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Abstract: Parkinson’s disease (PD) is a degenerative illness of central nervous system primarily caused by neuronal 

degeneration in substantia nigra of the brain. A biomarker for Parkinson’s disease (PD) is represented by blood uric 

acid level. Although, the relationship between Parkinson’s disease, and diabetes and the outcome of specific treatments 

remains unclear. Quantitative analysis of the images can increase the potential of dopamine transporter (DAT) and 

single-photon emission computed tomography (SPECT) images as a biomarker for tracking PD progression. To predict 

Parkinson’s disease using DaTscan images, an ensemble of Machine Learning (ML) models was developed. In this 

work, Parkinson’s Progressive Markers Initiative (PPMI) datasets were utilized for collecting the data on PD. Initially, 

feature extraction was done using the VGG-16, and AlexNet to classify Parkinson’s illness. In following stage, a 

predicted classification of Parkinson’s cases and healthy controls is generated using the Multi-kernel Support Vector 

Machine (MSVM) model to enhance overall final output of classification model. PPMI has made a database that is 

accessible to individuals for use in evaluating the proposed model. Compared with existing methods of Explainable 

Boosting Machine (EBM), Light Gradient Boosting Machines (LGBM) & Random Forests (RF), Convolutional 

Neural Network (CNN), Bayesian CNNs, CNN with Fuzzy Rank Level Fusion (CNN+FRLF), and 

EfficientNet-B0 and MobileNet-V2 models the implemented MSVM achieves high accuracy. When compared 

with the existing methods the implemented MSVM method obtained 98.60% of accuracy. 

Keywords: DaTscan image, Machine learning, Parkinson’s disease, Parkinson’s progression markers initiative 

(PPMI). 

 

 

1. Introduction 

PD which affects a significant portion of the older 

population, is second most prevalent neurological 

illness after Alzheimer’s disease (AD) [1]. The 

underlying cause of PD is thought to be degenerating 

of dopaminergic neurons in substantia nigra, that 

manifests as motor symptoms such as tremors, 

akinesia, trouble speaking, pain, and irregular 

walking [2]. The most often utilized diagnostic 

method for determining the dopamine deficit in PD is 

SPECT using DaTSCAN (123I-Iofupane) [3]. The 

term “neurodegenerative” describes a condition in 

which the brain cells eventually die. ML which has 

easy integration and excellent accuracy, is being 

utilized more often to identify medical disorders [4]. 

Additionally, employed an ML-based method that 

incorporates a linear Support Vector Machine (SVM), 

and k-nearest neighbors (K-NN) classifier to 

determine level of movement in Parkinson’s patients 

[5]. This research established a framework for PD-

generating prediction in time-series data because of 

its ability to describe the expected result [6]. The 

main structure of classification systems used in CAD 

tools is as follows: (i) delineating the areas of interest 

(ROI) to concentrate the analysis on them, (ii) 

extracting the features from these regions, and (iii) 

classifying the data based on those characteristics. 

Deep neural networks are trained to create a 

customized feature space for the best class separation, 
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in contrast to traditional approaches that extract 

predetermined features [7].  

Whereas machine-earning techniques are 

excellent at processing straightforward linear data, 

they challenge complex medical data [8]. The 

transition from manual healthcare diagnosis to 

efficient CAD-based systems could facilitate a 

substantial expansion of healthcare system by 

expanding diagnosis, preventing false diagnosis, and 

consequently reducing death rates [9]. There is an 

increasing interest in the automated classification of 

the brain in medical imaging to aid in the 

identification of neurological and mental disorders 

through ML approaches [10]. Finding the 

characteristics that the CNN automatically learns 

during the training phase is challenging due to the 

multilayer nonlinear nature of the CNN [11]. Early-

stage dopamine transporter imaging with 123I-

Iofupane shows a high degree of predictive 

specificity for medically undetermined PD, 

Parkinsonian syndromes (PS), and dementia with 

Lewy bodies (DLB) [12]. The initial source of 

SPECT images, which were pre-processed using data 

normalization techniques and scaled between 0 and 1, 

originated from the PPMI dataset [13]. The ability to 

effectively categorize and forecast many brain 

diseases has been demonstrated by machine learning-

based CAD systems that make use of picturing data 

and electronic medical records [14].  The study’s 

primary contributions are as follows; 

• The establishment of an effective machine 

learning algorithm for the DaTscan-based 

initial recognition of Parkinson’s disease. 

