
Received: April 14, 2024. Revised: June 16, 2024. 118

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.11

HSSAGWO Scheduler for Efficient Task Scheduling in an IaaS Cloud

Computing Environment

Javid Ali Liakath1 Pradeep Krishnadoss2* Manikandan Nanjappan3 Bhavana Sivadas2

1St. Joseph’s Institute of Technology, Chennai, Tamil Nadu, India

2Vellore Institute of Technology, Chennai, Tamil Nadu, India
3SRM Institute of Science and Technology, Chennai, Tamil Nadu, India

* Corresponding author’s Email: pradeep.k@vit.ac.in

Abstract: Innovations in cloud technology over the recent years have shown tremendous growth. Apart from the need

to possess a basic internet connection, another major hiccup for researchers in cloud computing is load balancing. It

refers to the way resources are distributed and tasks are performed to achieve the most optimal utilization. Effective

load balancing provides more user satisfaction. There are many algorithms developed to tackle the challenge of Load

Balancing. An attempt is made in this paper to provide solution to this issue by developing an optimization technique

that efficiently regulates the scheduler in assigning tasks to cloud resources such that optimal results are obtained. A

hybridized Sparrow Search Algorithm – Grey Wolf Optimizer (HSSAGWO) had been proposed to optimize the task

scheduling activity in cloud. The exploration and exploitation activities that are a part of original algorithms have been

refined to achieve better performance in the proposed HSSAGWO algorithm. The performance efficiency of

HSSAGWO algorithm had been ascertained by comparing it with Sparrow Search Algorithm (SSA), Grey Wolf

Optimizer (GWO), Gravitational Search Algorithm (GSA), and Particle Swarm Optimization (PSO). Simulated

experiments had been conducted using Cloudsim 3.0 tool for obtaining the results. The performance comparison had

been carried out by considering the makespan, cost and response time parameters. The proposed HSSAGWO technique

had produced an improvement of 9.31%,12.23%,15.55% and 17.95% for makespan when compared with SSA, GWO,

GSA and PSO algorithms respectively when arrival rate is 10.

Keywords: Cloud computing, Scheduling, Makespan, Cost, Response time.

1. Introduction

One of the most active fields right now is Cloud

computing. The Internet is the major factor that it

depends on. Prime companies like Google, Amazon,

and Microsoft support this model. Both hardware and

software are used as computer resources (internet-

based provision). Users pay for the services; they

receive the information and services via mobile

devices or computers very easily [1-4].

To assign all the processes and to handle the tasks

efficiently, load balancing comes into play. This is

done to maximize the rate of resource productivity.

E.g.: processor load, the used memory, delays, or

network load [5-8]. The efficiency is dependent on

the load of the virtual machines. The system’s

performance is based on how well it distributes the

demands among its resources i.e., the target is to

deliver optimal quality of service (QoS).

NP-complete problems constitute those that

involve tasks to be scheduled in real time on

distributed platforms. Meta-heuristics come handy

when abundant tasks get executed in the cloud

avoiding any untoward happenings and to achieve

better cloud performance. [9-11].

An efficient scheduling technique had been

proposed in this work that is based on the GWO and

SSA algorithms. These two algorithms, as

individuals perform well under minimum

requirements for fitness equation formulation and

optimization. Both have high probability of getting

stagnated under local optima and could not balance

between the exploration and exploitation process to

Received: April 14, 2024. Revised: June 16, 2024. 119

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.11

identify the global optima. Hence hybridization is a

preferred solution resulting in the formation of a

potent optimization technique, especially for task

scheduling activities in cloud.

SSA imitates the hunting behaviour of sparrows

in arriving solutions to optimization type of problems.

Though SSA is arguably the best for its search

accuracy, faster convergence, higher stability and

robustness, at farther stages of convergence it

becomes flat and gets stagnated in local optima owing

to its weaker exploitation technique. Thus, there are

more chances of finding a non-ideal optimal global

solution.

The original GWO had been widely practised by

researchers for optimization problems. GWO

emulates the hunting and dominating characteristics

of grey wolves. Though widely preferred for its

simplicity and ease of deployment, it too can become

a victim of local optima due its poor exploration

technique employed. This fact could be easily

identified when GWO is applied for complex

problems with multidimensional and unimodal

attributes.

Hence, in this work we had integrated the original

SSA and GWO to attain faster convergence while

churning out optimal solution and maintain balance

between the exploration and exploitation activities.

The objectives of this research had been listed out

below.

A Hybrid Sparrow Search Algorithm – Grey

Wolf Optimizer (HSSAGWO) had been proposed to

enhance the task scheduling performance in cloud.

A fitness function has been formalized by

considering makespan, cost and response time QoS

parameters.

Simulated experiments had been carried out using

the Cloudsim 3.0 tool. The superiority of the

proposed HSSAGWO had been ascertained by

comparing its performance with SSA, GWO, GSA

and PSO algorithms.

This research paper has been structured as

follows: Section 2 handles the related literature.

Section 3 throws light upon the proposed model and

QoS parameters considered. Sections 4, 5 and 6

describe the features of Sparrows, Wolves and their

mathematical modelling, and subsequent

hybridization. Section 7 depicts the simulation

experiment set-up and results obtained. Section 8

concludes the paper by providing tips for future

expansion.

2. Related work

Researchers over the years had carried out

numerous enhancements that accounted for the

performance efficiency of the cloud environment. All

such enhancements focussed on optimizing various

QoS parameters. Cloud environment is evolutionary,

where improvisation can be attained continuously by

integrating existing multi-heuristic algorithms in

such a way that the disadvantage of one algorithm is

overturned by the advantage present in the other.

