
Received: February 28, 2024. Revised: April 26, 2024. 611

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.46

Dynamic Approach for Time Reduction in RSA Algorithm through Adaptive

Data Encryption and Decryption

Pradeep Krishnadoss1* Palani Thanaraj Krishnan1 Nishanth Paramasivam1

Deepesh Sai Kesavan1 Anish Thishyaa Raagav1

1Vellore Institute of Technology, Chennai, India

* Corresponding author’s Email: pradeep.k@vit.ac.in

Abstract: With increasing data transmission and the escalating risks of data theft, the demand for fast and robust

encryption algorithms has intensified. The Rivest Shamir Adleman (RSA) algorithm is a widely used asymmetric

cryptographic solution for secure data communication. However, the computational resources required for encryption

and decryption processes can become significant, particularly as the volume of data increases. This research paper

proposes a dynamic approach to enhance the RSA algorithm tailored explicitly for large-scale data encryption and

decryption. The proposed method involves storing the encrypted value of repeated elements, aiming to optimize

performance. To evaluate the efficacy of this approach, extensive experiments were conducted on various datasets

comprising paragraphs of different sizes. The experiments involved encrypting and decrypting paragraphs containing

10, 50, 100, 200, 500, 1000, and 10,000 words. Comparative analyses were performed against existing RSA, El Gamal,

and AES algorithms. Results indicate that the proposed dynamic RSA approach consistently outperforms traditional

RSA in terms of encryption time, decryption time, and total execution time across all tested paragraph sizes. The

regression analysis revealed stark differences between the two approaches. The regression line for traditional RSA

exhibited a significantly steeper slope 1.75 and a substantially higher intercept 1001.42 compared to the proposed

dynamic RSA approach, which demonstrated a lower slope 0.0113 and a much smaller intercept 28.58. These findings

underscore the superior scalability and efficiency of the proposed dynamic RSA approach over traditional RSA,

particularly in handling larger volumes of data while maintaining lower computational overheads.

Keywords: Cryptography, Key generation, Encryption, Decryption, Public key, Private key, RSA, Dynamic approach,

Asymmetric algorithms.

1. Introduction

Researchers and scientists have faced critical

challenges to ensure robust data security in the

current digital landscape [1]. The demand for security

measures has increased due to the increase in

penetration attacks in which unauthorized users

coordinate during data communication. The

exponential growths of internet usage and alarming

surge in cyberattacks have further complicated the

security landscape, posing numerous issues in the

vast web domain. Hence, Encryption and Decryption

play crucial roles in our everyday lives, ensuring

secure communication and transactions [2]. A

readable message is transformed into an unreadable

one, called the ciphertext message, through

encryption, and decryption is the process of

converting a ciphertext message to its original form.

When information is being encrypted and decrypted,

mathematical functions or procedures known as

cryptographic algorithms scramble the plain text and

render it unreadable to prevent unauthorized access

[3]. To control the encryption and decryption

processes, cryptographic algorithms use a piece of

information called the cryptographic key [4, 5]. It

determines how the plaintext (original message) is

transformed into ciphertext (encrypted message) and

vice versa. Digital signatures, authentication, and

data encryption all require cryptographic techniques.

Based on the kinds of keys and encryption techniques,

cryptography is divided into two categories: i)

Received: February 28, 2024. Revised: April 26, 2024. 612

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.46

Symmetric Key Cryptography (Secret key), ii)

Asymmetric Key Cryptography (Public key)

The symmetric algorithm, also known as the

secret-key algorithm, uses a shared key for both data

encryption and Decryption. These are widely used

algorithms for data encryption and Decryption,

ensuring the confidentiality and integrity of sensitive

information [6]. The strength of a symmetric

algorithm is based on different factors such as key

size, block size, number of rounds and resistance to

attack. Even though symmetric algorithms are

efficient, there are a few limitations, like key

distribution challenges and a need for built-in

features like authentication and forward security,

which may require the asymmetric algorithm to meet

specific security requirements.

Asymmetric key encryption, also known as

public key encryption, uses the concept of key

encryption. Unlike symmetric encryption, it uses a

pair of keys [7]. Encryption uses the public key, and

Decryption uses the private key where both are

mathematically related. The asymmetric encryption

process is briefly categorized into three processes:

(i) Key generation: receiver generates the pair of

keys and shares the public key with others while

keeping the private key secret.