• The PPMI dataset for PD classification was 

utilized for model training and testing to 

assess the robustness and effectiveness of the 

brain illness system in real-time. 

• The VGG-16 and AlexNet CNN models are 

used for feature extraction performance as 

they relate to this medical imaging task. 

The research paper is given as follows; the 

literature survey of the related work was detailed in 

Section 2. The implemented method is described in 

Section 3. Experimental result was explained in 

Section 4. Finally, conclusion of this research is 

discussed in Section 5. 

2. Literature survey 

Sarica [15] implemented the Explainable 

Boosting Machine (EBM), a new ML glass-box 

model based on Generalized Additive Models plus 

interactions (𝐺𝑍2𝑀𝑆), which was used to provide 

explainable in categorizing SWEDD and PD while 

maintaining optimal performance. The EBM 

improves the basic GA2 Ms by gradient and bagging 

increases with tree-like shallow ensembles to lessen 

co-linearity and avoid overfitting. However, this 

method had poor specificity in identifying PD class, 

and had large training process.  

Junaid [16] implemented an RF and LGBM of 

ML approaches for PD progression prediction based 

on time-series data. The implemented method 

objective was to create a reliable and comprehensible 

ML pathway for the prediction of PD progression. 

This model’s performance improved dramatically 

when feature selection with optimization was used 

instead of all features and the model was run faster. 

Due to insufficient sample sizes, this method had 

flaws in PD validation test results.    

Arco [17] implemented a Bayesian CNNs, multi-

level ensemble classification system using a 

Bayesian Deep Learning technique to increase 

efficiency by presenting the uncertainty of each 

categorization result. In this system, a prediction with 

less uncertainty was given more weight than one with 

higher uncertainty during the decision-making 

process. However, this implemented method had less 

identification patterns performance in various PD 

illness.  

Nazari [18] implemented a Convolutional Neural 

Network (CNN) that was used to classify SPECT 

images of dopamine transporter accessibility in 

Parkinsonian syndrome patients and address clinical 

uncertainties. LRP’s resilience was increased by 

reducing relevance spill-out and preventing noise 

amplification caused by the gradient shattering effect. 

However, this implemented CNN method had 

misclassification in DAT-SPECT of visual 

interpretation. 

Nakajima [19] implemented 123-Iofupane 

images from patients of 239 with questionable 

neurodegeneration illnesses or mental illnesses and 

categorized them as non-PS/PD/DLB or PS/PD/DLB. 

For training, 137 images from one hospital were 

examined for image attributes of high or low uptake 

(F1), symmetry (F2), dot- or comma-like caudate 

patterns, and uptake putamen (F3). The model 

multivariate with three characteristics and age had the 

greatest diagnosis accuracy for distinguishing 

PS/PD/DLB when compared to the traditional ROI-

based approach. However, this method had less 

accuracy performance in PD image professional 

classifiers. 

Alsharabi [20] implemented an AlexNet-

quantum transfer learning method to analyze 

neurodegenerative disease using a magnetic 

resonance imaging (MRI) dataset. Through the use of 

a traditional pre-trained AlexNet model and a 

quantum variational circuit (QVC), the hybrid model 
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was created by generating a predictive vector of 

features from high-dimensional data. The AlexNet-

quantum transfer learning technique has increased 

the model’s performance while also increasing its 

speed and classification accuracy automatically. Due 

to large training process time, this method had 

affected the model’s efficiency. 

Zhou [21] implemented a mixture of linear 

dynamical systems (MLDS) models for measuring 

varying PD progression utilizing DaTSCAN images. 

This model assigns PD cases to several progression 

subtypes, with every subtype characterized by a 

linear dynamical system (LDS) multivariate. 

Reduction in asymmetry has the quickest feasible 

interval time among all LP, RP, RC, and LC, 

according to MLDS of linear combinations. However, 

this method had less PD classification utilized by 

DaTscans images. 