[12] Authors had come up with a new Particle

Swarm Optimization-Bandwidth Aware divisible

Task (PSO-BATS) that is scheduled with Multi-

Layered Regression Host Employment (MLRHE) for

reducing the complexity involved in the scheduling

operation and balances the load effectively. However,

while this method addresses several core issues, it

still requires further validation in real-world

scenarios to fully assess its scalability and

adaptability to unpredictable cloud behaviour.

[13] Optimal resource consumption can be

enforced through a variety of algorithms like

Artificial Bee Colony, Genetic Algorithms, Bacteria

Foraging, etc. Though they work well, there are

certain limitations to each one of them. An EBGO

algorithm is proposed to address these limitations by

considering QoS parameters like cost, energy

consumed, processing time, and response time.

Despite their effectiveness, these algorithms tend to

struggle with complex and dynamic load variations,

often leading to inefficient resource utilization and

potential increases in operational costs.

[14] A scheme named Resource and Deadline

Aware Dynamic Load-Balancer (RADL) for Cloud

had been proposed. The proposed technique works to

make sure that all the tasks are executed within the

deadline and that the new tasks added are

accommodated. Task dismissal is minimized by

implementing RADL. However, this method lacks

support for dynamic, SLA-aware scheduling, crucial

for linked tasks or those needing quick adjustments.

RADL can also increase overhead for urgent new

tasks, reducing system efficiency.

[15] A new artificial algorithm is brought about

which helps in solving the problem of energy

consumption. This is called deep reinforcement Q-

learning. Terms like time, cost analysis, make-span,

load balance, and deadline overflow are taken into

consideration for comparative analysis. However,

this technique is good but the training time for these

models can be lengthy, impacting their practical

deployment.

[16] A novel algorithm called Dual Conditional

Moth Flame Algorithm (DC-MFA) has been

introduced to achieve optimization and load balance.

This concept considers multi-objective functions and

hence looks into factors like make-span, CPU

utilization, cost of resources, migration, security, and

Received: April 14, 2024. Revised: June 16, 2024. 120

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.11

consumption of energy. However, DC-MFA's

effectiveness in environments with rapidly changing

conditions may be limited due to its dependence on

predetermined multi-objective functions.

[17] The Priority Based Load Balancing

algorithm can be optimized by splitting the entire task

prioritizing activity into four sub-activities. These

include the allocation of tasks without starvation,

moving the tasks to the dispatcher, re-arranging the

order of tasks inside the queues and mapping them to

appropriate virtual machines (VMs). While the

effectiveness of this algorithm is contingent upon the

precise coordination of these sub-activities and their

adaptive responses to dynamic cloud environments.

[18] Load balancing aims to even out the

overloaded and under-loaded nodes. An algorithm

called Paired-Tree Algorithm is introduced to

improve load balancing by making the performance

of make-span and migration more efficient. However,

further research is required to evaluate the scalability

of the Paired-Tree Algorithm across diverse cloud

computing environments and larger datasets.

[19] The authors had minimized the energy

consumption and scheduled tasks with maximum

computational load. The proposed Dynamic Replica

model is found to have a more balanced storage space

compared to other algorithms. However- the efficacy

of the Dynamic Replica model is constrained by the

initial configuration of the system and may not adapt

well to rapid changes in task priorities or network

conditions.

[20] The proposed Capacity Allocation algorithm

lowers the total execution cost using joint load

balancing. This algorithm had produced optimal

results with minimal QoS. Despite its efficiency, the

algorithm's performance may degrade under dynamic

or unpredictable QoS demands.

[21] The authors had introduced a new algorithm

namely Multi-Objective Service Brokering with

Availability-Based Load Balancing (MOSB-ALB) to

reduce cost and response time parameters. There are

two ways of selection in MOSB-ALB. MOSB-ALB

proves to surpass a few other cloud services in terms

of minimized monetary cost and response time.

However, the MOSB-ALB algorithm, while effective

in improving cost efficiency and response times, may

exhibit limitations in scalability and performance

under varying cloud conditions and workloads not

extensively discussed in this study.

[22] The authors had introduced an algorithm

based on machine learning for balancing the load on

the host machines (HMs). A learning agent receives

a reward depending on the optimizing factor of its

solution after execution. This helps the learning agent

to keep training and testing till it reaches the most

optimal solution. This algorithm has boosted the

inter-HM load balance. Despite the algorithm's

success in improving load balance, its dependency on

continuous rewards and potentially high

computational overhead could limit its practical

application in environments with dynamic or

unpredictable workloads.

[23] HDCBS is a task-scheduling model that

looks into task sequencing and other factors like cost

and load balancing. In HDCBS, queuing theory is

implemented to get minimal the waiting time and

response time. However, the practical

implementation of HDCBS may face challenges in

diverse cloud environments where dynamic factors

and real-time changes in task characteristics can

impact overall effectiveness. Authors [28-35] had

suggested various optimized solutions for local

search operations that were based on metaheuristics.

3. The proposed model

The performance of cloud depends on how it

handles a large number of user requests. Resource

sharing must be fair and efficient. Load balancing is

one major challenge that cloud computing faces.

There are various algorithms developed for solving

this problem of load balancing. Our goal is to provide

a good QoS using a suitable algorithm that also

targets a minimum cost and response time. The

objective function of the proposed algorithm is

shown below:

Objective function =

∑ Ti
m
i=1 (

α ∙ Makespan +
 β ∙ Cost + γ. Response Time

) (1)

Statement of the problem

Let n be the number of physical machines or any

one machine having M number of virtual machines.

