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Abstract: The proliferation of malware gravely threatens the security of computer systems and sensitive data. This 

work aims to improve malware detection by using advanced feature selection techniques. The study utilizes the 

Firefly Algorithm (FA) for feature selection in binary and multiclass classifications to enhance the discrimination 

capabilities of selected features. The selected features from the binary and multiclass classifications are combined to 

generate a comprehensive feature set. The Obfuscated-MalMem2022 dataset is employed in the experimental 

evaluation. The Random Forest (RF) method completes the classification problem. Remarkably, the results 

demonstrate that RF performs better with the combined feature set than with features chosen separately from the 

binary and multiclass classifications by the FA method. RF attains a remarkable 99.983% accuracy in binary 

classification, demonstrating the potency of the selected features in differentiating between malicious and benign 

data. Moreover, RF demonstrates an impressive accuracy of 87.304% in multiclass classification, highlighting the 

strength of the proposed methodology. 

Keywords: Machine learning, Cybersecurity, Malware, Firefly algorithm, Random forest. 

 

 

1. Introduction 

Malware is software designed to damage or take 

advantage of users, networks, or computer systems. 

Its manifestations conceal distinct malicious intents 

and goals, from stealing confidential data to 

interfering with regular computer functions. Because 

malware is becoming more sophisticated, it can take 

more control over its targets and cause more serious 

harm, which has increased its significance [1,2]. 

According to Symantec's 2019 Internet Security 

report, one in ten URLs are found malicious, a 

significant increase from one in sixteen URLs found 

malicious the year before. This emphasizes how 

dangerous and common malicious links are on the 

Internet. Furthermore, the total ransomware 

infection rate decreased three years after the 

Wannacry ransomware attack 2017. In contrast to 

the general declining trend, there has been a 12% 

increase in the infection rate, especially within 

organizations. This disparity suggests that malware, 

which targets corporations especially, is a persistent 

and expanding danger [3]. 

The dynamic nature of malware emphasizes the 

continued need for strong cybersecurity defenses. 

Conventional methods of mitigating malware use 

proactive and reactive tactics to reduce the 

likelihood of infections and lessen their effects. 

These traditional techniques include, but are not 

limited to, email filtering, firewalls, and antivirus 

software [2]. Nevertheless, conventional detection 

and prevention techniques are challenged by the 

increasing sophistication of malware, which makes 

them inadequate in offering strong protection 

mechanisms [4]. Due to this deficiency, researchers 

and cybersecurity professionals have been exploring 

and developing more sophisticated methods and 

tools. These cutting-edge methods seek to efficiently 
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detect, neutralize, and lessen the effects of malware 

invasions [5]. With cutting-edge technologies like 

machine learning, the field of malware detection has 

seen a notable change [6-8]. 

Machine learning aims to develop models and 

algorithms that allow computers to learn from data 

and improve with experience [9]. The training data's 

variety, representativeness, and volume heavily 

influence how effective these models are [9,10]. In 

many cases, datasets exhibit high dimensionality, 

characterized by many features. Machine learning 

employs techniques like feature selection to manage 

and extract meaningful information from such high-

dimensional datasets. Feature selection is a critical 

step in the machine learning pipeline, involving the 

choice of a subset of relevant features from the 

original set. The primary objectives are to enhance 

the model's performance, mitigate overfitting, and 

reduce computational requirements [10,11]. 

Metaheuristic algorithms are optimization 

techniques applied to tackle intricate problems, and 

they find utility in various domains, including 

feature selection within machine learning [12,13]. 

Among the plethora of metaheuristic optimization 

algorithms, the Firefly Algorithm (FA) stands out as 

it draws inspiration from the flashing behavior of 

fireflies. FA has gained widespread use in feature 

selection across diverse applications [14,15]. In this 

paper, we focus on employing FA to select optimal 

features to enhance accuracy in malware detection 

strategically. By leveraging the unique attributes of 

the Firefly Algorithm, we aim to improve the 

efficiency and effectiveness of feature selection 

specifically tailored for the challenges posed by 

malware detection scenarios. 

