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Abstract: Over recent years, the demand for mobile automated navigation has grown significantly. Path planning has 

emerged as an important and exciting field of research in many disciplines, intending to create shorter and smoother 

paths through the use of several types of algorithms. This work presents a comparative analysis between the artificial 

potential field (APF) method and the hybrid approach that combines Q-learning with APF (QL-APF). Subsequently, 

these methodologies are juxtaposed with a proposed approach, modified Q-learning with APF (MQL-APF), which 

introduces modifications to QL-APF by incorporating a dynamic reward function with a static reward function. The 

proposed approach has been empirically proven effective, and it is capable of generating safe and efficient paths even 

in complex environments. The MQL-APF approach achieved improvements in terms of path length of approximately 

67.25% when compared with the APF method. Furthermore, the average enhancement percentage is approximately 

14.68% compared to the QL-APF method. Additionally, the MQL-APF method achieved an improvement of 50.15%, 

7.21%, and 24.63% for QL, MQL, and QL-APF, respectively. 
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1. Introduction 

In the last few years, the need for mobile robot 

navigation has increasingly emerged [1]. They are 

now being used in many sectors, such as rescue, 

medicine, agriculture, space, the military, education, 

and more. 

One of the core issues in robotics is path planning, 

which can be defined as a suitable path from an initial 

point to reach a specific target point while avoiding 

any obstructions present in a given environment. 

Several factors must be considered, including 

avoiding obstacles, determining the shortest path, 

using the least amount of time, less energy, and 

achieving path smoothness. There are two 

approaches to planning: offline planning, which 

assumes static obstacles and completely known 

surroundings, and online planning, which 

concentrates on handling dynamic obstacles and 

partially known environments [2]. A mobile robot's 

path planning depends on the different environments 

it encounters, which might include known, partially 

known, and unknown surroundings. In addition, 

depending on the kinds of obstacles, path planning 

may be further classified into two categories: static 

and dynamic. In static path design obstacles maintain 

fixed locations and orientations throughout time, 

whereas obstacles in dynamic path planning are free 

to move about the environment [3]. 

The problem of determining optimal path 

planning has been the focus of much research for a 

long time. The process of finding the optimal and 

possible path for the robot or agent with the speed and 

accuracy possible has become the main concern of 

many researchers [4]. Several algorithms and 

methods for path planning have been presented, such 

as higher-ranking heuristic algorithms like rapidly 

random-exploring tree (RRT) [5], Dijkstra’s 

algorithm [6], the artificial potential field method [7], 

group evolutionary algorithms such as genetic 

evolution [8], and particle swarm algorithms [9]. Fig. 

1 provides a summary of popular path-planning 

techniques.  
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Figure. 1 Summary of popular path planning techniques 

 

One of the common techniques for resolving path 

planning issues is reinforcement learning (RL). 

Reinforcement learning is a subfield of machine 

learning (ML) that deals with the issue of 

automatically making the best decision over time. 

The RL approach allows the agent to learn acceptable 

behaviour from its surroundings. One of the 

advantages of this technique is that it allows the agent 

to adjust its policy based on the rewards or penalties 

it receives. Given their power, RL algorithms have 

now made significant progress in path planning for 

mobile robots [10].  

The Q-learning algorithm (QL) is one of the most 

popular techniques for reinforcement learning. 

Because this algorithm, which was inspired by 

behaviourism psychology, does not require any prior 

information, knowledge about the environment is 

acquired by the agent based on the rewards it receives 

for completing various tasks. After several rounds, 

the agent may finally obtain a convergent Q table, 

which serves as a guide for determining how to 

maximize the cumulative reward [11].   

The APF approach is commonly used by robots 

for path planning. The APF hypothesis suggests that 

the robot is influenced by a combined force of 

repulsive and attractive forces. The strength of the 

repulsive force is inversely related to the robot's 

distance from the obstacle. The robot is unaffected if 

the distance is larger than the influence area. The 

attractive force draws the robot to the goal, acting on 

its surroundings simultaneously. The combined force 

components create a complete field of force, allowing 

the robot to travel towards the objective while 

avoiding potential collisions [12]. 

In this work, a comparative analysis between the 

APF method and the hybrid approach that combines 

QL-APF. Subsequently, these methodologies are 

juxtaposed with a proposed approach, termed MQL-

APF, which introduces modifications to QL-APF by 

incorporating a dynamic reward function with a static 

reward function. Our objective is to comprehensively 

examine each method, elucidate their underlying 

mechanisms, and assess their respective merits and 

limitations. 

The remainder of this essay is structured as 

follows:  Section 2 reviews the related work literature. 