(ii) Encryption: The person sending the message to

the receiver uses the public key and encrypts the

data to an unreadable form

(iii) Decryption: receiver enters the private key and

decrypts the data converting it to its original

readable form

The main advantage of the usage of asymmetric

encryption is its use of two keys and separate keys for

encryption and Decryption. Even if someone gets

hold of the public key, they cannot decrypt the data

since a private key is needed.

RSA(Rivest-Shamir-Adleman) algorithm is a

widely used asymmetric encryption technique in

modern data security systems. Based on the principle

of key encryption, RSA uses a pair of keys, namely

public and private keys, for the encryption and

decryption process. This algorithm has gained

significant prominence due to its robustness in

ensuring secure data transmission [8]. The RSA

algorithm works by utilizing the mathematical

property of large prime numbers and modular

arithmetic. During the encryption process, the sender

utilizes the public key to convert the message into

ciper text format that can only be decrypted using the

corresponding private key held by the recipient.

Although RSA has many benefits, it is important to

consider its limitation, especially in terms of

computational speed when handling large amounts of

data. Increasing data size in RSA algorithm leads to

significant computational complexity, causing

resource-intensive and time-consuming encryption

and decryption processes. This poses challenges for

real-time efficient data processing.

Finding new and efficient approaches is a never-

ending task in the world of academic research. One

such approach that has gained significant attraction in

recent years is the dynamic approach. Repeating

complex problems are challenges that persistently

arise in various domains [9]. Conventional problem-

solving methods need help to provide effective

solutions due to the dynamic nature of these problems.

The dynamic approach follows two ways: (i)

Overlapping subproblem - We store the solution to

the overlapping subproblem (ii) Optimal

Substructure - If the solution for the subproblem is

optimal, then the solution of the original problem is

also optimal. By adopting the dynamic approach,

researchers make effective strategies to address

complex problems.

In this paper, we have proposed a dynamic

approach on the RSA algorithm that involves storing

each character’s encrypted and decrypted values for

potential reuse to enhance the efficiency of the

encryption process. This approach is highly

advantageous when the data has a repetitive nature,

where the same character combination frequently

appears in different contexts. By utilizing the

repository of encrypted and decrypted values, the

encryption process can be done quickly by retrieving

and using the pre-computed values, reducing the

computation overhead and increasing the speed of

encryption and decryption compared to the original

RSA algorithm that does the same computation again

and again for the repetition of the same character. The

reduction in the overall execution time can improve

the usage of RSA for large data. Experiments have

been conducted using local laptop (i7-11th gen) on

paragraphs of varying length to prove the reduction

in overall execution time and the same has been

presented Section 5. Additionally, this dynamic

approach does not compromise data security, as the

stored values are securely managed and can only be

accessed by authorized parties.

The paper has been organized as follows: Section

2 contains an overview of the recent literatures

related to RSA and hybrid RSA. The proposed

efficient dynamic RSA is described in Section 3.

Section 4 lists out the various parameters used for

comparing the algorithms. The obtained results and

the respective discussions ore done in Section 5.

Conclusion is present in Section 6.

Received: February 28, 2024. Revised: April 26, 2024. 613

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.46

2. Related work

Over the years, researchers have made significant

efforts to enhance the performance of the RSA

algorithm, primarily focusing on reducing the

computational time required for encryption and

decryption operations. Several techniques have been

proposed and explored to achieve this objective,

aiming to strike a balance between security and

efficiency.

To increase security, an enhanced key expansion

technique for AES is presented. It tackles the issue of

varying operation times in AES procedures by

making AES operations simpler and assuring

consistent computational resource utilisation [10].

Using four prime numbers, the Chinese remainder

theorem and Montgomery modular multiplication

increase the effectiveness of RSA operations. These

improvements enable a hybrid encryption system that

combines RSA and AES and offers easy key

management and speedy encryption and decoding.

Experimental findings demonstrate that the optimised

algorithm is quick and practicable for real-world use.

Our proposed methodology ensure the security of

RSA along with the reduction in computational time

but the compromise security for computation time.

New hybrid cryptosystems like Twofish, AES,

RSA, and ElGamal that combine symmetric and

asymmetric algorithms have been proposed. The

primary goals are to raise performance, increase

speed, evaluate efficiency, and evaluate against other

algorithms [11]. Two hybrid algorithms-AES+RSA

and Twofish+RSA are presented. Their security and

efficacy are assessed, and the findings are used to

emphasise the advantages of each hybrid algorithm.

