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Abstract: Formal Concept Analysis (FCA) is a key tool in data analysis and knowledge discovery, yet its application 

is challenged by the complexity of concept lattices in large datasets. This paper presents the Kernel Concept Set 

Approach (KCS), a novel methodology that overcomes the limitations of traditional lattice reduction techniques by 

integrating a flexible derivation cost function and focusing on the frequency and structural importance of concepts. 

Unlike conventional methods, KCS efficiently operates in a general metric space, reducing computational costs and 

providing a dynamic approach to conceptual clustering. A comparative study with the K-means Dijkstra on Lattice 

(KDL) method highlights KCS's superiority in simplifying lattice complexity and enhancing clustering quality. KCS 

not only maintains crucial data structures but also facilitates the approximation of formal concept lattices, establishing 

it as an efficient alternative for structured data analysis. 
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1. Introduction 

Formal Concept Analysis (FCA), conceived by 

Wille in 1982 [1], has become a cornerstone in the 

realm of knowledge extraction and analysis, finding 

applications across varied domains like data mining 

[2], neural networks [3], and social network analysis 

[4]. Central to FCA is the visualization and 

interpretation of data through formal concepts, each 

comprising an extension (a set of objects with 

common attributes) and an intension (a group of 

attributes shared by objects). This dual structure has 

proven effective in discerning complex data 

relationships and patterns. However, the practical 

application of FCA faces significant challenges, 

particularly when dealing with large and intricate 

concept lattices. These lattices, arising from 

extensive formal contexts, often pose considerable 

computational burdens and interpretation difficulties, 

risking the loss of valuable insights amidst a sea of 

less relevant details. 

In the landscape of Formal Concept Analysis 

(FCA), the reduction of concept lattices has been a 

focal area of research, with several methodologies 

being developed to streamline this process. These 

methodologies, as detailed in [5], encompass a range 

of techniques specifically designed for concept lattice 

reduction. Broadly categorized into three main 

groups: 1) redundant information removal, 2) 

simplification, and 3) selection, these strategies each 

adopt a unique approach based on their underlying 

ideology and methodologies. While in this paper, we 

mainly focus on a specific group of techniques which 

are a selection technique [5]. It is defined as follows: 

A selection technique is one that, from a formal 

context or concept lattice, selects a subset of formal 

concepts, objects or attributes that satisfy a set of 

constraints.  

Building on this foundation, various selection-

based strategies have been identified, each bringing 

unique methodologies to simplify and enhance the 

interpretability of concept lattices. These techniques, 

foundational in facilitating a deeper understanding of 

the datasets, leverage a wide range of approaches to 

refine the concept selection process, integrating 

supplementary knowledge to guide their 
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methodologies effectively. Selection approaches in 

concept lattice reduction, such as attribute weighting 

[6] and hierarchical structuring [7], have been 

instrumental in reducing lattice complexity. Attribute 

weighting assigns varying degrees of importance to 

attributes, thereby influencing the significance of the 

concepts within the lattice. Hierarchical structuring, 

on the other hand, organizes concepts in a tiered 

system, simplifying the relationships and 

dependencies among them. Moreover, the field has 

seen the integration of logical frameworks [8] and the 

application of filtering techniques [9] to select 

portions of formal concepts, objects, or attributes 

from a lattice based on specific constraints. Such 

methods have been crucial in identifying and 

retaining only the most relevant concepts within a 

lattice. Despite the effectiveness of these existing 

methods, they often fall short in addressing the 

dynamic aspect of concept derivation within lattices 

and may yield less reliable results in complex datasets. 

In an effort to navigate the complexities inherent to 

Formal Concept Analysis (FCA) and to effectively 

address its limitations, we are excited to introduce the 

Kernel Concept Set Approach (KCS), a selection-

based methodology designed to significantly enhance 

the analytical capabilities within this field. Diverging 

from the conventional methodologies that 

predominantly focus on attribute relevance or the 

frequency of concepts, the KCS approach 

innovatively integrates the frequency of concepts 

with their derivation cost, thereby offering a holistic 

and more sophisticated analysis. What sets the KCS 

methodology apart from existing approaches is its 

innovative perspective on concept similarity, 

facilitated by a flexible derivation cost function. This 

distinctive feature allows for an analysis that is not 

only confined to the practical application level but 

also extends to the internal structure level of the 

concepts. Such a versatile distance measure broadens 

the scope of application, providing a more 

comprehensive understanding of concept 

relationships. 

A key strength of our method lies in its ability to 

identify concepts that assume pivotal roles as cluster 

centers within the set of formal concepts. This 

capability effectively positions the KCS approach as 

a bespoke clustering method tailored specifically for 

concept sets. Our methodology demonstrates 

superior performance over traditional clustering 

techniques in several critical aspects: it eliminates the 

need for a vector space, operating efficiently within a 

general metric space; it offers a cost-effective 

alternative to standard agglutinative clustering 

methods; it provides a flexible interpretation of 

distances; and crucially, it identifies not only the 

cluster members but also the cluster centroids. 

The dual assessment of frequency and derivation 

cost is a cornerstone of the KCS approach, enabling 

a nuanced understanding of the lattice structure. This 

in-depth analysis sheds light on deeper insights into 

the underlying data patterns and relationships. 

Consequently, the KCS methodology emerges not 

just as a novel method for the clustering of concepts 

but also as an innovative approach to clustering 

categorical data. Through this advanced strategy, the 

KCS approach promises to enrich the field of Formal 

Concept Analysis with a more nuanced and practical 

tool for deciphering complex data landscapes.  

The structure of this paper is methodically 

organized into six sections for clarity and depth of 

analysis. Section 2 delves into the Foundational 

Principles of Formal Concept Analysis presenting 

core concepts. In Section 3, a thorough exploration of 

the related work is conducted, providing insights into 

existing methodologies and their context within 

Formal Concept Analysis. The fourth section 

introduces our innovative Kernel Concept Set 

Approach, detailing its unique methodology and 

applicability in complex lattice analyses. Section 5 

outlines the experimental setup and methodology, 

delineating the framework employed to validate and 

assess the effectiveness of our approach. Finally, the 

paper concludes with Section 6, synthesizing key 

findings and discussing the broader implications of 

our research. 

2. Foundational principles of formal concept 

analysis: Preliminaries 

In this framework, a concept is viewed as a dual 

entity comprising two key elements: its extension, 

which refers to the set of objects it encompasses, and 

its intension, indicating the set of attributes it entails. 

Definition 1:  

A formal context can be defined as a triple, 

denoted as 𝐹𝐶  =  (𝐺, 𝑀, 𝐼) , where 𝐺  and 𝑀 

represent distinct sets, and 𝐼  is a binary relation 

between 𝐺  and 𝑀 , 𝐼 ⊆ 𝐺 ×  𝑀 . In this context, 𝐺 

comprises elements known as objects, and 𝑀 

consists of elements referred to as attributes. The 

relationship (𝑔, 𝑚)  ∈  𝐼  signifies that the object 𝑔 

possesses the attribute 𝑚. Given 𝐴 ⊆ 𝐺, we define to 

derivation functions: 

 

𝐴′ = {𝑚 ∈ 𝑀 |∀𝑔 ∈ 𝐴, (𝑔, 𝑚) ∈ 𝐼 }  (1) 

 

Similarly, for a subset 𝐵 ⊆ 𝑀, we define: 

 

𝐵′ = {𝑔 ∈ 𝐺 |∀𝑚 ∈ 𝐵, (𝑔, 𝑚) ∈ 𝐼 }  (2) 
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Lemma 1. (Properties of Formal Contexts): Let 

(𝐺, 𝑀, 𝐼), be a formal context, with  𝐴1, 𝐴2  ⊆ 𝐺 as 

sets of objects, and 𝐵1, 𝐵2  ⊆ 𝑀 as sets of attributes. 