In Section 3, the theoretical framework is described 

and the definition of the three approaches is given. 

Simulation and discuss the results are described in 

Section 4. Finally, conclusions are given in Section 5. 

2. Related work 

Numerous approaches to solving path planning 

issues utilizing various algorithms sometimes alone, 

sometimes in conjunction with other algorithms. A 

mixing technique for modified robot path planning is 

provided in [13], by fusing the techniques of artificial 

potential field (APF) and probabilistic roadmap 

(PRM), the attractive potential field is utilized to 

improve the position of the nodes and improve the 

roadmap's creation, which can be challenging to 

implement due to parameters settings difficulty. The 

author in [14] presented an approach for local and 

global path planning of unmanned aerial vehicles in 

dynamic situations called the enhanced ant colony 

optimization artificial potential field (ACO-APF) 

algorithm. However, this combination faces 

challenges in balancing exploration and exploitation, 

affecting convergence speed and final solution 

quality. Ahmed S. et al. [15] offer a hybrid strategy 

to address conventional APF local minimum 

problems that combines the global optimization 

powers of the modified APF algorithm with the real-

time flexibility of the A-Star path-planning technique. 

Balancing local optimization capabilities with global 

optimization strengths can be challenging, and the 

hybrid strategy may not always achieve the desired 

balance. 

Several ideas based on reinforcement learning 

have been mixed with other methods to enhance 

performance. In [16] proposes a collision-free 

navigation solution by combining reactive navigation 

and Q-learning, despite potential computational 

overhead due to real-time decision-making and 

updating Q-values. Moreover, this combination of 

real-time decision-making, learning, and updating Q-

values may increase computational overhead. The 

algorithm proposed in [17] introduces an improved 

Q-learning method that combines Dyna Q-learning 

with a feature matrix to accelerate learning in 

unfamiliar environments. It also introduces an 

adaptive artificial potential field method to navigate 

the mobile robot, but this may introduce complexity 

in implementation and parameter tuning. Another 

example is presented by Low, E. S. et al. [18] who 

provide an enhanced Q-learning method for mobile 
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robot path planning, incorporating the flower 

pollination algorithm (FPA) to initialize the Q-table, 

thereby addressing the delayed convergence issue of 

traditional Q-learning and potentially enabling 

alternative path exploration. Initializing the Q-table 

using the (FPA) might introduce a bias towards 

certain regions of the state space, potentially limiting 

the exploration of alternative paths or solutions. 

Combines the APF approach with Q-learning in [19], 

employing the APF weighting function for explore-

exploit tactics. It optimizes total rewards for path 

planning by updating learning values based on 

rewards from action execution. However, this could 

add complexity and call for careful design and tuning 

for effective optimization. 

The APF approach is generally used in lots of 

studies for robotic path planning, and it's far 

successful in easy environments and gives excellent 

consequences. However, it has weaknesses together 

with local minima, sharp edges, carefully spaced 

impediments, and dead ends. [20]. Additionally,  

when using the classical Q-learning (QL) method 

within the path planning set of rules, there are now 

and again troubles with a prolonged studying period, 

bad exploration performance, and slow convergence 

velocity [21]. 

Overall, the study intends to overcome the 

obstacles to autonomous navigation by enhancing the 

paths of mobile robots. The work objectives are to 

improve path planning and pave the way for extra-

superior and powerful mobile robotic structures by 

modifying the QL-APF method. 

3. Theoretical framework 

This section describes the three types of 

algorithms: firstly, the APF algorithm, then 

combining the QL with the APF, and finally, 

presenting a modified QL-APF method by 

integrating the dynamic reward function with a static 

reward function. The notations used in this work are 

listed in Table 1. 

3.1 Artificial potential field path planning 

One popular method for path planning and 

obstacle avoidance in autonomous mobile robotics is 

the artificial potential field. Khatib originally 

proposed the concept of an artificial potential field 

[22], which is a local collision avoidance strategy that 

may be used when a robot can perceive its 

surroundings while it is performing a motion. In this 

scenario, the robot knows nothing about the 

surroundings beforehand. Robots are thought of as 

particles that go from a high-potential point to a  

 

Table 1. List of notations 

Notations Description 

utotal Total potential field 

uatt Attractive potential field 

urep Repulsive potential field 

ftotal Total force 

ka Attraction coefficient 

kr Repulsive coefficient  

p0 Repulsion range 

qx, qy Coordinates of the position q 

qxg, qyg Coordinates of the target qg 

qox, qoy Coordinates of the obstacle position 

st State 

st+1 Next state 

at Action 

at+1 Next action 

Α learning rate 

R Reward  

Γ Discount factor 

DR Dynamic reward 

TR Total reward 

Di Distance between any point and target 

Dj 
Distance between any point and 

obstacles  

Nstate Number of states 

Θ Angle in each direction change 

 

destination via low-potentials in the field of robot 

path planning. The two fields that make up this are 

the repulsive potential field and the attractive 

potential field. The robot is drawn towards the goal 

location by the attractive potential generated by the 

goal. The robot moves away from obstacles to 

prevent collisions due to the repulsive potential 

generated by identified impediments inside the 

effective zone. 