Ankit Kurmi [22] implemented Convolutional 

Neural Network with Fuzzy Rank Level Fusion 

(CNN+FRLF) method utilized for PD detection 

UTILIZING DaTscan images. This implemented 

ensemble approach for the detection of PD that 

integrates decision scores obtained from four 

different DL models. The implemented method used 

GUI-based software tool had performed and 

effectively detected the PD disease in real-time. 

However, this implemented method high 

misclassification, hence to decreased number of 

inaccurate classifications and to test FRLF ensemble 

technique on other datasets. 

Hajer Khachnaoui [23] implemented 

EfficientNet-B0 and MobileNet-V2 models based on 

CNN which were utilized for enhanced Parkinson’s 

disease diagnosis. This method specifically 

employed Bilinear CNN (BCNN) for PD diagnosis, 

which represented a novel application of this 

technique. The BCNN was combined with pre-

trained CNN models obtained increased 

classification of Parkinson’s disease. Due to 

relatively small dataset, this method had restricted the 

generalizability of PD categorization. 

From this section, a professional image classifier 

requires information to increase its precision. Large 

datasets and shorter training times have an impact on 

model performance. Extra-striatal areas affected by 

PD are not accounted for in the model. These are 

some of the overall limitations mentioned in the 

related papers. So, the MSVM is implemented to 

overcome these drawbacks in the detection of PD on 

DaTSCAN Images. 

 

 

 

3. Methodology 

The implemented model’s architecture is 

described in this section for detecting Parkinson’s 

disease effectively. The work involves the PPMI 

dataset, pre-processing using normalization, VGG-16, 

and AlexNet is used for feature extraction, Improved 

Marine Predictor Algorithm (IMPA) utilized for 

feature selection, and MSVM is employed for the 

image classification process. Fig. 1 illustrates the 

block diagram of implemented model. The SPECT 

images from the PPMI dataset were used to train the 

implemented model. A memory set is also taken into 

consideration during training to increase robustness 

and minimize overfitting.   

3.1 Dataset 

Information used in this study was attained from 

the database of the Parkinson’s Progressive Markers 

Initiative (PPMI). The Dataset consists of 642 

DaTscans SPECT images split into non-PD (N = 212) 

and PD (N = 430) groups. There were no subsequent 

scans of the same point; the data utilized was only 

from distinct patients’ initial screening. This was 

done to maintain the dataset’s originality and to 

enhance the study’s goal of early detection. Another 

purpose was to avoid over-fitting, which could be 

brought on by scans from the same patient being too 

similar to one another during model training. 

 

 
Figure. 1 The block diagram of the implemented method 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure. 2 PPMI dataset for a person suffering from PD 

 

 
Table 1. Patient Demographics 

Category Healthy 

Control 

Parkinson’s 

Disease 

Number of 

patients 

212 430 

Sex (Female) 84 152 

Sex (Male) 128 278 

Age (Maximum) 84 85 

Age (Minimum) 31 33 

 

 

To preserve the validity of the dataset, scans without 

evidence of dopaminergic deficiency (SWEDD) 

individuals were also eliminated. Table 1 lists the 

demographics of the patient’s information that was 

collected and Fig. 2.  represents the sample images of 

the PPMI dataset for a person suffering from PD. 

3.2 Pre-processing 

Normalization was utilized as a pre-processing 

technique to ensure that the deep learning model 

maintained its high degree of performance 

generalization even after multiple training iterations. 

Learning the visual characteristics in the same brain 

of many modes while gaining adaptation is beneficial. 

In the computer vision field, recognition of patterns, 

and other domains, normalization of images is a 

broadly utilized approach. This work utilized z-score 

normalization. It’s expressed in Eq. (1):  

 

𝑧 =  
𝑥− 𝜇

𝜎
                              (1) 

 

Where 𝜇  denotes the value of mean, and 𝜎  

denotes standard deviation. 

Following that, MRI image (240, 240, 155) is 

then arbitrarily chopped into a matrix (144, 144, 128) 

using a method of random 3D clipping. Reduced 

image is rotated by angle U (10, +10) using a random 

3D rotation technique. Random intensity enhanced 

method for 3D images is used to set the value of each 

image pixel as follows in Eq. (2):  

 

𝑥𝑛𝑒𝑤 =  𝑥𝑜𝑙𝑑 ∗ 𝑈 (0.9, 1.1) + 𝑈(−0.1, 0.1)  (2) 

 

Where, U denotes uniform distribution. Image is 

symmetrically arranged in the breath, height, and 

depth dimensions because of random mirror 

processing. Employing several image-enhancing 

methods to increase the size of the training dataset, 

can enhance the performance and generalizability of 

deep neural networks. Then, pre-processed input 

image is given to the feature extraction step as input. 