Then, the following properties are observed: 

 

𝐴1  ⊆ 𝐴2, ⟹  𝐴2
′  ⊆ 𝐴1

′  
, 𝐵1  ⊆ 𝐵2, ⟹  𝐵2

′  ⊆ 𝐵1
′    (3) 

 

𝐴 ⊆  𝐴′′,       𝐵 ⊆  𝐵′′   (4) 

 

𝐴′ =  𝐴′′′ , 𝐵′ =  𝐵′′′   (5) 

 

𝐴 ⊆  𝐵′  ⟺  𝐵 ⊆  𝐴′  ⟺  𝐴 ×  𝐵 ⊆ 𝐼 (6) 

 

Definition 2:   

A formal concept within the context of Formal 

Concept Analysis is defined as a pair (𝐴, 𝐵) where 

𝐴 ⊆ 𝐺 and  𝐵 ⊆ 𝑀, satisfying the conditions 𝐴′ = 𝐵 

and 𝐵′ = 𝐴. This definition implies that 𝐴 ⊆ 𝐺 and  

𝐵 ⊆ 𝑀  are maximal with respect to the relation 

𝐴 ×  𝐵 ⊆ 𝐼  . In this context, 𝐴 is referred to as the 

extent of the concept, and 𝐵 as the intent part. 

Definition 3 

Formal concepts can be arranged based on the 

subconcept-superconcept relation ≤, expressed as 

follows: 

(A1, B1) ≤  (A2, B2) ⟺  A1 ⊆
 A2, (or equivalently B1 ⊆  B2 ), 

where (A1, B1) is a subconcept (more specific) 

and (A2, B2)  is a super concept (more general). 

Within a formal context 𝐹𝐶 , the assembly of all 

formal concepts 𝐾 , in conjunction with the partial 

order ≤, generally defines the notation ℬ(𝐾, ≤) 

signifies the concept lattice derived from a formal 

context 𝐹𝐶. 

Lemma 2. (Concept Lattice Formation): Given a 

formal context 𝐹𝐶 =  (𝐺, 𝑀, 𝐼) , the concept lattice 

ℬ(𝐹𝐶)  can be expressed as: 

 

𝐾(𝐹𝐶)     =  {(𝐵′, 𝐵′′)| 𝐵 ⊆ 𝑀)}   (7) 

 

This lemma, along with Lemma 1, Eq. (5), 

indicates that the concept lattice can be constructed 

from the set of concept intents, offering a method to 

systematically derive and understand the structure of 

concepts within a given context. By the initial part of 

the core theorem on concept lattices [1]. A concept 

lattice ℬ(𝐾, ≤)  is identified as a complete lattice 

where the infimum and supremum are present for any 

arbitrary set; This is represented as: 

 

(𝐴1, 𝐵1) ∧ (𝐴2, 𝐵2) = (𝐴1 ∩ 𝐴2, (𝐵1 ∪ 𝐵2)′′)       (8) 

 

(𝐴1, 𝐵1) ∨ (𝐴2, 𝐵2) = ( (𝐴1 ∪ 𝐴2)′′, 𝐵1 ∩ 𝐵2)      (9) 

For a more comprehensive understanding, 

readers are directed to the extensive discussions in 

[10, 11]. Formal Concept Analysis (FCA) is utilized 

across diverse domains, demonstrating its versatility 

and effectiveness. It finds applications in areas like 

knowledge reduction [12], In the context of 

enhancing classification techniques in natural 

language processing (NLP) [13], data mining and 

association rule mining [2, 14], information retrieval 

[15], neural networks [16, 3], and ontology 

engineering [17]. Additionally, it plays a significant 

role in reliability engineering [18] and the analysis of 

social networks [4, 19, 20]. These fields leverage 

FCA's modelling capabilities for knowledge 

extraction and management. For an in-depth 

exploration of FCA's role in knowledge discovery 

and information science, readers are directed to a 

detailed survey available in [21]. 

3. Related work 

Lattice reduction techniques are essential in 

Formal Concept Analysis (FCA), significantly 

simplifying and improving the interpretability of 

concept lattices. Broadly, these methods fall into 

three categories: redundant information removal, 

simplification, and selection. Each category employs 

distinct strategies to streamline the concept lattice, 

making it easier to analyze and interpret [5]. 

Concepts Redundant information removal 

techniques remove redundant information from the 

concept lattice. In general, they aim to find the 

minimum set of objects or attributes that keep the 

structure of the original concept lattice unchanged 

[22- 24]. Where information removal techniques can 

be defined as: An object 𝑔 ∈ 𝐺 (set of objects), 

attribute 𝑚 ∈ 𝑀 (set of attributes) or incidence 𝑖 ∈
𝐼 (𝐼 ⊆ 𝐺 ×  𝑀) is considered redundant information 

if its removal or transformation results in a lattice 

isomorphic to the original concept lattice. In 

accordance with this definition, if an object, attribute 

or incidence can be removed or changed in a way that 

the resulting concept lattice is isomorphic to the 

original one, then such elements are redundant.  

Simplification methods in Formal Concept 

Analysis (FCA) are instrumental in distilling the 

essence of complex concept lattices, aiming to 

enhance their interpretability and analytical 

manageability. Techniques such as clustering similar 

objects or attributes [25], and algebraic reductions 

like Singular Value Decomposition (SVD) and non-

negative matrix factorization, significantly reduce the 

dimensionality and complexity of concept lattices 

[26]. The concept lattice reduction algorithm, based 

on the Discernibility Matrix, utilizes mathematical 
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structures to streamline concept lattices by 

identifying and removing redundant attributes 

through discernibility matrices. This efficiently 

determines the minimal attribute sets required to 

preserve the lattice structure. However, the 

algorithm's notable limitation is its computational 

demand, particularly with large datasets. The initial 

calculation of the discernibility matrix and 

subsequent derivation of the identifiable function are 

intensive processes. This computational burden can 

restrict the algorithm's usability in environments 

where resources are scarce or rapid processing is 

essential [27]. Neighborhood-based concept lattices 

present a simplification strategy by using 

approximation operators to compress the lattice, a 

method efficient in reducing complexity [28]. The 

novel approach presented in [29], where the context 

factorisation is utilized in order to provide a concept 

set reduction with minimal loss of information. The 

authors applied the toolset of Boolean factor analysis 

to decompose the large context matrix into the 

product of two lower-dimensional matrices. Within 

the reduction process, the method first generates the 

set of representative concepts and then constructs the 

minimal representative concept matrix. Additionally, 

the work of [30], focuses on information processing 

in imprecise language environments. The authors 

propose a linguistic-valued layered concept lattice 

simplification method using a special three-way 

clustering. The three-way decision method uses a 

rough-set oriented approach using three regions, the 

positive, negative, and boundary regions are viewed 

as the regions of acceptance, rejection, and non-

commitment in a ternary classification. The 

efficiency of related f-concept analysis in the domain 

of Pythagorean Fuzzy formal contexts is presented in 

[31], providing a novel attribute reduction approach, 

too. The main benefit of this representation format is 

that it shows imprecision in both objects and 

attributes at the same time. For the generation of the 

frequent f-concepts an optimized version of the 

Apriori-algorithm was utilized. However, its reliance 

on pseudo similarities may not capture all nuanced 

relationships, posing a potential drawback in 

accurately representing the original lattice's structure. 