The robot is guided towards the objective position 

by the combination of both potential fields when it is 

submerged in the potential field, as provided by Eq. 

(1). The purpose of combining these two forces is to 

steer the robot along a safer, collision-free course 

[23]. 

 

𝑢𝑡𝑜𝑡𝑎𝑙(𝑞) = 𝑢𝑎𝑡𝑡(𝑞) + 𝑢𝑟𝑒𝑝(𝑞)    (1) 

 

The two potential field functions' negative 

gradients are used to calculate the total force fotal (q) 

for each point in the environment, as provided by Eq. 

(2). 

 

𝑓𝑡𝑜𝑡𝑎𝑙(𝑞) =  − 𝛻𝑢𝑡𝑜𝑡𝑎𝑙(𝑞)    (2) 
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Figure. 2 Flowchart of the APF method 

 

 

Fig. 2 presents the flowchart of the artificial 

potential field for robot path planning. The APF 

method employs the next input parameters: the start 

point q, the goal point qg, and some of the obstacles 

Oj. 

In robot path planning, the target creates an 

attractive potential field that pulls the robot towards 

it, with the strength of the attraction increasing as the 

robot gets farther from the target. The negative 

gradient of the target's potential field determines this 

attraction. A quadratic equation characterizing its 

intensity at a generic place is the definition of the 

attraction force formula and the attractive potential 

field formula [24]. They are provided by Eq. (3) and 

Eq. (4) sequentially: 

 

𝑓𝑎𝑡𝑡 = − ∇𝑢𝑎𝑡𝑡     (3) 

 

𝑢𝑎𝑡𝑡(𝑞) =
1

2
𝑘𝑎 𝑑

2(𝑞, 𝑞𝑔)    (4) 

 

Where the d2(q, qg) is the Euclidian distance 

between the current point of the robot and the target 

point and is given by Eq. (5). 

 

𝑑(𝑞, 𝑞𝑔) =  √(𝑞𝑥 − 𝑞𝑔𝑥)
2 + (𝑞𝑦 − 𝑞𝑔𝑦)

2   (5) 

 

The repulsive potential field created by obstacles 

has a repulsion range. As the distance between the 

robot and the obstacle decreases, the repulsive 

potential energy increases, causing the robot to be 

pushed back. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure. 3 An example of an attractive, repulsive, and 

total potential field: (a)Attractive potential, (b)Repulsive 

potential, and (c)Total potential 
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When the distance exceeds the repulsion range, the 

repulsive field becomes zero, and the robot is not 

pushed back. The repulsive force is the negative slope 

of the repulsive force field [24]. The repulsive 

potential field and repulsive force are given by Eq. 

(6) and Eq. (7) sequentially: 

 

𝑓𝑟𝑒𝑝 = − ∇𝑢𝑟𝑒𝑝     (6) 

 

𝑢𝑟𝑒𝑝(𝑞) = {

1

2
 𝑘𝑟 (

1

𝑝(𝑞)
− 

1

𝑝0
)   𝑖𝑓 𝑝(𝑞) ≤  𝑝0

0                                 𝑖𝑓 𝑝(𝑞) >  𝑝0
  (7) 

  

Where the p(q) is the Euclidian distance between 

the current position of the robot and the obstacle 

position and is given by Eq. (8). 

 

𝑝(𝑞) =  √(𝑞𝑥 − 𝑞𝑜𝑥)
2 + (𝑞𝑦 − 𝑞𝑜𝑦)

2   (8) 

 

Fig. 3 shows an example of the classical artificial 

potential field in a 10*10 environment that contains 

some obstacles, a start point, and a goal point. 

Where Fig. 3.a represents the attractive potential 

field generated by the goal point. Fig. 3.b shows the 

repulsive potential field generated by obstacles, while 

Fig. 3.c represents the combination of two potential 

fields to generate the total potential field. 