This paper will specifically examine the 

malware that conceals itself in computer memory 

and is utilized to take advantage of weaknesses in 

the MS Windows operating system. Hence, this 

study suggested framework utilizes the RF classifier 

and the FA optimizer to identify malware. The 

suggested framework is referred to as RFFA-Mal. 

The RFFA-Mal framework suggests employing a 

union feature selection. The union feature selection 

strategy is employed to choose the most relevant 

features by merging the features from several 

subsets of features. The utilization of the union 

feature selection strategy may yield greater success 

compared to the conventional single feature 

selection approach. The reason for this is that union 

feature selection enhances the accuracy and 

efficiency of the feature selection process. This 

enhances the overall efficiency of the machine 

learning framework and reduces overfitting. 

This paper is organized as follows. Section 2 

discusses some works that have employed ML to 

enhance malware detection. Section 3 discusses the 

main components and operations of the proposed 

malware detection framework. Section 4 discusses 

the implementation environment and the proposed 

framework's results. Finally, Section 5 presents the 

conclusion. 

2. Related works 

This section discusses several previous studies 

that have been proposed to handle the issue of 

malware detection. The discussed studies are 

divided into two groups. The first group presents the 

achievement of various techniques on different 

datasets. The second group discusses the studies that 

have been evaluated using the MalMem-2022 

dataset, which has been used to examine the method 

proposed in this work.  

The first group presents the achievement of 

various techniques on different datasets. Abijah et al. 

[16] have introduced a diverse deep forest model to 

enhance malware detection and classification 

systems. The proposed system addresses three key 

aspects to improve existing malware detection 

approaches. Firstly, it involves the conversion of PE 

binary files into 2D grayscale images. Secondly, the 

images undergo processing in two distinct phases: 

the sliding window scanning phase and the cascade 

layering phase. Notably, the sliding window 

scanning phase considers critical features for 

improved predictions. Thirdly, the decision to 

continue or stop the layering process is determined 

based on cross-validation performance. The results 

of the proposed model demonstrate a high detection 

rate of 98.65%, 97.2%, and 97.43% for the Malimg, 

BIG 2015, and MaleVis [17] malware datasets, 

respectively. Priya et al. [18] introduce a novel 

approach to address the problem of malware 

identification on Android platforms. The suggested 

approach extracts features using static Android 

APKs (Android Package Kits) analysis. After 

extracting features from the Android APKs, the 

authors generated two combinations of permissions 

and conducted several experiments considering the 

combined extracted features. Using the Drebin 

dataset [19], the proposed approach attained 98.19% 

classification accuracy. Moreover, the suggested 

approach showed a 98.84% accuracy rate when with 

the Malgenome dataset [20]. Urooj et al. [21] have 

developed a framework to detect malicious Android 

applications, by determining and choosing functions 

to record and examine Android app behavior. This is 

achieved using AndroGuard to extract features from 
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binary vectors and reverse application engineering. 

During testing, the proposed framework achieves a 

96% accuracy in the given context with a low false 

positive rate of 0.3, especially when larger and 

improved feature and sample sets are used. The 

study shows ensemble and strong learner algorithms 

perform better than other approaches when handling 

classifications and high-dimensional data.  

The second group describes the research 

examined using the MalMem-2022 dataset, which 

has been used to examine the method proposed in 

this work. The researchers Luhr J. et al. [28] have 

proposed and compared two different methods for 

detecting malicious software hidden in a computer's 

memory. The first approach uses a deep learning 

model known as a Multi-Layer Perceptron (MLP). 

In contrast, the second approach uses a machine 

learning ensemble-based model that includes RF, 

LR, KNN, and SVM classifiers. A comparative 

analysis of the two approaches was carried out using 

the MalMem-2022 dataset, focusing on binary and 

multiclass classification. In binary classification, the 

MLP approach obtains an accuracy of 99.93%, 

while in multiclass classification, it achieves an 

accuracy of 75.91%. On the other hand, the 

Ensemble technique obtains a higher accuracy level 

than the MLP method in binary and multiclass 

classification, with a 99.95% and 79.11% accuracy 

rate, respectively. Carrier et al. [29] developed an  

 

 

 
Table 1. Summary of the related works 

Ref# Authors (Year) Algorithm Dataset Results (Accuracy) 

Ref [16] Abijah et al. (2020) 

Proposed layered 

ensemble approach 

that mimics the key 

characteristics of 

deep learning. 

