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Abstract: Existing approaches often fail to capture the complex spatial-temporal interactions among crop conditions, 

environmental factors, and disease progression, leading to suboptimal diagnosis and treatment strategies. This work 

introduces innovative methodologies integrating advanced machine learning techniques to overcome these limitations. 

Specifically, we propose a novel Graph Attention Mechanism with Spatial-Temporal Graph Convolutional Networks 

(ST-GCN) model to analyze crop diseases. This model uniquely combines graph attention mechanisms with spatial-

temporal modeling, enabling precise identification and tracking of disease progression over time and space. This allows 

for high-accuracy predictions of disease presence, severity, and spatial distribution, achieving over 90% accuracy and 

an Intersection over Union (IoU) score of at least 0.8. Furthermore, we introduce the Deep Q-Network with Attention-

Based Feature Selection (DQN-AFS) model, which innovatively applies deep Q-networks integrated with attention 

mechanisms to optimize feature selection in crop images. This approach significantly enhances the model's ability to 

discern between varying types and severity levels of crop diseases, ensuring an 85% or higher disease classification 

accuracy and an 80% feature selection rate in different use case scenarios. Lastly, we propose a Swarm Intelligence-

Based Multiple Agent Reinforcement Learning (SI-MARL) framework for adaptive treatment recommendation. This 

approach demonstrates superior treatment efficacy and resource utilization efficiency compared to conventional 

methods. 

Keywords: Graph attention mechanisms, Spatial-temporal graph convolutional networks, Deep Q-networks, Crop 

disease analysis, Multi-agent reinforcement learning. 

 

 

1. Introduction 

Agriculture is the cornerstone of human 

civilization, serving as the primary source for food, 

fiber, and fuel. In recent years, the sector has faced 

unprecedented challenges due to escalating 

environmental stresses, evolving pestilence, and the 

burgeoning demands of a rapidly growing global 

population. Among these challenges, crop diseases 

emerge as formidable adversaries, detrimentally 

affecting yield, quality, and ecological balance.  

The advent of precision agriculture has heralded 

a new era, leveraging advanced computational 

models and data-driven approaches to augment the 

detection, diagnosis, and management of crop 

diseases. However, existing models often exhibit 

limitations, particularly in their ability to decipher the 

intricate spatial-temporal relationships and adapt to 

the dynamic nature of agricultural environments. 

Furthermore, these models frequently overlook the 

integration of environmental and biological factors, 

leading to a compartmentalized understanding of 

crop health and disease progression. 

Addressing these challenges necessitates the 

design and implementation of novel computational 

frameworks that can seamlessly integrate spatial-

temporal dynamics with ecological and 

environmental variables. 
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The proposed method introduces several 

innovative features that distinguish it from existing 

approaches in crop disease analysis and treatment 

recommendation. One notable feature is the 

integration of Graph Attention Mechanism with 

Spatial-Temporal Graph Convolutional Networks 

(ST-GCN), which enables the model to capture 

intricate spatial-temporal interactions within 

agricultural data samples. By representing crop 

quality images as nodes within a graph structure and 

leveraging spatial relationships between these nodes, 

the model can achieve precise disease identification 

and progression tracking over time and space. 

Additionally, the Deep Q-Network with 

Attention-Based Feature Selection (DQN-AFS) 

model introduces a novel approach to optimizing 

feature selection in crop images. By combining 

reinforcement learning with attention mechanisms, 

the model learns to prioritize relevant features for 

disease diagnosis, thereby enhancing classification 

accuracy while reducing computational load. 

Furthermore, the Swarm Intelligence-Based 

Multiple Agent Reinforcement Learning (SI-MARL) 

framework offers a unique approach to adaptive 

treatment recommendation in agricultural systems. 

Drawing inspiration from natural swarm behavior, 

the model optimizes treatment strategies by 

leveraging collective decision-making among 

multiple agents, leading to more effective resource 

allocation and minimal environmental impact. 

The main advantages of the proposed method 

over existing approaches lie in its comprehensive and 

data-driven approach to crop disease analysis and 

treatment recommendation. By integrating advanced 

machine learning techniques, the proposed method 

achieves superior performance in disease 

identification accuracy, feature selection 

effectiveness, and treatment recommendation 

precision. For instance, the ST-GCN model 

demonstrates a significant improvement in disease 

identification accuracy compared to traditional 

methods, thanks to its ability to capture spatial-

temporal dynamics in crop health data samples. 

Similarly, the DQN-AFS model showcases 

higher efficiency in feature selection, resulting in 

improved diagnostic precision while reducing 

computational overhead. Moreover, the SI-MARL 

framework offers more accurate and adaptive 

treatment recommendations by leveraging collective 

intelligence and dynamic learning from 

environmental and crop health data samples. 

Collectively, these methods signify a paradigm shift 

in the approach to crop disease management, moving 

towards more integrated, dynamic, and intelligent 

systems. This paper aims to explore the theoretical 

underpinnings, methodological advancements, and 

practical implications of these innovative models, 

setting a new standard for research and application in 

the domain of precision agriculture and crop disease 

analysis. 

2. In-depth review of existing models used 

for disease prediction analysis 

The Crop disease detection is a critical aspect of 

precision agriculture, enabling early intervention and 

effective management strategies to mitigate yield 

losses and ensure food security. Table 1 sheds light 

on the diverse approaches employed, each with its 

strengths and limitations. Among the methodologies 

reviewed, several standout approaches demonstrate 

notable efficacy in crop disease detection. Notably, 

the utilization of deep learning techniques, such as 

convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), has shown remarkable 

promise in achieving high accuracy and robustness in 

disease classification [1, 5, 8, 10]. These methods 

leverage the inherent capacity of deep learning 

models to automatically extract discriminative 

features from raw input data, thereby facilitating 

accurate disease identification even in complex and 

diverse agricultural environments. 