3.2 Reinforcement learning path planning 

Is a psychological technique that learns the best 

ways to make decisions through experimentation and 

exploration to gain experience. According to RL, the 

environment is everything outside of the agent, and 

any decision-maker is an agent. By interacting with 

them, the agent learns optimal actions based on 

rewards and punishments as a feedback signal for the 

update table. The Markov Decision Process (MDP) is 

the traditional mathematical framework that allows 

reinforcement learning to take place. A tuple (S, A, R, 

P) is the mathematical definition of a discrete-time 

stochastic process, often known as a Markov decision 

process. RL involves agents, observation, reward, 

action, and the environment [25]. When it comes to 

robot path planning, the robot acts as an agent, while 

its surroundings serve as an observation. The state S 

represents the coordinates of the environment. Action 

A is selected by the agent based on the table in Fig. 2, 

where each side represents one of the eight directions 

surrounding the agent. The step reward R is the 

reward the agent receives for progressing from one 

state to the next. p is a probability transition function 

that determines the probability of reaching a new 

state from the current state when action is taken  [26],  

 
Figure. 4 Q-learning model and the Q table's structure [11] 

 

 

clarified by Eq. (9): 

 

𝑝(𝑠, �́�) = p(𝑠𝑡+1 = 𝑠|́ 𝑠𝑡 = 𝑠,  𝑎𝑡 = 𝑎)  (9) 

 

 Fig. 4 depicts the Q-learning model and the Q-

table's structure. Each state has states and actions, 

with being the starting value. 

Q-learning is model-free reinforcement learning 

that integrates theories of the Markov decision 

process (MDP) and the Bellman equations, to teach 

agents how to behave optimally in controlled 

Markovian environments, which is defined by Eq. 

(10). 

 

𝑄(𝑠𝑡+1, 𝑎𝑡+1) = 𝑄(𝑠, 𝑡) + 𝛼[(𝑅 +
𝛾max𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠, 𝑎))]             (10) 

 

Where Q(st+1,at+1) estimates the action value after 

applying an action 𝑎 in state 𝑠, max Q(st+1,at+1) is the 

maximum expected reward [27]. 

Selecting the learning rate parameter α carefully 

is crucial to ensure optimal learning rates in the 

environment. Close to zero results in slow learning 

and inefficiency in navigation tasks, while close to 1 

leads to quick learning and nonoptimal paths. The 

discount factor γ influences future actions and 

rewards. Close to zero or 1 results in short-sighted 

planning, while values above 1 exclude optimal paths 

due to infinite future rewards, ensuring optimal local 

paths [28]. The choice of action is made using the 𝜀 
−greedy method. The random action is chosen with a 

constant probability of 0 ≤ 𝜀 ≤1. The agent chooses a 

random action if the random number is smaller than 

𝜀 − greedy. If not, the agent chooses the action with 

the highest estimated reward [29]. The reward R is 

the constant value given to the agent during moving 

through the environment; it is a large constant value 

when the agent reaches the goal; a negative constant 

penalty when the agent collides with the obstacles, 

and a 0 reward in any other place.  

3.2.1. The QL-APF method 

The QL-APF for robot path planning is shown in 

Algorithm 1. The following input parameters are used 

by this method: the environment information, which 

is made up of n circular obstacles in OJ, the target 
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point (qg), and the start point (q); Getting the learning 

values Qm*n to construct the path that is QG=[q0, q1, 

…, qg], a collision-free path that will drive to the goal 

point without halting in local minima—is the primary 

purpose of the QL-APF method. The learning values 

Qm*n are initialized to zero in the first step. The QL-

APF algorithm's iterative learning process, which 

finds the learning values Qm*n to construct the path, 

is shown in the rest of the steps from the algorithm. 

As soon as the maximum number of episodes is 

reached, the learning iterative process terminates [19]. 

 

Algorithm I: QL-APF  

Input: a great environment that contains a start 

position, target position, the positions of the obstacles, 

learning rate, discount factor, the attractive gain 

coefficient, and the repulsive gain coefficient, 

Output: learning value 𝑄𝑚∗𝑛 

initialize 𝑄𝑚∗𝑛(𝑠, 𝑎) ← (𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑧𝑒𝑟𝑜)  
For each episode do 

set 𝑠𝑡 → 𝑎𝑡  random state from the states 

     while 𝑠𝑡 ≠ 𝑞𝑔  

   For (i) in nearest neighbour  

       𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡𝑜𝑡𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 (𝐹𝑡𝑜𝑡𝑎𝑙) 
    descending sorting value 