While Twofish+RSA has advantages in terms of

calculation speed, cypher text size, and memory

consumption, AES+RSA is determined to be much

safer. Hybrid cryptosystems, in particular, are new

methods to cryptography. As in the hybrid techniques

either time or security is being compromised but in

our proposed methodology the security of traditional

RSA is maintained along with improved in

computation time.

Cloud computing is used to store private data and

access shared resources. It highlights the significance

of strong encryption and access control to maintain

privacy and security [12]. The computational and

storage costs of encryption techniques, including

RSA, KP-ABE, CP-ABE, and AES, are compared.

Multi-threading is used on contemporary CPUs to

increase RSA encryption’s speed to boost

effectiveness. Information about cloud data security

and advancements that will speed up and improve the

effectiveness of encryption processes are proposed.

Instead of multi-threading we can use dynamic

method to increase the encryption speed which may

reduce the computation cost.

The method for enhancing the prime number

generation process which is essential for

cryptographic systems is presented in the study [13].

The authors speed up primality testing for 1024-bit

RSA key pairs by around 30% by skipping the initial

step of looking for minor prime factors. With shared

RSA keys being used in decentralised systems, this is

especially advantageous because it conserves

computational resources and lessens communication

complexity. The study also introduces a more basic

mathematical function that can be applied to the

design of new public-key encryption schemes and

random number generators. As the strength of RSA

relies on prime number, on choosing minor prime

number the security is comprised as compared to our

proposed methodology.

The issue of optimizing the performance of RSA

encryption while ensuring information security is a

critical concern addressed in this research paper [14].

The authors propose a modification to the RSA

algorithm by integrating the Euclidean technique. By

leveraging the Euclidean algorithm, the proposed

method aims to enhance the speed, throughput, power

consumption, and avalanche effect of RSA

encryption. The experimental results and

mathematical justification provided support the

efficacy of the proposed algorithm, demonstrating its

potential to improve data security in certain

applications. The mentioned paper primarily focuses

on optimizing key generation within the RSA

encryption process. However, our methodology goes

further by optimizing both encryption and decryption

times.

Communication security is crucial due to the

widespread use of hidden contact and communication

channels. The security of the data kept on their

servers is a problem for cloud service providers who

gather and retain uploaded data [15]. To address the

concern that cloud providers might gain access to

customer data, A robust encryption method that

improves the key-generating process was proposed to

increase security. In terms of response time, the new

technique outperforms the well-known RSA

algorithm. The encryption and decryption procedures

in the research use ASCII and EBCDIC codes. Our

proposed method employs dynamic programming

techniques, resulting in reduced computation time

with less overhead compared to the method

mentioned above [16]. The RSA algorithm, which

has extended key sizes, a high memory requirement,

and a poor execution speed, was the subject of the

research. The execution times of the encryption and

Received: February 28, 2024. Revised: April 26, 2024. 614

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.46

decryption operations were measured in three trials.

The researchers’ programming approaches

accelerated the encryption and decryption processes

by 14% and 22%, respectively. These results

demonstrate the possibility of RSA algorithm

optimisation to deliver faster and more effective

encryption and decryption, concluding that the key

length is proportional to the time spent in encryption

and decryption. The above paper suggest that strength

of RSA depends on key size and computation time is

issue in RSA which can be resolved using our

proposed methodology.

The conventional RSA encryption algorithm is

sluggish because it depends on complicated

processes and long key lengths. In order to increase

the efficiency and security of RSA encryption, a new

algorithm dubbed PMKRSA was created in this work.

The PMKRSA technique divides the plaintext into

pieces and simultaneously encrypts each with a

different key pair [17]. This parallelisation makes

faster implementation possible, and the technique

was also made GPU-friendly. According to the

results, the CPU+GPU version’s average encryption

and decryption times were substantially faster than

the CPU version for files ranging from 1 MB to 100

MB. Comparatively, the above mentioned technique

might introduce added complexity in handling

multiple key pairs, potentially resulting in increased

overhead for key management and storage, in

contrast to our proposed methodology.