Additionally, the integration of advanced 

technologies such as IoT and remote sensing has 

enabled real-time monitoring and detection of crop 

diseases [4, 23]. These methods leverage the 

proliferation of sensor networks and satellite imagery 

to capture timely and spatially explicit information, 

enabling proactive disease management strategies 

and precise resource allocation. Furthermore, the 

development of specialized datasets, such as the Field 

Plant dataset, has played a pivotal role in advancing 

research in crop disease detection by providing 

researchers with access to comprehensive and diverse 

training data [7] samples. Such datasets are 

instrumental in training and evaluating machine 

learning models, thereby enhancing the 

generalization and robustness of disease detection 

systems across different crop types and 

environmental conditions. Many of the proposed 

approaches are limited in scope, focusing on specific 

crops or diseases [3, 10, 11, 14]. This narrow focus 

restricts the applicability of these methods in broader 

agricultural contexts and necessitates further research 

to generalize findings across different crop species 

and diseases. 

Moreover, reliance on labeled data remains a 

significant bottleneck in the development and 

deployment of machine learning-based disease 

detection systems [5, 9, 15]. The scarcity of annotated  
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Table 1. Review of the Existing Methods used for Disease Analysis 
Method Used Findings Results Limitations 

Modified Light-

Weight CNN With 

Attention Mechanism 

[1] Proposed a CNN-based 

approach with attention 

mechanism for crop disease 

recognition 

Achieved improved 

accuracy in crop disease 

recognition compared to 

traditional methods 

Limited to image-based 

recognition; may require 

further validation in diverse 

environmental conditions 

Mapping Crop 

Rotation Systems in 

Southern China 

[2] Utilized remote sensing data 

to map complex crop rotation 

systems considering cropping 

intensity and diversity 

Identified seasonal 

dynamics in crop rotation 

systems, aiding in 

agricultural planning 

Relies on satellite data; 

may have limitations in 

capturing small-scale 

variations 

Lightweight 2D CNN 

Architecture 

[3] Developed a plant disease 

classifier for dual-crop diseases 

using a lightweight 2D CNN 

architecture 

Achieved efficient disease 

detection in both tomato 

and cotton plants 

Limited to dual-crop 

disease detection; may 

require expansion for 

broader applications 

Real-Time 

Sustainable IoT 

System for Crop 

Disease Detection 

[4] Presented CROPCARE, an 

intelligent IoT system for real-

time crop disease detection using 

mobile vision 

Enabled real-time 

monitoring and detection 

of crop diseases, 

promoting sustainable 

agriculture 

Relies on mobile vision 

technology; may face 

challenges in remote areas 

with limited connectivity 

Deep Learning for 

Plant Disease 

Detection 

[5] Developed a real-time plant 

disease detection system using 

deep learning and transfer 

learning 

Achieved accurate 

classification of plant 

diseases, facilitating early 

detection and intervention 

Relies on availability of 

labeled data; may require 

further optimization for 

diverse plant species 

Enhanced Leaf Area 

Index Estimation 

With CROP-

DualGAN Network 

[6] Proposed CROP-DualGAN 

network for enhanced estimation 

of leaf area index using 

hyperspectral imaging 

Demonstrated improved 

accuracy in leaf area index 

estimation compared to 

traditional methods 

Limited to leaf area index 

estimation; may require 

validation across different 

crop types and growth 

stages 

FieldPlant Dataset for 

Plant Disease 

Detection 

[7] Introduced FieldPlant dataset 

for plant disease detection and 

classification using deep 

learning 

Facilitated research in 

plant disease detection 

with a comprehensive 

dataset of field and 

laboratory images 

Dataset limited to specific 

plant species and diseases; 

may not generalize well to 

other scenarios 

Convolutional Neural 

Network for Apple 

Plant Disease 

Detection 

[8] Developed a CNN-based 

approach for detecting apple 

plant diseases using leaf images 

Achieved accurate 

classification of apple 

plant diseases, aiding in 

disease management 

Limited to apple plant 

diseases; may require 

extension for other fruit 

crops 

Machine Learning 

Methods for Crop 

Pest and Disease 

Verification 

[9] Analyzed formal concepts 

for verification of pests and 

diseases of crops using machine 

learning methods 

Demonstrated the potential 

of machine learning for 

accurate verification of 

crop pests and diseases 

Relies on accurate data 

labeling; may face 

challenges in complex 

environmental conditions 

Lightweight Inception 

Networks for Rice 

Plant Disease 

Detection 

[10] Proposed lightweight 

Inception networks for the 

recognition and detection of rice 

plant diseases 

Achieved efficient 

detection and recognition 

of rice plant diseases with 

reduced computational 

complexity 

Limited to rice plant 

diseases; may require 

adaptation for other crops 

Beans Leaf Diseases 

Classification Using 

MobileNet Models 

[11] Developed MobileNet 

models for classifying beans leaf 

diseases 

Demonstrated effective 

classification of beans leaf 

diseases, aiding in disease 

management 

Limited to beans leaf 

diseases; may require 

validation for other crop 

diseases 

Rice Transformer for 

Integrated 

Management of Rice 

Diseases 

[12] Introduced Rice 

Transformer for integrated 

management of rice diseases 

using multimodal data fusion 

Enabled comprehensive 

control of rice diseases 

through data integration 

and self-attention 

mechanisms 

Limited to rice diseases; 

may require adaptation for 

other crop diseases 

High-Quality Rice 

Leaf Disease Image 

Data Augmentation 

[13] Proposed a high-quality 

data augmentation method for 

rice leaf disease images using a 

dual GAN 

Improved the quality and 

quantity of rice leaf 

disease image datasets for 

deep learning 

Relies on image data 

availability; may face 

challenges in capturing 

diverse disease 

manifestations 
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IoT and Machine 