      𝜎 = max (𝑠𝑜𝑟𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒) by eq. 11 

       𝑖𝑓 𝜎 >  𝜌 (𝑟𝑎𝑛𝑑𝑜𝑚 𝑢𝑛𝑚𝑏𝑒𝑟) 𝑡ℎ𝑒𝑛  
       choose 𝑎𝑡 by using 𝑡𝑜𝑡𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 

     𝑒𝑙𝑠𝑒 

          choose the best 𝑎𝑡  𝑓𝑟𝑜𝑚  𝑄𝑚∗𝑛 

 End 

End 

compute reward by eq. 12 

update 𝑄𝑚∗𝑛(𝑠, 𝑎) by eq. 10 

 𝑠𝑡 = 𝑠𝑡+1 

 end  

end  

return 𝑄𝑚∗𝑛 

 

For each point, the agent observes eight 

connected neighbouring cells and then computes the 

force for each cell. The likelihood of a neighbour cell 

being allocated to a new state is highest for the cell 

with the lowest ftotal, while the neighbouring cell 

with the highest ftotal has the lowest likelihood of 

being assigned to a new state. 

The action and state are selected using the 

cumulative probability produced by the total force 

function. Eq. (11) defines the cumulative probability 

(σ): for i=1, 2, …., n and f =1, 2, …, fn. 

 

𝜎(𝑖) =  
𝑓(𝑖)

∑ 𝑓(𝑖)𝑛
𝑖=1

               (11) 

The probabilities that are included in σ are first 

descending sorted. Next, a random number ρ between 

0 and 1 is produced. When choosing a new state, the 

first neighbour cell at the top of the list whose 

cumulative probability is greater than the random 

number is selected. If the random number exceeds the 

decision rate, the ftotal process will be conducted, 

and the decision will be made with low force. If not, 

the best action will be chosen using the explore-

exploit method by the learning value Qm*n. 

The agent's sole objective is to increase the total 

rewards it’s long-term. The static reward signal 

identifies the highest fixed positive value given to the 

agent when the next state of the agent reaches the 

target point and a negative value (penalty) when the 

agent collides with obstacles; otherwise, the zero-

reward value is in any other state. These are 

calculated by Eq. (12). 

 

𝑅𝑒𝑤𝑎𝑟𝑑 =  {
100                                𝑠𝑡 = 𝑞𝑔
−1 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (12) 

 

After that, the action is completed, a reward is 

received, and the Q(st+1, at+1) table is updated by Eq. 

(10). Lastly, the current state st is given the new state 

st+1 and so on until the target point qg is reached or 

an insecure circumstance occurs. Finally, it returns 

the learning values that are obtained, Qm*n  to 

construct the path QG. The decision process's stop 

condition is indicated when the target point and the 

current state are equal [19]. 

3.2.2. Proposed method (MQL-APF) 

In the proposed MQL-APF method, algorithm 1 

is applied, but with a change in the calculation of the 

reward function. It was proposed to modify the QL-

APF method (MQL-APF) by integrating a dynamic 

reward function with the static reward function to 

improve the path and get the smallest path in the same 

environment with the same number of episodes. This 

combination allows the system to learn from 

experience and make decisions based on a dynamic 

reward function. 

Following an action by the agent, the 

environment generates feedback information relevant 

to the action that is utilized to assess the action's 

effectiveness. The reward function's design has a 

significant impact on the agent path planning model's 

training and learning process, as well as how 

effective and efficient learning. The efficacy and 

safety of agent behavior decision-making, which 

plays an important role in results, may be evaluated 

using the reward function.[30].  
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This work changed the reward feature and 

advised a dynamic reward function design method to 

address the issues. The primary hints made in this 

work are four reward functions: (1) positive value 

while the agent is close to the goal; (2) less positive 

value when the agent is moderately close to the goal; 

and (3) negative value while the agent is near the 

obstacles; (4) less negatives have less fee when the 

agent is moderately near the obstacles. Eq. (13) and 

Eq. (14) are employed to sequentially compute the 

dynamic reward (DR) and the cumulative overall 

reward (TR). 

 

𝐷𝑅 =

{
 
 

 
 
10        𝐷𝑖 < 2                             𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑞𝑔
5           𝐷𝑖 < 5    𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝑙𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑞𝑔
−0.8    𝐷𝑗 < 1                              𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑂𝑗
−0.05   𝐷𝑗 < 3   𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝑙𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑂𝑗  

0                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

(13) 

 

𝑇𝑅 = {

100        𝑖𝑓  𝐷𝑖 = 0               𝑠𝑡 = 𝑞𝑔
−2          𝑖𝑓  𝐷𝑗 = 0                𝑠𝑡 = 𝑂𝑗
𝐷𝑅                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (14) 

 

At every point where the agent is located, the 

distance Di(qi,qg) between the agent's location and 

the target location is calculated. If the distance 

Di(qi,qg) is less than 2 meters, the reward is 10, and if 

the distance Di(qi,qg) is less than 5 meters, the reward 

is 5. Additionally, the distance Dj(qi,oj) between the 

agent's location and the locations of the obstacles is 

calculated. If the Dj(qi,oj) is less than 1 meter, the 

reward is -0.8, and if the Dj(qi,oj) is less than 3 meters, 

the reward is -0.05. Otherwise, the reward is zero. Eq. 