Malimg. 
98.65% binary 

classification 

BIG2015. 
97.2% binary 

classification 

MaleVis. 
97.43% binary 

classification 

Ref [18] Priya et al. (2022) 

RF Drebin 
98.19% binary 

classification 

SVM with PCA Malgenome 
98.84% binary 

classification 

Ref [21] Urooj et al. (2022) Ensemble learning 
Self-created malware 

dataset 

96% binary 

classification 

Ref [22] Luhr J. et al. (2022) 

MLP 

CLC-MalMem- 2022 

dataset 

99.93 % binary 

classification 

75.91 % multiclass 

classification 

Ensemble learning 

99.95 % binary 

classification 

79.11% multiclass 

classification 

Ref [23] Carrier et al. (2022) Ensemble learning 
99% binary 

classification 

Ref [24] Mezina et al. (2022) DCNN 

99 % binary 

classification 

83% multiclass 

classification 

Ref [25] Jerbi et al. (2023) 

Proposed method 

based on Memetic 

Algorithm and an 

Artificial Immune 

system  

97.67 binary 

classification 
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additional approach for detecting malware and then 

analyzed it using the MalMem-2022 dataset. The 

proposed method takes the form of ensemble 

learning with two layers. Layer 1 of the suggested 

technique comprises NB, RF, and DT base learners, 

while layer 2 comprises LR meta-learners. 

Regarding accuracy, the proposed combination of 

base learners and meta-learners has attained the 

highest possible score of 99%. Mezina et al. [30] 

proposed a different method for detecting malware, 

and they then tested it using the Malmem-2022 

dataset. Dilated convolutional neural networks 

(DCNNs) are utilized in the proposed technique, 

which consists of four layers. Two convolutional 

layers are comprised in each of the four layers, and 

the number of neurons in each of these layers might 

range from 32 to 256. With binary classification, the 

proposed technique achieved an accuracy of 99%, 

while with multiclass classification, it achieved an 

accuracy of 83%. Jerbi et al. [31] proposed a 

different approach that uses the Malmem-2022 

dataset for evaluation. The suggested method uses a 

memetic algorithm to generate new samples of 

malware. After that, resilient detectors produced by 

an algorithm based on artificial immune systems are 

utilized to identify the newly acquired samples. By 

using binary classification, the proposed method 

reached an accuracy of 97.67%.   

The first group of the previous studies [16, 18, 

21] introduces various solutions to address the 

malware detection problem. However, these 

solutions have yet to employ feature selection 

techniques or the RF ML classifier to detect the 

malware. Furthermore, while these solutions have 

demonstrated high accuracy in detecting malware, 

the findings indicate an opportunity to develop a 

new approach to improve malware detection. The 

proposed approaches have been assessed using 

several datasets, excluding the CIC-MalMem-2022 

dataset. This dataset specifically focuses on samples 

that exploit malware hidden in memory and target 

vulnerabilities in MS Windows. The primary 

objective of analyzing the research in the first group 

is to demonstrate the efficacy of several alternative 

techniques for detecting malware. The second group 

of previous studies [22-25] introduces other 

solutions for feature selection, excluding any 

metaheuristic optimization techniques. Furthermore, 

they have yet to employ the RF classifier to detect 

the malware. Moreover, while these solutions have 

demonstrated high accuracy in detecting malware, 

the findings indicate an opportunity to develop a 

new approach to improve malware detection. Table 

1 summarizes the previous studies. The studies in 

the second group are the primary focus of this study, 

as they address the same problem that this work tries 

to address. This study suggested a framework 

combining an RF classifier and an FA optimizer for 

malware detection. Hence, the suggested framework 

is referred to as RFFA-Mal. The study employs FA 

to select features for binary and multiclass 

classifications, aiming to improve the discriminatory 

power of the selected features. The selected features 

from binary and multiclass classifications are 

combined to provide a comprehensive dataset. The 

proposed framework has undergone testing using the 

combined comprehensive dataset. 