Selection techniques [9], in concept lattice 

reduction are essential for focusing analysis on the 

most relevant concepts within extensive lattices, 

where not all concepts may hold significant value for 

specific applications. These techniques prioritize 

concepts based on factors such as the size of a 

concept's intent or extension [32- 34], or the 

relationships between specific attributes [35]. By 

employing such selective filtering, these methods aim 

to identify and retain concepts that are most pertinent 

to the analysis at hand, ensuring that the lattice is 

streamlined for efficiency and relevance. This 

approach is particularly valuable in contexts where 

the sheer volume of data can obscure important 

patterns or relationships, making selection techniques 

a critical tool in the realm of Formal Concept 

Analysis (FCA). The tri-granularity model 

introduced in [36], the concept lattice reduction is 

based on a tri-granularity model of concept lattices. 

In this model, the lattice is layered into three 

granularity levels. The bottom level corresponds to 

the concept level, the second one covers a set of 

similar concepts and the top layer represents the 

whole concept lattice. The work introduces novel 

methods of local granularity and elementary 

granularity attribute reduction of three-way concept 

lattices. These newly proposed two levels of attribute 

reduction with the existing global granularity 

attribute reduction together provide a framework for 

the tri-granularity attribute reduction of three-way 

concept lattices. 

The proposed Kernel Concept Set (KSC) 

approach is a selection-based strategy.  These 

techniques, involve choosing a portion of formal 

concepts, objects, or attributes from a lattice or 

context, based on certain constraints. In a variety of 

scenarios, deeper understanding of both objects and 

attributes within a dataset can significantly enhance 

the process of reducing concept lattices. In the 

expansive survey of lattice reduction techniques 

within the realm of Formal Concept Analysis (FCA), 

various selection-based strategies have been 

identified, each bringing unique methodologies to 

simplify and enhance the interpretability of concept 

lattices. These techniques, foundational in facilitating 

a deeper understanding of the datasets, leverage a 

wide range of approaches to refine the concept 

selection process, integrating supplementary 

knowledge to guide their methodologies effectively. 

The proposed Kernel Concept Set Approach 

(KCS) differs from the existing approaches in many 

aspects. It presents a unique approach on concept 

similarity using a flexible derivation cost function. 

This distance measure may focus both on the usage 

level and the internal structure level of the concepts 

providing a more general application potential. 

Another benefit of the proposed approach is that 

it selects those concepts which have a central role as 

cluster centers in the set of formal concepts. Thus, 

this method can be used as a special clustering 

method on the concepts set. 

The method is dominating the standard clustering 

methods as 

• it does not require a vector space; a general 

metric space is sufficient. 
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• it has a lower cost compared to the standard 

agglutinative clustering methods. 

• flexible distance interpretation 

• it provides the cluster centroids not only the 

cluster members. 

4. Kernel concept set approach 

The Kernel Concept Set Approach (KCS) is an 

innovative response to the challenges posed by the 

inherently complex nature of concept lattices in 

Formal Concept Analysis (FCA). This approach is 

particularly crucial when dealing with large lattices, 

where traditional methods, such as arbitrary 

reduction or selection of objects, prove insufficient 

and potentially overlook key structures within the 

data. To tackle these complexities, our proposed 

Kernel Concept Set Approach (KCS) adopts a 

nuanced methodology, focusing on two essential 

aspects: the frequency of concepts and their 

associated derivation cost. The frequency component 

assesses how prevalent and significant a concept is 

within the domain, offering a quantifiable metric of 

its importance. In parallel, the derivation cost aspect 

evaluates the intricacy and effort required in 

navigating from one concept to another within the 

lattice framework. 

The essence of the Kernel Concept Set Approach 

(KCS) is its strategic focus on identifying and 

prioritizing 'kernel concepts' within the concept 

lattice. These kernel concepts are distinguished not 

only by their frequency but also by their critical 

positioning and role within the lattice's structure, 

acting as the most informative and structurally 

significant elements of the domain. Essentially, these 

kernel concepts form the conceptual backbone of the 

lattice, guiding the simplification process by 

highlighting the most essential elements. This 

methodical focus ensures that the analysis is both 

efficient and insightful, emphasizing the data's most 

critical aspects. 

Incorporating the proposed method's distinct 

advantages, KCS introduces a novel perspective on 

concept similarity through a flexible derivation cost 

function. This approach allows for an analysis that 

considers both the practical application level and the 

internal structure of concepts, offering broad 

applicability. Furthermore, KCS identifies kernel 

concepts that assume central roles as cluster centers, 

establishing this method as a specialized clustering 

technique for concept sets. This unique clustering 

approach provides several advantages over 

traditional methods: it operates within a general 

metric space without the need for a vector space, 

offers a cost-effective alternative to standard 

agglutinative clustering methods, allows for a 

flexible interpretation of distances, and importantly, 

it identifies cluster centroids in addition to cluster 

members. 

By honing in on these kernel concepts, KCS not 

only streamlines the lattice for more manageable 

analysis but also guarantees that the most informative 

and essential aspects of the data are emphasized. 

Thus, KCS presents a highly efficient, insightful, and 

practical solution for navigating the intricacies of 

large concept lattices, significantly enhancing the 

process of knowledge discovery and ensuring a 

deeper understanding of the underlying data. 

Definition 4: 

The Extended Concept Lattice in Formal Concept 

Analysis (FCA) introduces advanced components 

that enrich the standard concept lattice framework 

explained in Definition 3. This extension primarily 

involves two key elements: the Frequency Value 

function and the Derivation Cost Function: 

Definition 5:  

Function 𝑓: 𝐾 →  ℝ+ , assigns a positive real 

number to each concept in the lattice, representing its 

frequency within the domain. f (𝑐)  denotes the 

frequency value of c. 

Definition 6:   

The Derivation Cost Function (𝑑)  is defined as 

𝒹: 𝐾 ×  𝐾 →  ℝ+, this function calculates the cost of 

deriving one concept from another within the lattice. 

Properties: 

• Self-Cost: 𝑑 (𝑐, 𝑐)  =  0, for any concept c within 

the lattice, indicating no cost for self-derivation. 

• Asymmetric Cost: For two different concepts 𝑐1 

and 𝑐2 , 𝑑(𝑐1, 𝑐2) ≠  𝑑 (𝑐2, 𝑐1), reflecting the 

directional nature of derivation within the lattice.  

• Integration of Dijkstra-Based Distance Measure: 

To refine the calculation of asymmetric costs 

between concepts, we have employed the 

Dijkstra-Based Distance Measure from [34]. This 

approach computes the shortest path in the lattice 

considering the direction and cost of the path. 

Specifically, we have set the cost for upward 

transitions (parent-to-child) in the lattice as 2 and 

for downward transitions (child-to-parent) as 1. 

This integration adds a layer of sophistication to 

our function 𝑑 , allowing it to more accurately 

represent the complexities involved in navigating 

the concept lattice. 