A hybrid encryption method was developed that

combines the RSA and DH algorithms to improve

data security while it is being transmitted [18]. To

speed up encryption execution, decrease the time

required to create images and keys, and boost overall

security against hacking; prime numbers are created

from random images and used in XOR operations for

encryption. The study highlights the possibilities for

secure data communication by showing how

effective this strategy is compared to other

approaches. The drawback of the aforementioned

methodology is that it is more sophisticated than our

suggested methodology because it makes use of

image processing techniques, which may require

additional computing resources.

While hybrid algorithm can offer certain

advantages in terms of reducing execution time, they

also come with their fair share of disadvantage i.e.

Increased complexity, higher resources requirement,

Compatibility issues. So it is better to use the existing

asymmetric algorithm to execute with high

computational speed. By improving the asymmetric

algorithm the security and computation speed is

improved at the same time.

3. Proposed methodology

In the realm of cybersecurity, fast encryption

algorithms hold immense significance. With the

increase in data breaches and cyber threats, the

timeliness of encryption becomes crucial. Efficient

encryption techniques ensure that sensitive

information is securely protected, minimizing

exposure to potential attacks. Hence, fast encryption

is a vital cornerstone of modern cybersecurity,

safeguarding sensitive data with efficiency and speed.

Figure. 1 Block diagram of our proposed RSA algorithm

Received: February 28, 2024. Revised: April 26, 2024. 615

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.46

Our research paper focuses on encrypting and

decrypting data using a dynamic approach strategy

that uses the Rivest-Shamir-Adleman (RSA)

algorithm for the encryption and decryption

process.Our suggested method, known as “Dynamic

Approach for Time Reduction in RSA Algorithm

through Adaptive Data Encryption and Decryption”,

uses a dynamic approach in which computed

encryption and decryption values of each different

character is stored and used when there is a reputation

of character in the given data which enhance the

efficiency of the RSA encryption algorithm. The

process of key generation by generating two random

large prime numbers and encryption of the plain text

using the primary key, and decryption of cipher text

using the private key all are done using the RSA

algorithm, which reduces the computation overhead

the dynamic approach of storing the different

character is used. Fig. 1 shows the different stages of

proposed RSA algorithm.

3.1 Proposed RSA algorithm

1. Select two large prime numbers p and q.

2. Compute modules

𝑛 = 𝑝 ∗ 𝑞

3. Compute

𝜑(𝑛) = (𝑝 − 1) ∗ (𝑞 − 1)

4. Compute public key by selecting e which is

range of (1, φ(n)) and relative prime of φ(n)

5. Compute private key d that satisfy

𝑒𝑑 = 1 𝑚𝑜𝑑 (𝑝 − 1) (𝑞 − 1)
6. Let the messages be

1 = 𝐴𝑆𝐶𝐼𝐼(’𝑎’),
 𝑀2 = 𝐴𝑆𝐶𝐼𝐼(’𝑏’)

… …

… ….
 𝑀26 = 𝐴𝑆𝐶𝐼𝐼(‘𝑧’)

7. Encrypt the message

𝐶1 = 𝑀1 𝑒 𝑚𝑜𝑑 𝑛

𝐶2 = 𝑀2 𝑒 𝑚𝑜𝑑 𝑛

…

…

𝐶26 = 𝑀26 𝑒 𝑚𝑜𝑑 𝑛

8. Each time a new letter is encountered, save

its encrypted value in a dictionary. If a letter

is encountered again, use the stored

encrypted value instead of recalculating it.

9. Decrypt the encrypted message

𝑀1 = 𝐶1 𝑑 𝑚𝑜𝑑 𝑛,
 𝑀2 = 𝐶2 𝑑 𝑚𝑜𝑑 𝑛

…

…

𝑀26 = 𝐶26 𝑑 𝑚𝑜𝑑 𝑛

10. Each time a new decrypted value is

encountered, save its decrypted value along

with message in an dictionary. If a same

decrypted value is encounter again, use the

stored decrypted value instead of

recalculating it.

Sieve of Eratosthenes algorithm is used to

efficiently find all the prime numbers up to a given

limit. The function encrypt() is used to encrypt a

given message using RSA algorithm. The function

takes a message as input that needs to be encrypted.

It uses the recipient’s public key, specifically the

modulus n and the public exponent e, for encryption.

The function converts each character of the message

into its corresponding ASCII value. It applies

modular exponentiation to each ASCII value using

the public key components n and e. This process

involves raising the ASCII value to the power of e

and then taking the modulus n of the result. The

resulting encrypted values represent the ciphertext,

which is the encrypted form of the original message.

