subtle nuances and dynamic movements 

inherent in traditional cultural dances. As a result, the 

classification accuracy achieves a significant boost, 

surpassing the performance of alternative methods. 

This finding underscores the efficacy of 

leveraging advanced video transformation techniques, 

precisely the Tubelet embedding approach within a 

visual video transformer. The increased accuracy 

validates the relevance of this methodology for 

traditional cultural dance classification. It opens 

avenues for further exploration and refinement in 

video frame-based classification methodologies. The 

ensuing discussions delve into the nuanced aspects of 

these findings, shedding light on the implications and 

potential applications of this enhanced classification 

accuracy within the broader context of cultural 

preservation and technological advancements. 

Table 3 presents the classification results using 

Resnet101 and LSTM, considering variations in folds, 

architectural aspects, and data balance. In this 

analysis, the batch size (bs) value for the fold in the 

comparison method is consistently 64. Notably, the 

highest accuracy of 100 was achieved with 

Resnet101 and LSTM, considering fold variations (2, 

3, and 4), architectural nuances, and the incorporation 

of an imbalanced data sampler. The loss rate for these 

folds remained impressively low, all below 0.042. 

Following closely in performance was the 

combination of Resnet101 with LSTM, which 

yielded a minimum accuracy of 80.733. The least 

accurate performance in this comparison was 

observed in the Resnet101 and LSTM combination, 

with a maximum accuracy value of 65.137 on fold 1 

and a minimum accuracy of 11.009 on fold 3, 

Table 3. Classification using Resnet101 and LSTM by 

considering architectural variations and data balance 

bs = 

64 

Resnet101 + 

LSTM 

Resnet101 + 

LSTM + 

Imbalanced 

Data Sampler 

Fold Loss Acc Loss Acc 

1 1.101 65.137 0.559 82.568 

2 1.696 19.266 0.518 87.156 

3 1.806 11.009 0.575 80.733 

4 1.652 31.192 0.458 84.403 

5 1.644 35.185 0.576 74.074 

 
Table 4. Classification using Resnet101 and GRU by 

considering architectural variations and data balance 

bs = 

64 
Resnet101 + GRU 

Resnet101 + 

GRU + 

Imbalanced 

Data Sampler 

Fold Loss Acc Loss Acc 

1 0.243 92.660 0.069 100 

2 1.418 49.541 0.270 93.578 

3 1.645 37.614 0.119 98.165 

4 1.645 31.192 0.067 98.165 

5 1.644 35.185 0.125 100 

 
Table 5. Classification using Resnet101 and RNN 

considering architectural variations and data balance 

bs = 

64 

Resnet101 + 

RNN 

Resnet101 + RNN 

+ Imbalanced 

Data Sampler 

Fold Loss Acc Loss Acc 

1 0.129 98.165 0.039 100 

2 1.445 47.706 0.201 96.330 

3 1.615 37.614 0.063 99.082 

4 1.638 31.192 0.114 98.165 

5 1.644 35.185 0.270 95.370 

 
Table 5. Classification using Resnet101 and RNN 

considering architectural variations and data balance 

bs = 

64 

Resnet101 + 

RNN 

Resnet101 + RNN 

+ Imbalanced 

Data Sampler 

Fol

d 
Loss Acc Loss Acc 

1 0.129 98.165 0.039 100 

2 1.445 47.706 0.201 96.330 

3 1.615 37.614 0.063 99.082 

4 1.638 31.192 0.114 98.165 

5 1.644 35.185 0.270 95.370 
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Table 7. Classification results using ViViT and Tubelet 

ViViT  

+  

Tubel

et 

Framesize=128, seq=25, lr=1e-4, 

PATCH_SIZE = (8,8,8) 

Fold Loss Acc F1 Pre Rec 

1 0.003 98.7 0.809 0.798 0.831 

2 0.004 100 0.826 0.818 0.844 

3 0.011 100 0.837 0.831 0.857 

4 0.003 98.7 0.815 0.808 0.831 

5 0.008 98.68 0.815 0.808 0.831 

 

corresponding to a loss of 1,101 and 1,806, 

respectively. 

Moving on to Table 4, which details the 

classification outcomes with a batch size of 64 for the 

folds, the highest accuracy of 100 was achieved with 

MobileNetv2, GRU, and an imbalanced data sampler. 

Similar to the previous analysis, this result was 

observed across fold variations 2, 3, and 4, with a loss 

rate below 0.044. Resnet101, with the same 

combination, followed with high accuracy, 

particularly on folds 1 and 5. 

In contrast, the least accurate combination was 

identified as Resnet101 and GRU, with an accuracy 

value of 31,192 on fold 4. These findings provide a 

detailed insight into the classification performance of 

different combinations, shedding light on the impact 

of fold variations, architectural choices, and the 

incorporation of data balancing techniques on the 

overall accuracy of the classification models. 

From the simulation results in Table 5, the bs 

value used for the fold in the comparison method is 

also 64. The highest accuracy was obtained with a 

value of 100 and a loss of 0.039 using Resnet101, 

RNN, and Imbalanced Data Sampler. Almost all 

folds have a value above 95. The overall loss from the 

experiment is less than 0.27. Meanwhile, the 

Resnet101 and GRU methods have an accuracy value 

of more than 95 only on fold 1 with 98,165 and a loss 

of 0.129. The lowest value is on fold 4, with an 

accuracy value of 31,192 and a loss of 1,638. 