Definition 7:  

Distance 𝑑 (𝐾1, 𝑐)  =  𝑚𝑖𝑛 {𝑑 (𝑐1, 𝑐) | 𝑐1 ∈ 𝐾1} , 

calculates the minimum derivation cost from any 

concept in the subset 𝐾1  to a specific concept 𝑐 

within the lattice. This calculation is vital for 

accurately determining the extended cost, reflecting 
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the cost of reaching concept 𝑐  from the nearest 

concept within 𝐾1. 

Definition 8:  

Frequency-Weighted Derivation Cost combines 

the frequency of concept 𝑐  with its derivation cost 

from 𝐾1, offering a holistic measure that 

encompasses both significance and relational 

complexity. 

 

𝑑 𝑓(𝐾1, 𝑐) =  𝑓(𝑐)  ∙  𝑑(𝐾1, 𝑐)             (10) 

 

Definition 9:  

The Kernel Concept Set is defined as a triplet 

𝕭(𝒅, 𝒇, 𝒅 𝒇) extended with the following properties: 

• Capacity Constraint: The size of the kernel 

concept set 𝐾𝐶 is fixed and equal to 𝑆𝑐. 

• Optimization Constraint: The set is optimized to 

minimize the aggregated derivation cost, 

quantifying the conceptual "distance" within the 

lattice from the kernel set. 

• Composition: 𝐾𝐶  ⊆ 𝐾, where 𝐾𝐶 is derived as: 

• 𝐾𝐶 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐾1⊂𝐾{∑ 𝑑 𝑓(𝐾1, 𝑐)| |𝐾1| ≤𝑐 ∈𝐾  𝑆𝑐}     

(11) 

• Role: KCS focuses on these kernel concepts that 

provide the most comprehensive structuring of 

the domain, essentially forming the backbone of 

the concept lattice. By emphasizing these kernel 

concepts, the approach streamlines the lattice to 

its core elements, ensuring that the analysis is 

both manageable and retains the most critical and 

informative aspects of the data. This results in a 

more efficient, insightful, and practical approach 

for handling the complexities of large concept 

lattices, enhancing data understanding and 

knowledge discovery. 

4.1 Optimized greedy algorithm for determining 

kernel concept set 

In addressing the computational challenges posed 

by large concept lattices in Formal Concept Analysis 

(FCA), we propose an optimized Greedy Algorithm 

as shown in Algorithm 1, to effectively identify the 

Kernel Concept Set (KCS). The optimization of the 

greedy algorithm is designed to systematically 

construct an optimal Kernel Concept Set that 

minimizes the total derivation cost across a concept 

lattice. This cost is a composite measure reflecting 

the cumulative effort needed to derive all other 

concepts from a set of core concepts. This refined 

approach aims to streamline the lattice by focusing on 

the most significant concepts, thereby reducing its 

size and complexity. The algorithm's optimization 

process involves advanced techniques such as 

employing the ancestors and descendants’ 

relationships of concepts and constructing efficient 

sub-lattices. 

 

Algorithm 1: Optimized Greedy Algorithm 

Input: 

• Concept Lattice B (K, ≤) 

• Frequency Value Function 𝑓: 𝐾 →  𝑅+ 

• Maximum Core Set Size 𝑆𝑐 

• Transition Cost: 𝑢𝑝𝑤𝑎𝑟𝑑 ←
 2, 𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑 ←  1 

Output: 

• Kernel Concept Set 𝐾𝐶 

Algorithm Steps: 

1. Initialization: 

• Construct the Concept Lattice 𝐵(𝐾, ≤). 

• Initialize Kernel Set 𝐾𝐶  as an empty set. 

• Assign Frequency Values 𝑓(𝑐)  to each 

concept 𝑐 in the lattice. 

2. Ancestors and Descendants 

Preprocessing: 

• For each concept 𝑐 in the lattice, identify its 

ancestors and descendants. 

• Prepare a memoization dictionary to store the 

minimal derivation costs. 

3. Derivation Cost Calculation: 

• For each concept 𝑐 in the lattice: 

• Use Dijkstra's algorithm to calculate the 

minimal derivation cost 𝑑 (𝐾1, 𝑐)  to 

every other concept. 

• Store the costs in a structured way for 

quick retrieval and use memoization to 

avoid redundant calculations. 

4. Core Set Identification with Sub-Lattice 

Optimization: 

• Define 𝑆𝑐 as the maximum size for the Kernel 

set. 

• Initialize 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 as ∞ and best_candidate 

as None. 

• Iteratively expand 𝐾𝐶: 

• For each candidate concep§t not in 𝐾𝐶 , 

construct or retrieve a relevant sub-

lattice. 

• Calculate the potential reduction in 

aggregated derivation cost if the 

candidate were added to 𝐾𝐶 . 

• Update 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡  and best_candidate 

accordingly. 

• Add the best_candidate to 𝐾𝐶  and update 

the cost. 

• Continue until ∣ 𝐾𝐶 ∣= 𝑆𝑐  or no further 

reduction in cost is possible. 

5. Result Analysis:  
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Return the final 𝐾𝐶  as the kernel concept set 

that minimizes the aggregated derivation cost 

while adhering to the size constraint ∣𝐾𝐶∣=𝑆𝑐. 

 

The complexity of the optimized greedy 

algorithm for identifying a kernel concept set within 

a concept lattice involves several key factors, 

primarily influenced by the structure and 

characteristics of the lattice itself. The preprocessing 

step, which includes determining ancestors and 

descendants for each concept, generally scales with 

the square of the number of concepts 𝑂(𝑉²) , 

assuming a densely connected lattice. However, the 

introduction of sub-lattice optimization significantly 

reduces the computational burden in subsequent steps. 

The core computational task involves calculating 

minimal derivation costs across the lattice using 

Dijkstra's algorithm. Traditionally, this would imply 

a cubic complexity 𝑂(𝑉³)  when considering all 

possible paths within the lattice. However, the 

optimization strategy restricts each calculation to 

smaller sub-lattices, dramatically reducing the 

average size of the problem space. If the average size 

of these sub-lattices is denoted as ‘s’, the complexity 

for the derivation cost calculations adjusts to 𝑂(𝑉 ∗
 𝑠) , a marked improvement, especially if ‘s’ is 

substantially smaller than ‘V’, the total number of 

concepts. 

Further efficiency is gained in the iterative kernel 

set identification process. Here, the algorithm 

assessively expands the kernel set, each time 

recalculating the aggregated derivation cost but 

confined to relevant sub-lattices. This iterative 

process, while potentially linear in nature 𝑂(𝑠), is 

tempered by the maximum size constraint of the 

kernel set (𝑆𝑐) and the use of memoization, which 

avoids redundant calculations. 

Consequently, the overall time complexity of the 

algorithm is predominantly governed by the 

derivation cost calculation and the core set 

identification steps, combining to 𝑂(𝑉 ∗  𝑠)  +
 𝑂(𝑆𝑐  ∗  𝑠) . This represents a substantial 

optimization over the naive approach, especially in 

lattices with a large number of concepts but relatively 

smaller and well-defined sub-lattices. 

The process of sub-lattice construction is a 

fundamental optimization step in algorithms 

designed for navigating and analyzing concept 

lattices, particularly in the context of minimizing 

derivation costs. This process can be detailed as 

follows: 

1. Defining the Sub-Lattice: 

• Conceptualization: A sub-lattice is essentially a 

smaller, more concentrated segment of the 

original lattice. It includes only those concepts 

and their interconnections (edges) that are 

pertinent to the specific computational task at 

hand. This selective focus allows for a more 

manageable and relevant section of the lattice to 

be processed, rather than the entire structure. 