The function returns the ciphertext as the output.

Code block 2: Encrypt

The function encoder() is used to convert the

plaintext message into an representation suitable for

encryption, and it also applies the dynamic approach

to check if the character is previously encrypted or

not. The function takes a message as input, typically

in the form of a string. It iterates over each character

of the message. For each character, the function

performs a lookup to check if it has been previously

encoded and stored in a dictionary (‘enq’). If so, it

retrieves the previously assigned encoded value for

that character. If the character has not been

previously encoded, the function encrypts the ASCII

value of the character using the ‘encrypt()’ function.

The function records the encoded value for the

character in the dictionary for future reference. The

encoded values for all the characters are collected and

returned as the output.

function encrypt(message):

 e = public_key

 encrypted_text = 1

 while e > 0:

 encrypted_text *=

message

 encrypted_text %= n

 e -= 1

 return encrypted_text

Received: February 28, 2024. Revised: April 26, 2024. 616

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.46

Code block 3: Encoder

The function decrypt() is used to decrypt an

encrypted message using the RSA algorithm. The

function takes the encrypted ciphertext as input. It

uses the recipient’s private key, specifically the

modulus n and the private exponent d, for decryption.

The function applies modular exponentiation to the

ciphertext using the private key components n and d.

This process involves raising the ciphertext to the

power of d and then taking the modulus n of the result.

The resulting decrypted values represent the original

ASCII values of the characters in the plaintext

message. The function converts each decrypted

ASCII value back into its corresponding character.

The decrypted characters are concatenated to

reconstruct the original plaintext message. The

function returns the plaintext message as the output.

Code block 4: Decrypt

The function decoder() is used to convert the

encrypted value into an representation suitable for

decryption and it also apply the dynamic approach to

check if the character is previously decrypted or not.

The function takes the decrypted numerical values as

input. It iterates over each numerical value. For each

value, the function performs a lookup to check if it

has been previously decoded and stored in a

dictionary. If so, it retrieves the previously assigned

decoded character for that value. If the value has not

been previously decoded, the function converts it into

its corresponding ASCII character. The function

records the decoded character for the value in the

dictionary for future reference. The decoded

characters are concatenated to reconstruct the

original plaintext message. The function returns the

plaintext message as the output.

Code block 5: decoder

4. Analysis and results

We have implemented our approach of

dynamically improving the RSA algorithm with the

help of Python programming language. We have

compared our algorithm with the original RSA and El

Gamal encryption algorithm. Fig. 2 shows Flow

chart of our proposed RSA algorithm. We have

considered the following parameters for comparison

of the algorithms:

4.1 Execution time

Execution time is the algorithm’s overall time to

complete the execution and the processes. Execution

time has two times- encryption and decryption time.

Encryption time is the overall time the code takes to

convert the original message into the cipher text.

Decryption time is the time the algorithm takes to

convert the cypher text back into the message, .i.e, in

a readable format. We have compared our improved

rsa algorithm with the El Gamal encryption algorithm

based on execution time. Our improved rsa algorithm

is also compared based on encryption and decryption

times with the original rsa algorithm. We have also

compared a symmetric algorithm AES based on

execution time.

4.2 Energy

By using the dynamic approach for improving our

algorithm, we have made more efficient use of

algorithms and data structures by minimising

unnecessary computations and memory operations.

We also reduce the redundant calculations and

optimise the memory access, reducing the energy

function encoder(message):

 encoded = []

 for letter in message:

 if letter in enq.keys():

 encoded.append(enq[letter])

 else:

 eq = encrypt(ord(letter))

 encoded.append(eq)

 enq[letter] = eq

 return encoded

function

decrypt(encrypted_text):

 d = private_key

 decrypted = 1

 while d > 0:

 decrypted *= encrypted_text

 decrypted %= n

 d -= 1

 return decrypted

function decoder(encoded):

 s = ‘ ‘

 for num in encoded:

 if num in deq.keys():

 s += deq[num]

 else:

 q = chr(decrypt(num))

 s += q

 deq[num] = q

 return s

Received: February 28, 2024. Revised: April 26, 2024. 617

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.46

Figure. 2 Flow chart of our proposed RSA algorithm

required to perform the operations. This helps in

reducing the energy consumption of the algorithm

without compromising the functionality of the

algorithm.