3.3 Feature extraction  

This section provides a technical summary of the 

AlexNet and VGG-16 models. Given that FC-8 is the 

final fully connected layer in these two topologies, 

the RFE method was applied to the characteristics 

attained from these layers. One of the most prominent 

CNN architectures is the AlexNet. Layers that are 

convolutional, pooling, and fully connected make up 

this architecture. 227x227 pixels make up the input 

size, it is based on a method where 5x5 and 3x3 pixel 

filters are moved over the image in the convolutional 

layer. To move the following layer, activation maps 

with more efficient characteristics are produced. The 

most important feature of activation maps is their 

significant characteristic. Without affecting the 
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image’s features, the pooling layer is employed to 

minimize the image’s cost and size.  

The architecture of VGG-16 has FC layers, 

pooling, and convolutional, similar to AlexNet. It 

consists of 21 layers in total, and this architecture is 

characterized by a developing network structure. The 

input is 224x224 pixels in size, and the convolutional 

layer’s filter has a 3x3 pixel filter size. The last layer 

in this architecture has a completely connected layer 

that was utilized for the extraction of features. 

For feature extraction in this work, architectures 

of CNN are utilized. Every FC-8 layer in the model 

contained 1000 deep features. Both models have a 

filter size of 3x3 pixels, several strides are set to 2, 

and the docking type is set to maximum. The dataset 

was divided into two classes based on rates: 30% for 

testing and 70% for training.  

3.4 Feature selection 

An essential step in machine learning algorithms 

is feature selection, which finds unique related 

subsets of features. The method improves prediction 

accuracy and information understanding. The huge 

search space makes it difficult to evaluate feature 

selection vectors with N variant combinations 

directly. Perfect feature selection difficulties can be 

solved by metaheuristic algorithms like IMPA. To 

find the best feature subset, IMPA searches the 

feature space and chooses the most important and 

best features. With the fewest possible selected 

features, the ideal approach maximizes classification 

accuracy and reduces the mistake rate.  A total 

number of 8192 outputs were extracted from feature 

extraction, which contains 4096 from VGG-16 and 

4096 from AlexNet. The input for feature selection is 

the extracted outputs. 

3.4.1. Improved marine predictor algorithm 

An updated marine predator algorithm called 

IMPA is implemented to address the MPA’s current 

drawbacks. IMPA enhances MPA by combining a 

quasi-opposition learning technique and concept of 

differential evolution. First, increasing population 

variety and accelerating MPA convergence are 

achieved by employing a quasi-opposition learning 

technique. The basic goal of differential evolution is 

to make MPA more adept at escaping local optimal, 

and it offers operation of crossover, mutation, and 

selection to that end. Accurate implementation of 

enhanced algorithm is given below.  

3.4.1.1 Quasi-opposition learning strategy 

A quasi-opposition learning technique (QOL) has 

been described, based on the principles of opposition-

based learning (OBL). It can increase algorithm 

performance, faster convergence and increase 

population variety. By determining the opposing 

solution to the existing solution in search space, OBL 

broadens search space. Following is the opposition 

solution of specific calculation in Eq. (3),  

 

𝑋𝑖
′ = 𝑙𝑏 + 𝑢𝑏 − 𝑋𝑖                      (3) 

 

where the current solution is denoted as 𝑋𝑖 , the 

search agent of lower and upper bounds is denoted as 

𝑙𝑏 and 𝑢𝑏.  