Learning Model for 

Tea Plant Disease 

Prediction 

[14] Developed an IoT and 

machine learning model for 

predicting blister blight disease 

in tea plants 

Demonstrated the potential 

of IoT and machine 

learning for early 

prediction of tea plant 

diseases 

Limited to blister blight 

disease in tea plants; may 

require extension for other 

tea diseases 

Continual Learning 

for Wheat Disease 

Classification 

[15] Proposed continual learning 

for wheat disease classification, 

facilitating adaptive learning 

Enabled continuous 

improvement in wheat 

disease classification with 

limited labeled data 

Relies on continual data 

availability; may face 

challenges in concept drift 

Diffractive Light 

Identification 

Airborne Spore 

Sensor Network 

[16] Developed a crop disease 

source location and monitoring 

system based on diffraction 

imaging and IoT technology 

The system successfully 

identified and monitored 

crop diseases by analyzing 

diffractive light patterns 

Limited to airborne spore 

detection; may require 

refinement for ground-level 

applications 

RNN Models Based 

on Weather 

Parameters 

[17] Constructed and optimized 

RNN models to predict fruit rot 

disease incidence in areca nut 

crops using weather parameters 

Demonstrated accurate 

prediction of fruit rot 

disease incidence based on 

weather data 

Relies on weather data 

availability; may require 

validation across different 

geographic regions 

Deep Learning 

Analysis of Rice Blast 

Disease 

[18] Applied deep learning 

analysis to detect rice blast 

disease using remote sensing 

images 

Successfully identified 

rice blast disease-infected 

areas, enabling timely 

interventions 

Relies on remote sensing 

data availability; may 

require validation in 

different rice-growing 

regions 

Deep Learning-Based 

Plant Disease 

Detection for 

Horticultural Crops 

[19] Presented a performance-

optimized deep learning 

approach for plant disease 

detection in horticultural crops 

Achieved high accuracy in 

plant disease detection, 

enhancing crop health 

monitoring 

Limited to horticultural 

crops; may require 

extension for other crop 

types 

Embedded AI for 

Wheat Yellow Rust 

Infection Type 

Classification 

[20] Presented embedded AI for 

classifying wheat yellow rust 

infection types 

Enabled real-time 

classification of wheat 

yellow rust infection types 

for precision agriculture 

Limited to wheat yellow 

rust; may require 

adaptation for other wheat 

diseases 

Computer Vision and 

AI for Plant Leaf 

Disease Diagnosis 

[21] Reviewed computer vision 

and AI techniques for plant leaf 

disease detection, classification, 

and diagnosis 

Provided insights into the 

state-of-the-art techniques 

and challenges in plant 

leaf disease diagnosis 

Limited to review; may 

require empirical validation 

of reviewed techniques 

Citrus Diseases and 

Pests Detection 

Model Based on Self-

Attention YOLOV8 

[22] Proposed a model for 

detecting citrus diseases and 

pests based on self-attention 

YOLOV8 

Enabled accurate detection 

of citrus diseases and pests 

with a lightweight model 

Limited to citrus diseases 

and pests; may require 

adaptation for other citrus-

related issues 

IoT-Enabled Sensor 

System for Leaf Spot 

Disease Germination 

in Groundnut Plants 

[23] Developed an IoT-enabled 

sensor system for monitoring 

leaf spot disease germination in 

groundnut plants 

Facilitated real-time 

monitoring of leaf spot 

disease germination, 

enabling timely 

interventions 

Limited to groundnut 

plants; may require 

validation for other plant 

species 

Machine Learning 

and Deep Learning 

for Plant Disease 

Classification 

[24] Reviewed machine learning 

and deep learning approaches for 

plant disease classification and 

detection 

Provided an overview of 

techniques and 

advancements in plant 

disease classification and 

detection 

Limited to review; may 

require empirical validation 

of reviewed techniques 

Literature Review on 

Plant Disease 

Detection 

[25] Conducted a systematic 

literature review on plant disease 

detection, covering motivations, 

techniques, datasets, challenges, 

and future trends 

Provided comprehensive 

insights into the current 

state, challenges, and 

future directions of plant 

disease detection 

Limited to literature 

review; may require 

empirical validation of 

discussed trends 

 

 

datasets hampers the scalability and adaptability of 

these models, particularly in regions with limited 

resources and expertise in data labeling. Furthermore, 

many existing methods lack robustness in capturing 

the dynamic and heterogeneous nature of agricultural 

ecosystems [2, 21]. In summary, while existing 

methods demonstrate notable advancements in crop 

disease detection, there is a pressing need for more 
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comprehensive and robust approaches that can 

generalize across diverse crops and environmental 

conditions, mitigate data annotation challenges, and 

adapt to the dynamic nature of agricultural 

ecosystems. 

Considering the work done to review various 

existing methods, the recommendations for further 

promoting and the future research directions for the 

detection and management of crop diseases arise. 

Among others, there is a need for the development of 

transferable and scalable models for disease detection, 

which generalize on other crops and environmental 

conditions [1, 5, 7]. Future research efforts should 

focus on leveraging transfer learning and domain 

adaptation techniques to enable knowledge transfer 

from the existing well-studied crops to understudied 

or emerging agricultural systems. Additionally, 

addressing the data annotation bottleneck of many 

existing literature-based machine learning models is 

critical to the advancement of machine learning-

based disease detection systems [9, 15]. 

Collaboration between researchers, practitioners, and 

policymakers is needed in establishing standardized 

protocols of data collection, labeling, and sharing, 

and this can be beneficial in this regard, fostering the 

creation of large-scale annotated datasets that can 

support robust and generalizable models. Moreover, 

embracing dynamic modeling approaches will go a 

long way in enhancing the resilience and efficacy of 

disease detection systems [2, 12]. That is, 

incorporating techniques such as recurrent neural 

networks (RNNs) and attention mechanisms can 

enable modeling of temporal dependencies and 

contextual information, hence improving the 

accuracy and reliability of disease predictions. 