3. Proposed malware detection framework 

The proposed RFFA-Mal framework uses a 

combination between RF classifier and FA 

optimizer to detect malware. This section provides 

an overview of the Obfuscated-MalMem2022 

dataset, outlining its role in evaluating the proposed 

framework. Subsequently, it details the operations 

undertaken to preprocess the dataset for 

classification purposes. The feature selection 

process, featuring the FA, is then expounded upon. 

Finally, the section delves into the classification 

process of malware, elucidating the role of the RF 

classifier. 

3.1 Data preparation 

The Obfuscated-MalMem2022 dataset is a 

widely used benchmark dataset in malware detection 

and network security. The Obfuscated-

MalMem2022 dataset is designed to facilitate the 

evaluation of malware systems by providing a more 

realistic and challenging environment for testing. It 

comprises 58,596 network traffic records collected 

in a simulated environment, with instances 

categorized equally into normal and malware data 

types. The malware types are further divided into 

three main types: Trojan Horse (9487 records), 

Spyware (10020 records), and Ransomware (9791 

records). The Obfuscated-MalMem2022 dataset 

consists of a total of 55 features, beside the output 

column [2,26], as shown in Table 2. 

The Obfuscated-MalMem2022 dataset contains 

both numerical and categorical data. The output 

(label) column contains categorical data that must be 

transformed into numbers for machine learning 

classifiers to work. Label encoding technique will be 

used to transform these labels into numbers [9]. For 

binary classification, the Label encoding technique 

transforms the normal and malware labels into 0 and 

1, respectively. For multiclass classification, the 

Label encoding technique transforms the normal, 

Trojan Horse, Spyware, and Ransomware labels into  
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Table 2. Obfuscated-MalMem-2022 features 
Feature name # Feature name # Feature name # Feature name 

pslist.nproc 15 handles.nthread 29 
malfind. 

protection 
43 

psxview.not_ 

in_session_ 

false_avg 

pslist.nppid 16 handles.ndirectory 30 
malfind. 

uniqueInjections 
44 

psxview.not_ 

in_deskthrd_ 

false_avg 

pslist.avg_threads 17 handles.nsemaphore 31 
psxview.not_ 

in_pslist 
45 modules.nmodules 

pslist.nprocs64bit 18 handles.ntimer 32 
psxview.not_ 

in_eprocess_pool 
46 svcscan.nservices 

pslist.avg_handlers 19 handles.nsection 33 
psxview.not_ 

in_ethread_pool 
47 

svcscan.kernel_ 

drivers 

dlllist.ndlls 20 handles.nmutant 34 
psxview.not_ 

in_pspcid_list 
48 

svcscan.fs_ 

drivers 

dlllist.avg_dlls 

_per_proc 
21 

ldrmodules. 

not_in_load 
35 

psxview.not_ 

in_csrss_handles 
49 

svcscan.process_ 

services 

handles.nhandles 22 
ldrmodules. 

not_in_init 
36 

psxview.not 

_in_session 
50 

svcscan.shared_ 

process_ 

services 

handles.avg_ha 

ndles_per_proc 
23 

ldrmodules. 

not_in_mem 
37 

psxview.not_ 

in_deskthrd 
51 

svcscan. 

interactive_ 

process_ 

services 

handles.nport 24 
ldrmodules. 

not_in_load_avg 
38 

psxview.not_ 

in_pslist_false_avg 
52 svcscan.nactive 

handles.nfile 25 
ldrmodules. 

not_in_init_avg 
39 

psxview.not_ 

in_eprocess_ 

pool_false_avg 

53 
callbacks. 

ncallbacks 

handles.nevent 26 
ldrmodules. 

not_in_mem_avg 
40 

psxview.not_ 

in_ethread_ 

pool_false_avg 

54 
callbacks. 

nanonymous 

handles.ndesktop 27 
malfind. 

ninjections 
41 

psxview.not_ 

in_pspcid_ 

list_false_avg 

55 
callbacks. 

ngeneric 

handles.nkey 28 
malfind. 

commitCharge 
42 

psxview.not_ 

in_csrss_ 

handles_false_avg 

  

 

 

0, 1, 2, and 3, respectively. Besides categorical data, 

the Obfuscated-MalMem2022 dataset contains 

numerical features with varying magnitudes. 