In the computation for quasi-opposition learning, 

quasi-opposition point lies halfway between 

opposition point and the midpoint. This indicates that 

the quasi-opposition point is more likely to be ½ as 

close to the unknown optimal solution as the current 

solution and that it is closer to the ideal solution, 

which may accelerate convergence. Quasi-opposition 

point is calculated using the following Eq. (4), 

 

𝑋𝑖
𝑞

= {
𝑚 + (𝑚 − 𝑋𝑖) × 𝑟1,            𝑖𝑓 𝑋𝑖 < 𝑚

𝑚 − (𝑋𝑖 − 𝑚) × 𝑟2,                       𝑒𝑙𝑠𝑒
  (4) 

 

where uniform random number in [0,1] denoted 

𝑟1  and 𝑟2 , and midpoint of current search space is 

denoted 𝑚 =
𝑙𝑏+𝑢𝑏

2
. 

The quasi-opposition solution is calculated for 

each person using the quasi-opposition learning 

approach, and current solution of fitness values and 

quasi-opposition solution are then determined. 

Present population was selected by first sorting the 

individuals with the highest fitness values into 

ascending order, and then using that population to 

explore and exploit the MPA process. To classify 

Parkinson’s disease, the features produced by the 

feature extraction procedure are passed on to the 

phase of feature selection. 

3.5 Classification of the MSVM model 

Multi-kernel Support Vector Machine 

(MSVM) classification 

To predict a certain data input, the class label, for 

example, predictive modeling is used to solve 

classification issues in machine learning. To generate 

multi-kernel SVMs, typically many two-class SVMs 

are concatenated. Kernel can take information as is 

and transform it into required structure. Different 

types of piece functions are used in distinctive SVM 

classifications. These activities might take many 
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different forms. Radial Base Function (RBF), 

sigmoid, polynomial, linear, and nonlinear functions 

are employed in MSVM. 

3.5.1. Linear kernel SVM 

It is used for data can be divided into 2 groups 

utilizing simply a single straight line, which is known 

as data that can be separated linearly. To boost its 

generalization capability, it seeks to broaden this 

margin as much as possible. According to Eq. (5), 

linear function is dot product of the two vectors z1 

and z2.  

 

𝑌 (𝑍1, 𝑧2) = 𝑧1. 𝑧2                     (5) 

 

3.5.2. RBF SVM 

For many nonlinear problems, the Gaussian 

kernel provides separation of good linear in larger 

dimensions. The variable that is subject to change 

Sigma has a big impact on how effective kernel is and 

can be changed depending on the specific problem. It 

responds almost linearly when the exponential is 

overestimated, losing higher-dimensional 

projection’s non-linear strength. Decision boundary 

will particularly susceptible to noise in data of 

training if feature is devalued, on the other hand, as 

this will result in a lack of regularisation. The 

distance from the origin or a particular location 

affects the function’s value. Where 𝛼 =
1 2𝜎2⁄  & 𝛼 > 0 in Eq. (6), 

 

𝑌 (𝑧1, 𝑧2) = 𝑒𝑥𝑝(−𝛼‖𝑧1 − 𝑧2‖2)          (6) 

 

3.5.3. Sigmoid SVM 

The function of tanh is utilized in this kernel. This 

can be utilized as an alternative for the neural 

network given in Eq. (7). Where the slope is 𝛼 and 

the intercept constant is 𝑑. 𝛼 is 1/N for a common 

value, here N is denoted as data dimension. An 

artificial neuron activation function is utilized that is 

equivalent to a 2-layer perceptron neural network 

model. 

 

𝑌 (𝑧1, 𝑧2) = tanh(𝛼. 𝑧1𝑇 . 𝑧2 + 𝑑)                    (7) 

 

3.5.4. Polynomial kernel SVM 

It’s a representation of a linear kernel that is more 

essentially structured. Eq. (8) represented the 

polynomial kernel. Where the polynomial degree is 

denoted as 𝑒 and the z1 & z2 are the vectors in the 

given Eq. (8), 

 

𝑌 (𝑧1, 𝑧2) = (𝑧1. 𝑧2 + 1) ∗ 𝑒            (8) 

 

Using the Multi-kernel Support Vector Machine 

enhances the accuracy and performance of 

Parkinson’s disease detection. Thus, the 

classification is performed utilizing most significant 

and pertinent features. Further, results are shown in 

section 4. 

