
Received:  April 14, 2024.     Revised: June 16, 2024.                                                                                                      118 

International Journal of Intelligent Engineering and Systems, Vol.17, No.5, 2024           DOI: 10.22266/ijies2024.1031.11 

 

 
HSSAGWO Scheduler for Efficient Task Scheduling in an IaaS Cloud 

Computing Environment 

 

Javid Ali Liakath1          Pradeep Krishnadoss2*          Manikandan Nanjappan3          Bhavana Sivadas2 

 
1St. Joseph’s Institute of Technology, Chennai, Tamil Nadu, India 

2Vellore Institute of Technology, Chennai, Tamil Nadu, India 
3SRM Institute of Science and Technology, Chennai, Tamil Nadu, India 

* Corresponding author’s Email: pradeep.k@vit.ac.in 

 

 
Abstract: Innovations in cloud technology over the recent years have shown tremendous growth. Apart from the need 

to possess a basic internet connection, another major hiccup for researchers in cloud computing is load balancing. It 

refers to the way resources are distributed and tasks are performed to achieve the most optimal utilization. Effective 

load balancing provides more user satisfaction. There are many algorithms developed to tackle the challenge of Load 

Balancing. An attempt is made in this paper to provide solution to this issue by developing an optimization technique 

that efficiently regulates the scheduler in assigning tasks to cloud resources such that optimal results are obtained. A 

hybridized Sparrow Search Algorithm – Grey Wolf Optimizer (HSSAGWO) had been proposed to optimize the task 

scheduling activity in cloud. The exploration and exploitation activities that are a part of original algorithms have been 

refined to achieve better performance in the proposed HSSAGWO algorithm. The performance efficiency of 

HSSAGWO algorithm had been ascertained by comparing it with Sparrow Search Algorithm (SSA), Grey Wolf 

Optimizer (GWO), Gravitational Search Algorithm (GSA), and Particle Swarm Optimization (PSO). Simulated 

experiments had been conducted using Cloudsim 3.0 tool for obtaining the results. The performance comparison had 

been carried out by considering the makespan, cost and response time parameters. The proposed HSSAGWO technique 

had produced an improvement of 9.31%,12.23%,15.55% and 17.95% for makespan when compared with SSA, GWO, 

GSA and PSO algorithms respectively when arrival rate is 10.  

Keywords: Cloud computing, Scheduling, Makespan, Cost, Response time. 

 

 

1. Introduction 

One of the most active fields right now is Cloud 

computing. The Internet is the major factor that it 

depends on. Prime companies like Google, Amazon, 

and Microsoft support this model. Both hardware and 

software are used as computer resources (internet-

based provision). Users pay for the services; they 

receive the information and services via mobile 

devices or computers very easily [1-4].  

To assign all the processes and to handle the tasks 

efficiently, load balancing comes into play. This is 

done to maximize the rate of resource productivity. 

E.g.: processor load, the used memory, delays, or 

network load [5-8]. The efficiency is dependent on 

the load of the virtual machines. The system’s 

performance is based on how well it distributes the 

demands among its resources i.e., the target is to 

deliver optimal quality of service (QoS). 

NP-complete problems constitute those that 

involve tasks to be scheduled in real time on 

distributed platforms. Meta-heuristics come handy 

when abundant tasks get executed in the cloud 

avoiding any untoward happenings and to achieve 

better cloud performance. [9-11]. 

An efficient scheduling technique had been 

proposed in this work that is based on the GWO and 

SSA algorithms. These two algorithms, as 

individuals perform well under minimum 

requirements for fitness equation formulation and 

optimization. Both have high probability of getting 

stagnated under local optima and could not balance 

between the exploration and exploitation process to 
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identify the global optima. Hence hybridization is a 

preferred solution resulting in the formation of a 

potent optimization technique, especially for task 

scheduling activities in cloud.  

SSA imitates the hunting behaviour of sparrows 

in arriving solutions to optimization type of problems. 

Though SSA is arguably the best for its search 

accuracy, faster convergence, higher stability and 

robustness, at farther stages of convergence it 

becomes flat and gets stagnated in local optima owing 

to its weaker exploitation technique. Thus, there are 

more chances of finding a non-ideal optimal global 

solution.  

The original GWO had been widely practised by 

researchers for optimization problems. GWO 

emulates the hunting and dominating characteristics 

of grey wolves.  Though widely preferred for its 

simplicity and ease of deployment, it too can become 

a victim of local optima due its poor exploration 

technique employed. This fact could be easily 

identified when GWO is applied for complex 

problems with multidimensional and unimodal 

attributes.  