• Purpose: The main aim of creating a sub-lattice 

is to isolate the essential part of the lattice that 

contains all the necessary information for the 

current calculation. This targeted approach 

eliminates the need to process extraneous parts of 

the lattice, thus optimizing computational 

efficiency. 

2. Utilization in Derivation Cost Calculation: 

• Selective Inclusion: During the process of 

calculating derivation costs, the algorithm 

constructs a sub-lattice. This sub-lattice 

selectively incorporates the concepts and edges 

(connections) that are directly relevant to the 

calculation. It typically includes the specific 

concept under examination, the concepts that are 

already part of the kernel set, and their respective 

hierarchical relations (ancestors and 

descendants). 

• Reduction of Complexity: By constructing this 

sub-lattice, the algorithm significantly reduces 

the number of paths and concepts that need to be 

considered in the calculation. This reduction is 

critical in decreasing the overall computational 

complexity, particularly in lattices with a dense 

of connections. 

3. Strategic Implementation in Algorithmic 

Processes: 

• Dynamic Construction: As the algorithm 

progresses, especially in iterative processes like 

the greedy algorithm for kernel set identification, 

the sub-lattice is dynamically reconstructed or 

updated to reflect changes in the kernel set or the 

target concepts. This dynamic nature ensures that 

the algorithm always works with the most current 

and relevant subset of the lattice. 

• Impact on Efficiency and Accuracy: The use of 

sub-lattices enhances both the efficiency and 

accuracy of the algorithm. By focusing on a 

smaller, more relevant set of data, the algorithm 

can more quickly and accurately perform 

calculations related to derivation costs, leading to 

better optimization of the kernel set. 

• Scalability: The sub-lattice construction as 

described in Algorithm 2, is scalable and can be 

effectively applied to lattices of various sizes and 

complexities. This scalability is essential for 

ensuring that the algorithm remains efficient and 
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effective even as the size and complexity of the 

lattice increase. 

 

Algorithm 2: Steps for Building a Sub-Lattice 

1. Initialize Relevant Concepts: 

• Start with an empty set to hold all relevant 

concepts. 

• Add the two concepts, 𝐴 and 𝐵, to the relevant 

concepts set. 

2. Add Ancestors and Descendants: 

• Include all ancestors of 𝐴  into the relevant 

concepts set. 

• Include all descendants of 𝐴 into the relevant 

concepts set. 

• Repeat the process for node 𝐵, adding both its 

ancestors and descendants to the relevant 

concepts set. 

3. Create Sub-Lattice: 

• Initialize an empty dictionary to represent the 

sub-lattice. 

• For each concept in the relevant concepts set, 

do the following: 

• Initialize an empty list to store the 

neighbors of the concept. 

• Retrieve the list of neighbors from the full 

lattice dictionary. 

• Include a neighbor in the concept's 

neighbor list only if the neighbor is also 

in the relevant concepts set. 

• Assign the neighbor list to the concept in the 

sub-lattice dictionary. 

4. Return Sub-Lattice: 

• The sub-lattice containing only the relevant 

concepts and edges is now constructed. 

• Return the sub-lattice dictionary. 

 

By harnessing these optimization strategies, the 

algorithm judiciously narrows the computational 

workload while maintaining a thorough and 

representative search through the lattice. The result is 

a kernel set that optimizes cost-effectiveness, a 

testament to the algorithm's ability to balance depth 

and breadth in analyzing complex concept lattices. 

5. Experimental setup and methodology 

The development and testing of our algorithm 

were carried out in the Python environment, chosen 

for its broad acceptance and the extensive range of 

development tools it offers. Our experiments were 

conducted on a Mac system equipped with an Apple 

M1 chip and 8GB of RAM, running on Mac OS 

14.3.1. This setup provided a stable and robust 

platform for evaluating the algorithm's performance 

across different scenarios. 

5.1 Clustering performance 

In our study, we conduct a meticulous 

experimental analysis that includes a comparative 

study of the clustering performance between the 

Kernel Concept Set Approach (KCS) and the K-

means Dijkstra on Lattice (KDL) method [34], within 

the framework of Formal Concept Analysis (FCA). 

To evaluate the efficacy of clustering without relying 

on ground truth labels, which are often unavailable in 

real-world scenarios, we utilize the Silhouette 

Coefficient and the Davies-Bouldin Index (DBI) as 

our metrics of choice. 

The Silhouette Coefficient is a measure that 

evaluates how well a data point has been assigned to 

its cluster relative to other clusters. This coefficient 

ranges between -1 and 1, where a high positive value 

suggests that the data point is well matched to its own 

cluster and poorly matched to neighboring clusters. 

The Silhouette Coefficient is calculated as follows: 

 
Silhouette Score = (𝑏 −  𝑎) / 𝑚𝑎𝑥 (𝑎, 𝑏)           () 
 

Where ′𝑎′  is represents the mean intra-cluster 

distance, and  ′𝑏′  is the mean nearest-cluster distance. 

A higher score indicates a data point is appropriately 

clustered, while a negative score may suggest 

incorrect cluster assignment. Conversely, the Davies-

Bouldin Index (DBI) assesses both the compactness 

and separation of clusters. Optimal clustering is 

indicated by lower DBI values, calculated through a 

series of steps: 

1. Compute the average distance ( 𝑆𝐶𝑖) between 

each point in a cluster (𝑆𝑖) and all other points in 

the same cluster, representing the intra-cluster 

distance. 

𝑆𝐶𝑖= (1 / 𝑛𝑖) 𝛴 ||𝑥 −  𝑍𝑖|| 𝑓𝑜𝑟 𝑥 ∈ 𝑆𝑖 

where 𝑛𝑖 is the number of points in cluster 𝑆𝑖, 𝑥 

is a point in cluster 𝑆𝑖, 𝑍𝑖 is the centroid of cluster 𝑆𝑖, 

||𝑥 −  𝑍𝑖||  is the distance between point 𝑥  and 

centroid 𝑍𝑖. 

2. Determine the distance (𝑑𝑖𝑗) between cluster 𝑆𝑖 

and 𝑆𝑗 , using an appropriate distance measure 

between their centroids. 

3. Calculate the ratio 𝑅𝑖𝑗 between the sum of intra-

cluster distances of 𝑆𝑖  and 𝑆𝑗 , and the inter-

cluster distance between 𝑆𝑖 and 𝑆𝑗. 

             𝑅𝑖𝑗 = (𝑆𝐶𝑖+𝑆𝐶𝑗) / 𝑑𝑖𝑗 

4. For each cluster 𝑆𝑖, identify the maximum ratio 

𝑅𝑖 which is the maximum 𝑅𝑖𝑗 for all 𝑗 ≠  𝑖. 

              𝑅𝑖 = 𝑚𝑎𝑥(𝑅𝑖𝑗) for all 𝑗 ≠  𝑖 
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5. The Davies-Bouldin Index (DBI) is then the 

average of all 𝑅𝑖 values. 

 
DBI = (1 / 𝑆)  ∑ 𝑅𝑖  (12) 

 

here: 𝑆 represents the total number of clusters. 
A lower DBI signifies superior clustering by 

indicating clusters that are more compact (lower 𝑆𝐶𝑖)  
and better separated (higher 𝑑𝑖𝑗 ). Employing these 

metrics allows for an in-depth evaluation of KCS and 
KDL methods, highlighting their performance across 
different datasets in terms of cluster quality and 
structure without the bias of predefined labels. 

