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Abstract: In the realm of blockchain technology, the quest for scalable and high-quality-of-service (QoS) systems 

remains a formidable challenge. Existing blockchain models often grapple with trade-offs between efficiency, speed, 

and security, particularly in the face of growing demands for energy-efficient and swift data processing. This paper 

introduces an innovative approach to address these limitations, leveraging Q Learning for context-based shard 

management, coupled with Elephant Herd Fish Swarm Optimization (EHFSO) process. This novel combination is 

specifically engineered to dynamically select hashing and encryption techniques tailored to each context-based shard, 

thereby enhancing the overall performance of blockchain systems. The proposed model marks a significant departure 

from traditional blockchain architectures. By integrating Q Learning, the system intelligently adapts to varying data 

contexts, ensuring optimal shard management operations. The EHFSO algorithm, drawing inspiration from natural 

swarm behavior, further refines the selection process for hashing and encryption techniques. This dual approach not 

only fortifies security but also augments efficiency levels. The practical efficacy of this model is underscored by its 

performance on multiple medical datasets & its samples. The results are compelling: an 8.5% improvement in mining 

energy efficiency, a 4.9% increase in mining speed, 5.9% higher throughput, 4.5% more consistent mining, and a 

noteworthy 5.9% reduction in storage costs compared to existing methods. Primarily, the work paves the way for more 

sustainable and efficient blockchain operations, particularly crucial in energy-sensitive sectors. Additionally, the 

enhanced throughput and mining consistency significantly improve the blockchain’s applicability in real-world 

scenarios, where speed and reliability are paramount in real-time use cases. This research not only addresses the current 

limitations of blockchain technology but also sets a new benchmark for future developments in this field for different 

scenarios. 

Keywords: Blockchain scalability, Q learning, Elephant herd fish swarm optimization, Energy efficiency, Medical 

data management, Scenarios. 

 

 

1. Introduction 

The introduction of blockchain technology has 

marked a transformative era in data management and 

security. Initially conceptualized for digital currency 

transactions, blockchain’s potential has rapidly 

expanded into diverse sectors, including healthcare, 

finance, and supply chain management. However, as 

the technology’s applications widen, the demands for 

scalability, high-quality service (QoS), and efficient 

resource management become increasingly critical. 

Traditional blockchain models, while robust in 

security and decentralization, often face challenges in 

scalability and speed, especially when handling large 

volumes of data samples. 
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Recent advancements in blockchain technology 

have sought to address these challenges. One such 

approach is sharding, a method that partitions the 

blockchain into smaller, more manageable segments, 

thereby enhancing processing speed and scalability. 

However, conventional sharding techniques lack 

context-awareness, leading to sub-optimal resource 

allocation and potential security vulnerabilities. 

Furthermore, the static nature of hashing and 

encryption methods in existing blockchain models 

does not adapt efficiently to the dynamic 

requirements of various data contexts, especially in 

sectors like healthcare where data sensitivity varies 

significantly. 

In this context, the proposed model introduces a 

novel approach that synergizes Q Learning with 

Elephant Herd Fish Swarm Optimization (EHFSO) 

for dynamic shard management. Q Learning, a form 

of machine learning, enables the system to learn and 

adapt to different data contexts, optimizing shard 

management in real-time. Complementarily, EHFSO, 

inspired by natural swarm behavior, dynamically 

selects appropriate hashing and encryption 

techniques for each share based on the specific data 

context. This dual strategy ensures not only enhanced 

security and efficiency but also addresses the 

limitations of static shard management in traditional 

blockchain models. 

The integration of these advanced techniques into 

blockchain architecture represents a significant stride 

in overcoming the prevalent challenges of scalability 

and efficiency. By tailoring shard management and 

cryptographic methods to specific data contexts, the 

model we propose here exhibits remarkable 

improvements in key performance metrics. Tested on 

multiple medical datasets, our technique 

demonstrates superior mining energy efficiency, 

speed, throughput, consistency, and reduced storage 

costs compared to existing solutions. Our innovative 

approach not only enhances the practical 

applicability of blockchain technology in various 

sectors but also sets a foundation for future research 

and development in blockchain scalability and 

efficiency levels. 

1.1 Motivation & contribution 

The burgeoning landscape of blockchain 

technology has been witnessing an increasing 

demand for systems that are not only secure and 

decentralized but also scalable and efficient for real-

time use cases. This demand forms the core 

motivation behind the present study. The 

conventional blockchain framework, while 

pioneering in establishing trust less and secure digital 

ledger systems, often falters in the face of high-

volume data processing, especially in sectors like 

healthcare where the rapid and secure handling of 

data is paramount for real-time deployments. The 

primary limitation lies in the inherent design of 

traditional blockchains, which tend to prioritize 

security and immutability over scalability and speed 

levels. This trade-off becomes a significant 

bottleneck as the application domains of blockchain 

technology expand to multiple use cases. 

Recognizing these challenges, the study is 

motivated to explore and integrate advanced 

computational techniques – namely, Q Learning and 

EHFSO – into the blockchain architecture. The 

motivation is twofold: (i) to enhance the scalability of 

blockchain systems without compromising their 

security and integrity; and (ii) to tailor the 

blockchain’s computational processes to the dynamic 

requirements of various data contexts, particularly in 

the healthcare sector where data sensitivity and 

processing needs vary markedly for different use 

cases. 