Hence, in this work we had integrated the original 

SSA and GWO to attain faster convergence while 

churning out optimal solution and maintain balance 

between the exploration and exploitation activities. 

The objectives of this research had been listed out 

below. 

A Hybrid Sparrow Search Algorithm – Grey 

Wolf Optimizer (HSSAGWO) had been proposed to 

enhance the task scheduling performance in cloud. 

A fitness function has been formalized by 

considering makespan, cost and response time QoS 

parameters. 

Simulated experiments had been carried out using 

the Cloudsim 3.0 tool. The superiority of the 

proposed HSSAGWO had been ascertained by 

comparing its performance with SSA, GWO, GSA 

and PSO algorithms.  

This research paper has been structured as 

follows: Section 2 handles the related literature. 

Section 3 throws light upon the proposed model and 

QoS parameters considered. Sections 4, 5 and 6 

describe the features of Sparrows, Wolves and their 

mathematical modelling, and subsequent 

hybridization. Section 7 depicts the simulation 

experiment set-up and results obtained. Section 8 

concludes the paper by providing tips for future 

expansion. 

2. Related work 

Researchers over the years had carried out 

numerous enhancements that accounted for the 

performance efficiency of the cloud environment. All 

such enhancements focussed on optimizing various 

QoS parameters. Cloud environment is evolutionary, 

where improvisation can be attained continuously by 

integrating existing multi-heuristic algorithms in 

such a way that the disadvantage of one algorithm is 

overturned by the advantage present in the other.  

[12] Authors had come up with a new Particle 

Swarm Optimization-Bandwidth Aware divisible 

Task (PSO-BATS) that is scheduled with Multi-

Layered Regression Host Employment (MLRHE) for 

reducing the complexity involved in the scheduling 

operation and balances the load effectively. However, 

while this method addresses several core issues, it 

still requires further validation in real-world 

scenarios to fully assess its scalability and 

adaptability to unpredictable cloud behaviour. 

[13] Optimal resource consumption can be 

enforced through a variety of algorithms like 

Artificial Bee Colony, Genetic Algorithms, Bacteria 

Foraging, etc. Though they work well, there are 

certain limitations to each one of them. An EBGO 

algorithm is proposed to address these limitations by 

considering QoS parameters like cost, energy 

consumed, processing time, and response time. 

Despite their effectiveness, these algorithms tend to 

struggle with complex and dynamic load variations, 

often leading to inefficient resource utilization and 

potential increases in operational costs.  

[14] A scheme named Resource and Deadline 

Aware Dynamic Load-Balancer (RADL) for Cloud 

had been proposed. The proposed technique works to 

make sure that all the tasks are executed within the 

deadline and that the new tasks added are 

accommodated. Task dismissal is minimized by 

implementing RADL. However, this method lacks 

support for dynamic, SLA-aware scheduling, crucial 

for linked tasks or those needing quick adjustments. 

RADL can also increase overhead for urgent new 

tasks, reducing system efficiency. 

[15] A new artificial algorithm is brought about 

which helps in solving the problem of energy 

consumption. This is called deep reinforcement Q-

learning. Terms like time, cost analysis, make-span, 

load balance, and deadline overflow are taken into 

consideration for comparative analysis. However, 

this technique is good but the training time for these 

models can be lengthy, impacting their practical 

deployment. 

[16] A novel algorithm called Dual Conditional 

Moth Flame Algorithm (DC-MFA) has been 

introduced to achieve optimization and load balance. 

This concept considers multi-objective functions and 

hence looks into factors like make-span, CPU 

utilization, cost of resources, migration, security, and 
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consumption of energy. However, DC-MFA's 

effectiveness in environments with rapidly changing 

conditions may be limited due to its dependence on 

predetermined multi-objective functions. 

[17] The Priority Based Load Balancing 

algorithm can be optimized by splitting the entire task 

prioritizing activity into four sub-activities. These 

include the allocation of tasks without starvation, 

moving the tasks to the dispatcher, re-arranging the 

order of tasks inside the queues and mapping them to 

appropriate virtual machines (VMs). While the 

effectiveness of this algorithm is contingent upon the 

precise coordination of these sub-activities and their 

adaptive responses to dynamic cloud environments. 

