
Received: March 1, 2024. Revised: May 8, 2024. 376

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

Enhancing Malware Detection through Self-Union Feature Selection Using

Firefly Algorithm with Random Forest Classification

Mosleh M. Abualhaj1* Mahran Al-Zyoud1 Adeeb Alsaaidah1 Ahmad Abu-Shareha2

Sumaya Al-Khatib3

1Department of Networks and Cybersecurity, Al-Ahliyya Amman University, Amman, Jordan

2Department of Data Science and Artificial Intelligence, Al-Ahliyya Amman University, Amman, Jordan
3Department of Computer Science, Al-Ahliyya Amman University, Amman, Jordan

* Corresponding author’s Email: m.abualhaj@ammanu.edu.jo

Abstract: The proliferation of malware gravely threatens the security of computer systems and sensitive data. This

work aims to improve malware detection by using advanced feature selection techniques. The study utilizes the

Firefly Algorithm (FA) for feature selection in binary and multiclass classifications to enhance the discrimination

capabilities of selected features. The selected features from the binary and multiclass classifications are combined to

generate a comprehensive feature set. The Obfuscated-MalMem2022 dataset is employed in the experimental

evaluation. The Random Forest (RF) method completes the classification problem. Remarkably, the results

demonstrate that RF performs better with the combined feature set than with features chosen separately from the

binary and multiclass classifications by the FA method. RF attains a remarkable 99.983% accuracy in binary

classification, demonstrating the potency of the selected features in differentiating between malicious and benign

data. Moreover, RF demonstrates an impressive accuracy of 87.304% in multiclass classification, highlighting the

strength of the proposed methodology.

Keywords: Machine learning, Cybersecurity, Malware, Firefly algorithm, Random forest.

1. Introduction

Malware is software designed to damage or take

advantage of users, networks, or computer systems.

Its manifestations conceal distinct malicious intents

and goals, from stealing confidential data to

interfering with regular computer functions. Because

malware is becoming more sophisticated, it can take

more control over its targets and cause more serious

harm, which has increased its significance [1,2].

According to Symantec's 2019 Internet Security

report, one in ten URLs are found malicious, a

significant increase from one in sixteen URLs found

malicious the year before. This emphasizes how

dangerous and common malicious links are on the

Internet. Furthermore, the total ransomware

infection rate decreased three years after the

Wannacry ransomware attack 2017. In contrast to

the general declining trend, there has been a 12%

increase in the infection rate, especially within

organizations. This disparity suggests that malware,

which targets corporations especially, is a persistent

and expanding danger [3].

The dynamic nature of malware emphasizes the

continued need for strong cybersecurity defenses.

Conventional methods of mitigating malware use

proactive and reactive tactics to reduce the

likelihood of infections and lessen their effects.

These traditional techniques include, but are not

limited to, email filtering, firewalls, and antivirus

software [2]. Nevertheless, conventional detection

and prevention techniques are challenged by the

increasing sophistication of malware, which makes

them inadequate in offering strong protection

mechanisms [4]. Due to this deficiency, researchers

and cybersecurity professionals have been exploring

and developing more sophisticated methods and

tools. These cutting-edge methods seek to efficiently

Received: March 1, 2024. Revised: May 8, 2024. 377

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

detect, neutralize, and lessen the effects of malware

invasions [5]. With cutting-edge technologies like

machine learning, the field of malware detection has

seen a notable change [6-8].

Machine learning aims to develop models and

algorithms that allow computers to learn from data

and improve with experience [9]. The training data's

variety, representativeness, and volume heavily

influence how effective these models are [9,10]. In

many cases, datasets exhibit high dimensionality,

characterized by many features. Machine learning

employs techniques like feature selection to manage

and extract meaningful information from such high-

dimensional datasets. Feature selection is a critical

step in the machine learning pipeline, involving the

choice of a subset of relevant features from the

original set. The primary objectives are to enhance

the model's performance, mitigate overfitting, and

reduce computational requirements [10,11].

Metaheuristic algorithms are optimization

techniques applied to tackle intricate problems, and

they find utility in various domains, including

feature selection within machine learning [12,13].

Among the plethora of metaheuristic optimization

algorithms, the Firefly Algorithm (FA) stands out as

it draws inspiration from the flashing behavior of

fireflies. FA has gained widespread use in feature

selection across diverse applications [14,15]. In this

paper, we focus on employing FA to select optimal

features to enhance accuracy in malware detection

strategically. By leveraging the unique attributes of

the Firefly Algorithm, we aim to improve the

efficiency and effectiveness of feature selection

specifically tailored for the challenges posed by

malware detection scenarios.

This paper will specifically examine the

malware that conceals itself in computer memory

and is utilized to take advantage of weaknesses in

the MS Windows operating system. Hence, this

study suggested framework utilizes the RF classifier

and the FA optimizer to identify malware. The

suggested framework is referred to as RFFA-Mal.

The RFFA-Mal framework suggests employing a

union feature selection. The union feature selection

strategy is employed to choose the most relevant

features by merging the features from several

subsets of features. The utilization of the union

feature selection strategy may yield greater success

compared to the conventional single feature

selection approach. The reason for this is that union

feature selection enhances the accuracy and

efficiency of the feature selection process. This

enhances the overall efficiency of the machine

learning framework and reduces overfitting.