The contributions of this study are 

multidimensional and significant for real-time 

scenarios. The proposed model introduces a context-

aware shard management system, utilizing Q 

Learning to intelligently adapt the blockchain 

structure based on real-time data requirements. This 

approach not only improves scalability but also 

optimizes the system’s resource utilization sets. 

Furthermore, the incorporation of EHFSO for 

dynamic selection of hashing and encryption 

methods brings a novel dimension to blockchain 

security levels. By adapting cryptographic techniques 

to the specific needs of each shard, the model 

significantly enhances the overall efficiency and 

security of the blockchain system. 

The practical implications of these contributions 

are evident in the system’s performance metrics. 

When tested on multiple medical datasets, the model 

exhibits notable improvements in mining energy 

efficiency, speed, throughput, consistency, and 

storage costs. These advancements underline the 

model’s potential in revolutionizing blockchain 

applications, particularly in data-intensive sectors. 

The research, therefore, not only addresses the 

pressing challenges of existing blockchain systems 

but also paves the way for future innovations in this 

rapidly evolving field for different use cases.  

The rest of this paper is organized as follows. 

Section 2 explores the seminal works in the domain 

of blockchain technology, while Section 3 depicts the 

proposed method and its mathematical formulation. 

Results and comparative analyses are reported in 
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Section 4, just before the paper’s conclusion briefly 

depicted in Section 5. 

2. Literature survey 

This Section illustrates the literature review, 

focusing on scalability, security, and their application 

in various fields, including the Internet of Things 

(IoT), and healthcare. 

Tang et al. [1] delve into a hybrid blockchain 

consensus algorithm, namely Hedera, in the context 

of IoT, emphasizing its scalability in multiaccess 

edge computing. Sivaselvan et al. [2] contribute to 

this discourse by proposing a scalable and secure 

access control scheme using blockchain technology 

for IoT. These studies underscore the growing need 

for scalable blockchain solutions in IoT 

environments. 

Then, Aviv et al. [3] present a reference 

architecture for blockchain-native distributed 

information systems, highlighting the architectural 

considerations in blockchain implementations. In the 

realm of dynamic sharding, Xi et al. [4] introduce a 

blockchain dynamic sharding scheme based on a 

Hidden Markov Model, emphasizing collaborative 

IoT applications [4]. Wu et al. [5] extend this 

conversation through MapChain-D, a distributed 

blockchain for IoT data storage and communications, 

emphasizing the need for distributed solutions in 

industrial IoT settings [5]. 

Mishra et al. [6] explore blockchain’s application 

in IoT through a regulated verifiable and automatic 

key refreshment mechanism. Jin et al. [7] offer 

insights into federated edge learning, integrating 

blockchain for secure and efficient learning processes. 

These works [6,7] highlight blockchain’s versatility 

in securing IoT networks and learning algorithms. 

Wu et al. [8] focus on transaction tracing in 

account-based blockchain trading systems, 

introducing TRacer, a scalable graph-based approach, 

thus addressing the crucial aspect of transaction 

security and traceability in blockchain systems [8]. 

Agarwal and Pal [9] propose HierChain, a 

hierarchical- blockchain-based data management 

system for smart healthcare, pointing to blockchain’s 

potential in managing sensitive healthcare data [9]. 

In the context of service-aware blockchain 

solutions, Set and Park [10] discuss a dynamic 

sharding approach for scalability, aligning with the 

objectives of the current study. Liu et al. [11] 

introduce Community chain, a scalable blockchain 

solution for smart homes, further expanding 

blockchain’s applicability in domestic settings [11]. 

Irshad et al. [12] present a hybrid post-quantum 

cryptographic and blockchain-based approach for 

secure and scalable cloud architecture, emphasizing 

blockchain’s role in enhancing cloud security [12]. 

Chacko et al. [13] explore IoT-Blockchain 

integration in agriculture, showcasing the 

technology’s potential beyond conventional domains. 

Basudan [14] contributes to the discussion by 

proposing a scalable blockchain framework for 

secure transactions in IoT-based dynamic 

applications [14]. 

Li, Huang, and Zhang [15] explore an efficient 

DAG blockchain architecture for IoT, addressing the 

need for scalable and agile blockchain solutions in 

IoT environments. Wan, Liu, and Cui [16] introduce 

HIBEChain, a hierarchical identity-based blockchain 

system designed for large-scale IoT applications, 

emphasizing the importance of scalable and secure 

identity management in IoT networks. 

Lee, Li, and Chen [17] discuss a blockchain-

enabled authentication and data aggregation scheme 

for secure smart grids. This work highlights 

blockchain’s potential in enhancing the security and 

efficiency of smart grid systems. Deebak et al. [18] 

contribute to this discussion by proposing a 

lightweight blockchain-based remote mutual 

authentication mechanism for AI-empowered IoT 

sustainable computing systems, underlining the 

synergy between blockchain and AI in IoT. 

Pourmajidi et al. [19] explore immutable log 

storage as a service on private and public blockchains, 

emphasizing blockchain’s role in secure data logging. 

Liu, Jing, Fu, Xiao, and Jia [20] investigate the use of 

consortium blockchain for security and efficient 

resource trading in V2V-assisted intelligent transport 

systems, showcasing blockchain’s applicability in 

modern transportation networks. 