Accordingly, in the normalization step, numerical 

features undergo Min-Max scaling to confine their 

values within a specified range, between 0 and 1 [9]. 

This scaling ensures that features with varying 

magnitudes contribute proportionally to model 

training, preventing bias towards variables with 

larger scales. Table 3 and Table 4 show a sample of 

the original data within the Obfuscated-

MalMem2022 dataset and a sample of the dataset 

after being processed (Transformation and 

Normalization), respectively. By executing these 

transformation and normalization steps, the 

Obfuscated-MalMem2022 dataset is refined, laying 

a solid foundation for developing robust malware 

detection models. 
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Table 3. Sample of the Obfuscated-MalMem2022 dataset 

before preprocessing 
Data Samples Output 

46, 18, 10.555556, 0, 202.84444, 1695, 39.5 Benign 

48, 18, 11.54191589, 0, 243.2350436, 2174, 

44.13766958 
Benign 

41, 140, 140.725, 0, 289.235, 1942, 49.3 Benign 

38, 25, 12.41125742, 0, 320.7792418, 2574, 

41.17793318 
Malware 

39, 15, 12.14614625, 0, 315.9389389, 2466, 

59.09218218 
Malware 

37, 16, 11.91795892, 0, 237.7411356, 1562, 

49.79587289 
Malware 

 

 
Table 4. Sample of the Obfuscated-MalMem2022 dataset 

after preprocessing 
Data Samples Output 

0.145762576, 0.156172515, 0.578521534, 0, 

0.25172938, 0.379375254, 0.780540758 
0 

0.157685633, 0.199646173, 0.64439608, 0, 

0.289354507, 0.606410865, 0.896942921 
0 

0.123742456, 0.203348475, 0.768784019, 0, 

0.223382124, 0.355202787, 0.790635083 
0 

0.104875535, 0.110798665, 0.645187936, 0, 

0.158748754,  0.320234798, 0.604971432 
1 

0.107884531, 0.130679655, 0.645187945, 0, 

0.178759754, 0.342043788, 0.704971512 
1 

0.107884531, 0.130679655, 0.598485539, 0, 

0.155663757, 0.327067065, 0.679638787 
1 

 

3.2 Feature selection 

Feature selection is a critical stage in machine 

learning, which entails selecting a subset of 

pertinent features from the initial feature set. 

Effectively selecting features can enhance 

interpretability, create quicker training times, and 

improve model performance. This paper proposes a 

novel self-union feature selection mechanism using 

FA optimization algorithm. 

3.2.1. FA optimization algorithm 

The selection of features for the MalMem2022 

dataset represents a big step forward in the 

preprocessing of the dataset. Feature selection is the 

process of selecting subsets of relevant features 

from an existing set of features to improve the 

model's performance, reduce the probability of 

overfitting, and raise the readability of the model. In 

the process of choosing a feature selection method, 

the specific features of the dataset should be taken 

into consideration. The FA method is a well-known  

 

 
Figure. 1 Pseudocode of FA algorithm 

 

metaheuristic optimization method used for feature 

selection. FA is based on the core principle that 

fireflies interact with one another and attract one 

another through flashing. Those fireflies with a 

greater variety of colors are considered more 

appealing and more likely to attract other fireflies. 

The algorithm duplicates this behavior to achieve 

the goal of identifying optimal or nearly optimal 

solutions [14,15,27,28]. 

The FA optimization algorithm performs several 

operations to find the relevant features for malware 

detection. The pseudocode in Fig. 1 shows for the 

operations performed by the FA algorithm 

[14,15,27,28]. Line 1 and 2 initialize positions 

randomly in the search space. Line 3 and 4 calculate 

attractiveness based on the objective function. Line 

5 to 12 calculate and update the brightest firefly 

positions. Line 13 to 15 move firefly i towards 

brighter firefly j. Line 16 updates the position of 

firefly i. Line 17 and 18 identify and update the 

position of the brightest firefly. Line 19 and 20 

update attractiveness based on the new positions. 

Line 21 check convergence criteria (e.g., maximum 

iterations or target fitness reached). 