This paper is organized as follows. Section 2

discusses some works that have employed ML to

enhance malware detection. Section 3 discusses the

main components and operations of the proposed

malware detection framework. Section 4 discusses

the implementation environment and the proposed

framework's results. Finally, Section 5 presents the

conclusion.

2. Related works

This section discusses several previous studies

that have been proposed to handle the issue of

malware detection. The discussed studies are

divided into two groups. The first group presents the

achievement of various techniques on different

datasets. The second group discusses the studies that

have been evaluated using the MalMem-2022

dataset, which has been used to examine the method

proposed in this work.

The first group presents the achievement of

various techniques on different datasets. Abijah et al.

[16] have introduced a diverse deep forest model to

enhance malware detection and classification

systems. The proposed system addresses three key

aspects to improve existing malware detection

approaches. Firstly, it involves the conversion of PE

binary files into 2D grayscale images. Secondly, the

images undergo processing in two distinct phases:

the sliding window scanning phase and the cascade

layering phase. Notably, the sliding window

scanning phase considers critical features for

improved predictions. Thirdly, the decision to

continue or stop the layering process is determined

based on cross-validation performance. The results

of the proposed model demonstrate a high detection

rate of 98.65%, 97.2%, and 97.43% for the Malimg,

BIG 2015, and MaleVis [17] malware datasets,

respectively. Priya et al. [18] introduce a novel

approach to address the problem of malware

identification on Android platforms. The suggested

approach extracts features using static Android

APKs (Android Package Kits) analysis. After

extracting features from the Android APKs, the

authors generated two combinations of permissions

and conducted several experiments considering the

combined extracted features. Using the Drebin

dataset [19], the proposed approach attained 98.19%

classification accuracy. Moreover, the suggested

approach showed a 98.84% accuracy rate when with

the Malgenome dataset [20]. Urooj et al. [21] have

developed a framework to detect malicious Android

applications, by determining and choosing functions

to record and examine Android app behavior. This is

achieved using AndroGuard to extract features from

Received: March 1, 2024. Revised: May 8, 2024. 378

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

binary vectors and reverse application engineering.

During testing, the proposed framework achieves a

96% accuracy in the given context with a low false

positive rate of 0.3, especially when larger and

improved feature and sample sets are used. The

study shows ensemble and strong learner algorithms

perform better than other approaches when handling

classifications and high-dimensional data.

The second group describes the research

examined using the MalMem-2022 dataset, which

has been used to examine the method proposed in

this work. The researchers Luhr J. et al. [28] have

proposed and compared two different methods for

detecting malicious software hidden in a computer's

memory. The first approach uses a deep learning

model known as a Multi-Layer Perceptron (MLP).

In contrast, the second approach uses a machine

learning ensemble-based model that includes RF,

LR, KNN, and SVM classifiers. A comparative

analysis of the two approaches was carried out using

the MalMem-2022 dataset, focusing on binary and

multiclass classification. In binary classification, the

MLP approach obtains an accuracy of 99.93%,

while in multiclass classification, it achieves an

accuracy of 75.91%. On the other hand, the

Ensemble technique obtains a higher accuracy level

than the MLP method in binary and multiclass

classification, with a 99.95% and 79.11% accuracy

rate, respectively. Carrier et al. [29] developed an

Table 1. Summary of the related works

Ref# Authors (Year) Algorithm Dataset Results (Accuracy)

Ref [16] Abijah et al. (2020)

Proposed layered

ensemble approach

that mimics the key

characteristics of

deep learning.

Malimg.
98.65% binary

classification

BIG2015.
97.2% binary

classification

MaleVis.
97.43% binary

classification

Ref [18] Priya et al. (2022)

RF Drebin
98.19% binary

classification

SVM with PCA Malgenome
98.84% binary

classification

Ref [21] Urooj et al. (2022) Ensemble learning
Self-created malware

dataset

96% binary

classification

Ref [22] Luhr J. et al. (2022)

MLP

CLC-MalMem- 2022

dataset

99.93 % binary

classification

75.91 % multiclass

classification

Ensemble learning

99.95 % binary

classification

79.11% multiclass

classification

Ref [23] Carrier et al. (2022) Ensemble learning
99% binary

classification

Ref [24] Mezina et al. (2022) DCNN

99 % binary

classification

83% multiclass

classification

Ref [25] Jerbi et al. (2023)

Proposed method

based on Memetic

Algorithm and an

Artificial Immune

system

97.67 binary

classification

Received: March 1, 2024. Revised: May 8, 2024. 379

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

additional approach for detecting malware and then

analyzed it using the MalMem-2022 dataset. The

proposed method takes the form of ensemble

learning with two layers. Layer 1 of the suggested

technique comprises NB, RF, and DT base learners,

while layer 2 comprises LR meta-learners.

Regarding accuracy, the proposed combination of

base learners and meta-learners has attained the

highest possible score of 99%. Mezina et al. [30]

proposed a different method for detecting malware,

and they then tested it using the Malmem-2022

dataset. Dilated convolutional neural networks

(DCNNs) are utilized in the proposed technique,

which consists of four layers. Two convolutional

layers are comprised in each of the four layers, and

the number of neurons in each of these layers might

range from 32 to 256. With binary classification, the

proposed technique achieved an accuracy of 99%,

while with multiclass classification, it achieved an

accuracy of 83%. Jerbi et al. [31] proposed a

different approach that uses the Malmem-2022

dataset for evaluation. The suggested method uses a

memetic algorithm to generate new samples of

malware. After that, resilient detectors produced by

an algorithm based on artificial immune systems are

utilized to identify the newly acquired samples. By

using binary classification, the proposed method

reached an accuracy of 97.67%.