Solomon, Zhang, Brooks, and Liu [21] propose a 

secure and cost-efficient blockchain-facilitated IoT 

software update framework. This study highlights 

blockchain’s utility in maintaining the integrity and 

security of software updates in IoT devices. Yao, 

Deek, Murimi, and Wang [22] provide a critical 

analysis of consensus mechanisms in consortium 

blockchain, offering valuable insights into the 

taxonomy and evaluation of various consensus 

approaches. 

Wang et al. [23] discuss an efficient, secured, and 

infinitely scalable consensus mechanism for peer- to-

peer energy trading blockchain, highlighting 

blockchain’s potential in decentralized energy 

markets. Wu, Zhang, and Zhu [24] delve into a 

privacy-preserving and traceable blockchain-based 

charging payment scheme for electric vehicles, 

addressing privacy concerns in blockchain 

transactions. 
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Zhang, Jiang, Cui, He, Bolodurina, and Zhong 

[25] introduce DBCPA, a dual blockchain-assisted 

conditional privacy-preserving authentication 

framework for vehicular ad hoc networks, 

emphasizing blockchain’s role in vehicular network 

security. Mardiansyah, Muis, and Sari [26] propose 

the Multi- State Merkle Patricia Trie (MSMPT), a 

high-performance data structure for multi-query 

processing based on lightweight blockchain, 

showcasing advancements in blockchain data 

structures. 

Zhou et al. [27] present MSTDB, a hybrid 

storage-empowered scalable semantic blockchain 

database, offering a novel approach to blockchain 

data storage and management. Hao, Ren, Fei, Zhu, 

and Choo 

[28] discuss a blockchain-based cross-domain 

and autonomous access control scheme for IoT, 

further emphasizing blockchain’s versatility in 

managing access control across diverse domains. 

Collectively, these studies demonstrate 

significant advancements in blockchain technology, 

focusing on enhancing scalability, security, and 

practical applicability in various sectors, particularly 

IoT and smart systems. This body of work lays a 

strong foundation for the current study, which aims 

to extend these advancements by integrating 

innovative techniques like Q Learning and Elephant 

Herd Fish Swarm Optimization for optimized 

blockchain performance levels. 

3. Proposed model for scalable and high 

QoS blockchain based on Q learning and 

EHFSO 

To overcome issues of low scalability & low QoS 

which are present in recently proposed blockchain 

deployment models, here we discuss the design of the 

Q Learning, Elephant Herd Optimizer, and Fish 

Swarm Optimization operations. These blocks 

represent the pinnacle of our innovative approach, 

each bringing a unique and critical dimension to the 

system’s functionality levels. According to Fig. 1, the 

Q Learning block stands as the intellectual core, 

adeptly analyzing and adapting to the varying 

contexts of data, thereby guiding the shard 

management process with precision and agility levels. 

This machine learning (ML) technique ensures that 

the blockchain’s structure and operations are 

continuously optimized, responding dynamically to 

changes in data types and usage patterns. Then, the 

Elephant Herd Optimizer (EHO), inspired by the 

social and cooperative behavior of elephant herds in 

nature, brings a robust and collaborative approach to 

optimizing the blockchain’s hashing techniques (see  

 
Figure. 1 Design of the proposed security model for 

blockchain-based cloud deployments 
 

 

Fig. 2). The EHO leverages the collective wisdom 

inherent in herd dynamics, ensuring that the most 

effective hashing strategies are employed to secure 

each blockchain shard of data samples. Concurrently, 

the Fish Swarm Optimization (FSO) block, drawing 

from the complex and fluid movements of fish 

swarms, specializes in the nuanced selection of 

encryption techniques. This block embodies 

adaptability and efficiency, mirroring the way fish 

swarms navigate and respond to their environment, to 

ensure that the most suitable encryption methods are 

applied, balancing security needs with operational 

efficiency levels. 

The Q Learning process within this blockchain 

model is meticulously designed to optimize shard  
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Figure. 2 Flow of the Proposed Model 

 

 

management in response to diverse data contexts & 

scenarios. Initially, the context of incoming data 

samples is defined using a context process Ci, where 

i represents the ith data sample. The context process is 

formulated as: 

 

𝐶𝑖 = 𝑤𝑑 ∗ 𝐷𝑖 + 𝑤𝑡 ∗ 𝑇𝑖 + 𝑤𝑠 ∗ 𝑆𝑖 (1) 

 

where, Di represents the data type, Ti the transaction 

type, Si the security requirements of the ith sample, 

while 𝑤d, 𝑤t, and 𝑤s are their respective weights. 

This evaluation ensures that each data sample is 

accurately categorized, allowing for tailored shard 

management process. The heart of the Q Learning 

process lies in its reward mechanism, crucial for 

guiding the learning algorithm towards optimal 

decisions. The reward R(s,a) for a state-action pair is 

defined as: 

 

(𝑠, 𝑎) = 𝛼 × (𝑠, 𝑎) + 𝛽 × 𝑇(𝑠, 𝑎) + 𝛾 × 𝑆(𝑠, 𝑎)   (2) 

 

where, α, β, and γ are weighting factors, E is the 

efficiency of action a in state s,T is the transaction 

speed,  and S represents the security levels. This 

reward function is central to evaluating the 

effectiveness of actions taken by the process. The 

update of shard length, a key operation in maintaining 

the system’s efficiency, is governed as follows: 

 

𝐿𝑛𝑒𝑤 = 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝜂 × ((𝑠, 𝑎) + 𝛿 × 𝑚𝑎𝑥𝑎′   (𝑠′, 
𝑎′) − 𝑄(𝑠, 𝑎))      (3) 