3.2.2. Self-Union feature selection using FA 

The FA optimization algorithm is used for 

feature selection in the proposed RFFA-Mal 

framework. The FA algorithm has selected 14 out of  



Received:  March 1, 2024.     Revised: May 8, 2024.                                                                                                        382 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.29 

 

Table 5. Selected feature by different methods 
Method Selected features ( feature number) 

Binary 
1, 16, 19, 23, 25, 27, 29, 30, 37, 41, 42, 

46, 49, 53 

Multiclass 

1, 4, 6, 8, 14, 16, 17, 18, 19, 20, 21, 25, 

27, 28, 29, 31, 34, 35, 37, 39, 42, 44, 46, 

47, 49, 52 

Union of  

Binryclass 

&   

Multiclass 

1, 4, 6, 8, 14, 16, 17, 18, 19, 20, 21, 23, 

25, 27, 28, 29, 30, 31, 34, 35, 37, 39, 41, 

42, 44, 46, 47, 49, 52, 53 

 

 

 
Figure. 2 Feature selection process 

 

 

55 features for binary classification. The FA 

algorithm has selected 26 out of 55 features for 

multiclass classification. Table 5 lists the selected 

features by FA for both binary and multiclass 

classification. Besides typical feature selection, the 

RFFA-Mal framework proposes to use a union 

feature selection. The union feature selection 

approach is used to select the most pertinent features 

by combining the features from different subsets of 

features. The union feature selection approach could 

be more successful than the typical single feature 

selection approach. This is because union feature 

selection increases the accuracy and efficiency of 

the feature selection process. This improves the 

overall performance of the machine learning 

framework and decreases overfitting [29]. 

Union features selection typically combines 

features from different selection algorithms [29]. 

The RFFA-Mal framework proposes to use a novel 

self-union feature selection algorithm that combines 

features from one features selection algorithm, the 

FA algorithm. The proposed self-union feature 

selection algorithm works as follows. First, the FA 

optimizer performs feature selection for binary 

classification. Then, the FA optimizer performs 

feature selection for multiclass classification. Finally, 

the union of these features is combined together in 

one subset. This will improve the performance of 

the RFFA-Mal framework and decrease overfitting. 

The proposed self-union feature selection 

mechanism is illustrated in Fig. 2. Table 5 lists the 

union of features from binary and multiclass 

classification. 

3.3 Classification 

In the previous steps (Section 3.1 and 3.2), the 

data has been processed and prepared for the 

classification, distinguish the malware and benign 

data. The RF classifier will be used for the  

classification purpose. RF is a popular machine 

learning algorithm that can be used for classification 

problems in ML, such as distinguishing between the 

malware and benign data. RF is based on the  

 

 

 
Figure. 3 RF classifier 

Reduced MalMem-
2022 Dataset
(30 Features)

FA Optimizer

MalMem-2022 
Dataset

(55 Features)

Reduced MalMem-
2022 Dataset
(26 Features)

Reduced MalMem-
2022 Dataset
(14 Features)

MulticlassBinary

FA Self-Uniom

Feature Selection

Random Forest Simplified

Decision tree #1
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Final Result

Dataset
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Figure. 4 RFFA-Mal framework 

 

concept of ensemble learning, which is a process of 

combining multiple classifiers to solve a complex 

problem and to improve the performance of the 

model. Whereas, RF contains a number of decision 

trees on various subsets of the given dataset, as 

shown in Fig. 3. The ensemble learning nature of the 

RF makes it preferable over most of the other 

classifiers. Leveraging the power of ensemble 

learning b helps mitigate overfitting, reduce 

variance, and improve overall model accuracy 

compared to individual models [30-32]. 

At this stage, the proposed RFFA-Mal 

framework is ready to detect malware. Fig. 4 

demonstrates the RFFA-Mal framework. The 

performance of the RFFA-Mal framework will be 

evaluated in the following section. 

4. Implementation, result and discussion 

The section includes the implementation 

environment, performance evaluation criteria, 

results, and discussion of the proposed RFFA-Mal 

framework. 