The first group of the previous studies [16, 18,

21] introduces various solutions to address the

malware detection problem. However, these

solutions have yet to employ feature selection

techniques or the RF ML classifier to detect the

malware. Furthermore, while these solutions have

demonstrated high accuracy in detecting malware,

the findings indicate an opportunity to develop a

new approach to improve malware detection. The

proposed approaches have been assessed using

several datasets, excluding the CIC-MalMem-2022

dataset. This dataset specifically focuses on samples

that exploit malware hidden in memory and target

vulnerabilities in MS Windows. The primary

objective of analyzing the research in the first group

is to demonstrate the efficacy of several alternative

techniques for detecting malware. The second group

of previous studies [22-25] introduces other

solutions for feature selection, excluding any

metaheuristic optimization techniques. Furthermore,

they have yet to employ the RF classifier to detect

the malware. Moreover, while these solutions have

demonstrated high accuracy in detecting malware,

the findings indicate an opportunity to develop a

new approach to improve malware detection. Table

1 summarizes the previous studies. The studies in

the second group are the primary focus of this study,

as they address the same problem that this work tries

to address. This study suggested a framework

combining an RF classifier and an FA optimizer for

malware detection. Hence, the suggested framework

is referred to as RFFA-Mal. The study employs FA

to select features for binary and multiclass

classifications, aiming to improve the discriminatory

power of the selected features. The selected features

from binary and multiclass classifications are

combined to provide a comprehensive dataset. The

proposed framework has undergone testing using the

combined comprehensive dataset.

3. Proposed malware detection framework

The proposed RFFA-Mal framework uses a

combination between RF classifier and FA

optimizer to detect malware. This section provides

an overview of the Obfuscated-MalMem2022

dataset, outlining its role in evaluating the proposed

framework. Subsequently, it details the operations

undertaken to preprocess the dataset for

classification purposes. The feature selection

process, featuring the FA, is then expounded upon.

Finally, the section delves into the classification

process of malware, elucidating the role of the RF

classifier.

3.1 Data preparation

The Obfuscated-MalMem2022 dataset is a

widely used benchmark dataset in malware detection

and network security. The Obfuscated-

MalMem2022 dataset is designed to facilitate the

evaluation of malware systems by providing a more

realistic and challenging environment for testing. It

comprises 58,596 network traffic records collected

in a simulated environment, with instances

categorized equally into normal and malware data

types. The malware types are further divided into

three main types: Trojan Horse (9487 records),

Spyware (10020 records), and Ransomware (9791

records). The Obfuscated-MalMem2022 dataset

consists of a total of 55 features, beside the output

column [2,26], as shown in Table 2.

The Obfuscated-MalMem2022 dataset contains

both numerical and categorical data. The output

(label) column contains categorical data that must be

transformed into numbers for machine learning

classifiers to work. Label encoding technique will be

used to transform these labels into numbers [9]. For

binary classification, the Label encoding technique

transforms the normal and malware labels into 0 and

1, respectively. For multiclass classification, the

Label encoding technique transforms the normal,

Trojan Horse, Spyware, and Ransomware labels into

Received: March 1, 2024. Revised: May 8, 2024. 380

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

Table 2. Obfuscated-MalMem-2022 features
Feature name # Feature name # Feature name # Feature name

pslist.nproc 15 handles.nthread 29
malfind.

protection
43

psxview.not_

in_session_

false_avg

pslist.nppid 16 handles.ndirectory 30
malfind.

uniqueInjections
44

psxview.not_

in_deskthrd_

false_avg

pslist.avg_threads 17 handles.nsemaphore 31
psxview.not_

in_pslist
45 modules.nmodules

pslist.nprocs64bit 18 handles.ntimer 32
psxview.not_

in_eprocess_pool
46 svcscan.nservices

pslist.avg_handlers 19 handles.nsection 33
psxview.not_

in_ethread_pool
47

svcscan.kernel_

drivers

dlllist.ndlls 20 handles.nmutant 34
psxview.not_

in_pspcid_list
48

svcscan.fs_

drivers

dlllist.avg_dlls

_per_proc
21

ldrmodules.

not_in_load
35

psxview.not_

in_csrss_handles
49

svcscan.process_

services

handles.nhandles 22
ldrmodules.

not_in_init
36

psxview.not

_in_session
50

svcscan.shared_

process_

services

handles.avg_ha

ndles_per_proc
23

ldrmodules.

not_in_mem
37

psxview.not_

in_deskthrd
51

svcscan.

interactive_

process_

services

handles.nport 24
ldrmodules.

not_in_load_avg
38

psxview.not_

in_pslist_false_avg
52 svcscan.nactive

handles.nfile 25
ldrmodules.

not_in_init_avg
39

psxview.not_

in_eprocess_

pool_false_avg

53
callbacks.

ncallbacks

handles.nevent 26
ldrmodules.

not_in_mem_avg
40

psxview.not_

in_ethread_

pool_false_avg

54
callbacks.

nanonymous

handles.ndesktop 27
malfind.

ninjections
41

psxview.not_

in_pspcid_

list_false_avg

55
callbacks.

ngeneric

handles.nkey 28
malfind.

commitCharge
42

psxview.not_

in_csrss_

handles_false_avg

0, 1, 2, and 3, respectively. Besides categorical data,

the Obfuscated-MalMem2022 dataset contains

numerical features with varying magnitudes.