4. Experimental result 

The implemented improved model is simulated in 

this research utilizing the MATLAB (2018a) 

environment with following system requirements: 

operating system as Windows 10 (64 bit), 16 GB of 

RAM, and an Intel Core i7 process. The model was 

tested utilizing an image sequence 𝑋𝑣, with N = 64 

(PD = 42, non-PD = 21) and employing a sequence 

of images to train 𝑋𝑡, M = 156 (PD = 346, non-PD = 

170), respectively. 𝑋𝑡 and 𝑋𝑣 are expressed in below 

Eqs. (9) and (10). 

 

𝑋𝑡 =  {𝑥𝑡
(1)

, 𝑥𝑡
(2)

 , … . . , 𝑥𝑡
(𝑀)

}                  (9) 

 

𝑋𝑣 =  {𝑥𝑣
(1)

, 𝑥𝑣
(2)

 , … . . , 𝑥𝑣
(𝑁)

}                (10) 

 

The relevant class label sequences 𝑌𝑡 and 𝑌𝑣 were 

employed in these sets are expressed in below Eqs. 

(11) and (12) 

 

𝑌𝑡 =  {𝑌𝑡
(1)

, 𝑌𝑡
(2)

 , … . . , 𝑌𝑡
(𝑀)

}            (11) 

 

𝑌𝑣 =  {𝑌𝑣
(1)

, 𝑌𝑣
(2)

 , … . . , 𝑌𝑣
(𝑁)

}            (12) 

 

To effectually reduce cross-entropy using loss 

function and fit distribution p(y) in Eq. (13), 

 

𝐿𝐸 =  −
1

𝑁
 ∑ log(𝑝(𝑦𝑖))𝑁

𝑖=1              (13) 

 

Where, number of instances is denoted as N, in 𝑦𝑖 

classes are shown in either (𝑦0) of negative classes or 

( 𝑦1)  of positive classes. From a mathematical 

respective Eqs. (14) and (15), 

 

𝑦𝑖 = 1 ⟹ log(𝑝 (𝑦𝑖))                (14) 

 

𝑦𝑖 = 0 ⟹ log(1 − 𝑝 (𝑦𝑖))             (15) 

 

As a result, the loss function of binary cross- 
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entropy is given by the following Eq. (16), 

 

𝐿𝐸 =  −
1

𝑁
 ∑ 𝑦𝑖 . log(𝑝(𝑦𝑖))

𝑁

𝑖=1

 

+ (1 −  𝑦𝑖) .  𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖))           (16) 

 

Through a 16 validation batch size and a training 

batch size of 32, training images received 

spontaneous argumentations along the Image Data 

Generator class. Training a step size of 32 was used 

throughout the model’s 300 epochs of training. The 

basic rule of thumb was used to determine the step 

size, which is to multiply the result of dividing, the 

quantity in the dataset separated by batch size by a 

positive value larger than one, often to explain 

argumentations. The step size of validation was 

determined similarly and started to be 4 steps. The 

learning rate was initially set to 103 and Adam 

optimizer was the name of the optimizer that was in 

use from the library of Kera’s optimizers. For the first 

instant (beta 1), the exponential decay rate value was 

0.9, and for the moment of a second (beta 2), its value 

was 0.999. The exponential decay rate needs to be 

near 1.0 for issues that are indicated by a gradient 

sparse, such as computer vision. A cloud-based 

Tensor Processing Unit (TPU) device needed 5460 

seconds, or about 1.5 hours, to complete training 

procedure. The performances are evaluated using the 

below-mentioned Eqs. (17) -(23), 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

 
𝑁𝑜.𝑜𝑓 𝑡𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑜.𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝑁𝑜.𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
× 100   (17) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

 
𝑁𝑜.𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑜.𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑁𝑜.𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
× 100   (18) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

 
𝑁𝑜.𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑜.𝑜𝑓 𝑡𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑁𝑜.𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
              (19) 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 × 100                 

                             (20) 

 

𝑀𝐶𝐶 =  
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
× 10  (21) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100            (22) 

 

      𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (23) 

 

4.1 Quantitative analysis 

Tables 2-4 show improved performance analysis 

in terms of precision, sensitivity, specificity, 

accuracy, and MCC real and optimized feature 

selection without the need for augmentation. Table 2. 

Represents simulation outcomes of MSVM by 

different classifiers for PPMI dataset. Figs. 3 and 4 

represent quantitative analysis of several classifiers’ 

actual and optimized feature selection for the dataset 

of PPMI. 