Then cloud C will be:

C = {PhysicalMachine 1,
PhysicalMachine 2PhysicalMachine N} (2)

A physical machine will have multiple virtual

machines and that is represented as follows:PMn =

{VirtualMachine1, VirtualMachine2, VirtualMachine M }
The user function can be represented as follows:

Ui = {T1, T2 … } (4)

We need to lower the costs and energy and

increase resource exploitation and Quality of Service

(QoS) for achieving optimal load balancing, failing

Received: April 14, 2024. Revised: June 16, 2024. 121

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.11

which the cloud performance degrades. We hence

propose a solution developed using the SSA & GWO

algorithms. This system is represented in Fig. 1.

The parameters of service quality

The major factors that are vital in ensuring good

QoS are make-span, cost and response time. The

tasks are represented as {T1, T2, T3, …, Tn} where

the items are dependent. The VMs are represented as

{VM1, VM2, VM3, …, VMm} where the items are

independent.

Execution Time: Let the time taken to process a

task be:

A1
T =

1

Pmax
C × N

∑ djl×ejl

q
j=1 (5)

In the equation given above, Pmax
C stands for the

maximum processing capacity, N represents the

number of tasks, djl represents the distribution matrix

and ejl stands for the execution time.

Table 1. Notation used in HSSAGWO algorithm

Notations Description

Ei Time taken by a user per VM.

Ruk
Number of requests collected from the

user

PMi Physical machine i 1 i  n

VM Virtual machine

Pmax
C Maximum processing capacity

N Represents the number of tasks,

djl Distribution matrix

ejl Execution time

Vi
Vi represents the cost of each virtual

machine

Figure. 1 Task Scheduling Architecture of HSSAGWO

Received: April 14, 2024. Revised: June 16, 2024. 122

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.11

Cost

It is defined as the money that a user pays for a

virtual machine for each request sent. It is computed

based on the factors of memory, processes, the

bandwidth and the VMs that have been utilized. The

equation is as follows:

Cost = ∑ Vi × Ei
N
i=1 (6)

In this equation, N stands for the number of VMs,

Vi represents the cost of each virtual machine and Ei

is the time taken by a user per VM.

Response Time

It is defined as the scope of a service to be able to

fulfil its requirement for a particular time period,

under any circumstances. The equation is as follows:

RARK =
WRk

Ruk
 (7)

In this equation, Ruk represents the number of

requests collected from the user, and WRk represents

the work sent to Rk. This work is reallocated and is

computed in milliseconds.

4. Proposed mathematical model and

algorithm (SSA)

The Sparrow Search Algorithm is inspired from

the behaviour of sparrows and hence its name. The

sparrows possess high levels of energy reserves,

identifying and spotting areas with plentiful food

sources [24]. This efficiency is dependent on the

fitness of each individual.

(i) When a sparrow sees its predator, it will start

chirping to warn its flock. If the warning is

more than the safety threshold, then they will

follow the producers to a safe location.

(ii) The two levels in a flock are scroungers and

producers. Each of the scroungers can turn

into a producer depending on the food

sources that it finds. Yet, the percentage of

producers and scroungers will remain

constant.

(iii) Producers have higher levels of energy than

the scroungers. The scroungers fly to

different locations for food because of

starvation.

(iv) Producers are the leaders in a flock and the

ones that provide the most efficient food

source are followed by the scroungers.

(v) The sparrows in the middle walk closer to

others in the flock, whereas the ones at the

edge will move to the safe area to protect

themselves from danger.

For our computation, we’ll take virtual sparrows

that search and find food. The matrix given below

describes the location of the sparrows.

A = [

a1,1 a1,2 a1,b

a2,1 a2,2 a2,b

an,1 an,2 an,b

] (8)

In this equation, b indicates the variables’

dimension and n indicates the sparrow count. The

value of b has to be optimized.

Efficiency is determined by assessing the fitness

measure of the sparrows, as shown below:

Ga = [

g([a1,1 a1,2 a1,b])

g([a2,1 a2,2 a2,b])

g([an,1 an,2 an,b])

] (9)

In this equation, n stands for the number of

sparrows, each row in Ga gives the fitness value of

each individual sparrow. We need to look for those

producers that have better fitness according to SSA.

They will have more priority to get food, and also,

they are in charge of the entire flock. Hence, the

producers have a larger scope of searching.

The producer’s position is updated from rules (i)

and (ii). The equation is as given below:

ai,j
t+1 = {

ai,j
t . exp (

−i

α.imax
) if Al2 < Th

ai,j
t + R.M if Al2 ≥ Th

 (10)

In this equation, t stands for the current iteration,

the value of j is 1, 2, …, d. ai,j
t is the measure in the

jth dimension of the ith sparrow while carrying out

the tth iteration and imax denotes a constant value

holding the maximum number of iterations. α is a

random number in the range of [0, 1]. Al2 and Th

indicate the alarm value and the safety threshold,

where Al2 has a value in between 0 and 1and Th is

assigned a value in between 0.5 and 1.0. R denotes a

random value that follows a normal distribution. M

represents a matrix of dimension, 1 x d which has

elements ‘1’.

When there aren’t any predators, that is Al2 < Th,

the producer goes into wide search mode. If a sparrow

detects the predator, that is Al2 ≥ Th, then the flock

will fly to other safe location.

Some scroungers fight for food. If they win, they

get the producer’s food and continue with rule (v).