Accordingly, in the normalization step, numerical

features undergo Min-Max scaling to confine their

values within a specified range, between 0 and 1 [9].

This scaling ensures that features with varying

magnitudes contribute proportionally to model

training, preventing bias towards variables with

larger scales. Table 3 and Table 4 show a sample of

the original data within the Obfuscated-

MalMem2022 dataset and a sample of the dataset

after being processed (Transformation and

Normalization), respectively. By executing these

transformation and normalization steps, the

Obfuscated-MalMem2022 dataset is refined, laying

a solid foundation for developing robust malware

detection models.

Received: March 1, 2024. Revised: May 8, 2024. 381

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

Table 3. Sample of the Obfuscated-MalMem2022 dataset

before preprocessing
Data Samples Output

46, 18, 10.555556, 0, 202.84444, 1695, 39.5 Benign

48, 18, 11.54191589, 0, 243.2350436, 2174,

44.13766958
Benign

41, 140, 140.725, 0, 289.235, 1942, 49.3 Benign

38, 25, 12.41125742, 0, 320.7792418, 2574,

41.17793318
Malware

39, 15, 12.14614625, 0, 315.9389389, 2466,

59.09218218
Malware

37, 16, 11.91795892, 0, 237.7411356, 1562,

49.79587289
Malware

Table 4. Sample of the Obfuscated-MalMem2022 dataset

after preprocessing
Data Samples Output

0.145762576, 0.156172515, 0.578521534, 0,

0.25172938, 0.379375254, 0.780540758
0

0.157685633, 0.199646173, 0.64439608, 0,

0.289354507, 0.606410865, 0.896942921
0

0.123742456, 0.203348475, 0.768784019, 0,

0.223382124, 0.355202787, 0.790635083
0

0.104875535, 0.110798665, 0.645187936, 0,

0.158748754, 0.320234798, 0.604971432
1

0.107884531, 0.130679655, 0.645187945, 0,

0.178759754, 0.342043788, 0.704971512
1

0.107884531, 0.130679655, 0.598485539, 0,

0.155663757, 0.327067065, 0.679638787
1

3.2 Feature selection

Feature selection is a critical stage in machine

learning, which entails selecting a subset of

pertinent features from the initial feature set.

Effectively selecting features can enhance

interpretability, create quicker training times, and

improve model performance. This paper proposes a

novel self-union feature selection mechanism using

FA optimization algorithm.

3.2.1. FA optimization algorithm

The selection of features for the MalMem2022

dataset represents a big step forward in the

preprocessing of the dataset. Feature selection is the

process of selecting subsets of relevant features

from an existing set of features to improve the

model's performance, reduce the probability of

overfitting, and raise the readability of the model. In

the process of choosing a feature selection method,

the specific features of the dataset should be taken

into consideration. The FA method is a well-known

Figure. 1 Pseudocode of FA algorithm

metaheuristic optimization method used for feature

selection. FA is based on the core principle that

fireflies interact with one another and attract one

another through flashing. Those fireflies with a

greater variety of colors are considered more

appealing and more likely to attract other fireflies.

The algorithm duplicates this behavior to achieve

the goal of identifying optimal or nearly optimal

solutions [14,15,27,28].

The FA optimization algorithm performs several

operations to find the relevant features for malware

detection. The pseudocode in Fig. 1 shows for the

operations performed by the FA algorithm

[14,15,27,28]. Line 1 and 2 initialize positions

randomly in the search space. Line 3 and 4 calculate

attractiveness based on the objective function. Line

5 to 12 calculate and update the brightest firefly

positions. Line 13 to 15 move firefly i towards

brighter firefly j. Line 16 updates the position of

firefly i. Line 17 and 18 identify and update the

position of the brightest firefly. Line 19 and 20

update attractiveness based on the new positions.

Line 21 check convergence criteria (e.g., maximum

iterations or target fitness reached).

3.2.2. Self-Union feature selection using FA

The FA optimization algorithm is used for

feature selection in the proposed RFFA-Mal

framework. The FA algorithm has selected 14 out of

Received: March 1, 2024. Revised: May 8, 2024. 382

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

Table 5. Selected feature by different methods
Method Selected features (feature number)

Binary
1, 16, 19, 23, 25, 27, 29, 30, 37, 41, 42,

46, 49, 53

Multiclass

1, 4, 6, 8, 14, 16, 17, 18, 19, 20, 21, 25,

27, 28, 29, 31, 34, 35, 37, 39, 42, 44, 46,

47, 49, 52

Union of

Binryclass

&

Multiclass

1, 4, 6, 8, 14, 16, 17, 18, 19, 20, 21, 23,

25, 27, 28, 29, 30, 31, 34, 35, 37, 39, 41,

42, 44, 46, 47, 49, 52, 53

Figure. 2 Feature selection process

55 features for binary classification. The FA

algorithm has selected 26 out of 55 features for

multiclass classification. Table 5 lists the selected

features by FA for both binary and multiclass

classification. Besides typical feature selection, the

RFFA-Mal framework proposes to use a union

feature selection. The union feature selection

approach is used to select the most pertinent features

by combining the features from different subsets of

features. The union feature selection approach could

be more successful than the typical single feature

selection approach. This is because union feature

selection increases the accuracy and efficiency of

the feature selection process. This improves the

overall performance of the machine learning

framework and decreases overfitting [29].