Additionally, implementing highly cost-effective and 

scalable sensing solutions such as hyperspectral 

imaging and IoT [6, 14, 23] may further help in 

enhancing the granularity and timeliness of disease 

detection. By resolving the various issues and 

merging the interdisciplinary approach, the field of 

crop disease detection is in an appropriate position to 

make big strides toward sustainable agriculture and 

global food security. With research and continuous 

innovation, we can use technology to protect crop 

yields and enhance resilience to environmental 

stresses while safeguarding the agricultural 

communities worldwide. 

3. Design of the proposed model for crop 

disease analysis 

To enhance the efficiency of existing methods 

used for crop disease analysis, this section discusses 

design of an Iterative Model that Incorporates Graph  

 
Figure. 1 Architecture of the proposed classification 

process 
 

Attention with Spatial-Temporal Learning and Deep 

Q-Networks. As per Fig. 1, the integration of Graph 

Attention Mechanisms with Spatial-Temporal Graph 

Convolutional Networks (ST-GCN) for the analysis 

of crop diseases represents a significant advancement 

in the field of agricultural technology. This novel 

approach leverages the complex interplay between 

spatial and temporal data, a critical factor in 

understanding the progression and spread of diseases 

across agricultural landscapes. In this model, crop 

quality images are segmented into smaller patches, 

which serve as nodes within a graph structure. These 

nodes are not arbitrary but are strategically selected 

to represent significant variations in crop health, such 

as discoloration, spots, or other disease indicators. 

The edges between these nodes are not mere physical 

distances but represent spatial relationships, 

capturing the contextual dependencies between 

different patches of the crop field. This graph-based 

representation facilitates the detailed analysis of 

spatial patterns and disease distribution, allowing for 

more accurate disease identification and progression 

tracking. Below notations are used in equations. 

 

Notation Description 

α Attention coefficient 

β(i,j) Spatial attention coefficient 

γ Temporal attention coefficient 

Θ Convolutional filters 
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a Weight vector in the attention 

mechanism 

hi, hj Feature vectors of nodes i and j, 

respectively 

N(i) Neighborhood of node i 

∣ Concatenation 

x(i,t) Spatiotemporal feature at node i 

at timestamp t 

vi(t), xi(t) Velocity and position of agent i at 

timestamp t, respectively 

p(best,i) Best position encountered by 

agent i 

g(best) Global best position found by any 

agent 

ω Inertia weight 

c1, c2 Cognitive and social coefficients, 

respectively 

r1, r2 Stochastic numbers between 0 

and 1 sets 

s, a State and action 

s', a' Subsequent state and action 

Q(s, a) Quality of action a in state s 

R(s, a) Immediate reward received after 

taking action a in state s 

Accuracy[Po

st Selection], 

Accuracy[Pr

e Selection] 

Accuracy after and before feature 

selection, respectively 

fi Feature vector for each segment 

ρi Relevance score for feature fi 

w Weight vector 

b Bias term 

TEIR Treatment Efficacy Improvement 

Rate 

iter(max) Maximum iteration number 

s Data sample 

ai Action corresponding to selecting 

feature i 

π(a∣s) Probability of selecting a 

particular feature 

τ Temperature parameter 

controlling the exploration-

exploitation trade-offs 

DROPOUT Dropout operation in feature 

extraction process 

MaxPool Max pooling operation 

Conv Convolutional operation 

SoftMax Softmax operation 

LeakyReLU Leaky Rectified Linear Unit 

activation function 

 

The core of the methodology lies in the Graph 

Attention Mechanism (GAM), which operates on the 

principle that not all nodes in the graph contribute 

equally to the final output. In mathematical terms, the 

attention coefficient αij, which modulates the 

influence of node j on node i, is computed via Eq. (1), 

 

𝛼𝑖𝑗 =
𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝒂𝑇[ 𝑾ℎ𝑖∣∣𝑾ℎ𝑗 ]))

∑ 𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝒂𝑇[𝑾ℎ𝑖∣𝑾ℎ𝑘]))𝑘∈𝑁(𝑖)
        (1) 

 

Where, hi and hj are the feature vectors of nodes 

i and j, respectively, W is a weight matrix, a is a 

weight vector in the attention mechanism, N(i) 

represents the neighborhood of node i, and ∣ 
represents concatenation. This mechanism ensures 

that features from more relevant nodes have a greater 

impact on the feature representation of each node. 

The spatial-temporal component is addressed through 

the integration of Spatial-Temporal Graph 

Convolutional Networks (ST-GCN), which extend 

the model's capabilities to analyze temporal 

sequences of images. This involves the application of 

graph convolutional operations not just across the 

spatial dimensions of a single timestamp but also 

across multiple timestamps & instance sets. The 

spatiotemporal feature at node i at timestamp t, 

represented by xit, is updated through a combination 

of spatial graph convolutions and temporal 

convolutions, mathematically represented via Eq. (2), 

 

𝑥(𝑖, 𝑡 + 1) = 𝑅𝑒𝐿𝑈(∑ 𝛽(𝑖, 𝑗) 𝛩 𝑥(𝑗, 𝑡) +𝑗∈𝑁(𝑖)

𝛾 𝛩 𝑥(𝑖, 𝑡))      (2) 

 

Where, 𝛽(𝑖, 𝑗) is the spatial attention coefficient, 

γ is the temporal attention coefficient, and Θ 

represents the convolutional filters. This combination 

allows the model to dynamically adjust to changes 

over time, providing a comprehensive view of the 

disease progression. By incorporating both spatial 

and temporal dynamics, the model can predict future 

disease spread and severity with high precision. The 

decision to employ this novel methodology arises 

from its inherent advantages over traditional 

approaches. Traditional methods often fail to account 

for the intricate spatial-temporal relationships within 

agricultural data, leading to less accurate predictions 

and generalized, rather than site-specific, treatment 

recommendations. 

The ST-GCN model, however, harnesses the 

power of both graph theory and convolutional 

networks, ensuring detailed and dynamic analysis. 

This method is particularly suited to the complex 

nature of crop disease spread, which is influenced by 

a multitude of interrelated factors including 

environmental conditions, crop density, and temporal 

changes. 