[18] Load balancing aims to even out the 

overloaded and under-loaded nodes. An algorithm 

called Paired-Tree Algorithm is introduced to 

improve load balancing by making the performance 

of make-span and migration more efficient. However, 

further research is required to evaluate the scalability 

of the Paired-Tree Algorithm across diverse cloud 

computing environments and larger datasets. 

[19] The authors had minimized the energy 

consumption and scheduled tasks with maximum 

computational load. The proposed Dynamic Replica 

model is found to have a more balanced storage space 

compared to other algorithms. However- the efficacy 

of the Dynamic Replica model is constrained by the 

initial configuration of the system and may not adapt 

well to rapid changes in task priorities or network 

conditions. 

[20] The proposed Capacity Allocation algorithm 

lowers the total execution cost using joint load 

balancing. This algorithm had produced optimal 

results with minimal QoS. Despite its efficiency, the 

algorithm's performance may degrade under dynamic 

or unpredictable QoS demands. 

[21] The authors had introduced a new algorithm 

namely Multi-Objective Service Brokering with 

Availability-Based Load Balancing (MOSB-ALB) to 

reduce cost and response time parameters. There are 

two ways of selection in MOSB-ALB. MOSB-ALB 

proves to surpass a few other cloud services in terms 

of minimized monetary cost and response time. 

However, the MOSB-ALB algorithm, while effective 

in improving cost efficiency and response times, may 

exhibit limitations in scalability and performance 

under varying cloud conditions and workloads not 

extensively discussed in this study. 

[22] The authors had introduced an algorithm 

based on machine learning for balancing the load on 

the host machines (HMs). A learning agent receives 

a reward depending on the optimizing factor of its 

solution after execution. This helps the learning agent 

to keep training and testing till it reaches the most 

optimal solution. This algorithm has boosted the 

inter-HM load balance. Despite the algorithm's 

success in improving load balance, its dependency on 

continuous rewards and potentially high 

computational overhead could limit its practical 

application in environments with dynamic or 

unpredictable workloads. 

[23] HDCBS is a task-scheduling model that 

looks into task sequencing and other factors like cost 

and load balancing. In HDCBS, queuing theory is 

implemented to get minimal the waiting time and 

response time. However, the practical 

implementation of HDCBS may face challenges in 

diverse cloud environments where dynamic factors 

and real-time changes in task characteristics can 

impact overall effectiveness. Authors [28-35] had 

suggested various optimized solutions for local 

search operations that were based on metaheuristics.  

3. The proposed model 

The performance of cloud depends on how it 

handles a large number of user requests. Resource 

sharing must be fair and efficient. Load balancing is 

one major challenge that cloud computing faces. 

There are various algorithms developed for solving 

this problem of load balancing. Our goal is to provide 

a good QoS using a suitable algorithm that also 

targets a minimum cost and response time. The 

objective function of the proposed algorithm is 

shown below: 

 

Objective function = 

 

∑ Ti
m
i=1 (

α ∙ Makespan +
  β ∙   Cost + γ.  Response Time

 )   (1) 

 

Statement of the problem 

Let n be the number of physical machines or any 

one machine having M number of virtual machines. 

Then cloud C will be: 

 

C =  {PhysicalMachine 1, 
PhysicalMachine 2PhysicalMachine N}         (2) 

 

A physical machine will have multiple virtual 

machines and that is represented as follows:PMn =

{VirtualMachine1, VirtualMachine2, VirtualMachine M } 
The user function can be represented as follows: 

 

Ui =  {T1, T2 … }                       (4) 

 

We need to lower the costs and energy and 

increase resource exploitation and Quality of Service 

(QoS) for achieving optimal load balancing, failing 
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which the cloud performance degrades. We hence 

propose a solution developed using the SSA & GWO 

algorithms. This system is represented in Fig. 1. 

The parameters of service quality 

The major factors that are vital in ensuring good 

QoS are make-span, cost and response time. The 

tasks are represented as {T1, T2, T3, …, Tn} where 

the items are dependent. The VMs are represented as 

{VM1, VM2, VM3, …, VMm} where the items are 

independent.  

Execution Time: Let the time taken to process a 

task be: 

 

A1
T =

1

Pmax
C × N

∑ djl×ejl

q
j=1                   (5) 

 

In the equation given above, Pmax
C  stands for the 

maximum processing capacity, N represents the 

number of tasks, djl represents the distribution matrix 

and ejl stands for the execution time. 

Table 1. Notation used in HSSAGWO algorithm 

Notations Description 

Ei Time taken by a user per VM. 