The scrounger updates its location with the equation

given as follows:

Received: April 14, 2024. Revised: June 16, 2024. 123

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.11

ai,j
t+1 = {

R. exp (
aworst
t −ai,j

t

i2
) if i > n/2

ap
t+1 + |ai,j

t − ap
t+1| . Z+. M otherwise

 (11)

In this equation, ap denotes the optimal position

occupied by the producer. aworst stands for the

present global worst location. Z represents a matrix

of dimension 1 x d that has elements of either ‘1’ or

sometimes ‘-1’, and Z+ equals ZT (ZZT)-1.

When i value is greater than n/2, then it indicates

that the ith scrounger is starving because of very bad

fitness value and needs to fly to other location.

‘otherwise’ case indicates that the sparrow seeking

for food is closer to the best location.

We are assuming that the sparrows that are

knowledgeable of the danger constitute 10-20 % of

the flock. The mathematical equation for their initial

positions based on rule (v) is as follows:

ai,j
t+1 = {

abest
t + β. |ai,j

t − abest
t | if gi > gf

ai,j
t + S. (

|ai,j
t −aworst

t |

(gi−gw)+ε
) ifgi = gf

 (12)

In this equation, abest is the present global optimal

location and β denotes the step size control factor

having normal distribution of randomized numbers,

with an average value of 0 and a variance measure of

1. S is a just a random number in the range of −1 and

1. gi denotes the fitness measure of the present

sparrow. gf and gw represent the current best and

worst measures of fitness globally. To overcome zero

division error, the constant ε is included.

When gi > gf, the sparrow is positioned at the edge

amongst others. abest is the safest position, usually at

the centre. If gi = gf, then it indicates that the sparrow

at the middle needs to move closer to the others to

protect itself. Step size control coefficient and

direction-determining factor of the sparrow is S.

The mutation technique implemented in the

sparrow search algorithm impacts the speed and

convergence accuracy. Even though this algorithm

performs well to resolve intricate optimization

problems, it has shortcomings in the form of reduced

population range and fails in achieving accurate

convergence. There are more chances of it to falling

into the local optima, thereby the solution produced

may not be always optimal.

5. Grey wolf optimization

Grey wolf, referred by the zoological name Canis

Lupus are generally apex type of predators for being

on top of their food chain [25]. They live in a packed

habitat, with groups ranging from 5 to 12 on an

average. They are led by both a male and female

denoted by the name alphas that are responsible for

making important decisions pertaining to hunting,

leisure location, waking up time and other day to day

happenings. The decision of alphas is upheld in the

group with every other wolf showing its acceptance

by keeping their tail down.

Beta variants are the second level in the group

hierarchy. They assist their leaders, the alphas in

making better decisions and other group management

activities. They pass on the commands of the alpha to

the group and provide advice to their superior alpha.

The lowest in the hierarchy are the omega

variants. They always remain non-dominant amidst

their gatherings and usually made as scapegoat. Delta

types are the ones that obey the alpha and beta but

remain dominant against omegas. The scout, sentinel,

elder, hunter and care taker are a few varieties falling

under this category.

Apart from the hierarchy they possess, prey

hunting behaviour of the grey wolves can be

categorized into three phases namely - tracking,

chasing and approaching. The wolves continuously

pursue, encircle and harass their prey and bring it to

stationary mode, before launching their attack. In our

proposed work, the hunting technique of these grey

wolves and their social hierarchy had been

mathematically modelled for designing the GWO

operation and optimization purposes.

5.1 Mathematical modelling and proposed

algorithm

The characteristic features of grey wolves like

their social hierarchy, tracking, encircling and attack

on prey had been mathematically modelled in this

subsection.

5.1.1. Social hierarchy

The social hierarchy exhibited by the grey wolves

had been mathematically modelled by fixing the

solution provided by alpha (a) as the fittest one. The

solutions produced by beta (b) and delta (d) are

regarded as second and third best, respectively. Other

candidate solutions produced are categorized under

the omega (x). While optimizing the hunting section

of the GWO algorithm a, b and d are taken into

account. The x category follows a, b and d type of

wolves.

5.1.2. Prey encircling

While hunting, grey wolves encircle their prey

and the same can be mathematically modelled using

the equations shown below:

Received: April 14, 2024. Revised: June 16, 2024. 124

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.11

A⃗⃗ = |P⃗⃗ . Y⃗⃗ p(t) − Y⃗⃗ (t)| (13)

Y⃗⃗ (t + 1) = Yp(t) − B⃗⃗ . A⃗⃗ (14)

Where t indicates the current iteration and B⃗⃗ , P⃗⃗
are coefficient vectors, the position vector of the prey

is indicated by Y⃗⃗ p and Y⃗⃗ indicates the grey wolf’s

position vector. Values of B⃗⃗ , P⃗⃗ could be determined

through equations shown below:

B⃗⃗ = 2b⃗ . x1⃗⃗ ⃗ − b⃗ (15)

P⃗⃗ = 2. x2⃗⃗⃗⃗ (16)

Where x1 and x2 are random vectors, whose

values are in the range [0, 1] and the value of b⃗ gets

linearly decreased from 2 to 0 during each iteration.

A 2D position vector, along with a few

neighbouring positions could be deduced from Eqs.