4.3 Cost

Efficient usage of the resources such as memory

and network bandwidth by optimising the usage of

the resources, we can reduce the overall cost. Caching

and memorisation technique has been used, i.e.

storing already computed values to avoid re-

computations. we have used a dictionary so that the

original word and its computed value can be stored in

the same place without using different data structures.

Without reducing the correctness of the algorithm, we

have implemented resource utilisation. Hence the

overall cost can be reduced.

5. Result and discussion

We have varied the message size (in words) and

observed its impact on both encryption and

decryption time (in ms) in the case of the proposed

Received: February 28, 2024. Revised: April 26, 2024. 618

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.46

Table 1. Observed Encryption time of Proposed RSA and

Classic RSA

ENCRYPTION TIME (s)

No of words Proposed

RSA

RSA

10 0.0027 0.00429

50 0.0048 0.00309

100 0.00275 0.0033

200 0.0051 0.0056

500 0.00471 0.00728571

1000 0.0048 0.0282

10000 0.031 0.0737

Figure. 3 Comparison between the Encryption times of

Proposed RSA and Classic RSA

Table 2. Observed Decryption time of Proposed RSA and

Classic RSA

DECRYPTION TIME (s)

No of words Proposed

RSA

RSA

10 0.0168 0.07355

50 0.01429 0.4678

100 0.02951 0.609

200 0.0279 1.72541

500 0.034 2.503571

1000 0.0338 4.0054

10000 0.109 18.28

Figure. 4 Comparison between the Decryption times of

Proposed RSA and Classic RSA

Table 3. Observed Execution time of Proposed RSA,

Classic RSA, El Gamal and AES Algorithms

TOTAL EXECUTION TIME(ms)

No of

words

PROPOSED

RSA

RSA EL

Gamal

AES

10 20.8 70.6 14.9 1.19

50 20.9 473 48.71 16.5

100 35.96 614.51 86.2 36

200 36 1734 192.9 42.95

500 39 2513 601.8 56

1000 40.2 4017.4 899.2 72

10000 141 18360 8901 671

Figure. 5 Comparison between the Execution times of

Asymmetric algorithms- Proposed RSA, Classic RSA and

El Gamal

Figure. 6 Comparison between the Execution times of

Asymmetric algorithm- Proposed RSA and Symmetric

algorithm- AES algorithm

dynamic approach-based RSA algorithm and

Classical RSA, as shown in Tables 1 and 2. From

observing the outcomes in Figs. 3 and 4, it is evident

that the execution of both encryption and decryption

of the proposed RSA is much faster than classical

RSA, that justifies that the encryption of message can

Received: February 28, 2024. Revised: April 26, 2024. 619

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.46

be done much faster in the proposed algorithm than

the classical RSA algorithm.

We have also compared the total execution time

between the proposed RSA, classical RSA [21], El

Gamal [23], and AES algorithms [22] by varying the

message size (in words), as shown in Table 3. From

observing the outcomes in Figs. 5 and 6, it is evident

that the total execution time of the proposed RSA

algorithm is much faster than another asymmetric

algorithm, i.e. classical RSA, EL Gamal and

comparatively faster execution time as compared to

the symmetric algorithm, i.e. AES algorithm, as the

message size increases.

A faster algorithm requires fewer computational

resources, such as memory. By reducing the

execution time of an algorithm, the cost required in

terms of resources can be reduced [19]. In the modern

era, cloud computing platforms such as amazon web

service (AWS) employ virtualization techniques to

consolidate physical resources into virtual instances.

The cost of using cloud resources is calculated in

terms of time. Hence by reducing the execution time,

usage of cloud resources is minimized, leading to cost

saving in terms of hardware requirement.

The algorithm is often used in real-time

applications where speed is crucial. Reducing the

time required for an algorithm can improve

operational efficiency and reduce associated costs

[20]. As the size of the input data increases,

algorithms with higher time complexity can become

prohibitively expensive to execute. By reducing the

time complexity, an algorithm can scale more

effectively.

The dynamic approach focuses on optimizing

algorithms and techniques to reduce the time required

for computational tasks. By executing computations

more efficiently, the processor can complete the tasks

faster, leading to a shorter duration of high activity.