Ruk 
Number of requests collected from the 

user 

PMi Physical machine i 1 i  n 

VM Virtual machine 

Pmax
C  Maximum processing capacity 

N Represents the number of tasks, 

djl Distribution matrix 

ejl Execution time 

Vi 
Vi represents the cost of each virtual 

machine 

 

 
Figure. 1 Task Scheduling Architecture of HSSAGWO 
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Cost 

It is defined as the money that a user pays for a 

virtual machine for each request sent. It is computed 

based on the factors of memory, processes, the 

bandwidth and the VMs that have been utilized. The 

equation is as follows: 

 

Cost = ∑ Vi × Ei
N
i=1                        (6) 

 

In this equation, N stands for the number of VMs, 

Vi represents the cost of each virtual machine and Ei 

is the time taken by a user per VM. 

Response Time 

It is defined as the scope of a service to be able to 

fulfil its requirement for a particular time period, 

under any circumstances. The equation is as follows: 

 

RARK =
WRk

Ruk
                             (7) 

 

In this equation, Ruk  represents the number of 

requests collected from the user, and WRk represents 

the work sent to Rk. This work is reallocated and is 

computed in milliseconds. 

4. Proposed mathematical model and 

algorithm (SSA) 

The Sparrow Search Algorithm is inspired from 

the behaviour of sparrows and hence its name. The 

sparrows possess high levels of energy reserves, 

identifying and spotting areas with plentiful food 

sources [24]. This efficiency is dependent on the 

fitness of each individual. 

(i) When a sparrow sees its predator, it will start 

chirping to warn its flock. If the warning is 

more than the safety threshold, then they will 

follow the producers to a safe location. 

(ii) The two levels in a flock are scroungers and 

producers. Each of the scroungers can turn 

into a producer depending on the food 

sources that it finds. Yet, the percentage of 

producers and scroungers will remain 

constant. 

(iii) Producers have higher levels of energy than 

the scroungers. The scroungers fly to 

different locations for food because of 

starvation. 

(iv) Producers are the leaders in a flock and the 

ones that provide the most efficient food 

source are followed by the scroungers. 

(v) The sparrows in the middle walk closer to 

others in the flock, whereas the ones at the 

edge will move to the safe area to protect 

themselves from danger. 

For our computation, we’ll take virtual sparrows 

that search and find food. The matrix given below 

describes the location of the sparrows. 

 

A = [

a1,1 a1,2 a1,b

a2,1 a2,2 a2,b

an,1 an,2 an,b

]                    (8) 

 

In this equation, b indicates the variables’ 

dimension and n indicates the sparrow count. The 

value of b has to be optimized.  

Efficiency is determined by assessing the fitness 

measure of the sparrows, as shown below:  

 

Ga = [

g([a1,1 a1,2 a1,b])

g([a2,1 a2,2 a2,b])

g([an,1 an,2 an,b])

]                   (9) 

 

In this equation, n stands for the number of 

sparrows, each row in Ga gives the fitness value of 

each individual sparrow. We need to look for those 

producers that have better fitness according to SSA. 

They will have more priority to get food, and also, 

they are in charge of the entire flock. Hence, the 

producers have a larger scope of searching.  

The producer’s position is updated from rules (i) 

and (ii). The equation is as given below: 

 

ai,j
t+1 = {

ai,j
t . exp (

−i

α.imax
)  if Al2 < Th

ai,j
t + R.M               if      Al2 ≥ Th

   (10) 

 

In this equation, t stands for the current iteration, 

the value of j is 1, 2, …, d. ai,j
t  is the measure in the 

jth dimension of the ith sparrow while carrying out 

the tth iteration and imax denotes a constant value 

holding the maximum number of iterations. α is a 

random number in the range of [0, 1]. Al2  and Th 

indicate the alarm value and the safety threshold, 

where Al2 has a value in between 0 and 1and Th is 

assigned a value in between 0.5 and 1.0. R denotes a 

random value that follows a normal distribution. M 

represents a matrix of dimension, 1 x d which has 

elements ‘1’.  

When there aren’t any predators, that is Al2 < Th, 

the producer goes into wide search mode. If a sparrow 

detects the predator, that is Al2 ≥ Th, then the flock 

will fly to other safe location.  

Some scroungers fight for food. If they win, they 

get the producer’s food and continue with rule (v). 