Union features selection typically combines

features from different selection algorithms [29].

The RFFA-Mal framework proposes to use a novel

self-union feature selection algorithm that combines

features from one features selection algorithm, the

FA algorithm. The proposed self-union feature

selection algorithm works as follows. First, the FA

optimizer performs feature selection for binary

classification. Then, the FA optimizer performs

feature selection for multiclass classification. Finally,

the union of these features is combined together in

one subset. This will improve the performance of

the RFFA-Mal framework and decrease overfitting.

The proposed self-union feature selection

mechanism is illustrated in Fig. 2. Table 5 lists the

union of features from binary and multiclass

classification.

3.3 Classification

In the previous steps (Section 3.1 and 3.2), the

data has been processed and prepared for the

classification, distinguish the malware and benign

data. The RF classifier will be used for the

classification purpose. RF is a popular machine

learning algorithm that can be used for classification

problems in ML, such as distinguishing between the

malware and benign data. RF is based on the

Figure. 3 RF classifier

Reduced MalMem-
2022 Dataset
(30 Features)

FA Optimizer

MalMem-2022
Dataset

(55 Features)

Reduced MalMem-
2022 Dataset
(26 Features)

Reduced MalMem-
2022 Dataset
(14 Features)

MulticlassBinary

FA Self-Uniom

Feature Selection

Random Forest Simplified

Decision tree #1

Result #1 Result #2 Result #N

Majority Voting

Final Result

Dataset

Decision tree #2 Decision tree #N

Received: March 1, 2024. Revised: May 8, 2024. 383

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

Figure. 4 RFFA-Mal framework

concept of ensemble learning, which is a process of

combining multiple classifiers to solve a complex

problem and to improve the performance of the

model. Whereas, RF contains a number of decision

trees on various subsets of the given dataset, as

shown in Fig. 3. The ensemble learning nature of the

RF makes it preferable over most of the other

classifiers. Leveraging the power of ensemble

learning b helps mitigate overfitting, reduce

variance, and improve overall model accuracy

compared to individual models [30-32].

At this stage, the proposed RFFA-Mal

framework is ready to detect malware. Fig. 4

demonstrates the RFFA-Mal framework. The

performance of the RFFA-Mal framework will be

evaluated in the following section.

4. Implementation, result and discussion

The section includes the implementation

environment, performance evaluation criteria,

results, and discussion of the proposed RFFA-Mal

framework.

4.1 Implementation environment

The proposed framework was conducted on a

desktop with Intel Core i7-2600 Processor (3.4GHz

and 8M Cache), 32 GB DDR5-3200 memory, SSD

M.2 256GB, NVIDIA GeForce 12GB GDDR6

graphics card, and Ubuntu 20.01.3 LTS O.S. Python

was used to test and evaluate the proposed

framework. To implement an RF classifier for

detecting malware in Python, you'll primarily use

the ‘scikit-learn’ library (sklearn). ‘Scikit-learn’

provides a comprehensive set of classes and

methods for building and evaluating RF classifiers

for malware detection. ‘RandomForestClassifier’,

‘train_test_split’, ‘accuracy_score’, and

‘classification_report’, besides other libraries, have

been used in this work [33].

K-fold cross-validation is used to ensure

consistent performance of the framework across

different subsets of the data, reducing the risk of

overfitting to a particular train-test split. The value

of K is set to five. In 5-fold cross-validation, the

dataset is divided into five equally sized folds. The

cross-validation process is then repeated five times,

with each fold used once as a validation set while

the remaining four folds form the training set

[31,32].

4.2 Performance evaluation criteria

The proposed RFFA-Mal framework is

evaluated the confusion matrix tool. Evaluating the

performance of the RFFA-Mal framework for

detecting malware involves using a confusion matrix

and related metrics to assess how well the

framework is performing in terms of True Positives

(TP), True Negatives (TN), False Positives (FP), and

False Negatives (FN). TP is the instances where the

framework correctly identifies a malware sample.

TN is the instances where the framework correctly

identifies a non-malicious sample. FP is the

instances where the model incorrectly identifies a

non-malicious sample as malicious. FN is the

instances where the model incorrectly identifies a

malicious sample as non-malicious. Confusion

matrix provides a comprehensive breakdown of the

predicted and actual classes, allowing for the

calculation of various performance metrics. These

metrics are Accuracy, Recall, Precision, F1- score.