(15) and Eq. (16) are employed to sequentially 

compute Di and Dj, and these equations are utilized 

to generate the dynamic reward function. 

For i = 1,2, …, n and for  j = 1,2, …, Oj then  

 

𝐷𝑖(𝑞𝑖 , 𝑞𝑔) =  √(𝑞𝑖𝑥 − 𝑞𝑔𝑥)
2
+ (𝑞𝑖𝑦 − 𝑞𝑔𝑦)

2
     (15) 

 

𝐷𝑗(𝑞𝑖 , 𝑜𝑗) =  √(𝑞𝑖𝑥 − 𝑞𝑜𝑥)
2 + (𝑞𝑖𝑦 − 𝑞𝑜𝑦)

2
 (16) 

  

The process is summed up in Fig. 5, where the 

agent makes decisions.  

The agent interacts with the environment to 

choose action via the operations of exploration or 

APF force. The environment reacts to the agent's 

activities by presenting new states and producing 

rewards. Additionally, the environment produces 

dynamic rewards, which the agent attempts to 

 

 
Figure. 5 Structure of the proposed MQL-APF method 

 

 

optimize over time by selecting the best actions. 
Moreover, Eq. (17) is applied to provide a smooth 

path. 

 

𝑠𝑚𝑜𝑜𝑡ℎ 𝑝𝑎𝑡ℎ =  
1

𝑁𝑠𝑡𝑎𝑡𝑒
 ∑ │𝛽(𝑖, 𝑖 + 1)│

𝑁𝑠𝑡𝑎𝑡𝑒−1
𝑖=0  (17) 

 

Where the angle in each direction change (θ) 

between states is denoted by β(i,i+1). The angle β is 

0 when the direction θ is unchanged. Otherwise, can 

be calculated by Eq. (18).  

 

𝛽(𝑖, 𝑖 + 1) = arctan2 ((𝑦𝑖+1 − 𝑦𝑖), (𝑥𝑖+1 − 𝑥𝑖))
                 (18) 

4. Simulation results 

The simulation results are explained in this part, 

along with the findings of a comparison study 

conducted of the APF versus QL-APF and then with 

the proposed approach, the MQL-APF, by combining 

static and dynamic reward functions in six test 

situations to assess how well the three approaches 

performed in terms of learning time, path smoothness, 

and length. These approaches are designed on an Intel 

Core ™ i7-8650 CPU with 16 GB of RAM in Python 

3.11.5. 

The agent makes use of discretized maps of the 

surroundings, measuring 10 by 10 and 15 by 15. The 

parameters attractive coefficient, repulsive 

coefficient, repulsion range, learning rate, discount 

factor, and number of episodes are the constants used 

in all types of test environments and are shown in 

Table 2. These values were chosen by trial and error. 

In all test environments, the target point is shown by 

a green star, with a pink x representing the start point, 

while the red circles represent obstacles, and the path 

is shown in blue. 
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Table 2. Constant parameters are used in all test 

environments 

Parameter Value 

𝐾𝑎 2 

𝐾𝑟  0.6 

𝑃0 4 

𝛼 0.3 

𝛾 0.8 

No. of episodes 10*10 1*103 

No. of episodes 15*15 3*103 

 

 

To assess the capability of the proposed MQL-

APF method versus the APF algorithm and the QL-

APF method. The results pertaining to the APF, the 

QL-APF method, and the MQL-APF method with 

dynamic reward function are presented in Parts 1, 2, 

and 3 subsequently of this section. The fourth part 

compares the proposed MQL-APF method and 

similar techniques to explore the impact of adding a 

dynamic reward function on path improvement. 

 

  
(a) (b) 

 

  

(c) (d) 

 

  
(e) (f) 

Figure. 6 Simulation results of the APF method: (a) the 

first environment, (b) The second environment, (c) The 

third environment, (d) The fourth environment, (e) The 

fifth environment, and (f) the sixth environment 

4.1 Simulation results of the APF method 

In this part, the APF method is implemented 

across various test environments, with Fig. 6 

depicting the simulation outcomes. Where Fig. 6.A 

shows the path planning results within the first test 

environment, wherein the robot effectively navigates 

around obstacles, achieving a path length of 11.2384 

meters. Subsequently, in the second environment 

(Fig. 6. B), the path length distance is 10.8959 m. 