The scrounger updates its location with the equation 

given as follows: 
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ai,j
t+1 = {

R. exp (
aworst
t −ai,j

t

i2
)  if i > n/2

ap
t+1 + |ai,j

t − ap
t+1| . Z+. M  otherwise

 (11) 

 

In this equation, ap denotes the optimal position 

occupied by the producer. aworst stands for the 

present global worst location. Z represents a matrix 

of dimension 1 x d that has elements of either ‘1’ or 

sometimes ‘-1’, and Z+ equals ZT (ZZT)-1.   

When i value is greater than n/2, then it indicates 

that the ith scrounger is starving because of very bad 

fitness value and needs to fly to other location. 

‘otherwise’ case indicates that the sparrow seeking 

for food is closer to the best location.   

We are assuming that the sparrows that are 

knowledgeable of the danger constitute 10-20 % of 

the flock. The mathematical equation for their initial 

positions based on rule (v) is as follows: 

 

ai,j
t+1 = {

abest
t + β. |ai,j

t − abest
t |   if gi > gf

ai,j
t + S. (

|ai,j
t −aworst

t |

(gi−gw)+ε
)    ifgi = gf  

  (12) 

 

In this equation, abest is the present global optimal 

location and β denotes the step size control factor 

having normal distribution of randomized numbers, 

with an average value of 0 and a variance measure of 

1. S is a just a random number in the range of −1 and 

1. gi denotes the fitness measure of the present 

sparrow. gf and gw represent the current best and 

worst measures of fitness globally. To overcome zero 

division error, the constant ε is included. 

When gi > gf, the sparrow is positioned at the edge 

amongst others. abest is the safest position, usually at 

the centre. If gi = gf, then it indicates that the sparrow 

at the middle needs to move closer to the others to 

protect itself. Step size control coefficient and 

direction-determining factor of the sparrow is S.  

The mutation technique implemented in the 

sparrow search algorithm impacts the speed and 

convergence accuracy. Even though this algorithm 

performs well to resolve intricate optimization 

problems, it has shortcomings in the form of reduced 

population range and fails in achieving accurate 

convergence. There are more chances of it to falling 

into the local optima, thereby the solution produced 

may not be always optimal. 

5. Grey wolf optimization 

Grey wolf, referred by the zoological name Canis 

Lupus are generally apex type of predators for being 

on top of their food chain [25]. They live in a packed 

habitat, with groups ranging from 5 to 12 on an 

average. They are led by both a male and female 

denoted by the name alphas that are responsible for 

making important decisions pertaining to hunting, 

leisure location, waking up time and other day to day 

happenings. The decision of alphas is upheld in the 

group with every other wolf showing its acceptance 

by keeping their tail down.  

Beta variants are the second level in the group 

hierarchy. They assist their leaders, the alphas in 

making better decisions and other group management 

activities. They pass on the commands of the alpha to 

the group and provide advice to their superior alpha. 

The lowest in the hierarchy are the omega 

variants. They always remain non-dominant amidst 

their gatherings and usually made as scapegoat. Delta 

types are the ones that obey the alpha and beta but 

remain dominant against omegas. The scout, sentinel, 

elder, hunter and care taker are a few varieties falling 

under this category.  

Apart from the hierarchy they possess, prey 

hunting behaviour of the grey wolves can be 

categorized into three phases namely - tracking, 

chasing and approaching. The wolves continuously 

pursue, encircle and harass their prey and bring it to 

stationary mode, before launching their attack. In our 

proposed work, the hunting technique of these grey 

wolves and their social hierarchy had been 

mathematically modelled for designing the GWO 

operation and optimization purposes. 

5.1 Mathematical modelling and proposed 

algorithm 

The characteristic features of grey wolves like 

their social hierarchy, tracking, encircling and attack 

on prey had been mathematically modelled in this 

subsection. 

5.1.1. Social hierarchy 

The social hierarchy exhibited by the grey wolves 

had been mathematically modelled by fixing the 

solution provided by alpha (a) as the fittest one. The 

solutions produced by beta (b) and delta (d) are 

regarded as second and third best, respectively. Other 

candidate solutions produced are categorized under 

the omega (x). While optimizing the hunting section 

of the GWO algorithm a, b and d are taken into 

account. The x category follows a, b and d type of 

wolves. 