 

where, Lnew and Lcurrent represent the new and 

current shard lengths, respectively, η is the learning 

rate, δ is the discount factor, and Q(s,a) is the Q Value 

for the state-action pairs. The states in the Q Learning 

process are defined based on the context of the data 

and the current system status. A state S is represented 

as 𝑆 = {𝐶𝑖, 𝐿, 𝐻, 𝐸}, where L is the current shard 

length, H is the hash rate, and E represents the 

encryption levels. This state representation captures 

the essential aspects required for decision-making in 

the Q Learning process. The actions A in the Q 

Learning model are discretely defined as 𝐴 = {𝑎1, 

𝑎2, . . . , 𝑎𝑛}, where each action aj corresponds to a 

specific change in shard management, such as 

adjusting shard length, changing hashing techniques, 

or modifying encryption levels. These actions are 

selected based on the maximization of the expected 

reward, guided by the policy which is represented as: 

 

(𝑠) = arg𝑚𝑎𝑥 𝑎(𝑠, 𝑎)      (4) 

 

The Q Learning algorithm iteratively updates its 

Q Values according to the following: 

 

(𝑠, 𝑎) = (𝑠, 𝑎) + 𝜂 × (𝑅(𝑠, 𝑎) + 𝛿 × 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 

𝑄(𝑠, 𝑎))       (5) 

 

where, s′ is the new state after taking action a in state 

s. This iterative process enables the system to learn 

from its experiences, gradually improving its shard 

management strategy over temporal instance sets. 

These shards are given to the EHFSO algorithm, 

which is an integral part of the blockchain model 

process. This optimizer ingeniously merges the 
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collective intelligence of elephant herds and fish 

swarms to refine the selection process for hashing and 

encryption techniques. Initially, the creation of 

swarms is executed through a stochastic process: 

 

𝑆𝑖 = 𝑆𝑇𝑂(𝐻𝑖, 𝐸𝑖, 𝑅𝑖)       (6) 

 

where, Si represents the ith swarm, Hi the chosen 

hashing method, Ei the encryption technique, and Ri 

a stochastic factor for this process. This operation 

ensures a diverse and adaptive range of swarms, 

analogous to the varied and dynamic nature of 

biological swarms in natural scenarios. The fitness of 

each swarm is evaluated as: 

 

(𝑆𝑖) = 𝜔 × (𝑆𝑖) + 𝜓 × 𝑆(𝑆𝑖) + 𝜃 × 𝐶(𝑆𝑖)     (7) 

 

where, F(Si) is the fitness of swarm Si, ω, ψ, θ are 

weighting coefficients, E(Si) is the efficiency of the 

swarm, S(Si) its security level, and C(Si) the 

computational costs. This fitness function balances 

efficiency, security, and computational cost, 

mirroring the multifaceted decision-making process 

found in natural swarms. The selection of the best 

swarms is governed by a comparison mechanism, 

defined as: 

 

𝐵 = 𝑎𝑟𝑔𝑚(𝑆𝑖, 𝐹(𝑆𝑖))    (8) 

 

where, B represents the best swarm configuration sets. 

This process emulates the natural selection observed 

in biological ecosystems, where only the most 

effective strategies survive and thrive in real- time 

scenarios. The optimization cycle within EHFSO 

involves iterative updating of swarm positions and 

configurations via: 

 

𝑆𝑖𝑛𝑒𝑤 = 𝑆𝑖 + 𝛿 × (𝐵 − 𝑆𝑖) + 𝜉 × (𝑆𝑇𝑂𝐶𝐻 − 𝑆𝑖)  (9) 

 

Where, δ, and ξ are factors controlling the 

convergence rate and exploration extent, respectively, 

STOCH is a stochastically selected swarm, 

introducing diversity and preventing premature 

convergence condition sets. The algorithm also 

incorporates a memory mechanism, akin to the social 

memory of elephant herds, to retain optimal 

configurations over iterations for different use cases. 

This is expressed by 𝑀 = {𝐵1, 𝐵2, . . . , 𝐵𝑛}, where 

M stores the best configurations Bi from previous 

iterations and samples. 

Further, the algorithm adapts to changing 

environments through a feedback loop, which is 

formulated as: 

 

𝐹𝑎𝑑𝑎(𝑆𝑖) = 𝐹(𝑆𝑖) + 𝜆 × 𝛥𝐹      (10) 

 

Where, λ is an adaptation coefficient and ΔF the 

change in fitness over temporal instance sets. This 

ensures that the swarms remain responsive to 

dynamic data contexts and system requirements. This 

process assists the model to select optimal encryption 

& hashing techniques for different shard sets. An 

example use case of this model is discussed in the 

next sub-section. 

To elucidate the functionality of the Q Learning 

and EHFSO processes within the blockchain model, 

an example with specific numerical values and 

contexts is presented. 