In comparison to classifiers optimized feature 

selection, those on PPMI dataset had highest 

performance metrics. Results of MSVM, simulations 

employing PPMI database with various classifiers are 

shown in Table 2. Implemented MSVM is compared 

to DNN (Deep Neural Network), NN (Neural 

Network), RNN (Recurrent Neural Network), and 

GAN (Generative Adversarial Network) in terms of 

precision, accuracy, sensitivity, specificity, and MCC. 

In comparison with other classifiers, outcomes 

attained reveal that implemented MSVM achieves 

highest   values   with   a   sensitivity   of   98.90%,  a
 

 

Table 2. Simulation results of MSVM by varying the classifiers for the PPMI dataset 

Optimized Feature selection results 

Methods Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

MCC 

(%) 

F1-score 

(%) 

Recall (%) 

NN 91.70 90.55 93.25 92.33 88.71 87.21 85.93 

RNN 93.34 94.20 95.66 93.75 93.43 92.47 93.33 

GAN 93.30 93.29 90.99 92.48 90.95 91.63 94.58 

DNN 91.90 95.0 93.25 94.15 91.65 90.74 92.79 

MSVM 98.60 98.90 98.52 98.90 96.87 98.90 99.60 

Actual Feature selection results 

NN 89.99 88.55 90.49 89.94 87.53 85.62 84.21 

RNN 91.50 89.66 91.86 91.77 90.45 90.35 91.90 

GAN 92.98 91.55 94.78 93.85 91.05 89.77 93.12 

DNN 94.40 92.75 95.66 95.85 93.21 89.56 90.41 

MSVM 96.3 96.6 96.5 96.99 95.53 97.20 97.80 
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Table 3. PPMI dataset comparison using the IMPA optimization method 

Optimized feature selection IMPA optimization method comparison 

Methods Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

MCC 

(%) 

F1-score 

(%) 

Recall (%) 

EBM 86.98 85.86 87.24 81.60 87.39 88.87 90.98 

CNN 84.44 86.76 84.25 84.56 87.20 90.54 92.48 

AlexNet 96.33 93.25 94.56 94.92 95.07 91.20 93.81 

MLDS 96.15 91.00 96.03 95.14 94.38 94.79 95.30 

IMPA 98.60 98.90 98.52 98.90 96.87 98.90 99.60 

Actual feature selection IMPA optimization method comparison 

EBM 86.18 85.79 86.25 81.14 87.99 87.10 89.60 

CNN 84.17 84.69 85.06 83.59 87.38 89.56 91.48 

AlexNet 95.21 93.03 92.14 95.59 91.38 90.99 92.73 

MLDS 93.17 90.69 92.89 94.83 95.50 93.61 94.40 

IMPA 96.3 96.6 96.5 96.99 95.53 97.20 97.80 

 

 
Table 4. Performance evaluation of the PPMI dataset’s K-fold validation 

K-fold 

values 

Sensitivity 

(%) 

Accuracy (%) Precision (%) Specificity (%) MCC 

(%) 

F1-score 

(%) 

Recall 

(%) 

4-fold 94.59 96.09 93.21 94.68 95.71 94.50 95.87 

5-fold 98.90 98.60 98.90 98.52 96.87 98.90 99.60 

7-fold 93.53 95.89 92.20 94.41 95.35 94.63 94.90 

9-fold 93.27 95.46 94.67 93.35 94.54 93.99 95.60 

10-fold 92.82 96.57 95.88 92.44 91.96 92.74 96.71 

 

 

precision of 98.90%, accuracy of 98.60%, a 

specificity of 98.52%, MCC of 96.87%, F1-score of 

98.90%, and recall of 99.60% 

Among multi-objective optimization methods 

used to optimize the IMPA are Explainable Boosting 

Machine (EBM), Convolutional Neural Network 

(CNN), AlexNet, Mixture of Linear Dynamical 

Systems (MLDS) with the selected features obtained 

on the PPMI dataset. PPMI dataset comparison using 

the IMPA optimization method is shown in Table 3. 

When compared to resultant parameters acquired 

from other optimization methods, the findings of the 

observation, show that the approach has selected 

IMPA best set for MSVM to perform at its better 

phase.  