5.1.2. Prey encircling 

While hunting, grey wolves encircle their prey 

and the same can be mathematically modelled using 

the equations shown below: 
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A⃗⃗ = |P⃗⃗ . Y⃗⃗ p(t) − Y⃗⃗ (t)|                    (13) 

 

Y⃗⃗ (t + 1) = Yp(t) − B⃗⃗ . A⃗⃗                  (14)    

 

Where t indicates the current iteration and  B⃗⃗  , P⃗⃗  
are coefficient vectors, the position vector of the prey 

is indicated by Y⃗⃗ p  and Y⃗⃗  indicates the grey wolf’s 

position vector. Values of B⃗⃗  , P⃗⃗  could be determined 

through equations shown below:   
 

B⃗⃗ = 2b⃗ . x1⃗⃗  ⃗ − b⃗                          (15) 

 

P⃗⃗ = 2. x2⃗⃗⃗⃗                             (16)  

 

Where x1 and x2 are random vectors, whose 

values are in the range [0, 1] and the value of b⃗  gets 

linearly decreased from 2 to 0 during each iteration.     

A 2D position vector, along with a few 

neighbouring positions could be deduced from Eqs. 

(13) and (14). It can be seen that a grey wolf updates 

its initial position (X, Y) to a new location with 

respect to the prey’s position (X*, Y*). The values of 

B⃗⃗  and P⃗⃗   can be adjusted to obtain different locations 

that are closer to the best agent, that are easily 

reachable from the present location. Like for instance, 

by fixing the values of B⃗⃗  to (0, 1) and P⃗⃗  to (1, 1), a 

new location (X*–X, Y*) can be reached. Eqs. (15) 

and (16) depict the various likely (updated) locations 

of the grey wolf in a 3D space. The wolves can 

change their present location to any random position 

arrived between the points that could be deduced 

using Eqs. (13) and (14) with the help of random 

vectors x1 and x2. Hence the grey wolves update their 

present position to any random position around the 

prey using Eqs. (13) and (14). An identical ideology 

could be applied to a search space of n dimensions, 

where the grey wolves’ movement could likely be 

hyper-cubical or hyper-spherical type, towards the 

best solution that has been deduced till now. 

5.1.3. Hunting 

Alpha variety of grey wolves lead the hunting 

activity which could also involve the participation of 

beta and delta varieties occasionally. When the search 

space is deemed to be abstract, the optimum location 

of the prey is usually unknown. The hunting 

behaviour of grey wolves could be mapped 

mathematically, alpha (top candidate solution), beta 

and delta are expected to be familiar with the prey’s 

location. The first three best solutions obtained till 

now are marked as reference, that are in turn used for 

instructing the other search agents (including omega 

variety) to adjust their present location in accordance 

to the best search agent’s location. To model these 

activities mathematically, following equations have 

been proposed: 

 

Aa
⃗⃗ ⃗⃗ = |B1

⃗⃗⃗⃗ . Ya
⃗⃗  ⃗ − Y⃗⃗ |, Ab

⃗⃗ ⃗⃗  = 

|B2
⃗⃗ ⃗⃗ . Yb

⃗⃗⃗⃗ − Y⃗⃗ |, Ac
⃗⃗⃗⃗ = |B3

⃗⃗ ⃗⃗ . Yc
⃗⃗  ⃗ − Y⃗⃗ |            (17) 

 

Y1
⃗⃗  ⃗ = Ya

⃗⃗  ⃗ − P1⃗⃗  ⃗. (Aa
⃗⃗ ⃗⃗ ), Y2

⃗⃗⃗⃗ = 

Yb
⃗⃗⃗⃗ − P2

⃗⃗  ⃗. (Ab
⃗⃗ ⃗⃗  ),  Y3

⃗⃗⃗⃗  ⃗ = Yc
⃗⃗  ⃗ − P3

⃗⃗  ⃗. (Ac
⃗⃗⃗⃗ )       (18) 

 

Y⃗⃗ (t + 1) =
Y1
⃗⃗  ⃗ + Y2

⃗⃗⃗⃗ + Y3
⃗⃗⃗⃗ 

3
                  (19) 

 
The above equations convey how a search agent’s 

location gets updated with respect to alpha, beta and 

delta varieties in the 2D search space. The final 

location is found at a random location within a circle 

that gets set according to the locations of alpha, beta 

and delta wolf varieties in the search space. That is, 

the prey’s position is deduced by the alpha, beta and 

delta categories and the other varieties update their 

present position randomly around the prey.  