(13) and (14). It can be seen that a grey wolf updates

its initial position (X, Y) to a new location with

respect to the prey’s position (X*, Y*). The values of

B⃗⃗ and P⃗⃗ can be adjusted to obtain different locations

that are closer to the best agent, that are easily

reachable from the present location. Like for instance,

by fixing the values of B⃗⃗ to (0, 1) and P⃗⃗ to (1, 1), a

new location (X*–X, Y*) can be reached. Eqs. (15)

and (16) depict the various likely (updated) locations

of the grey wolf in a 3D space. The wolves can

change their present location to any random position

arrived between the points that could be deduced

using Eqs. (13) and (14) with the help of random

vectors x1 and x2. Hence the grey wolves update their

present position to any random position around the

prey using Eqs. (13) and (14). An identical ideology

could be applied to a search space of n dimensions,

where the grey wolves’ movement could likely be

hyper-cubical or hyper-spherical type, towards the

best solution that has been deduced till now.

5.1.3. Hunting

Alpha variety of grey wolves lead the hunting

activity which could also involve the participation of

beta and delta varieties occasionally. When the search

space is deemed to be abstract, the optimum location

of the prey is usually unknown. The hunting

behaviour of grey wolves could be mapped

mathematically, alpha (top candidate solution), beta

and delta are expected to be familiar with the prey’s

location. The first three best solutions obtained till

now are marked as reference, that are in turn used for

instructing the other search agents (including omega

variety) to adjust their present location in accordance

to the best search agent’s location. To model these

activities mathematically, following equations have

been proposed:

Aa
⃗⃗ ⃗⃗ = |B1

⃗⃗⃗⃗ . Ya
⃗⃗ ⃗ − Y⃗⃗ |, Ab

⃗⃗ ⃗⃗ =

|B2
⃗⃗ ⃗⃗ . Yb

⃗⃗⃗⃗ − Y⃗⃗ |, Ac
⃗⃗⃗⃗ = |B3

⃗⃗ ⃗⃗ . Yc
⃗⃗ ⃗ − Y⃗⃗ | (17)

Y1
⃗⃗ ⃗ = Ya

⃗⃗ ⃗ − P1⃗⃗ ⃗. (Aa
⃗⃗ ⃗⃗), Y2

⃗⃗⃗⃗ =

Yb
⃗⃗⃗⃗ − P2

⃗⃗ ⃗. (Ab
⃗⃗ ⃗⃗), Y3

⃗⃗⃗⃗ ⃗ = Yc
⃗⃗ ⃗ − P3

⃗⃗ ⃗. (Ac
⃗⃗⃗⃗) (18)

Y⃗⃗ (t + 1) =
Y1
⃗⃗ ⃗ + Y2

⃗⃗⃗⃗ + Y3
⃗⃗⃗⃗

3
 (19)

The above equations convey how a search agent’s

location gets updated with respect to alpha, beta and

delta varieties in the 2D search space. The final

location is found at a random location within a circle

that gets set according to the locations of alpha, beta

and delta wolf varieties in the search space. That is,

the prey’s position is deduced by the alpha, beta and

delta categories and the other varieties update their

present position randomly around the prey.

5.1.4. Prey attacking (Exploitation)

As soon the prey ceases its movement, the grey

wolves launch their attack on it. Mathematically this

behaviour could be modelled by decreasing the

measure of b⃗ . It is to be noted at this juncture that the

variation range of B⃗⃗ too gets decreased by b⃗ . Or more

precisely, when the random value of B⃗⃗ is in the range

[-2b, 2b], b⃗ gets decreased from 2 to 0 for each

iteration performed. When the random values of B⃗⃗
are at [1, 1], the new position taken up by the search

agent could be anywhere between its present and the

position of the prey. When |B| < 1, the wolves launch

their attack on the prey. The operators defined in the

GWO algorithm permits the search agents to adjust

their respective positions in accordance to the

positions of alpha, beta and delta wolf varieties and

carry out their attack on the prey. In spite of these

operators present, the GWO algorithm gets stagnated

in local solutions. Though the encircling process

described promisingly describes the exploration task

to few extents, more operators are still required in

GWO to describe the exploration task in a more

comprehensive manner.

Received: April 14, 2024. Revised: June 16, 2024. 125

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.11

5.1.5. Search for prey (exploration)

Searching of prey by the grey wolves is

coordinated mainly in accordance to the positions of

alpha, beta and delta wolf varieties. Even though they

get swerved during searching, while attacking they

get together. This swerving activity can be

mathematically modelled by assigning random

values to B⃗⃗ which could be either greater than 1 or

lesser than -1 to describe the swerving feature of the

search agent. This adjustment leads to accentuating

the exploration activity thereby favouring GWO to

carry out a global search without getting stagnated

locally. By fixing |B| > 1, the grey wolves get

swerved from the prey in order to locate a healthier

prey. P⃗⃗ is the next component in GWO that assists in

exploration. It could be witnessed from Eq. (14), that

the P⃗⃗ vector has random values in the range [0, 2].

This results in assigning random weights to the prey

to randomly accentuate P > 1 or de-accentuate P < 1

to highlight the impact of prey in describing the

distance in Eq. (11). This makes GWO to exhibit

random behaviour throughout the optimization

process, supporting the exploration task and

significantly avoiding local optima. It has to be noted

that the measure of P is not linearly decreased as that

of B. P is required to deliver random values for

accentuating the exploration task throughout i.e.,

randomization is carried out right from the initial

iteration till the last iteration. Hence the values of P

are of much more important to overcome the local

optima stagnation, particularly during the final

iterations.