K-fold validation divides dataset into k subsets or 

folds to evaluate predictive models. Model is trained 

and estimated k times, employing a various fold 

serving as validation set every time. Performance 

metrics from every fold are averaged to evaluate 

generalization performance of model. This model 

facilitates model evaluation and selection by giving a 

more reliable measure of a model’s effectiveness. 

Each fold set training and test would be executed 

precisely once during this whole process and it assist 

to prevent overfitting. To achieve k-fold validation, 

the dataset is divided into three sections: training, 

testing, and validation. The training and testing 

datasets are divided into 80:20. When the dataset is 

into 5 folds and the testing and training processes are 

done, k=5 results in the model’s highest values. Table 

4 shows performance evaluation of PPMI dataset’s k-

fold validation. 

4.2 Comparative analysis 

In this section, existing and implemented 

methods’ comparative analysis is shown in Table 5. 

A Machine Learning Detection of PD on DaTSCAN 

Imagery using Multi-kernel Support Vector Machine 

as proposed model was determined accurate and has 

a better classification rate, making them suited for 

accurately classifying trustworthy, and Parkinson’s 

FImethod of MSVM using PPMI dataset. Compared 

with other existing methods of EBM [15], LGBM, RF 

[16], Bayesian CNNs [17], CNN [18], CNN+RLF 

[22], and EfficientNet-B0, MobileNet-V2 [23] and 

the implemented method of MSVM using the PPMI 
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Table 5. Comparative Analysis 

Author Method Accuracy 

(%) 

Precision Sensitivity Specificity F1-score Recall 

Alessia Sarica [15] Explainable 

Boosting Machine 

(EBM) 

 

88 

N/A N/A N/A N/A N/A 

Muhammad Junaid 

[16] 

 RF 94 90.39 N/A N/A 90.06 92.58 

Juan E. Arco [17] Bayesian CNNs 95.31 94.83 94.36 95.76 94.87 N/A 

Mahmood Nazari 

[18] 

CNN 96 93 N/A N/A 94 90 

Ankit Kurmi [22] CNN+FRLF 98.45 98.84 98.84 97.67 98.84 N/A 

Hajer Khachnaoui 

[23] 

EfficientNet-B0, 

MobileNet-V2 

98.47 97.51 N/A N/A 98.51 99.54 

Proposed method MSVM 98.60 98.90 98.90 98.52 98.90 99.60 

 

 

dataset achieves 98.60% of classification accuracy. 

5. Conclusion 

The research effectively detects the early 

Parkinson’s disease and builds confidence in use of 

CAD in medicine. This research implemented the 

multi-kernel support vector machine for PD detection 

on DaTSCAN image. This work involves fives steps, 

which are initially the PPMI datasets were utilized for 

collecting the PD data.  Secondly in pre-processing 

step, normalization was utilized to ensure that the 

deep learning model maintained its high degree of 

performance generalization even after multiple 

training iterations. Third, feature extraction was done 

using the VGG-16, and AlexNet to classify 

Parkinson’s illness. Fourth, Improved Marine 

Predictor Algorithm (IMPA) utilized for feature 

selection to select the significant features from 

extracted features. At last, a predicted classification 

of Parkinson’s cases and healthy controls is generated 

using the MSVM model to improve overall final 

output of classification method. When compared to 

existing methods like EBM [15], LGBM, RF [16], 

Bayesian CNNs [17], CNN [18], CNN+RLF [22], 

and EfficientNet-B0, MobileNet-V2 [23] the 

implemented MSVM method achieved high accuracy 

of 98.60% using PPMI dataset. On the basis on these 

results, future studies can employ a bigger dataset 

with the less amount of class imbalance. 

 

Notation 

symbol Description 

𝜇 Mean value 

𝜎 standard deviation 

U uniform distribution 

𝑋𝑖 current solution 

𝑙𝑏 and 𝑢𝑏 lower and upper bounds 

𝑟1 and 𝑟2 uniform random number 

𝑚 midpoint of the current search space 

𝑍1, 𝑧2 dot product of the two vectors 

𝛼 Slope 

𝑑 intercept constant 

𝑌𝑡 and 𝑌𝑣 relevant class label sequences 

𝑋𝑡 sequence of images to train 

N number of instances 

𝑦0 negative classes 

𝑦1 positive classes 
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