While in the third test environment, the robot takes a 

long path to reach the target, 12.8699 meters long, as 

shown in Fig. 6. C. In larger and more complex 

environments, when using the APF algorithm, the 

robot fails to reach the target point, becoming at a 

local minimum, as can be observed in Fig.6.D, E, and 

F sequentially. 

4.2 Simulation results of the QL-APF method 

The algorithm of the QL-APF is applied in the six 

same test environments. The results of the analysis 

are presented in this section. Fig. 7 shows all types of 

environments and how this algorithm was able to 

 

  
(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

Figure. 7 Simulation results of the QL-APF method: (a) 

the first environment, (b) The second environment, (c) 

The third environment, (d) The fourth environment, (e) 

The fifth environment, and (f) the sixth environment 
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reach the goal in all testing environments. For 

example, in the first environment (Fig. 7. A), the 

agent reaches the target point with a path length of 

6.2831 m, which is different by 4.9553m from the 

path drawn by the APF method in the same test 

environment. The path length in the second 

environment is 10.8594 m, which is equal to the path 

drawn by the APF method in the same test 

environment, it can be seen in Fig. 7.B. Fig. 7. C 

shows the third environment, where the path length is 

9.4247 m and the path is enhanced by 26.8% from the 

path described by the APF method. In large and more 

complex environments, the agent reaches the goal by 

a path length of 9.6235 m, 10.9955 m, and 18.0641 m 

in environments 4, 5 and 6, respectively. The paths 

are presented in Figs. 7.D, E, and F.  

4.3 Simulation results of the proposed MQL-APF 

method. 

This part showcases the simulation results for the 

proposed method, namely MQL-APF, which 

integrates the dynamic reward function with the static  

 

 

  
(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

Figure. 8 Simulation results of the MQL-APF method: (a) 

the first environment, (b) The second environment, (c) 

The third environment, (d) The fourth environment, (e) 

The fifth environment, and (f) the sixth environment 

reward function. The capability of the modified 

method demonstrated across identical in the same test 

environments, as illustrated in Fig. 8. Comparative 

analysis reveals that the agent achieves the target 

point via shorter paths compared to alternative 

methods. For example, in Fig. 8. A, the path length  

differs by 5.7407 m from that generated by the APF 

method and by 0.7854 m from the QL-APF within the 

same test environment. Notably, Fig. 8. B depicts a 

14.91% enhancement in path length relative to other 

methods. In the third environment, the agent reaches 

the target point with a path length of 8.0685 m, as 

depicted in Fig. 8.C., another example is In Fig. 8.D, 

where the path length differs by 1.7696 from the path 

drawn by the QL-APF method, whereas the APF 

method fails to reach the goal within the same test 

environment. Fig. 8. E presents the fifth test 

environment with a path length of 10.2101 m. Finally, 

Fig. 8. F demonstrates a 21.74% improvement in path 

length compared to the QL-APF method within the 

sixth test environment. 

 

 
Table 3. Path length in meters in all test environments 

 

Path length 

of 

APF 

Path length 

of 

QL-APF 

Path length 

of 

MQL-APF 

Env1 11.2384 6.2831 5.4977 

Env2 10.8959 10.8594 9.2426 

Env3 12.8699 9.4247 8.0685 

Env4 No path 9.6235 7.8539 

Env5 No path 10.9955 10.2101 

Env6 No path 18.0641 14.1371 

 
Table 4. The enhancement percentage in path length 

 APF vs 

QL-APF 

APF vs 

MQL-APF 

QL-APF vs 

MQL-APF 

Env. 1 43.96% 51.1 % 12.51% 

Env. 2 0.33 % 15.1 % 14.91% 

Env. 3 27.00 % 37.3 % 14.38% 

Env. 4 100 % 100 % 18.38% 

Env. 5 100 % 100 % 7.14% 

Env. 6 100 % 100 % 21.74% 
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The path length was calculated in all test 

environments, where the paths planning by the 

proposed method were the shortest and best paths, as 

shown in Table. 3 the path length in all test 

environments.  

The enhancement percentage in path length can 

be observed in Table 4, which shows the improved 

path when applying the proposed method, MQL-APF. 

In our case, the average enhancement percentage is 

approximately 61.88% between the APF method and 

the OL-APF method. Furthermore, the average 

enhancement percentage is approximately 67.25% 

between the APF method and the MOL-APF method. 