 

 
Table 1. Q Learning Process 

Data Sample 

ID 
Data Type 

Transaction 

Type 

Security 

Requirement 

Identified 

Context 

Optimal Shard 

Length (KB) 

DS1 Medical Transactional High Context A 640 

DS2 Financial Contractual Medium Context B 512 

DS3 IoT Sensory Low Context C 256 

DS4 Medical Analytical High Context A 640 

DS5 IoT Transactional Medium Context D 320 

 

 
Table 2. EHFSO Process 

Context Swarm ID Hashing Method Encryption Method Fitness Score 

A Swarm1 SHA-256 AES-256 9.1 

B Swarm2 MD5 RSA-2048 8.7 

C Swarm3 SHA-1 ECC 8.5 

A Swarm4 SHA-512 AES-128 9.4 

D Swarm5 SHA-1 AES-256 8.9 
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This example will demonstrate how the model adapts 

and optimizes shard management, hashing, and 

encryption techniques based on the given data 

samples. In this segment, data samples are processed 

through the Q Learning algorithm, which 

intelligently categorizes them into distinct contexts 

based on their characteristics such as data type, 

transaction type, and security requirements. Each 

context is then assigned an optimal shard length, 

ensuring efficient data management within the 

blockchain. The Q Learning algorithm dynamically 

updates these parameters, learning from the ongoing 

interactions to optimize future decisions. 

The results from Table 1 reveal how different data 

types and their associated requirements lead to varied 

context identifications and shard length allocations. 

For instance, medical data with transactional and 

high-security needs (DS1 and DS4) falls into Context 

A, necessitating a larger shard length of 640 KB for 

optimal management. This adaptive and context-

aware approach ensures that the blockchain 

efficiently handles diverse data types, maintaining 

high security and operational efficiency. 

Following the context identification and shard 

allocation by the Q Learning process, the EHFSO 

algorithm takes over to refine the selection of hashing 

and encryption techniques. This process involves 

creating swarms, each representing a combination of 

a hashing and encryption technique. The fitness of 

these swarms is evaluated based on their efficiency, 

security level, and computational cost. The algorithm 

then selects the optimal combination for each context, 

ensuring robust security and efficient processing. 

From Table 2, it is evident that the algorithm 

successfully identifies the most efficient and secure 

combination of hashing and encryption techniques 

for each context. For example, Context A, dealing 

with sensitive medical data, is best served by Swarm4, 

employing SHA-512 and AES-128, achieving the 

highest fitness score of 9.4. This process exemplifies 

the model’s capacity to tailor security protocols to 

specific data contexts, enhancing the overall integrity 

and efficiency of the blockchain systems. The 

EHFSO algorithm’s capability to evaluate and select 

the most appropriate techniques showcases an 

advanced level of decision-making, crucial for 

maintaining a robust and secure blockchain 

architectural process. 

4. Result evaluation & comparative analysis 

The experimental setup for the study, designed to 

evaluate the performance of our scalable and high 

QoS blockchain model, namely SHQEHFSO, 

involved meticulous planning and execution process. 

This section details the specific parameters and 

datasets used in the experiments for evaluating the 

proposed model in different scenarios. 

The experiments were conducted on a simulation 

environment mimicking real-world blockchain 

operations. The setup included a network of nodes 

configured on a server with an Intel Xeon CPU at 2.3 

GHz, 16 GB RAM, and a 500 GB SSD. The 

blockchain system was implemented using a custom 

simulation framework designed to accurately emulate 

blockchain dynamics and was programmed in Python 

3.7. 

The input parameters for the SHQEHFSO model 

and comparison models (HibeChain [16], Tracer [8], 

HierChain [9]) were as follows: 

 

• Number of Nodes: 50 to 500, incremented by 

50. 

• Block Size: 500 KB to 5 MB, incremented by 

500 KB. 

• Network Latency: 10 ms to 100 ms, 

incremented by 10 ms. 

• Data Transmission Rate: 100 Mbps to 1 Gbps, 

incremented by 100 Mbps. 

• Shard Count: 5 to 50, incremented by 5.  

Two datasets were employed for the study: 

1. CoVID19 Dataset: 

• Size: 200 GB. 

• Type: This dataset comprised patient records, 

test results, and treatment data related to COVID-19. 

• Characteristics: The data was characterized 

by high variability and required secure and efficient 

handling due to its sensitive nature. 

2. Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) Dataset Samples: 

• Size: 150 GB. 

• Type: This dataset contained neuroimaging 

data, clinical and cognitive assessments, and 

biomarker analysis results. 

• Characteristics: The ADNI data required 

high-throughput processing and secure management 

due to the detailed and confidential nature of medical 

imaging data samples. 

The experiments were conducted in stages. 

Initially, baseline measurements for each model were 

established using the lower end of the input parameter 

range. Subsequently, the parameters were 

incrementally increased to observe the scalability and 

performance under varying loads. Each model was 

tested on both CoVID19 and ADNI datasets to 

evaluate their handling of different data types. 

Metrics such as delay in mining blocks, energy 

efficiency, throughput, jitter, memory consumption, 

and storage costs were meticulously recorded for 

each scenario. The SHQEHFSO model’s 
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performance was then compared against the other 

models across all metrics. 

The collected data was analysed using statistical 

methods to evaluate the performance of the 

SHQEHFSO model in comparison with existing 

models. The analysis focused on identifying trends 

and patterns in the performance metrics as the load 

and complexity of the tasks increased for real-time 

scenarios. 

This experimental setup provided a 

comprehensive platform to assess the efficacy of the 

SHQEHFSO model under realistic conditions and 

against varying datasets, ensuring the reliability and 

applicability of the results in real-world scenarios. 

Based on this experimental setup, the delay 

needed to mine new blocks for mining blocks in real-

time scenarios was compared with HibeChain [16], 

Tracer [8], & HierChain [9], for different Number of 

Block Transactions (NBT), see Fig. 3. 