The analysis is based on four real-world datasets 
described in Table 1, ensuring consistency and 
relevance for the comparative study. These lattices 
(datasets), each with unique attributes such as object 
count, attribute number, and lattice density, provide a 
comprehensive and challenging testbed for algorithm 
evaluation. The clustering performance of the Kernel 
Concept Set (KCS) approach, compared to the K-
means Dijkstra on Lattice (KDL) method, is 
highlighted through the evaluation of Silhouette 
Coefficient scores and Davies-Bouldin Index (DBI) 
across these datasets as shown in Tables 2 and 3. The 
Silhouette Coefficient, indicative of how well each 
data point fits within its cluster relative to other 
clusters, shows that KCS outperforms KDL in all 
cases, with scores of 0.406, 0.351, 0.393, and 0.680 
for Balance-Scale, Breast Cancer, Tae, and Car 
Evaluation datasets, respectively. These higher 
Silhouette scores suggest that KCS not only places 
data points more appropriately within clusters but 

also enhances the overall compactness and separation 
between clusters. 

Similarly, the DBI, which assesses the clustering 
solution based on the compactness and separation of 
clusters, where lower values indicate better clustering 
quality, reinforces the superiority of the KCS 
approach. For Balance-Scale, Breast Cancer, Tae, 
and Car Evaluation datasets, KCS achieves lower 
DBI scores of 1.72, 1.35, 1.70, and 1.41, respectively, 
compared to KDL. This indicates that clusters formed 
by KCS are more tightly knit and better delineated 
from each other, signifying an optimal clustering 
solution. 

The enhanced clustering performance of KCS can 
be attributed to its strategic selection of kernel 
concepts as cluster centers. This methodology not 
only leverages the inherent structure and significance 
within the data but also ensures that clusters are 
formed around the most pivotal elements of the 
dataset. By focusing on kernel concepts characterized 
by their frequency and derivation cost, KCS 
emphasizes the most informative aspects of the data, 
resulting in clusters that are not only coherent and 
compact but also meaningfully distinct. 

Furthermore, the flexibility of KCS, which 

operates within a general metric space without 

requiring a vector space and at a lower computational 

cost compared to traditional methods, contributes to 

its effectiveness in handling complex datasets. The 

method's capability to provide cluster centroids 

alongside cluster members facilitates a deeper 

understanding of the data's intrinsic patterns and 

relationships 

 
Table 1. Lattice characteristics 

Formal Contexts #Object #Attributes Density 
# Formal 

concepts 
#Edges 

Balance-Scale 625 20 0.18 1070 3822 

Breast Cancer 286 43 0.20 2132 7818 

Tae 151 101 0.05 276 619 

Car Evaluation 1728 21 0.20 3596 14917 

 

 
Table 2. Silhouette scores comparing KDL and KCS 

methods across datasets 

Datasets KDL KCS #Clusters 

Balance-Scale 0.275 0.406 3 

Breast Cancer 0.125 0.351 2 

Tae 0.163 0.393 3 

Car Evaluation 0.382 0.680 4 

Table 3. DBI index scores comparing KDL and KCS 

methods across datasets 

Datasets KDL KCS # Clusters 

Balance-Scale 2.67 1.72 3 

Breast Cancer 2.88 1.35 2 

Tae 2.12 1.70 3 

Car Evaluation 3.34 1.41 4 
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Figure. 1 Silhouette scores by dataset and method 

 

 

 

 
Figure. 2 DBI scores by dataset and method 

 

 

The data presented in Tables 2 and 3, alongside 

their graphical representations in Figs. 1 and 2, 

unequivocally showcase the Kernel Concept Set 

(KCS) approach's superior clustering performance 

over the K-means Dijkstra on Lattice (KDL) method 

across various datasets. This enhanced performance 

of KCS is attributable to its innovative approach in 

leveraging concept lattice's intrinsic complexity for 

clustering, providing a more nuanced and effective 

analysis of categorical data. Unlike the KDL method, 

which capitalizes on the lattice structure and 

Dijkstra's algorithm for clustering, KCS introduces a 

novel method focused on kernel concept 

identification, emphasizing the frequency and 

derivation cost of concepts. This strategy not only 

simplifies the analysis by reducing the lattice to its 

most informative elements but also ensures a higher 

quality of clustering by selecting kernel concepts as 

cluster centers. The improvement in clustering 

quality is clearly reflected through higher Silhouette 

Coefficients and lower Davies-Bouldin Index scores 

for KCS, indicating more cohesive and well-

separated clusters compared to those generated by the 

KDL method. These results validate the premise that 

a more targeted and insightful approach, such as KCS, 

that directly engages with the core elements of 

categorical data and their hierarchical relationships, 

significantly enhances clustering outcomes. 

 
Figure. 3 Comparative performance analysis of KCS 

and KDL methods across diverse lattice sizes 
 

5.2 Influence of lattice size on runtime 

In our focused experimental analysis, we 

evaluated the runtime efficiency of the Kernel 

Concept Set Approach (KCS) compared to the K-

means Dijkstra on Lattice (KDL) method [34], within 

the domain of Formal Concept Analysis (FCA). Our 

objective centered on understanding how these 

methodologies respond to the challenge posed by 

varying sizes of lattice structures, leveraging datasets 

delineated in Table 1 for a cohesive and direct 

comparison. 

The core of our investigation was to uncover the 

adaptability and efficiency of the KCS and KDL 

methods when dealing with lattices of increasing 

complexity. By examining runtime as the primary 

metric of evaluation, we aimed to provide clear 

insights into the scalability and operational 

performance of these approaches across different 

lattice sizes. The detailed runtime comparison is 

visually presented in Fig. 3, which illustrates the stark 

differences in performance metrics across the 

evaluated datasets. The results from our study, as 

highlighted in Fig. 3, showcase a distinctive contrast 

in performance between the KCS and KDL methods, 

particularly as lattice sizes escalate. While the KDL 

method showed reasonable efficiency in managing 

smaller lattice sizes, indicating its potential in less 

complex scenarios, it struggled significantly as the 

lattice size increased. This was evident in the 

pronounced rise in runtime, which underscored 

scalability and efficiency challenges inherent in the 

KDL approach for larger and more complex lattice 

structures. 

Conversely, the KCS method demonstrated 

remarkable efficiency across the entire range of 

lattice sizes. It consistently outperformed the KDL 

method in terms of runtime, even in scenarios 



Received:  March 3, 2024.     Revised: May 18, 2024.                                                                                                      557 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.42 

 

involving larger and more intricate lattices. For 

example, in processing the "Tae" dataset with 276 

concepts, the KDL method required 1210.14 seconds, 

whereas the KCS method drastically reduced this to 

just 9.35 seconds. This pattern of enhanced efficiency 

with the KCS method persisted across all evaluated 

datasets, with the "Car Evaluation" dataset showing a 

notable decrease in runtime from 781799.93 seconds 

(KDL) to 8361.93 seconds (KCS) for 3596 concepts. 