4.1 Implementation environment 

The proposed framework was conducted on a 

desktop with Intel Core i7-2600 Processor (3.4GHz 

and 8M Cache), 32 GB DDR5-3200 memory, SSD 

M.2 256GB, NVIDIA GeForce 12GB GDDR6 

graphics card, and Ubuntu 20.01.3 LTS O.S. Python 

was used to test and evaluate the proposed 

framework. To implement an RF classifier for 

detecting malware in Python, you'll primarily use 

the ‘scikit-learn’ library (sklearn). ‘Scikit-learn’ 

provides a comprehensive set of classes and 

methods for building and evaluating RF classifiers 

for malware detection. ‘RandomForestClassifier’, 

‘train_test_split’, ‘accuracy_score’, and 

‘classification_report’, besides other libraries, have 

been used in this work [33]. 

K-fold cross-validation is used to ensure 

consistent performance of the framework across 

different subsets of the data, reducing the risk of 

overfitting to a particular train-test split. The value 

of K is set to five. In 5-fold cross-validation, the 

dataset is divided into five equally sized folds. The 

cross-validation process is then repeated five times, 

with each fold used once as a validation set while 

the remaining four folds form the training set 

[31,32]. 

4.2 Performance evaluation criteria 

The proposed RFFA-Mal framework is 

evaluated the confusion matrix tool. Evaluating the 

performance of the RFFA-Mal framework for 

detecting malware involves using a confusion matrix 

and related metrics to assess how well the 

framework is performing in terms of True Positives 

(TP), True Negatives (TN), False Positives (FP), and 

False Negatives (FN). TP is the instances where the 

framework correctly identifies a malware sample. 

TN is the instances where the framework correctly 

identifies a non-malicious sample. FP is the 

instances where the model incorrectly identifies a 

non-malicious sample as malicious. FN is the 

instances where the model incorrectly identifies a 

malicious sample as non-malicious. Confusion 

matrix provides a comprehensive breakdown of the 

predicted and actual classes, allowing for the 

calculation of various performance metrics. These 

metrics are Accuracy, Recall, Precision, F1- score. 

Data Preprocessing

Normalization
 (Min-max Scaler)

Feature Selection 
(FA Optimizer)

Data Transformation
(Label Encoder)

Reduced MalMem-
2022 Dataset
(30 Features)

MalMem-2022 
Dataset

(55 Features)

RF Classifier

Performance Evaluation

Accuracy, Recall, Precision, 
F1- score

K-fold cross-validation
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Accuracy represents the overall correctness of the 

model. Accuracy is calculated using Eq. (1). Recall 

measures the ability of the model to capture all 

positive instances, indicating how many of the 

actual positive instances were correctly predicted. 

Recall is calculated using Eq. (2). Precision 

measures the accuracy of positive predictions, 

indicating how many of the predicted positive 

instances were actually positive. Precision is 

calculated using Eq. (3). The F1-score is the 

harmonic mean of precision and recall, providing a 

balance between the two metrics. F1-score is 

calculated using Eq. (4) [31-33]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
    (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
     (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
    (3) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (4) 

 

4.3 Results and discussion 

The proposed RFFA-Mal framework was tested 

with binary and multiclass classification types. For 

each type, the subset of features selected by the FA 

algorithm was tested using two distinct approaches: 

Typical Feature Selection (FA-T-FS) (refer to 

Section 3.2.2) and Union Feature Selection (FA-U-

FS) (refer to Section 3.2.2). The RF classifier will be 

used to evaluate the RFFA-Mal framework (refer to 

Section 3.3). Besides, the proposed FA-U-FS have 

been compared with state-of-the-art (SOTA) 

methods. 

4.3.1. Binary classification 

Figs. 5, 6, 7, and 8 illustrate Accuracy, Recall, 

Precision, and F1-score performance metrics for 

binary classification, respectively. Across all four 

metrics, the typical FA-T-FS method demonstrated 

an impressive value of 99.974%. In contrast, the 

proposed union FA-U-FS method surpassed this, 

achieving a higher value of 99.983%. Consequently, 

the results obtained through the proposed union FA-

U-FS method surpass those achieved by the typical 

FA-T-FS method, indicating its superior 

performance in binary classification based on the 

evaluated metrics. 