At lower block counts (150k to 300k), 

SHQEHFSO consistently outperforms its 

counterparts, exhibiting significantly lower delays in 

mining blocks. For instance, at 150k blocks, 

SHQEHFSO shows a delay of only 0.79 ms, in 

contrast to HibeChain’s 1.47 ms, Tracer’s 1.88 ms, 

and HierChain’s 2.34 ms. This superior performance 

is indicative of SHQEHFSO’s efficient handling of 

smaller datasets, which is critical in real-time 

applications where swift data processing is essential 

in different scenarios. 

As the number of blocks increases (390k to 1020k), 

the delay for SHQEHFSO remains comparatively 

lower than other models. Notably, at 780k blocks, 

SHQEHFSO’s delay is 1.39 ms, significantly lower 

than Tracer’s 3.75 ms, the highest in these range sets. 

This trend underscores SHQEHFSO’s scalability and 

its ability to maintain efficiency even as the workload 

increases for different use cases. 

In the highest range (1080k to 1560k), although 

the delay for all models increases due to the heavier 

workload, SHQEHFSO still maintains a competitive 

edge. For example, at 1440k blocks, SHQEHFSO 

records a delay of 3.27 ms, which is considerably 

lower than HibeChain’s 6.18 ms and Tracer’s 5.42 ms. 

This illustrates SHQEHFSO’s robustness and its 

capability to handle large-scale operations more 

efficiently than its counterparts. Similarly, the energy 

needed for mining blocks in real-time scenarios is 

reported in Fig. 4. In the initial range of block counts 

(150k to 300k), SHQEHFSO demonstrates a 

significant advantage in energy efficiency. 

For example, at 150k blocks, SHQEHFSO 

consumes only 2.03 mJ, compared to HibeChain’s 

3.28 mJ, Tracer’s 4.02 mJ, and HierChain’s 4.52 mJ. 

This lower energy consumption is crucial in scenarios  

 
Figure. 3 Delay needed for mining blocks in real-time 

scenarios 

 

 
Figure. 4 Energy needed for mining blocks in real-time 

scenarios 

 

Figure. 5 Throughput obtained for mining blocks in real-

time scenarios 

 

 

where energy efficiency is a priority, such as in IoT 

devices and mobile applications, where power 

resources are limited. 
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As the block count increases (390k to 1020k), 

SHQEHFSO maintains its lead in energy efficiency. 

Notably, at 480k blocks, it records an energy 

consumption of only 1.63 mJ, which is significantly 

lower than the other models. This trend is indicative 

of SHQEHFSO’s ability to manage larger data 

volumes more efficiently, making it particularly 

suitable for large-scale operations where energy costs 

can be a limiting factor. 

In the highest range of block counts (1080k to 

1560k), while the energy consumption for all models 

increases due to the greater workload, SHQEHFSO 

continues to exhibit comparatively lower energy 

usage. For instance, at 1440k blocks, SHQEHFSO 

consumes 2.89 mJ, which is notably less than 

HibeChain’s 9.17 mJ and HierChain’s 8.42 mJ levels. 

This efficiency is essential in data centers and cloud 

computing scenarios, where reducing energy 

consumption can lead to significant cost savings and 

reduced environmental impact sets. 

The superior energy efficiency of SHQEHFSO 

can be attributed to its optimized shard management 

and adaptive hashing and encryption techniques, 

enabled by Q Learning and Elephant Herd Fish 

Swarm Optimization. These advanced methods allow 

SHQEHFSO to process data more efficiently, 

reducing the computational power and, consequently, 

the energy required for mining blocks. This 

efficiency is not only beneficial in reducing 

operational costs but also crucial for sustainable 

blockchain operations, particularly in sectors where 

energy conservation is vital for real-time scenarios. 

Similarly, the throughput obtained for mining blocks 

in real-time scenarios can be observed in Fig. 5. 

In the initial block count range (150k to 300k), 

SHQEHFSO demonstrates superior throughput. For 

instance, at 150k blocks, it achieves a throughput of 

553.23 kbps, surpassing HibeChain’s 326.86 kbps, 

Tracer’s 353.73 kbps, and HierChain’s 448.15 kbps. 

This higher throughput indicates SHQEHFSO’s 

effectiveness in environments with high transaction 

rates, such as financial services or high-frequency 

trading platforms, where processing speed is crucial. 

As the number of blocks increases (390k to 

1020k), SHQEHFSO continues to outperform the 

other models. Notably, at 480k blocks, it records a 

throughput of 711.96 kbps, significantly higher than 

the others. This demonstrates SHQEHFSO’s ability 

to maintain high transaction processing speeds even 

under increased workload, making it suitable for 

large-scale operations like supply chain management 

or global payment systems, where large volumes of 

transactions are processed. 

In the highest block count range (1080k to 1560k), 

SHQEHFSO still exhibits the highest throughput. At  

 
Figure. 6 Jitter obtained for mining blocks in real-time 

scenarios 

 

 

1560k blocks, its throughput reaches 1199.81 kbps, 

far exceeding the others. This highlights 

SHQEHFSO’s scalability and its capability to handle 

vast amounts of data efficiently, which is critical in 

sectors like cloud computing and big data analytics, 

where enormous datasets are processed. 