Data Preprocessing

Normalization
 (Min-max Scaler)

Feature Selection
(FA Optimizer)

Data Transformation
(Label Encoder)

Reduced MalMem-
2022 Dataset
(30 Features)

MalMem-2022
Dataset

(55 Features)

RF Classifier

Performance Evaluation

Accuracy, Recall, Precision,
F1- score

K-fold cross-validation

Received: March 1, 2024. Revised: May 8, 2024. 384

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

Accuracy represents the overall correctness of the

model. Accuracy is calculated using Eq. (1). Recall

measures the ability of the model to capture all

positive instances, indicating how many of the

actual positive instances were correctly predicted.

Recall is calculated using Eq. (2). Precision

measures the accuracy of positive predictions,

indicating how many of the predicted positive

instances were actually positive. Precision is

calculated using Eq. (3). The F1-score is the

harmonic mean of precision and recall, providing a

balance between the two metrics. F1-score is

calculated using Eq. (4) [31-33].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (3)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

4.3 Results and discussion

The proposed RFFA-Mal framework was tested

with binary and multiclass classification types. For

each type, the subset of features selected by the FA

algorithm was tested using two distinct approaches:

Typical Feature Selection (FA-T-FS) (refer to

Section 3.2.2) and Union Feature Selection (FA-U-

FS) (refer to Section 3.2.2). The RF classifier will be

used to evaluate the RFFA-Mal framework (refer to

Section 3.3). Besides, the proposed FA-U-FS have

been compared with state-of-the-art (SOTA)

methods.

4.3.1. Binary classification

Figs. 5, 6, 7, and 8 illustrate Accuracy, Recall,

Precision, and F1-score performance metrics for

binary classification, respectively. Across all four

metrics, the typical FA-T-FS method demonstrated

an impressive value of 99.974%. In contrast, the

proposed union FA-U-FS method surpassed this,

achieving a higher value of 99.983%. Consequently,

the results obtained through the proposed union FA-

U-FS method surpass those achieved by the typical

FA-T-FS method, indicating its superior

performance in binary classification based on the

evaluated metrics.

Figure. 5 Accuracy of the RFFA-Mal framework with

binary classification

Figure. 6 Recall of the RFFA-Mal framework with

binary classification

Figure. 7 Precision of the RFFA-Mal framework with

binary classification

Received: March 1, 2024. Revised: May 8, 2024. 385

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

Figure. 8 F1-score of the RFFA-Mal framework with

binary classification

4.3.2. Multiclass classification

Figs. 9, 10, 11, and 12 present the performance

metrics of Accuracy, Recall, Precision, and F1-score

for multiclass classification, respectively. In all four

metrics, the typical FA-T-FS method demonstrated a

performance of 87.184%. In contrast, the proposed

union FA-U-FS method achieved a higher

performance of 87.304%, signifying an

improvement of 0.120% over the typical FA-T-FS

method. Consequently, the proposed union FA-U-

FS method outperforms the typical FA-T-FS method

in multiclass classification based on the evaluated

metrics.

Figure. 9 Accuracy of the RFFA-Mal framework with

multiclass classification

Figure. 10 Recall of the RFFA-Mal framework with

multiclass classification

Figure. 11 Precision of the RFFA-Mal framework

with multiclass classification

Figure. 12 F1-score of the RFFA-Mal framework with

multiclass classification

Received: March 1, 2024. Revised: May 8, 2024. 386

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

In summary, these metrics serve as evaluative

benchmarks for the RFFA-Mal framework,

employing the RF classifier and featuring the FA-T-

FS and FA-U-FS methods for feature selection.

With binary classification, the RFFA-Mal

framework obtains an excellent result of 99.983%,

while with multiclass classification, it achieves

87.304%. The thorough display of these indicators

provides a sophisticated evaluation of the

framework's effectiveness across various

performance metrics.

Figure. 13 Accuracy of the FA-U-FS technique in comparison to the SOTA techniques on CIC-MalMem-2022

dataset (binary classification)

Figure. 14 Accuracy of the FA-U-FS technique in comparison to the SOTA techniques on CIC-MalMem-2022

dataset (multiclass classification)

Received: March 1, 2024. Revised: May 8, 2024. 387

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

Figure. 15 Accuracy of the FA-U-FS technique in comparison to the SOTA techniques on various dataset (binary

classification)

4.3.3. Performance assessment of the RFFA-Mal

framework against the SOTA techniques

Figs. 13 and 14 show the accuracy of the

suggested FA-U-FS technique in comparison to the

SOTA techniques on binary and multiclass

classifications utilizing the CIC-MalMem-2022

dataset, respectively. Binary and multiclass

classifications on the CIC-MalMem-2022 dataset

demonstrate that the FA-U-FS technique

outperforms the SOTA techniques. Fig. 15 shows

the accuracy of the suggested FA-U-FS technique in

comparison to the SOTA techniques across various

datasets, focusing on binary classification. Notably,

both the FA-U-FS technique exhibit superior

performance in binary classification compared to

other approaches.