Next, as per Fig. 2, the introduction of the Deep 

Q-Network with Attention-Based Feature Selection  
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Figure. 2 Overall Flow of the Proposed Classification 

Process 

 

(DQN-AFS) model marks a pioneering advancement 

in the realm of precision agriculture, particularly in 

the analysis and management of crop diseases. By 

fusing the principles of reinforcement learning with 

attention mechanisms, the DQN-AFS approach 

innovatively optimizes the process of feature 

selection in crop images, enabling a nuanced 

understanding of disease variations and severity 

levels. In the DQN-AFS framework, the 

segmentation of crop images into discernible features 

is the initial critical step. Each image is partitioned 

into segments representing different areas of 

potential disease manifestation. These segments, or 

feature candidates, form the basis of the model's 

learning process 

The essential notion here is that not all segments 

are equally informative for disease diagnosis; hence, 

the model must learn to focus on the most pertinent 

features. This process is formalized through the 

application of a Q-learning framework, where each 

feature segment acts as a state, and the selection of a 

feature corresponds to an action. The core of the 

DQN-AFS model lies in its unique combination of Q-

learning with an attention mechanism, aimed at 

refining the process of feature selection. The Q Value 

function in this context, represented as Q(s, a), 

estimates the potential value of selecting a feature 'a' 

when the model is in state 's'. The updating of this Q 

Value function follows the standard reinforcement 

learning process, which is represented via Eq. (3), 

 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) +
𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]    (3) 

 

Where, α is the learning rate, R(s,a) is the reward 

received after selecting feature 'a' in state 's', γ is the 

discount factor, and s′ is the new state after action 'a' 

is taken. The integration of the attention mechanism 

is designed to modulate the selection process 

dynamically. The attention weight βi for each feature 

i is computed based on its contribution to the 

classification task, utilizing the softmax function over 

the Q Values via Eq. (4), 

 

𝛽𝑖 =
𝑒𝑥𝑝(𝑄(𝑠,𝑎𝑖))

∑ 𝑒𝑥𝑝(𝑄(𝑠,𝑎𝑗))𝑗
    (4) 

 

These attention weights direct the model's focus 

towards features with higher expected utility for 

disease identification process. The selection policy, 

derived from the attention-weighted Q Values, 

dictates the probability of selecting a particular 

feature via Eq. (5), 

 

𝜋( 𝑎 ∣ 𝑠 ) =
𝑒𝑥𝑝(𝜏𝑄(𝑠,𝑎))

∑ 𝑒𝑥𝑝(𝜏𝑄(𝑠,𝑎′))𝑎′
   (5) 

 

Where, τ represents a temperature parameter 

controlling the exploration-exploitation trade-offs. 

The feature extraction process in DQN-AFS employs 

convolutional neural networks (CNNs), which 

further process the selected image segments. The 

feature vector for each segment, represented by fi, is 

extracted via Eq. (6), 

 

𝑓𝑖 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 

(𝐷𝑟𝑜𝑝𝑂𝑢𝑡 (𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐶𝑜𝑛𝑣(𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑖))))) (6) 

 

The extracted features are then evaluated based 

on their relevance to the disease classification task. 

The relevance score ρi for feature fi is calculated 

using a linear combination of feature values, 

weighted by learned parameters via Eq. (7), 
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𝜌𝑖 = 𝒘𝑇𝑓𝑖 + 𝑏      (7) 

 

Where, w represents the weight vector and b the 

bias term. The ultimate goal of DQN-AFS is to 

maximize the cumulative reward, which is 

intrinsically linked to the accuracy of disease 

classification. Thus, the reward function is designed 

to reflect the improvement in classification 

performance via Eq. (8), 

 

𝑅(𝑠, 𝑎) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦[𝑃𝑜𝑠𝑡 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛] −
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦[𝑃𝑟𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛]    (8) 

 

The selection of this innovative DQN-AFS model 

stems from its ability to address key challenges in 

crop disease analysis, notably the high 

dimensionality of image data and the variability of 

disease signatures. Traditional feature selection 

methods often fall short in handling the vast and 

heterogeneous data characteristic of crop images. In 

contrast, the DQN-AFS model, with its 

reinforcement learning foundation and attention-

based feature modulation, offers a dynamic and 

targeted approach to feature selection, ensuring that 

only the most informative features are considered for 

disease diagnosis. By incorporating both 

reinforcement learning and attention mechanisms, 

the DQN-AFS model not only enhances feature 

selection but also complements existing methods by 

providing a more granular and adaptive analysis 

framework. This methodological choice is justified 

by the complex nature of crop diseases and the 

critical need for precision in agricultural decision 

making operations. Through the application of the 

DQN-AFS model, agricultural practitioners can 

achieve a deeper and more accurate understanding of 

crop disease dynamics, leading to more effective and 

timely interventions for different use case scenarios. 

Finally, the Swarm Intelligence-Based Multiple 

Agent Reinforcement Learning (SI-MARL) 

framework introduces an innovative approach to 

adaptive treatment recommendation in agricultural 

systems. Drawing inspiration from the collective 

decision-making behavior observed in natural 

swarms, this model employs a combination of 

Particle Swarm Optimization (PSO) and Multi-Agent 

Reinforcement Learning (MARL) to process 

environmental and crop health data for the 

formulation of precise treatment strategies. This 

hybrid approach aims to harness the strengths of 

swarm intelligence and reinforcement learning to 

optimize resource allocation and minimize 

environmental impacts, addressing critical challenges 

in sustainable agriculture. In the SI-MARL 

framework, each agent (akin to a particle in PSO 

terminology) represents a potential solution to the 

treatment recommendation tasks. These agents 

explore the solution space, representing different 

combinations of treatment options, to identify the 

most effective strategies. The position of each agent 

in this space is updated based on both their individual 

experiences and the experiences of their neighbors, 

following the standard PSO update rules. Update the 

velocity of each agent via equation 9, 

 

𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1 ∗ 𝑟1(𝑝(𝑏𝑒𝑠𝑡, 𝑖) − 𝑥𝑖

(𝑡)) + 𝑐2 ∗ 𝑟2(𝑔(𝑏𝑒𝑠𝑡) − 𝑥𝑖(𝑡))   (9) 

 

Where, vi(t) and xi(t) are the velocity and position 

of agent i at timestamp t, respectively, p(best,i) is the 

best position encountered by agent i, g(best) is the 

global best position found by any agent, ω is the 

inertia weight, c1 and c2 are cognitive and social 

coefficients, respectively, and r1, r2 are stochastic 

numbers between 0 and 1 sets. Next, update the 

position of each agent via equation 10, 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)             (10) 

 

 In parallel, the reinforcement learning aspect of 

the model enables each agent to learn from its 

environment. Agents receive feedback in the form of 

rewards based on the effectiveness of their proposed 

treatment strategies. The learning process for each 

agent is guided by the Bellman Process, which is 

represented via equation 11, 

 

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)             (11) 

 

Where, Q(s,a) is the quality of action a in state s, 

R(s,a) is the immediate reward received after taking 

action a in state s, s′ is the subsequent state, and γ is 

the discount factor. The integration of PSO and 

MARL in the SI-MARL framework allows for the 

exploration and exploitation of the solution space in 

a coordinated manner. Agents use their individual 

and collective experiences to converge towards 

optimal treatment strategies. The adaptive nature of 

this learning process is encapsulated in the adaptive 

inertia weight, which is estimated via equation 12, 

 

𝜔 = 𝜔𝑚𝑎𝑥 − (
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑖𝑡𝑒𝑟(𝑚𝑎𝑥)
) 𝑖𝑡𝑒𝑟     (12) 

 

Where, ωmax and ωmin are the maximum and 

minimum inertia weights, respectively, and iter is the 

current iteration number out of the maximum 

iter(max) iteration sets. The collaborative aspect of 

the SI-MARL model is further emphasized through 
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the incorporation of collective reward mechanisms, 

fostering a sense of cooperation among agents via Eq. 

(13), 

 

𝑅𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒 =
1

𝑁
∑𝑅𝑖               (13) 

 

Where, Ri is the individual reward received by agent 

i, and N is the total number of agents. The 

justification for employing the SI-MARL framework 

lies in its ability to tackle the complex, dynamic, and 

multi-dimensional nature of agricultural treatment 

optimization. Traditional single-agent approaches 

may fall short in addressing the myriad factors 

affecting crop health and environmental 

sustainability. In contrast, the SI-MARL framework 

leverages the collective intelligence and adaptive 

capabilities of multiple agents, enabling a more 

holistic and nuanced approach to treatment 

recommendation. Furthermore, the choice of this 

model complements existing agricultural decision-

making tools by providing a scalable, flexible, and 

efficient solution. The integration of swarm 

intelligence with reinforcement learning allows the 

SI-MARL framework to dynamically adjust to 

changing environmental conditions and crop health 

states, ensuring the development of tailored, data-

driven treatment strategies. Next, we discuss the 

performance of this model in terms of different 

evaluation metrics, and compare this performance 

with existing methods. 

4. Comparative result analysis 

Image classification relies heavily on feature 

extraction, as it establishes the quality of features 

used by classification algorithms. The success of the 

classification task heavily relies on extracting 

relevant features from the images. Typically, features 

of an object are categorized into local and global 

features based on attributes like color, shape, or 

texture. Local features encompass color and texture 

attributes, while shape features are considered global 

features. In this section, we initially detail an 

experimental setup for validating the integration and 

application of Graph Attention Mechanism with 

Spatial-Temporal Graph Convolutional Networks 

(ST-GCN), Deep Q-Network with Attention-Based 

Feature Selection (DQN-AFS), and Swarm 

Intelligence-Based Multiple Agent Reinforcement 

Learning (SI-MARL) for crop disease analysis and 

treatment recommendation is crucial for replicating 

and validating the research findings. Next, we discuss 

its performance & later use a practical use case to 

further understand the internal working of the 

proposed model in different scenarios.  

4.1 Experimental setup 

The experimental evaluation of the proposed 

model was meticulously designed to ensure the 

robustness and applicability of the models in real-

world agricultural settings. The experiments were 

conducted using a combination of proprietary and 

publicly available datasets, ensuring a 

comprehensive analysis across various crop types, 

disease manifestations, and environmental conditions. 

4.2 Datasets 

The study employed three contextual datasets: 

Leaf Disease Dataset: A compilation of 10,000 high-

resolution images spanning five different crop 

species, each afflicted by one of three distinct leaf 

diseases. The dataset was augmented to include 

variations in lighting, orientation, and background to 

mimic real-world conditions. Temporal Crop Health 

Dataset: A time-series dataset comprising daily 

captured images of crops over a growing season, 

annotated with environmental data such as 

temperature, humidity, and soil moisture levels. This 

dataset includes 200 sequences, each spanning 120 

days. Treatment Efficacy Dataset: Historical records 

of treatment strategies applied across various farms, 

detailing the type, dosage, and timing of treatments, 

coupled with pre- and post-treatment crop health 

assessments. Dataset links: 

https://www.kaggle.com/datasets/vipoooool/new-

plant-diseases-dataset 

https://www.kaggle.com/datasets/emmarex/plantdise

ase 

4.3 Data pre-processing 

Data preprocessing involved the normalization of 

image intensities, segmentation of crop regions from 

the background, and the application of data 

augmentation techniques such as rotation, flipping, 

and scaling to enhance model robustness. Temporal 

data were normalized using Min-Max scaling to fit 

the range [0,1]. 

4.4 Model configuration and parameters 

ST-GCN Configuration: The network was 

structured with three graph convolution layers, each 

followed by a ReLU activation and a graph pooling 

layer. The graph attention mechanism employed 

eight attention heads. Learning rate was set at 0.001, 

with a decay factor of 0.95 applied every 50 epochs. 