Figure. 5 Accuracy of the RFFA-Mal framework with 

binary classification 

 

 
Figure. 6 Recall of the RFFA-Mal framework with 

binary classification 

 

 
Figure. 7 Precision of the RFFA-Mal framework with 

binary classification 
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Figure. 8 F1-score of the RFFA-Mal framework with 

binary classification 

 

 

4.3.2. Multiclass classification 

Figs. 9, 10, 11, and 12 present the performance 

metrics of Accuracy, Recall, Precision, and F1-score 

for multiclass classification, respectively. In all four 

metrics, the typical FA-T-FS method demonstrated a 

performance of 87.184%. In contrast, the proposed 

union FA-U-FS method achieved a higher 

performance of 87.304%, signifying an 

improvement of 0.120% over the typical FA-T-FS 

method. Consequently, the proposed union FA-U-

FS method outperforms the typical FA-T-FS method 

in multiclass classification based on the evaluated 

metrics. 

 

 

 
Figure. 9 Accuracy of the RFFA-Mal framework with 

multiclass classification 

 
Figure. 10 Recall of the RFFA-Mal framework with 

multiclass classification 

 

 
Figure. 11 Precision of the RFFA-Mal framework 

with multiclass classification 

 

 
Figure. 12 F1-score of the RFFA-Mal framework with 

multiclass classification 
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In summary, these metrics serve as evaluative 

benchmarks for the RFFA-Mal framework, 

employing the RF classifier and featuring the FA-T-

FS and FA-U-FS methods for feature selection. 

With binary classification, the RFFA-Mal 

framework obtains an excellent result of 99.983%, 

while with multiclass classification, it achieves 

87.304%. The thorough display of these indicators 

provides a sophisticated evaluation of the 

framework's effectiveness across various 

performance metrics. 

 

 

 
Figure. 13 Accuracy of the FA-U-FS technique in comparison to the SOTA techniques on CIC-MalMem-2022 

dataset (binary classification) 
 

 

 
Figure. 14 Accuracy of the FA-U-FS technique in comparison to the SOTA techniques on CIC-MalMem-2022 

dataset (multiclass classification) 
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Figure. 15 Accuracy of the FA-U-FS technique in comparison to the SOTA techniques on various dataset (binary 

classification) 

 

 
4.3.3. Performance assessment of the RFFA-Mal 

framework against the SOTA techniques 

Figs. 13 and 14 show the accuracy of the 

suggested FA-U-FS technique in comparison to the 

SOTA techniques on binary and multiclass 

classifications utilizing the CIC-MalMem-2022 

dataset, respectively. Binary and multiclass 

classifications on the CIC-MalMem-2022 dataset 

demonstrate that the FA-U-FS technique 

outperforms the SOTA techniques. Fig. 15 shows 

the accuracy of the suggested FA-U-FS technique in 

comparison to the SOTA techniques across various 

datasets, focusing on binary classification. Notably, 

both the FA-U-FS technique exhibit superior 

performance in binary classification compared to 

other approaches. 

5. Conclusion 

This study emphasizes the value of novel 

strategies for tackling the growing problems caused 

by malware in cybersecurity. This study developed a 

new RFFA-Mal framework for disclosing malware 

using the RF classifier and FA algorithm. The 

RFFA-Mal framework has significantly improved 

malware detection accuracy by leveraging the FA 

algorithm for feature selection and employing a 

unified feature set from binary and multiclass 

classifications in conjunction with the RF 

classification algorithm. Among the noteworthy 

accomplishments is an exceptional binary 

classification accuracy of 99.983%, demonstrating 

the strong discriminatory capacity of the chosen 

features to discern between malicious and benign 

data. Moreover, the impressive multiclass 

classification accuracy of 87.304% highlights the 

flexibility and dependability of the suggested 

methodology in managing various malware 

classifications. Combining characteristics from 

binary and multiclass classifications has been crucial 

since it produces better outcomes than using the 

features independently. This improves the feature 

set's comprehensiveness and makes the malware 

detection system more all-encompassing and 

efficient. The evaluation environment provided by 

the Obfuscated-MalMem2022 dataset is both 

realistic and demanding, serving as a close replica of 

real-world situations to validate the suggested 

technique. 
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