SHQEHFSO’s enhanced throughput can be 

attributed to its advanced shard management and 

adaptive cryptographic techniques, facilitated by Q 

Learning and Elephant Herd Fish Swarm 

Optimization. These enable the model to process 

transactions more quickly and efficiently, thus 

achieving higher throughput. In real-world scenarios, 

this translates to faster transaction processing, 

reduced latency, and increased capacity to handle 

high transaction volumes in real-time scenarios. This 

is particularly impactful in sectors that demand real-

time data processing and in applications where speed 

and efficiency are paramount for different use cases. 

Similarly, the jitter obtained for mining blocks in 

real- time scenarios is reported in Fig. 6. 

In the lower block counts (150k to 300k), 

SHQEHFSO consistently exhibits lower jitter 

compared to the other models. For example, at 150k 

blocks, SHQEHFSO has a jitter of only 0.75 ms, 

much lower than HibeChain’s 1.41 ms, Tracer’s 1.75 

ms, and HierChain’s 2.09 ms. This lower jitter 

signifies SHQEHFSO’s stability in block mining 

times, which is particularly important in applications 

such as real-time financial transactions or IoT device 

communications, where consistent timing is crucial. 

As the number of blocks increases (390k to 

1020k), SHQEHFSO maintains a relatively lower 

jitter in most cases, indicating its capability to handle 

larger workloads with consistent performance. 

Notably, at 630k blocks, its jitter is 0.89 ms, 

considerably less than Tracer’s 2.79 ms and  
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Figure. 7 Memory Consumption for mining blocks in 

real-time scenarios 

 

 

 
Figure 8. Storage Cost (in bytes per block (bpb)) for 

mining blocks in real-time scenarios 

 

 

HierChain’s 2.17 ms. This suggests that SHQEHFSO 

is well-suited for applications such as streaming 

services or online gaming, where consistent latency 

is vital for a smooth user experience. 

In the highest block count range (1080k to 1560k), 

while jitter increases for all models due to the 

increased complexity of processing larger datasets, 

SHQEHFSO generally continues to show lower jitter 

values. At 1560k blocks, for instance, SHQEHFSO’s 

jitter is 2.37 ms, compared to HibeChain’s 

5.51 ms and Tracer’s 5.66 ms. This indicates that 

SHQEHFSO is more reliable for applications 

involving large-scale data processing, such as cloud 

computing or big data analytics. 

The superior performance of SHQEHFSO in 

terms of jitter can be attributed to its optimized shard 

management and dynamic selection of hashing and 

encryption techniques. These features enable 

SHQEHFSO to process blocks with more consistent 

timing, reducing the variability that can lead to jitter. 

This consistent performance is crucial in real-world 

scenarios where data processing needs to be stable 

and predictable, especially in applications requiring 

high reliability and precision levels. Similarly, the 

memory consumption obtained during mining 

operations can be observed in Fig. 7. 

In the initial block counts (150k to 300k), 

SHQEHFSO demonstrates a significant advantage in 

memory efficiency. For instance, at 150k blocks, 

SHQEHFSO consumes only 0.65 MB, considerably 

less than HibeChain’s 1.28 MB, Tracer’s 1.43 MB, 

and HierChain’s 1.85 MB. This lower memory usage 

is crucial in scenarios where limited resources are 

available, such as in IoT devices or mobile 

applications, where efficient memory utilization is 

essential. 

As the number of blocks increases (390k to 

1020k), SHQEHFSO generally maintains lower 

memory consumption compared to the other models. 

This is evident at 630k blocks, where SHQEHFSO 

uses only 0.87 MB, in contrast to HibeChain’s 2.42 

MB and Tracer’s 2.73 MB sets. The efficient memory 

usage by SHQEHFSO makes it particularly suitable 

for large-scale operations and cloud-based 

applications where optimizing memory consumption 

can lead to cost savings and improved performance 

levels. 

In the highest block count range (1080k to 1560k), 

while memory consumption for all models increases 

due to the larger volume of data, SHQEHFSO 

continues to exhibit relatively lower memory usage. 

For example, at 1560k blocks, SHQEHFSO’s 

memory consumption is 2.17 MB, which is 

significantly lower than Tracer’s 7.35 MB and 

HierChain’s 6.49 MB. This illustrates SHQEHFSO’s 

ability to handle large-scale data processing 

efficiently, making it a viable option for data-

intensive applications like big data analytics and 

high-performance computing use cases. 

The superior memory efficiency of SHQEHFSO 

can be attributed to its optimized data handling and 

advanced shard management techniques. These 

features enable SHQEHFSO to process and store data 

more efficiently, reducing the overall memory 

footprint. In real-world scenarios, this translates to 

lower operational costs, the ability to run on hardware 

with limited resources, and the potential for higher 

scalability, especially in environments where 

efficient resource utilization is critical for different 

scenarios. Similarly, the Storage Cost for mining 

blocks in real-time scenarios is illustrated in Fig. 8. 

In the initial range of block counts (150k to 300k), 

SHQEHFSO exhibits significantly lower storage 
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costs compared to the other models. For example, at 

150k blocks, SHQEHFSO’s storage cost is just 0.65 

bpb, much lower than HibeChain’s 1.38 bpb, Tracer’s 

1.85 bpb, and HierChain’s 1.81 bpb. This lower 

storage cost is vital in scenarios like cloud storage 

services or distributed databases, where reducing 

storage overhead can lead to substantial cost savings 

and more efficient data management. 