Finally, the average enhancement percentage is 

approximately 14.68% between the QL-APF method 

and the MOL-APF method. This means that, on 

average, the MQL-APF method produces paths that 

are about 67.25% shorter than those generated by the 

APF method and approximately 14.68% shorter than 

those generated by the QL-APF method. This 

improvement can be crucial in various applications 

that require path planning in their work. 

4.4 Comparison with similar techniques 

For further verification of the effectiveness of the 

proposed MQL-APF method in this work, it was 

compared with QL [31], modified QL (MQL) [32], 

and QL-APF [19], methods used in papers marked 

next to each. 

As shown in Fig. 9, MQL-APF has achieved the 

shortest path length among all the tested algorithms. 

The red path represents the MQL-APF method in the 

two types of environments, while the blue path 

represents the other method. 

Table. 5 shows the path length comparison 

between the three methods and our proposed method 

in the two test environments. 

In another scenario, it applies the four methods 

mentioned above in the same environment to show 

the changes in path length. Fig. 10 presents the path 

planning for the four methods mentioned above, 

where the blue path represents the QL method, the 

black path represents the MQL, the green path 

represents the QL-APF, and the red path represents 

the prposed MQL-APF method which shows a clear 

improvement in terms of path length. These lengths 

can be seen in Table 6, where the enhancement 

percentage in the path is approximately 50.15%, 

7.21%, and 24.63% for QL, MQL, and QL-APF, 

respectively, compared to our proposed method. 

In summary, the proposed MQL-APF method 

proved its superiority and achieved favourable results 

across all test environments. In contrast, the APF 

algorithm succeeded in simpler design environments  

  
(a) (b) 

 

  
(c) (d) 

  
(e) (f) 

Figure. 9 Path comparison in two test environments: 

(a) Env.1 CQL Vs. MQL-APF, (b) Env.2 CQL Vs. MQL-

APF, (c) Env.1 MQL Vs. MQL-APF, (d) Env.2 MQL Vs. 

MQL-APF, (e) Env.1 QL-APF Vs. MQL-APF, and (f) 

Env.2 QL-APF Vs. MQL-APF 
 

 
Table 5. Path length comparison in meter 

Environment Method Path length 

a 
QL 10.9984  

MQL-APF 10.0710  

b 
QL 11.6839  

MQL-APF 11.0710  

c 
MQL 10.7964  

MQL-APF 10.0710  

d 
MQL 12.3137  

MQL-APF 11.0710  

e 
QL-APF 10.9784  

MQL-APF 10.0710  

f 
QL-APF 11.8994  

MQL-APF 11.0710  

 

 
Table 6. Path length comparison 

CQL MQL QL-APF 
MQL-

APF 

17.2426 12.3137 14.3137 11.4852 
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Figure. 10 Path comparison of CQL, MQL, QL-APF 

and MQL-APF 
 

 

but failed in more complex ones. Meanwhile, the QL-

APF method consistently reached the goal in all test 

environments, albeit with longer paths. Moreover, the 

proposed method succeeds in reaching the goal point 

on a smaller path compared to the QL, MQL, and QL-

APF methods. 

5. Conclusions 

Efficient path planning stands as a crucial 

necessity across numerous domains. The limitations 

of the conventional APF and classical QL tactics are 

triumphed over through the combination (QL-APF) 

of the two processes. Moreover, the proposed 

amendment of the combined method (MQL-APF) by 

involving of concerning dynamic reward with static 

reward yielded enhanced results in all simulated 

environments and improved path planning in phrases 

of path length and smoothness. The results 

underscore its efficacy as an algorithm capable of 

calculating safe and dynamically efficient paths even 

in complicated environments. Notably, it 

outperforms both the APF method and the QL-APF 

method, attaining a reduction in path length 

approximately of about 67.25% as compared to APF 

and approximately 14.68% in comparison to QL-APF 

on common. Moreover, our proposed method has 

demonstrated its superiority as compared with similar 

strategies, with an improvement rate of 

approximately 50.15%, 7.21%, and 24.63% for QL, 

MQL, and QL-APF, respectively. 

Regarding the enhancement above, the MQL-

APF algorithm presents a multitude of potential 

applications in path planning, such as self-driving 

automobiles, exploration vehicles, unmanned aerial 

vehicles, and autonomous underwater vehicles 

This work may expand in several ways in the 

future, such as by working in environments that 

contain known and unknown moving obstacles; 

additionally, the potential for employing multiple 

agents within complex environments warrants further 

exploration. 
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