5.1.4. Prey attacking (Exploitation) 

As soon the prey ceases its movement, the grey 

wolves launch their attack on it. Mathematically this 

behaviour could be modelled by decreasing the 

measure of b⃗ . It is to be noted at this juncture that the 

variation range of B⃗⃗  too gets decreased by b⃗ . Or more 

precisely, when the random value of B⃗⃗  is in the range 

[-2b, 2b], b⃗  gets decreased from 2 to 0 for each 

iteration performed. When the random values of  B⃗⃗  
are at [1, 1], the new position taken up by the search 

agent could be anywhere between its present and the 

position of the prey. When |B| < 1, the wolves launch 

their attack on the prey. The operators defined in the 

GWO algorithm permits the search agents to adjust 

their respective positions in accordance to the 

positions of alpha, beta and delta wolf varieties and 

carry out their attack on the prey. In spite of these 

operators present, the GWO algorithm gets stagnated 

in local solutions. Though the encircling process 

described promisingly describes the exploration task 

to few extents, more operators are still required in 

GWO to describe the exploration task in a more 

comprehensive manner. 
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5.1.5. Search for prey (exploration) 

Searching of prey by the grey wolves is 

coordinated mainly in accordance to the positions of 

alpha, beta and delta wolf varieties. Even though they 

get swerved during searching, while attacking they 

get together. This swerving activity can be 

mathematically modelled by assigning random 

values to B⃗⃗  which could be either greater than 1 or 

lesser than -1 to describe the swerving feature of the 

search agent. This adjustment leads to accentuating 

the exploration activity thereby favouring GWO to 

carry out a global search without getting stagnated 

locally. By fixing |B| > 1, the grey wolves get 

swerved from the prey in order to locate a healthier 

prey. P⃗⃗  is the next component in GWO that assists in 

exploration. It could be witnessed from Eq. (14), that 

the P⃗⃗  vector has random values in the range [0, 2]. 

This results in assigning random weights to the prey 

to randomly accentuate P > 1 or de-accentuate P < 1 

to highlight the impact of prey in describing the 

distance in Eq. (11). This makes GWO to exhibit 

random behaviour throughout the optimization 

process, supporting the exploration task and 

significantly avoiding local optima. It has to be noted 

that the measure of P is not linearly decreased as that 

of B. P is required to deliver random values for 

accentuating the exploration task throughout i.e., 

randomization is carried out right from the initial 

iteration till the last iteration. Hence the values of P 

are of much more important to overcome the local 

optima stagnation, particularly during the final 

iterations. 

The position of sparrows indicated in Eq. (9) 

needs to be integrated with the GWO Eq. (15) that 

describes the distance, by a new weighing factor ᶲ for 

upholding the final deduced values to near optimal 

measures. This has been described below: 

 

Aa
⃗⃗ ⃗⃗ = |B1

⃗⃗⃗⃗ . Ya
⃗⃗  ⃗ − ᶲY⃗⃗ |,  

Ab
⃗⃗ ⃗⃗  = |B2

⃗⃗ ⃗⃗ . Yb
⃗⃗⃗⃗ − ᶲY⃗⃗ |, Ac

⃗⃗⃗⃗ = |B3
⃗⃗ ⃗⃗ . Yc

⃗⃗  ⃗ − ᶲY⃗⃗ |       (20) 

 

The probability factor for adjusting the location 

of every agent could then be deduced using the below 

equation: 

 

Ω [Y(t + 1) −  Y(t)]  = |
[Y(t+1)−Y(t)]

√[Y(t+1)−Y(t)]2+1
|     (21) 

 

Where Ω is the probability factor. If the value of 

[Y(t + 1) −  Y ( t )] turns out to be positive, the 

sparrows succeed in getting the food. On the contrary, 

if negative, the sparrows start to swerve far away 

from the predators. If the search space is properly 

constructed, convergence is quickly achieved.  

6. Proposed algorithm: 

The specific steps involved in HSSAGWO are 

herewith enlisted: 

Step 1: Initialize the sparrow search population 

and its parameters (total sparrow count n, maximum 

iteration imax and the total number of variables, d). 

Step 2: Till the condition (t < imax) holds, 

sparrows are ranked based on their fitness values. The 

current best value that has been assessed is assigned 

to the minimum fitness value and the maximum 

fitness value will be the current worst value assessed.  

Step 3: Update the discoverer sparrow’s position 

using Eq. (10).  

Step 4: When the value of ith individual in the 

ongoing iteration becomes lesser than or equal to the 

half of sparrow population, the position of the 

follower is adjusted using Eq. (11). Then proceed to 

step 9 else, the GWO can be executed. 

Step 5: The values of b, B and P are initialized.  

Step 6: Deduce the first best, second best and 

third best values of alpha, beta and delta wolf 

varieties.  