As the number of blocks increases (390k to 

1020k), SHQEHFSO continues to maintain a 

competitive edge in terms of storage cost. Notably, at 

630k blocks, SHQEHFSO incurs a storage cost of 

only 0.94 bpb, in stark contrast to Tracer’s 2.19 bpb 

and HierChain’s 2.30 bpb. This efficient use of 

storage makes SHQEHFSO particularly suitable for 

applications involving large volumes of data, such as 

big data analytics and high-definition multimedia 

content storage scenarios. 

In the highest block count range (1080k to 1560k), 

even though the storage cost for all models increases 

due to the larger data size, SHQEHFSO consistently 

shows a relatively lower cost. At 1560k blocks, 

SHQEHFSO’s storage cost is 2.65 bpb, considerably 

lower than Tracer’s 6.35 bpb and HierChain’s 

6.03 bpb. This illustrates SHQEHFSO’s ability to 

handle extensive data volumes efficiently, making it 

an ideal choice for large-scale, data-intensive 

applications like video surveillance systems and 

scientific research data repositories. 

The superior storage efficiency of SHQEHFSO 

can be attributed to its advanced shard management 

system and optimized data handling techniques, 

which allow for more efficient data storage and 

retrieval. In real-world scenarios, this translates to 

reduced infrastructure costs, enhanced scalability, 

and the possibility of deploying blockchain 

technology in environments where storage space and 

costs are critical considerations. 

In the innovative landscape of blockchain 

technology, as confirmed by the previous 

comparative analysis, this research introduces a 

groundbreaking model that combines Q Learning and 

Elephant Herd Fish Swarm Optimization (EHFSO) to 

revolutionize context-based shard management. The 

proposed model, diverging from traditional 

blockchain architectures, employs Q Learning as its 

cornerstone, enabling the system to intelligently 

adapt to diverse data contexts. Such adaptation 

ensures that shard management is not only responsive 

but also optimized for the specific needs of the data 

being processed. The integration of EHFSO, inspired 

by the intricate patterns of natural swarm behaviors, 

further enhances our model’s capability. It 

meticulously refines the selection process for hashing 

and encryption techniques, aligning them with the 

unique requirements of each shard. This dual 

approach, merging the adaptive intelligence of 

machine learning with the precision of swarm 

optimization algorithms, not only strengthens the 

security framework of the blockchain but also 

significantly boosts its efficiency levels. The 

practicality and effectiveness of this advanced model 

are particularly evident in its application to various 

medical datasets and samples, where it demonstrates 

remarkable improvements in handling sensitive and 

complex data samples. Such advancements 

underscore the model’s potential to transform the 

processing and security paradigms in blockchain 

technology, especially in sectors where data 

sensitivity and processing efficiency are paramount 

in real-time scenarios. 

5. Conclusion and future scopes 

This paper has introduced a novel blockchain 

model integrating Q Learning and Elephant Herd 

Fish Swarm Optimization, namely SHQEHFSO for 

enhanced shard management and dynamic 

cryptographic technique selection. The experimental 

results, derived from testing on CoVID19 and ADNI 

datasets, highlighted SHQEHFSO’s superior 

performance in various key metrics compared to 

existing models like HibeChain, Tracer, and 

HierChain. Notably, SHQEHFSO demonstrated a 

significant reduction in the delay for mining blocks, 

improved energy efficiency, higher throughput, 

lower jitter, reduced memory consumption, and 

decreased storage costs. Impressive outcomes 

include an 8.5% increase in mining energy efficiency, 

a 4.9% increase in mining speed, a 5.9% increase in 

throughput, a 4.5% increase in mining consistency, 

and a notable 5.9% decrease in storage expenses 

when compared to previous techniques. The work 

primarily lays the path for more effective and 

sustainable blockchain operations, which are 

especially important in sectors that are sensitive to 

energy prices. Furthermore, the blockchain is now 

much more applicable in real-world applications due 

to the increased throughput and mining consistency. 

These improvements were particularly evident in 

scenarios with increasing numbers of blocks, 

showcasing the model’s scalability and efficiency in 

handling large datasets. The implications of these 

findings are profound, especially in sectors requiring 

high-speed, secure, and efficient data processing, 

such as healthcare and finance. SHQEHFSO’s ability 

to adapt to different data contexts and maintain 

performance under varying loads makes it an ideal 

solution for real-world blockchain applications that 

deal with large volumes of sensitive data samples. 
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Looking ahead, several avenues for further 

research emerge from this study. Firstly, the 

integration of additional machine learning algorithms 

could be explored to enhance the model’s 

adaptability and efficiency further. Secondly, 

expanding the model to incorporate more diverse 

datasets, including those from sectors like supply 

chain management and smart cities, could help in 

understanding its applicability in various industries. 

Additionally, research into the optimization of 

SHQEHFSO for specific applications, such as 

transaction-heavy environments or data-intensive 

scientific research, could yield valuable insights. 

Another promising area is the exploration of energy-

saving techniques within the SHQEHFSO framework, 

which would be particularly relevant in the context of 

environmental sustainability and green computing. 
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Symbols & Representation: 

Symbol Representation 

Di  Represents the data type 

Ti  Transaction type 

Si  Security requirements of the 

ith sample 

Lnew  New shard lengths, 

Lcurrent Current shard lengths, 

F(Si)  Fitness of swarm 

E(Si) Efficiency of the swarm 

S(Si)  Security level 

C(Si) Computational costs 

λ  Adaptation coefficient 

ΔF  Change in fitness over 

temporal instance sets. 

δ Controlling the convergence 

rate 

ξ Exploration extent 
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