As a result, the processor can enter low-power states

sooner, reducing overall energy consumption. In

traditional approaches, where computations may be

less optimized, the CPU may have to remain active

longer to complete tasks. This leads to increased idle

time, where the CPU remains powered on but not

actively processing. By reducing computational time

through the dynamic approach, the CPU can enter

idle states earlier, minimizing energy usage during

these idle periods. Energy usage depends not solely

on the processor but also involves other system

components such as memory, storage, and network

interfaces. By reducing computational time, the

overall system can complete tasks faster, enabling

these components to enter low-power states sooner

and reduce energy consumption. Coordinated

optimization across the system can lead to significant

energy savings.

6. Conclusion

In this paper, we have used a dynamic approach

to enhance the RSA algorithm, focusing on

computational speed and optimizing the encryption

and decryption processes. Our suggested dynamic

approach stores the encryption and decryption value

of every character, and once the character gets

repeated, the already stored encrypted and decrypted

value is being used, which reduces computational

complexity. To evaluate the efficacy of this approach,

extensive experiments were conducted on various

datasets comprising paragraphs of different sizes.

The experiments involved encrypting and decrypting

paragraphs containing 10, 50, 100, 200, 500, 1000,

and 10,000 words. Comparative analyses were

performed against existing RSA, El Gamal, and AES

algorithms. Results indicate that the proposed

dynamic RSA approach consistently outperforms

traditional RSA in terms of encryption time,

decryption time, and total execution time across all

tested paragraph sizes. The regression analysis

revealed stark differences between the two

approaches. Furthermore, the Proposed RSA

minimized the energy consumption and cost

reduction for the encryption and decryption process

in data transmission. In future, the security of the

algorithm can be maintained along with the faster

computation by erasing the stored values on both

sender and receiver side.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

“Conceptualization, Pradeep Krishnadoss and

Palani Thanaraj Krishnan; methodology, Nishanth

Paramasivam; software, Deepesh Sai Kesavan;

validation, Anish Thishyaa Raagav; formal analysis,

Pradeep Krishnadoss; investigation, Pradeep

Krishnadoss; resources, Deepesh Sai Kesavan; data

curation, Deepesh Sai Kesavan; writing—original

draft preparation, Anish Thishyaa Raagav; writing—

review and editing, Nishanth Paramasivam; formal

analysis, Pradeep Krishnadoss; investigation,

Pradeep Krishnadoss; visualization, Pradeep

Krishnadoss; supervision, Pradeep Krishnadoss”.

References

[1] Y. Li and Q. Liu, “A comprehensive review

study of cyber-attacks and cyber security;

Received: February 28, 2024. Revised: April 26, 2024. 620

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.46

Emerging trends and recent developments”,

Energy Reports, Vol. 7, pp. 8176-8186, 2021.

[2] M. Panda, “Performance analysis of encryption

algorithms for security”, In: Proc. of 2016

International Conference on Signal Processing,

Communication, Power and Embedded System

(SCOPES), pp. 278-284, 2016.

[3] O. G. Abood and S. K. Guirguis, “A survey on

cryptography algorithms”, International

Journal of Scientific and Research Publications,

Vol. 8, No. 7, pp. 495-516, 2018.

[4] A. S. Khader and D. Lai, “Preventing man-in-

the-middle attack in Diffie-Hellman key

exchange protocol”, In: Proc. of 2015 22nd

international conference on

telecommunications (ICT), pp. 204-208. IEEE,

2015.

[5] C. Gupta and N. V. S. Reddy, “Enhancement of

Security of Diffie-Hellman Key Exchange

Protocol using RSA Cryptography”, In: Proc. of

Journal of Physics: Conference Series, Vol.

2161, No. 1, p. 012014. IOP Publishing, 2022.

[6] V. Shashidhara and S. Kengond, “Performance

analysis of symmetric key cryptographic

algorithms”, In: Proc. of 2018 international

conference on communication and signal

processing (ICCSP), pp. 0411-0415, 2018.

[7] A. G. Khan, S. Basharat, and M. U. Riaz,

“Analysis of asymmetric cryptography in

information security based on computational

study to ensure confidentiality during

information exchange”, International Journal of

Scientific & Engineering Research, Vol. 9, No.

11, pp. 992-999, 2018

[8] S. Nisha and M. Farik, “Rsa public key

cryptography algorithm–a review”,

International Journal of Scientific &

Technology Research, Vol. 6, No. 7, pp. 187-

191, 2017.