This study investigates six models integrating the 

ResNet101 architecture with LSTM, GRU, and RNN 

layers, as illustrated in Fig. 3. Models 1, 3, and 5 are 

configured without weight class balancing, whereas 

models 2, 4, and 6 incorporate weight class balancing. 

When employing class weight balancing, the 

observed accuracy percentages consistently fall 

within a range of at least 60. 

The primary objective of the class weight 

balancing process is to enhance each model's 

performance and predictive accuracy. This approach 

considers the imbalanced class distribution within the 

 
Figure. 4 The accuracy of the classification results of the 

ViViT and Tubelet Embedding methods is compared with 

other methods considering weight class balancing 
 

 

dataset by optimizing results. Using weight class 

balancing has a discernible impact, elevating the 

classification accuracy percentage from 80 to 100. 

Among the models, those incorporating the 

ResNet101 and RNN layers consistently achieved the 

highest accuracy results, showcasing the efficacy of 

this combination. Conversely, the models featuring 

ResNet101 and LSTM layers always recorded the 

lowest accuracy results. This comparative analysis 

sheds light on the significance of weight class 

balancing in improving model performance, 

providing valuable insights for optimizing traditional 

dance classification models. 

Table 6 provides an overview of the results of 

employing the ViViT and the Tubelet architecture for 

traditional dance classification. The architectural 

configuration encompasses a frame size of 128, seq 

(sequence length) set to 25, a learning rate of 1e-4, 

and a patch size of (8, 8, 8). Notably, the achieved 

accuracy level reaches 100 in folds 2 and 3, with 

minimal losses of 0.004 and 0.011, respectively. 

Examining fold 2, the model showcases exemplary 

performance with the highest F1 score, Precision, and 

Recall values observed on this particular fold, 

registering at 0.826, 0.818, and 0.844, respectively. 

These metrics align seamlessly with the high 

accuracy level achieved in fold 2. Overall, the 

incurred losses across all folds are consistently below 

0.011, underscoring the robustness and efficiency of 

the ViViT and the Tubelet architecture. 

While maintaining exceptional accuracy across 

various folds, the least accuracy is noted in fold 5, 

recording a still-impressive accuracy of 98.68 with a 

minimal loss of 0.008. These findings affirm the 

reliability and generalizability of the ViViT and the 

Tubelet approach in traditional dance classification, 

highlighting its ability to consistently achieve high 



Received:  February 19, 2024.     Revised: May 17, 2024.                                                                                                541 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.41 

 

Table 8 Best Loss and Accuracy, Average Loss and 

Accuracy from 5 Fold Experiment 

Method 
Best Fold 

 Average of 5 

Folds 

Loss Loss Loss Acc 

ViViT  +  

Tubelet 
0.004 0.004 0.0058 99.216 

Resnet101 + 

LSTM 
1.101 1.101 1.5798 32.3578 

Resnet101 + 

LSTM+weight 

class 

balancing 

0.518 0.518 0.5372 81.7868 

Resnet101 + 

GRU 
0.243 0.243 1.319 49.2384 

Resnet101 + 

GRU +weight 

class 

balancing 

0.069 0.069 0.13 97.9816 

Resnet101 + 

RNN 
0.129 0.129 1.2942 49.9724 

Resnet101 + 

RNN + weight 

class 

balancing  

0.039 0.039 0.1374 97.7894 

MobileNetv2 

+ LSTM + 

Imbalanced 

Data Sampler 

0.021 0.021 0.0542 99.6312 

MobileNetv2 

+ GRU + 

Imbalanced 

Data Sampler 

0.029 0.029 0.0468 99.2626 

 

accuracy levels across different folds while also 

emphasizing the model's resilience even in scenarios 

where accuracy experiences a slight dip. 

5. Conclusion 

Image processing capabilities have improved 

greatly to address challenges such as object detection, 

classification, clustering, and segmentation. This 

proposed research offers advances in classifying 

traditional dances through the use of ViViT with 

tubelet embedding. The ViViT model, combined 

with Tubelet Embedding shows good performance in 

five evaluation processes. This model achieves high 

accuracy, reaching 100% on the second and third 

folds, with minimal loss. Additionally, the F1 score 

remains consistently above 0.8 at all levels, 

indicating a strong balance between precision and 

recall.  These results show that the ViViT model with 

Tubelet Embedding can work to classify traditional 

dances accurately and shows its potential for video 

classification. In dance video research, six models 

were explored using the ResNet101 architecture 

integrated with LSTM, GRU, and RNN layers. 

Comparisons without and with weight class 

balancing were also carried out. Without weight class 

balancing, the highest results are in the minimum 

accuracy percentage range of 60, but when using 

balancing, accuracy can increase to 80 to 100. The 

highest accuracy results are obtained from the 

ResNet101 and RNN models, while the lowest results 

are found in the combination of ResNet101 and 

LSTM. 

In Table 7, the classification of dance videos 

using Vivit and Tubelet with 5 flod experiments 

shows a loss between 0.003 to 0.011 with an average 

loss of 0.0058. The experiments also produced 

accuracy rates between 98.68 to 100 percent, 

resulting in an average accuracy of 99.216. These 

results are the best of the comparison methods shown 

in Tables 3 to 5. 

Further research can be done to extend this 

strategy to various dance video genre contexts, refine 

the optimal frame extraction method, explore video 

data scalability, and evaluate real-world applications 

for the proposed video classification. 
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