The position of sparrows indicated in Eq. (9)

needs to be integrated with the GWO Eq. (15) that

describes the distance, by a new weighing factor ᶲ for

upholding the final deduced values to near optimal

measures. This has been described below:

Aa
⃗⃗ ⃗⃗ = |B1

⃗⃗⃗⃗ . Ya
⃗⃗ ⃗ − ᶲY⃗⃗ |,

Ab
⃗⃗ ⃗⃗ = |B2

⃗⃗ ⃗⃗ . Yb
⃗⃗⃗⃗ − ᶲY⃗⃗ |, Ac

⃗⃗⃗⃗ = |B3
⃗⃗ ⃗⃗ . Yc

⃗⃗ ⃗ − ᶲY⃗⃗ | (20)

The probability factor for adjusting the location

of every agent could then be deduced using the below

equation:

Ω [Y(t + 1) − Y(t)] = |
[Y(t+1)−Y(t)]

√[Y(t+1)−Y(t)]2+1
| (21)

Where Ω is the probability factor. If the value of

[Y(t + 1) − Y (t)] turns out to be positive, the

sparrows succeed in getting the food. On the contrary,

if negative, the sparrows start to swerve far away

from the predators. If the search space is properly

constructed, convergence is quickly achieved.

6. Proposed algorithm:

The specific steps involved in HSSAGWO are

herewith enlisted:

Step 1: Initialize the sparrow search population

and its parameters (total sparrow count n, maximum

iteration imax and the total number of variables, d).

Step 2: Till the condition (t < imax) holds,

sparrows are ranked based on their fitness values. The

current best value that has been assessed is assigned

to the minimum fitness value and the maximum

fitness value will be the current worst value assessed.

Step 3: Update the discoverer sparrow’s position

using Eq. (10).

Step 4: When the value of ith individual in the

ongoing iteration becomes lesser than or equal to the

half of sparrow population, the position of the

follower is adjusted using Eq. (11). Then proceed to

step 9 else, the GWO can be executed.

Step 5: The values of b, B and P are initialized.

Step 6: Deduce the first best, second best and

third best values of alpha, beta and delta wolf

varieties.

Table 2. Simulation Environment

Entity Type Parameters Value

Task Total Number of

Tasks

100-500

 Length [400,1000]MIPS

 File Capacity [200,1000]MB

 Output File

Capacity

[20,40]MB

Host Available

Memory (RAM)

1860 MIPs, 2660

MIPS

 Available

Storage

10 GB

 Available

Bandwidth

100 M/s

Virtual

Machine

Total Number of

VMs

50

 Policy Type Time-shared

 VM RAM

Capacity

512MB

 VMM Type Xen

 OS Linux

 Data center Total Number of

CPUs

1 on each

 Total Number of

Data centers

10

 Total Number of

Hosts

10

Received: April 14, 2024. Revised: June 16, 2024. 126

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.11

Step7: The distance between the wolves and prey

is then deduced by applying Eq. (17). Subsequently

the new position is then deduced by applying Eqs.

(18) and (19).

Step 8: Trade the positions of 3 best wolves with

current sparrows.

Step 9: The position of follower is then adjusted

using Eq. (11). Subsequently, the position of the

investigator too is adjusted using Eq. (12).

7. Result and simulation experiment

A data center is created by implementing

Cloudsim toolkit 3.0 and simulating the experiment.

The table given represents the VM (Virtual Machine)

in the data center and task [26].

7.1 Make-span evaluation (Arrival rate=10 &40)

In this simulation, 100 to 500 tasks are considered

with an arrival time value of 10 in Fig. 3 and an

arrival time value of 40 in Fig. 4 for evaluating the

performance. The performance of the proposed

HSSAGWO had been compared with SSA [24], GSA

[27], PSO [12] and GWO [25] algorithms.

Figure. 3 Makespan for arrival time of 10

Figure. 4 Makespan for arrival time of 40

It could be inferred from the below Figs. 3 and 4

that the proposed HSSAGWO yielded better results

for makespan for both the cases. The proposed

HSSAGWO technique had produced an average

improvement of 9.31%, 12.23%,15.55% and 17.95%

for makespan when the arrival rate is 10 and for

arrival rate of 40 the average makespan improvement

obtained is 2.66%, 5.62%, 7.84% and 10.70%

compared to SSA, GWO, GSA and PSO algorithms

respectively.

7.2 Cost evaluation 200 & 500 tasks

In this simulation, the cost incurred for executing

200 and 500 tasks with varying deadlines ranging

from 10 to 100 had been evaluated. It could be seen

from the below Figs. 5 and 6 that the proposed

HSSAGWO yielded minimum cost for both cases

when compared to SSA, GWO, GSA and PSO

algorithms

7.3 Response time 500 tasks

The below Fig 7 shows the response time

comparison for the proposed HSSAGWO and SSA,

GWO, GSA and PSO algorithms. For the 500 tasks

with varying deadlines that were submitted, the

proposed HSSAGWO had produced an improvement

of 10%, 12.2%, 15.56% and 17.87% for response

time when compared to other algorithms.