These findings underscore the KCS method's 

superior adaptability and scalability, presenting it as 

a more efficient solution for FCA applications across 

varied lattice complexities. The efficiency of the KCS 

method in minimizing runtime, irrespective of the 

lattice size, speaks volumes about its potential to 

handle complex data-intensive environments 

effectively. The analysis exclusively focusing on 

runtime reveals the KCS method as a highly scalable 

and efficient approach for managing the intricacies of 

large concept lattices in FCA. By significantly 

reducing the runtime needed to process extensive 

lattices, the KCS method enhances the practicality 

and applicability of FCA in analyzing complex 

datasets, setting a new benchmark for future 

advancements in the field, as clearly demonstrated in 

Fig. 3. 

5.3 Experiment with the teaching assistant 

evaluation dataset 

In this example, we turn our attention to the 

Teaching Assistant Evaluation dataset from the UCI 

KDD Archive. This dataset provides an in-depth 

analysis of 151 teaching assistant performances at the 

University of Wisconsin-Madison's Statistics 

Department, captured across a range of semesters, 

including both regular and summer sessions. 

Available at UCI KDD 

(https://archive.ics.uci.edu/dataset/100/teaching+assi

stant+evaluation), this dataset has become an 

invaluable asset in educational research, particularly 

in the assessment of teaching effectiveness. The 

dataset is characterized by 6 categorical attributes. 

These attributes cover a variety of aspects: the TA's 

native language (English or non-English speaker), the 

course instructor (across 25 categories), the specific 

course (26 different types), the type of semester 

(summer or regular), the class size. This 

comprehensive attribute set aims to capture the 

multifaceted nature of teaching performance 

evaluation. 

For the purpose of applying Formal Concept 

Analysis (FCA), these categorical attributes are 

converted into Boolean values, creating a formal 

context that includes 151 instances (TA assignments)  

Table 4. Formal context about subset of TAs dataset 
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TA 1 X X  X  X  X 

TA 2 X X   X X  X 

TA 3 X  X  X X X  
TA 4 X  X X  X  X 

TA 5 X X   X X X  
TA 6 X  X  X X  X 

TA 7 X  X  X X  X 

TA 8 X X  X  X X  
TA 9 X X  X  X X  

TA 10 X X  X  X X  

 

and their respective 101 attributes with density of 

0.05. This conversion allows for a more granular 

analysis of the dataset, facilitating the identification 

of patterns and relationships crucial for 

understanding the dynamics of teaching performance. 

In demonstrating the principles of FCA in Section 2, 

we initially focus on a subset of these instances, 

comprising the first 10 TA assignments and a 

selection of 8 attributes.  The concept lattice 

displayed in Fig. 4, constructed from the formal 

context given in Table 4, is visually represented 

through a line diagram. This lattice comprises various 

formal concepts, each emerging from the 

relationships and interactions within the formal 

context, adhering to the subconcept-superconcept 

framework as per reference [10]. In this diagram, 

every node signifies a formal concept, with these 

concepts being divisible into two primary categories: 

object concepts (denoted as 𝛾(𝑔) = (({𝑔}′′,{𝑔}′)) and 

attribute concepts (denoted as 𝜇(𝑚) = 

( ({𝑚}′, {𝑚}′′)), which are related to specific objects 

or attributes respectively. 

In our notation, each object 𝑔 is labeled directly 

at the node representing the smallest concept 

containing 𝑔 in its extent, while every attribute 𝑚 is 

labeled at the node corresponding to the largest 

concept including 𝑚  in its intent. This labeling 

strategy is pivotal for interpreting the relationships 

within the context: an object 𝑔 possesses an attribute 

𝑚 if there's a direct ascending path in the diagram 

from 𝑔's node to 𝑚's node. The extent of any given 

concept is formed by all objects situated lower in the 

hierarchical structure, and similarly, the intent of a 

concept is constituted by all attributes that are  
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Figure. 4 Concept lattice derived from the formal context of tae dataset 

 

 
Table 5. Kernel concept set analysis of TA assignments (𝑺𝒄 set to 5%) 

Concept 

ID 

Number of 

TAs Sharing 

Attributes 

Highlighted Attributes 

 

1 2 Course_3, Summer, Course_Instructor_15, Class_Size_17, Eng_Nat_spk_2 

2 2 Class_Size_19, Course_3, Summer, Course_Instructor_23, Eng_Nat_spk_1 

3 3 regular, Eng_Nat_spk_2, Course_1, Class_Size_51 

4 3 Summer_or_regular_2, Eng_Nat_spk_2, Course_3, Course_Instructor_8 

5 3 Summer_or_regular_2, Eng_Nat_spk_2, Course_5, Course_Instructor_9 

6 3 Summer_or_regular_2, Course_3, Course_Instructor_22, Eng_Nat_spk_1 

7 4 Course_7, Eng_Nat_spk_2, Summer_or_regular_2, Course_Instructor_25 

8 4 Summer_or_regular_2, Eng_Nat_spk_2, Course_3, Course_Instructor_23 

9 6 Eng_Nat_spk_2, Class_Size_20, Summer_or_regular_1, Course_3 

10 7 Summer_or_regular_2, Eng_Nat_spk_2, Course_15 

11 8 Summer_or_regular_2, Eng_Nat_spk_2, Course_Instructor_7, Course_11 

12 14 Summer_or_regular_2, Eng_Nat_spk_2, Course_2 

13 108 Summer_or_regular_2, Eng_Nat_spk_2 

14 128 Summer_or_regular_2 
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positioned higher up in the hierarchy. For instance, 

the concept labeled [Course_Instructor_13] in the 

lattice depicted in Fig. 4 has {TA 3, TA 5, TA 8, TA 

9, TA 10} as extent, and {Course_3, Class_Size_17, 

Course_Instructor_13} as intent of the concept. It's 

important to note that in this context, not every 

concept is exclusively an object or attribute concept; 

some may represent a combination of both or neither, 

as indicated in references [11, 9]. This nuanced 

categorization allows for a detailed and 

comprehensive understanding of the relationships 

and structures within the formal context as depicted 

in the concept lattice. 

In the comprehensive analysis of the Teaching 

Assistant Evaluation dataset, the application of the 

Kernel Concept Set (KCS) methodology showcases 

its effectiveness in simplifying the dataset's complex 

concept lattice, which comprises 276 concepts. The 

methodology's focus is on a kernel concept set, 

carefully selected by applying a size parameter 𝑆c , 

initially set to capture 5% of the total concepts. This 

process results in the identification of 14 pivotal 

concepts, as detailed in Table 5, collectively bearing 

an aggregate derivation cost of 30,808. It's pivotal to 

mention that the frequencies of these concepts were 

randomly assigned to illustrate the KCS approach, 

underscoring the methodology's adaptability to 

various analytical scenarios. This initial kernel 

concept set offers an insightful glimpse into the 

dataset's core structure and relationships, revealing 

distinct patterns and preferences in teaching assistant 

(TA) assignments across the Statistics Department. 

Notably, Concepts 13 and 14, focusing exclusively 

on semester type and TA language proficiency, 

emerge as critical, encapsulating 138 unique TAs out 

of the total 151. This selection process demonstrates 

the KCS method's capacity to distill essential 

assignment characteristics into a manageable and 

informative framework, highlighting a departmental 

trend towards favoring regular semester courses and 

non-English-speaking TAs. Moreover, the analysis 

illuminates the structured approach to TA 

assignments within the department, with attributes 

such as "Course_3", "Summer_or_regular_1", and 

"Summer_or_regular_2" frequently appearing across 

the kernel concepts. The specific detailing of class 

sizes and instructor identifiers within these concepts 

suggests a deliberate consideration of class dynamics 

and teaching effectiveness in the TA allocation 

process. 