5. Conclusion

This study emphasizes the value of novel

strategies for tackling the growing problems caused

by malware in cybersecurity. This study developed a

new RFFA-Mal framework for disclosing malware

using the RF classifier and FA algorithm. The

RFFA-Mal framework has significantly improved

malware detection accuracy by leveraging the FA

algorithm for feature selection and employing a

unified feature set from binary and multiclass

classifications in conjunction with the RF

classification algorithm. Among the noteworthy

accomplishments is an exceptional binary

classification accuracy of 99.983%, demonstrating

the strong discriminatory capacity of the chosen

features to discern between malicious and benign

data. Moreover, the impressive multiclass

classification accuracy of 87.304% highlights the

flexibility and dependability of the suggested

methodology in managing various malware

classifications. Combining characteristics from

binary and multiclass classifications has been crucial

since it produces better outcomes than using the

features independently. This improves the feature

set's comprehensiveness and makes the malware

detection system more all-encompassing and

efficient. The evaluation environment provided by

the Obfuscated-MalMem2022 dataset is both

realistic and demanding, serving as a close replica of

real-world situations to validate the suggested

technique.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Following are the contribution of authors:

conceptualization, Mosleh M. Abualhaj and Ahmad

Abu-Shareha; methodology, Mosleh M. Abualhaj

and Ahmad Abu-Shareha; software, Sumaya Al-

Khatib; validation, Mahran Al-Zyoud, and Adeeb

Alsaaidah; formal analysis, Mosleh M. Abualhaj and

Adeeb Alsaaidah; investigation, Mosleh M.

Received: March 1, 2024. Revised: May 8, 2024. 388

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

Abualhaj and Adeeb Alsaaidah; resources, Sumaya

Al-Khatib; data curation, Sumaya Al-Khatib;

writing—original draft preparation, Mosleh M.

Abualhaj and Ahmad Abu-Shareha; writing—

review and editing, Mosleh M. Abualhaj and

Mahran Al-Zyoud; visualization, Mosleh M.

Abualhaj and Mahran Al-Zyoud; supervision,

Mosleh M. Abualhaj and Mahran Al-Zyoud; project

administration, N/A; funding acquisition, N/A”.

References

[1] J. H. Park, “Symmetry-adapted machine

learning for information security”, Symmetry,

Vol. 12, No. 6, p. 1044, 2020.

[2] M. Abualhaj, A. Abu-Shareha, Q. Shambour, A.

Alsaaidah, S. Al-Khatib, and M. Anbar,

“Customized K-nearest neighbors’ algorithm

for malware detection”, International Journal

of Data and Network Science, Vol. 8, No. 1, pp.

431-438, 2024.

[3] T. Li, Y. Liu, Q. Liu, W. Xu, Y. Xiao, and H.

Liu, “A malware propagation prediction model

based on representation learning and graph

convolutional networks”, Digital

Communications and Networks, Vol. 9, No.5,

pp. 1090-1100, 2023.

[4] M. Belaoued, A. Derhab, S. Mazouzi, and F.

Khan, “MACoMal: A multi-agent based

collaborative mechanism for anti-malware

assistance”, IEEE Access, Vol. 8, pp. 14329-

14343, 2020.

[5] A. Ross, and D. Morgan, “Malware Mitigation

Using Host Intrusion Prevention in the

Enterprise”, In: Proc. of Security and

Management, pp. 46-54, 2004.

[6] E. Kidmose, M. Stevanovic, and J. Pedersen,

“Correlating intrusion detection alerts on bot

malware infections using neural network”, In:

Proc. of 2016 International Conf. On Cyber

Security And Protection Of Digital Services

(Cyber Security), pp. 1-8, 2016.

[7] V. Vasani, A. Bairwa, S. Joshi, A. Pljonkin, M.

Kaur, and M. Amoon, “Comprehensive

analysis of advanced techniques and vital tools

for detecting malware intrusion”, Electronics,

Vol. 12, No. 20, p. 4299, 2023.

[8] M. Kolhar, F. Al-Turjman, A. Alameen, and M.

Abualhaj, “A three layered decentralized IoT

biometric architecture for city lockdown during

COVID-19 outbreak”, IEEE Access, Vol. 8, pp.

163608-163617, 2020.

[9] M. Abualhaj, A. Abu-Shareha, M. Hiari, Y.

Alrabanah, M. Al-Zyoud, and M. Alsharaiah,

“A Paradigm for DoS Attack Disclosure using

Machine Learning Techniques”, International

Journal of Advanced Computer Science and

Applications. Vol. 13, No. 3, 2022.

[10] H. Zhao, Q. Hu, P. Zhu, Y. Wang, and P.

Wang, “A recursive regularization based

feature selection framework for hierarchical

classification”, IEEE Transactions on

Knowledge and Data Engineering, Vol. 33, No.

7, pp. 2833-2846, 2019.

[11] T. Zhang, T. Zhu, P. Xiong, H. Huo, Z. Tari,

and W. Zhou, “Correlated differential privacy:

Feature selection in machine learning”, IEEE

Transactions on Industrial Informatics, Vol. 16,

No. 13, pp. 2115-2124, 2019.

[12] L. Jovanovic, D. Jovanovic, M. Antonijevic, B.

Nikolic, N. Bacanin, M. Zivkovic, and I.

Strumberger, “Improving phishing website

detection using a hybrid two-level framework

for feature selection and xgboost tuning”,

Journal of Web Engineering, Vol. 22, No. 3, pp.

543-574, 2023.

[13] O. Alyasiri, Y. Cheah, A. Abasi, and O. Al-

Janabi, “Wrapper and hybrid feature selection

methods using metaheuristic algorithms for

English text classification: A systematic

review”, IEEE Access, Vol. 10, pp. 39833-

39852, 2022.