DQN-AFS Configuration: The Deep Q-Network 

comprised three convolutional layers for feature 

extraction, followed by two fully connected layers for 
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Q Value estimation. The attention mechanism was 

applied post-feature extraction to prioritize relevant 

features. The model operated with a learning rate of 

0.0005 and a discount factor (γ) of 0.9.SI-MARL 

Configuration: Each agent in the MARL framework 

was equipped with a policy network comprising two 

hidden layers. The PSO algorithm initiated with 50 

particles, inertia weight (ω) ranged from 0.9 to 0.4, 

and personal and social learning rates (c1 and c2) 

were both set at 2.0. 

4.5 Training and evaluation 

Models were trained using a 70-20-10 split for 

training, validation, and testing, respectively. The 

ST-GCN model utilized a batch size of 32, whereas 

the DQN-AFS and SI-MARL models employed 

batch sizes of 64 and 50, respectively. Model 

performance was evaluated based on disease 

identification accuracy, feature selection 

effectiveness, and the precision and recall of 

treatment recommendations. Additionally, the SI-

MARL framework's ability to adapt to new data and 

improve treatment strategies over time was assessed 

using a custom metric, Treatment Efficacy 

Improvement Rate (TEIR). 

4.6 Hardware and software 

Experiments were conducted on a computing 

cluster equipped with NVIDIA Tesla V100 GPUs, 

256 GB RAM, and Intel Xeon CPUs. The models 

were implemented using PyTorch 1.7.0 and Python 

3.8, with CUDA 10.2 for GPU acceleration. This 

setup provides a detailed and replicable framework 

for assessing the effectiveness of the proposed ST-

GCN, DQN-AFS, and SI-MARL models in the 

context of crop disease analysis and treatment 

recommendation. The comprehensive nature of the 

datasets, combined with rigorous model 

configuration and evaluation strategies, ensures a 

thorough investigation into the models' capabilities 

and real-world applicability. 

Based on this setup, the evaluation of the 

proposed models—Graph Attention Mechanism with 

Spatial-Temporal Graph Convolutional Networks 

(ST-GCN), Deep Q-Network with Attention-Based 

Feature Selection (DQN-AFS), and Swarm 

Intelligence-Based Multiple Agent Reinforcement 

Learning (SI-MARL)—was conducted using three 

distinct datasets: the Leaf Disease Dataset, the 

Temporal Crop Health Dataset, and the Treatment 

Efficacy Dataset Samples. These models were 

compared against three existing methods, referenced 

as [3, 7, 14], to assess their performance in terms of 

disease identification accuracy, feature selection 

effectiveness, and treatment recommendation 

precision. 

Table 2 presents the accuracy of disease 

identification on the Leaf Disease Dataset. The 

Proposed ST-GCN model outperforms the 

comparative methods by a significant margin. This 

improvement is attributed to the model's ability to 

leverage graph attention mechanisms, which 

effectively capture the spatial relationships between 

different regions of the leaves, enhancing disease 

detection capabilities. 

Table 3 compares the effectiveness of feature 

selection across the different methods using the Leaf 

Disease Dataset. The Proposed DQN-AFS model 

demonstrates a lower percentage of selected features 

while maintaining a higher relevance score compared 

to the other methods. This indicates that DQN-AFS 

is more efficient in isolating critical features for 

disease identification, thereby reducing 

computational load while enhancing diagnostic 

precision. 

Table 4 outlines the accuracy of temporal disease 

progression analysis. The Proposed ST-GCN model 

again shows superior performance, demonstrating its 

robust capability in capturing temporal dynamics 

within crop health data. This is critical for early 

disease detection and monitoring, offering significant 

advantages in timely and effective disease 

management. 

Table 5 displays the precision of treatment 

recommendations based on the Treatment Efficacy 

Dataset. The Proposed SI-MARL model achieves the 

highest precision, reflecting its advanced capability 

to synthesize environmental and crop health data to 

formulate accurate treatment strategies. This is 

instrumental in optimizing resource allocation and 

minimizing environmental impacts, underpinning the 

model's utility in sustainable agricultural practices. 

Fig. 3 provides a comprehensive comparison 

across all evaluated metrics, affirming the superior 

performance of the proposed system over the existing 

methods [3, 7, 14]. The aggregated results highlight 

the effectiveness of integrating ST-GCN, DQN-AFS, 

and SI-MARL into a cohesive system for managing 

crop diseases. This synthesis not only enhances 

disease diagnosis and monitoring but also refines the 

selection and application of treatment strategies, 

leading to more effective and sustainable agricultural 

practices.  

Following the implementation of the ST-GCN 

model, Table 6 illustrates the output concerning 

disease identification and progression tracking. The 

table displays data samples alongside their respective 

features, the model's disease identification accuracy, 

and the temporal tracking performance. 
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Figure. 3 Overall System Performance Comparison 

 

 
Table 2. Disease Identification Accuracy on the Leaf 

Disease Dataset  

Method Accuracy (%) 

Proposed ST-GCN 94.2 

Method [3] 87.5 

Method [7] 85.3 

Method [14] 88.9 

 

 
Table 3. Feature Selection Effectiveness on the Leaf 

Disease Dataset  

Method 
Selected 

Features (%) 

Relevance 

Score 

Proposed DQN-

AFS 
65.4 0.92 

Method [3] 78.3 0.75 

Method [7] 80.1 0.70 

Method [14] 73.5 0.78 

 

 
Table 4. Temporal Analysis Accuracy on the Temporal 

Crop Health Dataset  

Method Accuracy (%) 

Proposed ST-GCN 91.7 

Method [3] 84.2 

Method [7] 82.5 

Method [14] 86.0 

Table 5. Treatment Recommendation Precision on the 

Treatment Efficacy Dataset 

Method Precision (%) 

Proposed SI-MARL 89.4 

Method [3] 75.3 

Method [7] 72.6 

Method [14] 78.9 

 

 

The DQN-AFS model, tailored for effective 

feature selection, processes the same set of data 

samples. The focus lies on identifying and 

prioritizing features critical for the accurate diagnosis 

of crop diseases. The model's output, depicted in 

Table 7, showcases the selected features for each data 

sample and the corresponding relevance scores, 

highlighting the model's efficiency in isolating 

pertinent disease indicators. 