[9] B. Bhowmik “Dynamic programming. Its

principles, applications, strengths, and

limitations”, Ccriterion, Vol. 4, No. 7, 2010.

[10] J. Liu, C. Fan, X. Tian, and Q. Ding,

“Optimization of AES and RSA algorithm and

its mixed encryption system”, In: Proc. of

Advances in Intelligent Information Hiding and

Multimedia Signal Processing: Proceedings of

the Thirteenth International Conference on

Intelligent Information Hiding and Multimedia

Signal Processing, August, 12-15, 2017, Matsue,

Shimane, Japan, Part II 13, pp. 393-403, 2018.

[11] E Jintcharadze and M Iavich, “Hybrid

implementation of Twofish, AES, ElGamal and

RSA cryptosystems”, In: Proc. of 2020 IEEE

East-West Design & Test Symposium (EWDTS),

pp. 1-5, 2020.

[12] P. Gupta, DK Verma, and AK Singh,

“Improving RSA algorithm using multi-

threading model for outsourced data security in

cloud storage”, In: Proc. of 2018 8th

International Conference on Cloud Computing,

Data Science & Engineering (Confluence), pp.

14-15, 2018.

[13] V. Dimitrov, L. Vigneri, and V. Attias, “Fast

generation of RSA keys using smooth integers”,

IEEE Transactions on Computers, Vol. 71, No.

7, pp. 1575-1585, 2021.

[14] R. F. S. Lizy, “Improvement of RSA Algorithm

Using Euclidean Technique”, Turkish Journal

of Computer and Mathematics Education

(TURCOMAT), Vol. 12, No. 3, pp. 4694-4700,

2021.

[15] Taneja, R. K. Shukla, and R. S. Shukla,

“Improvisation of RSA Algorithm in Respect to

Time and Security with the Proposed (AEA)

Algorithm”, In: Proc. of Journal of Physics:

Conference Series, Vol. 1998, No. 1, p. 012036,

2021.

[16] F. H. M. S. Al-Kadei, and H. A. Mardan, “Speed

up image encryption by using RSA algorithm”,

In: Proc. of 2020 6th International Conference

on Advanced Computing and Communication

Systems (ICACCS), pp. 1302-1307, 2020.

[17] J. J. Liu, K. T. Tsang, and Y. H. Deng, “A

variant RSA acceleration with parallelisation”,

International Journal of Parallel, Emergent and

Distributed Systems, Vol. 37, No. 3, pp. 318-332,

2022.

[18] S. B. B. Priyadarshini, S. Rath, Sm Patel, A

Udgata, A Mohanta S. R. ali, S. Panigrahi, and

P. Sahu, “A hybrid random image generation

strategy (HR-IGS) for securing plain text data in

networks”, Journal of Theoretical and Applied

information technology, Vol. 101, No. 6, 2023.

[19] S. K. Gorva and L. C. Anandachar, “Effective

Load Balancing and Security in Cloud using

Modified Particle Swarm Optimization

Technique and Enhanced Elliptic Curve

Cryptography Algorithm”, International

Journal of Intelligent Engineering & Systems,

Vol. 15, No. 2, 2022, doi:

10.22266/ijies2022.0430.18.

[20] V. A. Thakor, M. A. Razzaque, and M. R. A.

Khandaker, “Lightweight cryptography

algorithms for resource-constrained IoT devices:

A review, comparison and research

opportunities”, IEEE Access, Vol. 9, pp. 28177-

28193, 2021.

Received: February 28, 2024. Revised: April 26, 2024. 621

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.46

[21] Parkar, P. Ashwini, N. Madhuri Gedam, N.

Ansari, and S. Therese, “Performance level

evaluation of cryptographic algorithms”, In:

Proc. of Intelligent Computing and Networking,

pp. 157-167, 2021.

[22] N. Alenezi, Mohammed, H. Alabdulrazzaq, and

Q. Nada Mohammad, “Symmetric encryption

algorithms: Review and evaluation study”,

International Journal of Communication

Networks and Information Security Vol.12, No.

2 pp.256-272, 2020.

[23] J. Mohammed, Saja, and B. Dujan Taha,

“Performance evaluation of RSA, ElGamal, and

Paillier partial homomorphic encryption

algorithms.” In: Proc. of 2022 International

Conference on Computer Science and Software

Engineering (CSASE), pp. 89-94, 2022.