Figure. 5 Cost Comparison for 200 tasks

Figure. 6 Cost Comparison for 500 tasks

Received: April 14, 2024. Revised: June 16, 2024. 127

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.11

Figure. 7 Response time comparison

8. Conclusion

The Sparrow Search algorithm and Grey Wolf

Optimization algorithm had been integrated and a

Hybridized Sparrow Search Algorithm – Grey Wolf

Optimizer (HSSAGWO) had been proposed. The

HSSAGWO does not gets stagnated in local optima,

thus exhibiting higher convergence speed and greater

accuracy. The proposed algorithm exhibits optimal

load balancing and excellent performance features

with respect to QoS parameters makespan, cost and

response time when compared to SSA, GWO, GSA

and PSO algorithms, thus making it a viable solution

for task scheduling in cloud environment. The

proposed HSSAGWO technique had produced an

improvement of 2.66%, 5.62%, 7.84% and 10.70%

for makespan when compared with SSA, GWO, GSA

and PSO algorithms respectively when arrival rate is

40. In future, additional QoS parameters can be

included in the fitness equation while deriving the

global optimal solution and the entire experimental

domain can be shifted from simulated environment to

the real cloud environment for evaluating the real

time performance of HSSAGWO.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

“Conceptualization, Pradeep Krishnadoss and

Javid Ali; methodology, Javid Ali; software,

Manikandan Nanjappan; validation, Bhavana

Sivadas; formal analysis, Javid Ali; investigation,

Pradeep Krishnadoss; resources, Manikandan

Nanjappan; data curation, Javid Ali; writing—

original draft preparation, Javid Ali; writing—review

and editing, Bhavana Sivadas; formal analysis, Javid

Ali; investigation, Pradeep Krishnadoss;

visualization, Manikandan Nanjappan; supervision,

Javid Ali”

References

[1] X. Zuo, G. Zhang, and W. Tan, “Self-adaptive

learning PSO-based deadline constrained task

scheduling for hybrid IaaS cloud”, IEEE

Transactions on Automation Science and

Engineering, Vol. 11, No. 2, pp.564-573, 2013.

[2] P. Krishnadoss, N. Pradeep, J. Ali, M.

Nanjappan, P. Krishnamoorthy, and V. Kedalu

Poornachary, “CCSA: Hybrid cuckoo crow

search algorithm for task scheduling in cloud

computing”, International Journal of Intelligent

Engineering and Systems, Vol. 14, No. 4,

pp.241-250, 2021, doi:

10.22266/ijies2021.0831.22.

[3] K. Pradeep, and TP. Jacob, “CGSA scheduler: A

multi-objective-based hybrid approach for task

scheduling in cloud environment”, Information

Security Journal: A Global Perspective, Vol. 27,

No. 2, pp. 77-91, 2018.

[4] K. Pradeep, LJ. Ali, N. Gobalakrishnan, CJ.

Raman, and N. Manikandan, “CWOA: hybrid

approach for task scheduling in cloud

environment”, The Computer Journal, Vol. 65,

No. 7, pp.1860-1873, 2022.

[5] P. Krishnadoss, C. Chandrashekar, and VK.

Poornachary, “RCOA Scheduler: Rider Cuckoo

Optimization Algorithm for Task Scheduling in

Cloud Computing”, International Journal of

Intelligent Engineering and Systems, Vol. 15,

No. 5, pp.1-10, 2022, doi:

10.22266/ijies2022.1031.44.

[6] FS. Prity, MH. Gazi, and KMA. Uddin, “A

review of task scheduling in cloud computing

based on nature-inspired optimization

algorithm”, Cluster computing, Vol. 26, No. 5,

pp. 3037-3067, 2023.

[7] P. Krishnadoss, V. K. Poornachary, P.

Krishnamoorthy and L. Shanmugam,

“Improvised Seagull Optimization Algorithm

for Scheduling Tasks in Heterogeneous Cloud

Environment”, Computers, Materials &

Continua, Vol. 74, No. 2, 2023.

[8] S. Chakraborty, A. K. Saha and A. Chhabra,

“Improving whale optimization algorithm with

elite strategy and its application to engineering-

design and cloud task scheduling problems”,

Cognitive Computation, Vol. 15, No. 5,

pp.1497-1525, 2023.

[9] S. Mangalampalli, G. R Karri and U. Kose,

“Multi Objective Trust aware task scheduling

algorithm in cloud computing using Whale

Optimization”, Journal of King Saud University-

Computer and Information Sciences, Vol. 35,

No. 2, pp.791-809, 2023.

Received: April 14, 2024. Revised: June 16, 2024. 128

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.11

[10] A. Y. Hamed, M. K. Elnahary, F. S. Alsubaei

and H. H. El-Sayed, “Optimization Task

Scheduling Using Cooperation Search

Algorithm for Heterogeneous Cloud Computing

Systems”, Computers, Materials & Continua,

Vol. 74, No. 1, 2023.

[11] P. Pirozmand, H. Jalalinejad, A. A. R.

Hosseinabadi, S. Mirkamali and Y. Li, An

improved particle swarm optimization algorithm

for task scheduling in cloud computing, Journal

of Ambient Intelligence and Humanized

Computing, Vol. 14, No. 4, pp.4313-4327, 2023.

[12] AR. Shaheen, and SS. Kumar, “Tasks

Scheduling in Cloud Environment Using PSO-

BATS with MLRHE”, Intelligent Automation &

Soft Computing, Vol. 35, No. 3, pp.1-16, 2023.

[13] P. Velpula, R. Pamula, “EBGO: an optimal load

balancing algorithm, a solution for existing

tribulation to balance the load efficiently on

cloud servers”, Multimedia Tools and

Applications, Vol. 81, No. 24, pp.34653-34675,

2022.

[14] S. Nabi, M. Aleem, M. Ahmed, MA. Islam, MA.

Iqbal, “RADL: A resource and deadline-aware

dynamic load-balancer for cloud tasks”, The

Journal of Supercomputing, Vol. 78, No. 12,

pp.14231-14265, 2022

[15] J. Uma, P. Vivekanandan, S. Shankar,

“Optimized intellectual resource scheduling

using deep reinforcement Q‐learning in cloud

computing”, Transactions on Emerging

Telecommunications, Vol. 33, No. 5: e4463,

2022.