Finally, the SI-MARL framework leverages the 

insights derived from the ST-GCN and DQN-AFS 

models to formulate targeted treatment strategies. 

Reflecting a synthesis of environmental data, crop 

health indicators, and predictive analytics, Table 8 

presents the model’s recommendations for each data 

sample, along with the associated confidence levels 

and expected environmental impact assessments. 

The outputs presented in Tables 6, 7, and 8 

collectively illustrate the comprehensive approach  
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Table 6. ST-GCN Model Output 

Data 

Sample 

Feature 

1 (Leaf 

Color) 

Feature 

2 (Spot 

Size) 

Identifi

ed 

Disease 

Tempo

ral 

Tracki

ng 

Accura

cy (%) 

Sample 1 Green Small Mildew 92.0 

Sample 2 Yellow Medium Rust 89.0 

Sample 3 Brown Large Blight 94.5 

Sample 4 Dark 

Green 

None Healthy 96.0 

 

 
Table 7. DQN-AFS Model Output  

Data 

Sample 

Selected 

Feature 

Relevance Score 

Sample 1 Leaf Color 0.85 

Sample 2 Spot Size 0.90 

Sample 3 Leaf Color 0.88 

Sample 4 Leaf Color 0.60 

 

 
Table 8. SI-MARL Model Output  

Data 

Sample 

Recommende

d Treatment 

Confide

nce 

Level 

(%) 

Environm

ental 

Impact 

Score 

Sample 1 Fungicide 

Spray 

87 Low 

Sample 2 Nutrient 

Supplement + 

Watering 

90 Medium 

Sample 3 Intensive Care 

Plan 

95 High 

Sample 4 Regular 

Monitoring 

99 Negligible 

 

 

employed in this study to tackle the multifaceted 

challenge of crop disease management. The ST-GCN 

model's capability to accurately identify diseases and 

track their progression over time provides essential 

insights for early intervention. Concurrently, the 

DQN-AFS model's focused feature selection 

underlines the importance of relevant data indicators 

in enhancing diagnosis accuracy. Finally, the SI-

MARL model's treatment recommendations, 

grounded in a deep understanding of crop conditions 

and environmental implications, underscore the 

potential for advanced AI-driven models to 

contribute significantly to sustainable agricultural 

practices. 

Through the integration of these models, the 

research demonstrates a novel, data-informed 

pathway toward improving crop health and 

productivity while minimizing environmental 

impacts. These findings underscore the importance of 

leveraging advanced analytics and machine learning 

in developing responsive, effective, and sustainable 

agricultural solutions. Future work will expand on 

these foundations, exploring broader datasets, 

refining algorithms, and integrating real-world 

feedback to further enhance the models' accuracy and 

applicability in diverse agricultural contexts. 

5. Conclusion and future scopes 

5.1 Conclusion 

The research presented herein introduces an 

integrated approach to crop disease management 

through the development and application of advanced 

machine learning models, namely the Graph 

Attention Mechanism with Spatial-Temporal Graph 

Convolutional Networks (ST-GCN), Deep Q-

Network with Attention-Based Feature Selection 

(DQN-AFS), and Swarm Intelligence-Based 

Multiple Agent Reinforcement Learning (SI-MARL). 

The primary objective of this work was to address the 

pressing need for precise, scalable, and adaptable 

solutions in agricultural disease analysis and 

treatment, thereby contributing to the sustainability 

and efficiency of global food production systems. 

The results from the extensive experimental 

evaluations demonstrate the superior performance of 

the proposed models over existing methods in disease 

identification, feature selection, and treatment 

recommendation accuracy. Specifically, the ST-GCN 

model showcased remarkable proficiency in 

identifying and tracking crop diseases over time and 

space, leveraging the novel integration of graph 

attention mechanisms with spatial-temporal graph 

convolutions. Similarly, the DQN-AFS model 

improved the efficiency and relevance of feature 

selection, enabling the identification of critical 

disease indicators while minimizing computational 

demands. Furthermore, the SI-MARL framework's 

innovative application of swarm intelligence 

principles to reinforcement learning yielded highly 

precise treatment strategies, optimizing resource 

utilization and minimizing adverse environmental 

impacts for different scenarios. 

The findings underscore the potential of combining 

advanced data analytics and machine learning 

techniques to revolutionize agricultural practices, 

moving towards more informed, responsive, and 

sustainable farming methodologies. The proposed 

models not only enhance diagnostic and treatment 

capabilities but also pave the way for the 

development of more intelligent, autonomous 
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agricultural systems capable of adapting to changing 

environmental conditions and crop health statuses. 

5.2 Future scope 

While the results of this study are promising, they 

also open avenues for further research and 

development. Future work could explore the 

following areas: 

• Data Diversity and Scalability: Expanding the 

datasets to include a wider range of crops, 

diseases, and environmental conditions would 

enhance the models' applicability and robustness. 

Additionally, scalability issues related to 

processing large-scale agricultural data could be 

addressed through the development of more 

efficient algorithms and computational 

frameworks. 

• Integration with IoT Devices: The integration of 

the proposed models with Internet of Things 

(IoT) devices and sensors deployed in 

agricultural fields could enable real-time data 

collection and analysis, further improving the 

timeliness and accuracy of disease detection and 

treatment recommendations. 

• Human-in-the-Loop Approaches: Incorporating 

expert feedback and farmer inputs into the 

learning loop could enhance the models' 

practicality and user acceptance. Developing 

interactive platforms that allow for the 

integration of human knowledge and 

preferences would foster greater collaboration 

between technology and traditional farming 

expertise. 
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