[14] W. Liu, P. Li, Z. Ye, and S. Yang, “September.

A node deployment optimization method of

wireless sensor network based on firefly

algorithm”, In: Proc. of 2021 IEEE 4th

International Conf. on Advanced Information

and Communication Technologies (AICT), pp.

167-170, 2021.

[15] S. Bazi, R. Benzid, Y. Bazi, and M. Rahhal, “A

fast firefly algorithm for function optimization:

application to the control of BLDC motor”,

Sensors, Vol. 21, No. 16, p. 5267, 2021.

[16] S. Roseline, S. Geetha, S. Kadry, and Y. Nam,

“Intelligent vision-based malware detection

and classification using deep random forest

paradigm”, IEEE Access, Vol. 8, pp. 206303-

206324, 2020.

[17] A. Bozkir, A. Cankaya, and M. Aydos,

“Utilization and comparision of convolutional

neural networks in malware recognition”, In:

Proc. of 2019 27th Signal Processing and

Communications Applications Conference

(SIU), pp. 1-4, 2019.

[18] P. Raghuvanshi, and J. Singh, “Android

Malware Detection Using Machine Learning

Techniques”, In: Proc. Of 2022 International

Conf. on Computational Science and

Computational Intelligence (CSCI), pp. 1117-

1121, 2022.

Received: March 1, 2024. Revised: May 8, 2024. 389

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.29

[19] D. Arp, M. Spreitzenbarth, M. Hubner, H.

Gascon, K. Rieck, and C. Siemens, “Drebin:

Effective and explainable detection of android

malware in your pocket”, In Ndss, Vol. 14, pp.

23-26, 2014.

[20] S. Yerima, and S. Sezer, “Droidfusion: A novel

multilevel classifier fusion approach for

android malware detection”, IEEE transactions

on cybernetics, Vol. 49, No. 2, pp. 453-466,

2018.

[21] B. Urooj, M. Shah, C. Maple, M. Abbasi, and S.

Riasat, “Malware detection: a framework for

reverse engineered android applications

through machine learning algorithms”, IEEE

Access, Vol. 10, pp. 89031-89050, 2022.

[22] J. Luhr, and H. Hallqvist, “Fast Classification

of Obfuscated Malware with an Artificial

Neural Network”, 2022.

[23] T. Carrier, P. Victor, A. Tekeoglu, and A. H.

Lashkari, “Detecting Obfuscated Malware

using Memory Feature Engineering”, In: Proc.

of Icissp, pp. 177-188, 2022.

[24] A. Mezina, and R. Burget, “Obfuscated

malware detection using dilated convolutional

network”, In: Proc. of 2022 14th International

Congress on Ultra Modern

Telecommunications and Control Systems and

Workshops (ICUMT), pp. 110-115, 2022.

[25] M. Jerbi, Z. C. Dagdia, S. Bechikh and L. B.

Said, “Immune-Based System to Enhance

Malware Detection”, In: Proc. of IEEE 2023

Congress on Evolutionary Computation, pp. 1-

8, 2023.

[26] T. Carrier, P. Victor, A. Tekeoglu, and A.

Lashkari, “Detecting Obfuscated Malware

using Memory Feature Engineering”, In: Proc.

of the 8th International Conference on

Information Systems Security and Privacy

(ICISSP), pp. 177-188, 2022.

[27] J. Pye, B. Issac, N. Aslam, and H. Rafiq,

“Android malware classification using machine

learning and bio-inspired optimisation

algorithms”, In: Proc. of 2020 IEEE 19th

International Conference on Trust, Security

and Privacy in Computing and

Communications (TrustCom), pp. 1777-1882,

2020.

[28] A. Gupta, and P. Padhy, “Modified Firefly

Algorithm based controller design for

integrating and unstable delay processes”,

Engineering Science and Technology, an

International Journal, Vol. 19, No. 1, pp. 548-

558, 2016.
[29] Ü. Çavuşoğlu, “A new hybrid approach for

intrusion detection using machine learning

methods”, Applied Intelligence, Vol. 49, pp.

2735-2761, 2019.

[30] Y. Ren, X. Zhu, K. Bai, and R. Zhang, “A New

Random Forest Ensemble of Intuitionistic

Fuzzy Decision Trees”, IEEE Transactions on

Fuzzy Systems, Vol. 31, No. 5, pp. 1729-1741,

2023.

[31] H. Al-Mimi, N. Hamad, and M. Abualhaj, “A

Model for the Disclosure of Probe Attacks

Based on the Utilization of Machine Learning

Algorithms”, In: Proc. of 2023 10th

International Conf. on Electrical and

Electronics Engineering (ICEEE), pp. 241-247,

2023.

[32] H. Al-Mimi, N. Hamad, M. Abualhaj, S. Al-

Khatib, and M. Hiari, “Improved Intrusion

Detection System to Alleviate Attacks on DNS

Service”, Journal of Computer Science, Vol.

19, No. 12, pp. 1549-1560, 2023.

[33] H. Al-Mimi, N. Hamad, M. Abualhaj, M.

Daoud, A. Al-dahoud, and M. Rasmi, “An

Enhanced Intrusion Detection System for

Protecting HTTP Services from Attacks”,

International Journal of Advances in Soft

Computing & Its Applications, Vol. 15, No. 3,

2023.