[16] G. Verma, “Secure VM migration in cloud:

Multi-criteria perspective with improved

optimization model”, Wireless Personal

Communications, pp. 1-28, 2022.

[17] G.Sharma, N. Miglani, and A. Kumar, “PLB: a

resilient and adaptive task scheduling scheme

based on multi-queues for cloud environment”,

Cluster Computing, Vol. 24, No. 3, pp.2615-

2637, 2021.

[18] UK. Sonangeri Pushpavati, DA. D'Mello, “A

tree based mechanism for the load balancing of

virtual machines in cloud environments”,

Journal of Information Technology, Vol. 13,

pp.911-920, 2021.

[19] C. Li, J. Liu, B. Lu, and Y. Luo, “Cost-aware

automatic scaling and workload-aware replica

management for edge-cloud environment”,

Journal of Network and Computer Applications,

Vol. 180, 2021.

[20] D. Ardagna, M. Ciavotta, R. Lancellotti, M.

Guerriero, “A hierarchical receding horizon

algorithm for QoS-driven control of multi-IaaS

applications”, IEEE Transactions on Cloud

Computing, Vol. 9, No. 2, pp.418-434, 2018.

[21] M. A. Khan, “An Effective Low-Cost Cloud

Service Brokering Approach for Cloud

Platforms”, Arabian Journal for Science and

Engineering, Vol. 45, No. 12, pp. 10653-10668,

2020.

[22] A. Ghasemi, A. Toroghi Haghighat, “A multi-

objective load balancing algorithm for virtual

machine placement in cloud data centers based

on machine learning”, Computing, Vol. 102,

pp.2049-2072, 2020.

[23] W. Cai, J. Zhu, W. Bai, W. Lin, N. Zhou, and K.

Li, “A cost saving and load balancing task

scheduling model for computational biology in

heterogeneous cloud datacenters”, The Journal

of Supercomputing, Vol. 76, pp.6113-6139,

2020.

[24] J. Xue, and B. Shen, “A novel swarm

intelligence optimization approach: sparrow

search algorithm”, Systems Science & Control

Engineering, Vol. 8, No. 1, pp. 22-34, 2020.

[25] S.Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey

wolf optimizer”, Advances in Engineering

Softwar, Vol. 69, pp.46-61, 2014.

[26] RN. Calheiros, R. Ranjan, A. Beloglazov, CAF.

De Rose, R. Buyya, “CloudSim: a toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource

provisioning algorithms”, Software: Practice

and Experience, Vol. 41, No. 1, pp. 23-50, 2011.
[27] E. Rashedi, H. Nezamabadi-Pour and S.

Saryazdi, “GSA: a gravitational search

algorithm”, Information Sciences, Vol. 179, No.

13, pp.2232-2248, 2009.

[28] PD. Kusuma, and A. Dinimaharawati,

“Extended stochastic coati optimizer”,

International Journal of Intelligent Engineering

and Systems, Vol. 16, No. 3, pp.482-494, 2023,

doi: 10.22266/ijies2023.0630.38.

[29] PD. Kusuma, and A. Dinimaharawati, “Swarm

Bipolar Algorithm: A Metaheuristic Based on

Polarization of Two Equal Size Sub Swarms”,

International Journal of Intelligent Engineering

& Systems, Vol. 17, No. 2, pp.1-13, 2024, doi:

10.22266/ijies2024.0430.31.

[30] P. D. Kusuma and M. Kallista, “Swarm Space

Hopping Algorithm: A Swarm-based Stochastic

Optimizer Enriched with Half Space Hopping

Search”, International Journal of Intelligent

Engineering & Systems, Vol. 17, No. 2, 2024,

doi: 10.22266/ijies2024.0430.54.

[31] P. D. Kusuma and M. Kallista, “Migration-

Crossover Algorithm: A Swarm-based

Metaheuristic Enriched with Crossover

Received: April 14, 2024. Revised: June 16, 2024. 129

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024 DOI: 10.22266/ijies2024.1031.11

Technique and Unbalanced Neighbourhood

Search”, International Journal of Intelligent

Engineering & Systems, Vol. 17, No. 1, 2024,

doi: 10.22266/ijies2024.0229.59.

[32] P. D. Kusuma, and A. Dinimaharawati, “Four

Directed Search Algorithm: A New

Optimization Method and Its Hyper Strategy

Investigation”, International Journal of

Intelligent Engineering & Systems, Vol. 16, No.

5, 2023, doi: 10.22266/ijies2023.1031.51.

[33] P. D. Kusuma and A. Novianty, “Total

Interaction Algorithm: A Metaheuristic in which

Each Agent Interacts with All Other Agents”,

International Journal of Intelligent Engineering

& Systems, Vol. 16, No. 1, 2023, doi:

10.22266/ijies2023.0228.20.

[34] P. D. Kusuma and A. L. Prasasti, “Walk-Spread

Algorithm: A Fast and Superior Stochastic

Optimization”, International Journal of

Intelligent Engineering & Systems, Vol. 16, No.

5, 2023, doi: 10.22266/ijies2023.1031.24.

[35] P. D. Kusuma, P. D. and F. C Hasibuan, “Attack-

Leave Optimizer: A New Metaheuristic that

Focuses on The Guided Search and Performs

Random Search as Alternative”, International

Journal of Intelligent Engineering & Systems,

Vol. 16, No. 3, 2023, doi:

10.22266/ijies2023.0630.19.