To obtain a more granular view of the Teaching 

Assistant Evaluation dataset, an adjustment to the 

size parameter 𝑆c is necessary. By setting 𝑆c to 8% of 

the total concepts within the lattice, as depicted in 

Table 6, we not only preserve the initial set outlined 

in Table 5, which corresponds to 𝑆c at 5%, but also 

incorporate 8 new concepts, now totaling 22, with an 

aggregate derivation cost of 26,768. These additional 

concepts, highlighted for emphasis, afford deeper 

insights into the dataset’s structural nuances. This 

enhanced kernel concept set reveals intricate 

attributes and their relationships with teaching 

assistants (TAs), shedding light on specific class 

sizes, course types, semester types, and instructor 

preferences that the preliminary analysis might have 

overlooked. The inclusion of these new concepts 

unravels more complex patterns in TA allocations, 

such as the discernible preference for non-English-

speaking assistants during regular semesters across a 

diversity of courses and settings, alongside the 

strategic placement of English-speaking TAs in 

summer semesters. The infusion of Concepts 1, 2, 3, 

4, 13, 15, 16, and 20 into our extended analysis 

elucidates departmental strategies aimed at 

diversifying TA assignments, with a particular 

emphasis on linguistic abilities and instructional 

requisites. This comprehensive exploration, enabled 

by the recalibration of the 𝑆c parameter to 8%, 

significantly amplifies our understanding of the 

intricate criteria steering TA assignments, thereby 

affirming the Kernel Concept Set Approach's role in 

facilitating a more robust knowledge discovery 

process in educational data analysis. 

The significant decrease in derivation cost from 

30,808 to 26,768 not only underscores the KCS 

method's adeptness at refining the lattice's structure 

but also highlights its strategic acumen in isolating 

kernel concepts that encapsulate the most salient 

patterns and relationships within the dataset. This 

methodological precision significantly minimizes the 

analytical effort needed to explore and interpret the 

extensive concept set, thus facilitating a more 

streamlined, clear, and insightful analysis. The 

efficiency and depth provided by the KCS approach 

enhance the interpretability of complex datasets, 

enriching the analytical process with more nuanced 

insights into teaching assistant assignments and their 

underlying dynamics. 

This efficiency is further elucidated as we delve 

into the systematic expansion of the kernel set size 

from 5% to 20%, a process vividly depicted in Fig. 5. 

The trend captured therein illustrates a key 

characteristic of the Kernel Concept Set (KCS) 

approach: as the kernel set size increases, the 

derivation cost consistently decreases. Beginning 

with  𝑆c at 5%, the derivation cost stands at its peak 

of 30,808, which then progressively diminishes as the 

kernel set expands—reaching 24,274 for 10%, 

19,782 for 15%, and eventually 16,132 for an  𝑆c of 

20%. This descending trend underscores a principle  
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Table 6. Kernel concept set analysis of TA assignments (𝑺𝒄 set to 8%) 

Concept 

ID 

Number of 

TAs Sharing 

Attributes 

Highlighted Attributes 

 

1 1 
Class_Size_11, Course_19, Summer_or_regular_2, Eng_Nat_spk_2, 

Course_Instructor_16 

2 1 
Course_Instructor_1, Summer_or_regular_2, Eng_Nat_spk_2, 

Course_8, Class_Size_18 

3 1 
Class_Size_39, Summer_or_regular_2, Course_2, Eng_Nat_spk_2, 

Course_Instructor_9 

4 2 
Course_3, Class_Size_13, Summer_or_regular_1, Eng_Nat_spk_1, 

Course_Instructor_13 

5 2 
Course_3, Summer, Course_Instructor_15, Class_Size_17, 

Eng_Nat_spk_2 

6 2 
Class_Size_19, Course_3, Summer, Course_Instructor_23, 

Eng_Nat_spk_1 

7 3 regular, Eng_Nat_spk_2, Course_1, Class_Size_51 

8 3 Summer_or_regular_2, Eng_Nat_spk_2, Course_3, Course_Instructor_8 

9 3 Summer_or_regular_2, Eng_Nat_spk_2, Course_5, Course_Instructor_9 

10 3 Summer_or_regular_2, Course_3, Course_Instructor_22, Eng_Nat_spk_1 

11 4 Course_7, Eng_Nat_spk_2, Summer_or_regular_2, Course_Instructor_25 

12 4 Summer_or_regular_2, Eng_Nat_spk_2, Course_3, Course_Instructor_23 

13 5 
Summer_or_regular_2, Eng_Nat_spk_2, Course_3, 

Course_Instructor_10 

14 6 Eng_Nat_spk_2, Class_Size_20, Summer_or_regular_1, Course_3 

15 7 Course_Instructor_18, Eng_Nat_spk_2, Summer_or_regular_2 

16 7 Course_Instructor_13, Eng_Nat_spk_2, Summer_or_regular_2 

17 7 Summer_or_regular_2, Eng_Nat_spk_2, Course_15 

18 8 Summer_or_regular_2, Eng_Nat_spk_2, Course_Instructor_7, Course_11 

19 14 Summer_or_regular_2, Eng_Nat_spk_2, Course_2 

20 20 Summer_or_regular_2, Eng_Nat_spk_1 

21 108 Summer_or_regular_2, Eng_Nat_spk_2 

22 128 Summer_or_regular_2 

 

 

 
Figure. 5 Trend of decreasing derivation cost with incremental expansion of kernel set size (𝑆𝑐) 
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of efficiency inherent in the KCS method; larger 

kernel sets can seamlessly integrate additional 

concepts without disproportionately amplifying the 

complexity of navigating through the concept lattice. 

Such efficiency implies that the newly included 

concepts are intricately woven into the existing lattice 

structure, thereby streamlining the entire analytical 

framework. This harmonious integration of broader 

data aspects into the kernel set, without 

overburdening the analytical endeavor, showcases 

the method's robust scalability and adaptability. It 

positions the KCS as an effective tool for in-depth 

exploration of complex datasets, enabling richer 

pattern extraction and more informed decision-

making. 

6. Conclusion 

This work introduces the Kernel Concept Set 

Approach (KCS), a significant advancement in the 

field of Formal Concept Analysis (FCA) that 

addresses the inherent challenges of analyzing large 

and complex concept lattices. Through a novel 

integration of concept frequency and derivation cost, 

KCS transcends traditional lattice reduction 

techniques, offering a dynamic and efficient strategy 

for simplifying and understanding data structures. 

Our comparative study with the K-means Dijkstra on 

Lattice (KDL) method underscores KCS's superior 

ability to reduce computational complexity while 

retaining essential data integrity. This enhances the 

practicality of FCA across various domains, 

facilitating deeper insights into data analysis and 

knowledge discovery. 

KCS stands out for its ability to operate within a 

general metric space, significantly lowering 

computational costs compared to standard methods. 

Moreover, it introduces a flexible approach to 

conceptual clustering, centering on kernel concepts 

that serve as pivotal cluster centroids. This 

methodology not only streamlines the clustering 

process but also ensures that the most informative and 

structurally significant elements of the data are 

highlighted. The findings from our tests demonstrate 

that KCS is not merely a tool for lattice reduction but 

also an effective method for the approximation of 

formal concept lattices. It presents a comprehensive 

solution that broadens the application potential of 

FCA, making it a valuable asset for researchers and 

practitioners seeking to navigate the complexities of 

large-scale datasets. 
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