 

 
Table 2. Simulation Environment 

Entity Type Parameters Value 

Task Total Number of 

Tasks 

100-500 

 Length [400,1000]MIPS 

 File Capacity [200,1000]MB 

 Output File 

Capacity 

[20,40]MB 

Host Available 

Memory (RAM) 

1860 MIPs, 2660 

MIPS 

 Available 

Storage 

10 GB 

 Available 

Bandwidth 

100 M/s 

Virtual 

Machine 

Total Number of 

VMs 

50 

 Policy Type Time-shared 

 VM RAM 

Capacity 

512MB 

 VMM Type Xen 

 OS Linux 

 Data center Total Number of 

CPUs 

1 on each 

 Total Number of 

Data centers 

10 

 Total Number of 

Hosts 

10 
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Step7: The distance between the wolves and prey 

is then deduced by applying Eq. (17). Subsequently 

the new position is then deduced by applying Eqs. 

(18) and (19). 

Step 8: Trade the positions of 3 best wolves with 

current sparrows.  

Step 9: The position of follower is then adjusted 

using Eq. (11). Subsequently, the position of the 

investigator too is adjusted using Eq. (12). 

7. Result and simulation experiment 

A data center is created by implementing 

Cloudsim toolkit 3.0 and simulating the experiment. 

The table given represents the VM (Virtual Machine) 

in the data center and task [26]. 

7.1 Make-span evaluation (Arrival rate=10 &40) 

In this simulation, 100 to 500 tasks are considered 

with an arrival time value of 10 in Fig. 3 and an 

arrival time value of 40 in Fig. 4 for evaluating the 

performance. The performance of the proposed 

HSSAGWO had been compared with SSA [24], GSA 

[27], PSO [12] and GWO [25] algorithms. 

 

 

 
Figure. 3 Makespan for arrival time of 10 

 

 

 
Figure. 4 Makespan for arrival time of 40 

It could be inferred from the below Figs. 3 and 4 

that the proposed HSSAGWO yielded better results 

for makespan for both the cases. The proposed 

HSSAGWO technique had produced an average 

improvement of 9.31%, 12.23%,15.55% and 17.95% 

for makespan when the arrival rate is 10 and for 

arrival rate of 40 the average makespan improvement 

obtained is 2.66%, 5.62%, 7.84% and 10.70% 

compared to SSA, GWO, GSA and PSO algorithms 

respectively. 

7.2 Cost evaluation 200 & 500 tasks 

In this simulation, the cost incurred for executing 

200 and 500 tasks with varying deadlines ranging 

from 10 to 100 had been evaluated. It could be seen 

from the below Figs. 5 and 6 that the proposed 

HSSAGWO yielded minimum cost for both cases 

when compared to SSA, GWO, GSA and PSO 

algorithms 

7.3 Response time 500 tasks 

The below Fig 7 shows the response time 

comparison for the proposed HSSAGWO and SSA, 

GWO, GSA and PSO algorithms. For the 500 tasks 

with varying deadlines that were submitted, the 

proposed HSSAGWO had produced an improvement 

of 10%, 12.2%, 15.56% and 17.87% for response 

time when compared to other algorithms. 

 

 

 
Figure. 5 Cost Comparison for 200 tasks 

 

 
Figure. 6 Cost Comparison for 500 tasks 
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Figure. 7 Response time comparison 

8. Conclusion 

The Sparrow Search algorithm and Grey Wolf 

Optimization algorithm had been integrated and a 

Hybridized Sparrow Search Algorithm – Grey Wolf 

Optimizer (HSSAGWO) had been proposed. The 

HSSAGWO does not gets stagnated in local optima, 

thus exhibiting higher convergence speed and greater 

accuracy. The proposed algorithm exhibits optimal 

load balancing and excellent performance features 

with respect to QoS parameters makespan, cost and 

response time when compared to SSA, GWO, GSA 

and PSO algorithms, thus making it a viable solution 

for task scheduling in cloud environment. The 

proposed HSSAGWO technique had produced an 

improvement of 2.66%, 5.62%, 7.84% and 10.70% 

for makespan when compared with SSA, GWO, GSA 

and PSO algorithms respectively when arrival rate is 

40. In future, additional QoS parameters can be 

included in the fitness equation while deriving the 

global optimal solution and the entire experimental 

domain can be shifted from simulated environment to 

the real cloud environment for evaluating the real 

time performance of HSSAGWO.  
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